@ https://ntrs.nasa.gov/search.jsp?R=19680024597 2020-03-12T06:23:15+00:00Z

Yo

DEFINITIONS AND PROCEDURES EMPLOYED

in the

GERT SIMULATION PROGRAM

Research Sponsored
by
Electronics Research Center
National Aeronautics and Space Administration
NASA Research Grant NGR 03-001-034

%l A. Alan B. Pritsker

g

1

ABSTRACT

This report describes the variables and techniques of a computer

program for simulating GERT networks on a digital computer. This GERT

simulation program is written in the GASP IIA simulation language and can
be run on any computer with a FORTRAN compiler.

The GERT simulation program can accommodate GERT networks which
o have EXCLUSIVE-OR, INCLUSIVE-OR and AND logical operations associated
with the input side of a node, and deterministic or probabilistic
operations associated with the output side of a nodé. The branches of
the GERT network are described in terms of a probability that the branch
is realized and a time to perform the activity represented by the branch.
(Time is used throughout this report to represenf an additive variable.)
The time associated with a branch can be a random variable.

The results obtained from the GERT simulation program are:

(1) The probability that a node is realized; |

(2) The average time to realize a node;

(3) An estimate of the standard deviation of the time to

realize a node;
! (4) The minimum time observed to realize a node;

(5) The maximum time observed to realize a node; and

(6) A histogram of the times to realize a node.

Normally the above information is obtained for each sink node of the net-
work. The program is written to permit the above information to be
obtained for any node specified in the input data. A companion report is

available which describes in detail the required input data.

The program has been exercised on the IBM 1130 which has a FORTRAN
IV operation set more restrictive than the general FORTRAN IV operation
set. Therefore, the GERT simulation program can be used on most computers
which have FORTRAN IV compilers. On the IBM 1130 with 8192 words of
core storage, GERT networks with up to 30 nodes and 40 branches can be
simulated.

The program described in this report has been submitted to COSMIC.

ii

#

DEFINITIONS AND PROCEDURES EMPLOYED IN THE GERT SIMULATION PROGRAM

The GERT simulation program is a general purpose program for
simulating GERT networks. The input to the program is a description of
the network in terms of its nodes and branches along with control
information for setting up the simulation conditions. A detailed
description of the input information is described in a companion report.
(18)

The GERT simulation program is written in the GASP IIA simulation
language. The techniques employed for simulating GERT networks are the
standard techniques employed by the GASP IIA system. These techniques
will not be described in this report. This report will describe the
parts of the program which are special to GERT network simulation. In
Appendix A, the GASP IIA subprograms and variables used within the GERT
simulation program are defined. In Appendix B, the FORTRAN listings of
the GASP IIA subprograms modified for use in the GERT simulation program
are given. Further information on GASP IIA is contained in references
(22, 23).

The GERT simulation program receives first the network description
and the number of simulations to be performed. It then performs a simula-
tion by selecting branches to be traversed based on random numbers and
branch times from samples of the distributions inserted as input informa-
tion. Statistics are automatically collected on nodes as specified by the
user of the program. When all simulations as requested by the user have

been completed, a summary report which describes the network simulated

and the final statistical results are printed. The final results include:

(1) The probability that a specified node is realized;

(2) The average time to realize the specified node;

(3) An estimate of standard deviation of the time to realize

the specified node;

(4) The minimum time observed to realize the specified node;

(5) The maximum time observed to realize the specified node; and

(6) A histogram of the times to realize the specified node.

The current simulation program takes advantage of the concepts
included in GASP IIA to obtain an efficient utilization of storage
space and a relatively fast execution time. Desirable features from
earlier versions of the program (1,14) for simulating GERT networks have
been incorporated. The GERT simulation program reported herein is a
general purpose network simulation program which has been tested for

numerous examples.

Description of Overall Program Operation

The GERT simulation program performs a simulation by advancing
time from event to event. In simulation parlance this is termed a next
event simulation. The events associated with a GERT network are:

(1) Start of the simulation and (2) End of an activity.

The start event causes all source nodes to be realized and
schedules the activities emanating from the source nodes according to
the output type of the source node. The output type for all nodes is
either deterministic or probabilistic. In the former case, all activities
emanating from the node are scheduled and in the latter case, only one of

the activities emanating from the node is scheduled. By scheduling an

activity is meant that an event "end of activity" is caused to occur

at some future point in time. A next event simulation proceeds from

event to event until the conditions which indicate that the simulation

is completed are obtained. For the simulation of GERT networks, all events
involve end of activity times and the simulation of the network proceeds
from one end of activity time to another.

As part of the input data, the number of releases required to
realize a node is specified. Each time an end of activity event occurs,
the number of releases for the end node of that activity is decreased
by one., When the number of releases remaining is zero, the node is
realized and the attivities emanating from the node are scheduled.

Again, the number of activities scheduled depends on the output type

for the node. End of activity events are put in an event file in
chronological order. Since feedback branches are permitted, it is
possible that a node already realized will be released. When this occurs,
a check is made to determine if the node can be realized again. If it
can, the activities emanating from the node are scheduled according to

the output operation for the node. The assumption is made that it oniy
requires one release in order to realize a node after it has been

realized once.

As indicated above, the end of activity events are stored in
chronological order in an event file. The events are removed from the
event file one at a time and at each removal instant, tests are performed
to determine if a node is realized. If no node is realized the next

event is removed from the event file. If a node is realized, activities

)
|
o

are scheduled and the simulation is continued. The simulation ends when
a prescribed number of sink nodes have been realized. The sink nodes can
be either terminal nodes of the network or nodes on which statistics are
being collected. As part of the input data, the node numbers on which
statistics are collected and the number of nodes required to realize the
network are defined.

The above process describes one simulation of a network. The
program is written to allow multiple simulations to be performed. The
number of simulation runs to be performed is part of the input data. The
GERT simulation program automatically initializes the pertinent variables
in order that consecutive simulations of the same network can be performed
and, if desired, permits simulations of different networks to be performed
consecutively.

The heart of the GERT simulation program is a filing system which
contains an event file for all end of activity events scheduled to occur,
and a file for each node of the set of activities emanating from that node.
Thus, if a network contains 20 nodes there will be 21 files. File 1 is
always the event file. File J for J>1, contains the set of activities
emanating from node J. (Thus all node numbers must be greater than 1)

The filing system is designed so that all locations of the file can
store entries inserted into the file. This permits a significant reduc-
tion in storage requirements since space need not be allocated to each
file. In addition, a limit need not be set on the number of activities
emanating from a particular node. By providing a file for all activities

emanating from a node, no searching need be done to find the activities

which emanate from a node.

This significantly reduces execution time

for the GERT simulation program over past simulation programs (1, 14).

NSET and a floating point array called QSET.

The file is divided into two parts: a fixed point array called

Each entry in the file

has associated with it three fixed point attributes and one floating

point attribute.

To insert an entry into a file, the buffer storage

vectors JTRIB and ATRIB dimensioned to 3 and 1 respectively are used.

The values to be given to these buffer storage vectors for the two

types of files is shown below.

File
No.

Description

JTRIB(1)

JTRIB(2)

JTRIB(3)

ATRIB(1)

1

Event file

End node no.

Not used

Not used

End of
activity
time

Set of activ-
ities emana-
ting from
node J

End node no.
of activity

Parameter
set asso-
ciated
with
activity

Distribu-
tion type
associated
with activ-
ity

Cumula-
tive prob-
ability of
taking

this activ-
ity .or an
activity
emanating
from node J
stored pri-
or to this
activity

file since the file number describes the start node number.

set associated with an activity specifies the

The start node number of an activity need not be stored in the
The parameter

row number in the array

PARAM(I,J) where the parameters associated with the distribution describ-

ing the time required to perform the activity are stored.

The distribution

type associated with an activity specifies which subroutine is used for
obtaining the time to perform the activity. Four distribution types have
been included in the IBM 1130 version of the GERT simulation program.

These are: (1) constant (2) normal (3) uniform (4) Erlang.

The parameters required in the parameter set for each of these distribu-

oy tion types is given below.

oy Distribution Types Parameters
; § . 1 2 3 4
1. Constant Constant _—— _— -
i 2. Normal Mean Minimum Maximum Standard Deviation
a 3. Uniform —_— Minimum Maximum _—
|
; 4. Erlang Mean/k Minimum Maximum k

) The GERT simulation program has been written to facilitate the
adding of distribution types. FORTRAN subroutines for sampling from

other distributions are given in references (15, 23).

! Definitions of Non-GASP Variables

The variables which are in COMMON in the GERT simulation program

,,,,,, i but are not a part of GASP IIA are given below.

! NN Larg§st node number in the network (smallest node number
] is 2
o NSKS Number of sink nodes in the network (maximum of 5)
NSRC Number of source nodes in the network
NSKST Number of sink nodes to be realized to realize the network
NSKSR Number of sink nodes yet to be realized to realize the

] network for a simulation run

NSORC(J)

NSINK(K)

NRELP(I)

NREL(I)

NTYPE(I)

g XLOW(K)
WIDTH(K)

The node number of source node J, J=1, °**, NSRC
The node number of sink node K, K=1, ***, NSKS

Number of branches necessary to realize node I
(If NRELP(I)>1, I is an AND node)

Number of branches yet to be realized to realize node I

If NTYPE(I) = 1, I has a deterministic output side and once
realized does not release activities
emanating from it.

2, I has a probabilistic output side and once
realized does not release activities
emanating from it.

3, I has a deterministic output side and can be
realized many times. (Once realized it only
takes one release for it to be realized again)

4, 1 has a probabilistic output side and can be
realized many times.

Lower 1imit for histogram for sink node K, K=1, *°*, NSKS
Width of a cell for histogram of sink node K, K=1, ***, NSKS

The definitions of the GASP IIA variables are given in Appendix A.

B The GERT Simulation Program

The GERT simulation program consists of a main program and three

specialized subroutines. These subroutines are:

g (1)

EVNTS which is called when an end of activity event occurs;

(2) SCHAT, the scheduling of end of an activity event when a node

(3)

is realized; and

SAMPL, a subroutine for obtaining a deviate from a specified

distribution with specified parameters.

The GASP subroutine SUMRY has been modified and provides a description and

the activity parameters for the network in addition to the final results

of the simulation.

1
é
wd

1

The Main Program

A flow chart of the main program is given in Fig. 1. The main
program first defines the equipment numbers for the card reader and
printer. These variables are NCRDR and NPRNT. For the IBM 1130 system
the values are 2 and 3 respectively. All read and write statements
reference the variable names. The non-GASP variables are then initial-
ized as described in reference (18). The first six data cards represent
the initialization of the non-GASP variables. The main program then
calls subroutine GASP which controls the simulation until all the runs
requested have been completed.

A general flow chart of the functions performed by subroutine
GASP and the GASP subprograms it calls is shown in Fig. 2. Subroutine
GASP has not been rewritten for the GERT simulation program and is a
general subroutine included in the GASP IIA programming language. The GASP
subroutine has the GASP variables initialized in GASP IIA subroutine
DATAN. An echo check of the parameters and files associated with the
simulation programs are then printed. This provides a convenient check
that all input data for a given network has been inserted into the
computer. GASP then starts and controis the simulation. The first
event is removed from the event file and current time is advanced to the
time of the event. In the GERT simulation program, the initial event is
always an event which releases the source nodes. GASP then calls sub-
routine EVNTS which releases nodes, schedules end of activity events, and
determines when a complete simulation of a network has been accomplished.
Subroutine events also passes this information back to subroutine GASP

when all simulations of the network have been made. GASP then calls

o

Main Program

=S Initialize Non-GASP Variables

Call GASP :

Are
more
simulations
requested?

1 Yes

A\

Call Exit

Fig. 1 Flow Chart of the Main GERT Simulation Program

i

10.

subroutine SUMRY which prints the final GERT summary report. GASP
also calls subroutine OTPUT which is a dummy subroutine which the
programmer can use to print additional information. Subroutine OTPUT
currently contains only a return statement. Since subroutine GASP
calls it, an OTPUT subroutine is required.

If all simulations of the network have not been made, the next
end of activity event is removed from the event file and the simulation
continued through the loop shown in Fig. 2.

The FORTRAN Tlisting for the main program, subroutine SUMRY and
subroutine OTPUT are given in Figs.3, 4, and 5. Subroutine GASP is

given in Appendix B along with the other GASP IIA subprograms.

Subroutine EVNTS(NEND,NSET,QSET)

The argument NEND defines the end node of the activity which has
just been completed. NSET and QSET are vectors which are included in
arguments to all subprograms to facilitate the changing of the size of
the vectors without recompiling all subprograms. This is critical since
NSET and QSET are used to store the integer and real portions of the
filing array respectively.

The flow chart for subroutine EVNTS is given in Fig. 6. First a
test is made to determine if this is the start of a new simulation run.
This occurs if NEND is zero in which case activities from all source nodes
are scheduled in accordance with the node type of the source node. The
scheduling of the end of an activity event is accomplished by calling

subroutine SCHAT with NEND as one of its arguments.

L Subroutine GASP

Y
Initialize GASP Variables

Y
Print PARAMETERS and FILES

Y

START and CONTROL simulation

> Advance Time to next end of activity time

va '
- CALL EVNTS

No all simulations

of the network been made?

;

3 Print summary report

RETURN

A

: Fig. 2 Flow Chart of Subroutine GASP Described in Terms
z Appropriate for the GERT Simulation Program

|
!
:

7/ FOR

* LIST SOURCE PROGRAM

* ONE WORD INTEGERS

JOCS (1132 PRINTERsCARD]

DIMENSION NSET(200),QSET(40)

COMAON IDIMIINIToJEVNT s JMNIToMFASMSTOP ¢MXsMXCoNCLCTONMIST
INOQsNORPT s NOT sNPRMS s NRUN e NRUNS s NSTATsOUT s ISEED s TNOW
2TBEGsTFINsMXX sNPRNT ¢ NCRDRsNEP 9sVNQ(31) » IMMsMAXQS ¢ MAXNS

COMMON ATRIB(1)sENQ{31) ¢ INN(31)sJCELS{5+22) sKRANK(31) ¢sMAXNG(31)»
1 MFE(31)oMLCI31) sMLE(31)oNCELS(S)9sNQ(31)sPARAM{40+4)1sQTIME(31)
2 SSUMA(L1s1)9SUMAL595) sNAME(S) s NPROJIMONSNDAY sNYR s JCLRJTRIB(S)

COMMCN NSINK(5) sNSKSTsNSKSRaNSKSsNSORC(5) sNRELP(301) oNREL (300
INTYPE(30) o XLOWIB) »yWIDTHI{B) » TOTIMINN s NSRC

i FORMAT(4012)
15 FCRMAT{10F10,.2)
C
Cre¥xeaSET EQUIPMENT NUMBERS FOR CARD READER(NCRDR) AND PRINTER (NPRNT).
C
NCRDR=2
NPRNT=3
C
Con%a#READ LARGEST NODE NUMBERs NOe OF SINK NODESs NOs OF SOURCE NODESH»

Crx#x2#NOs OF NODES NECESSARY TO REALIZE THE NETWORKe
‘ 7 READINCRDRs10INNINSKSINSRCINSKST
E*****END RUN IF LARGEST NODE NOs IS5 NEGe OR ZERQ,
‘ IFINNI2052048
8 NSKSR=NSKST
g*****READ SOURCE AND SINK NODE NOS.
z READ(NCRDR10) (NSORC(J} 9J=1eNSRC) s {NSINKIK)sK=1sNSKS)

Caxnx%READ NOs OF RELEASES FOR EACH NODEs NODE NOSe MUST BE «GEe TO 2,
C
READ(NCRDR»10) (NRELP (T) oI=2sNN)
DO 11 I=2sNN
12 NREL(I)=NRELP(I!
C

GRTS
GRTS
GRTS
GRTS
GRTS
GRTS
GRTS
GRTS
GRTS
GRTS
GRTS

GRTS

GRTS
GRTS

GRTS
GRTS

GRTS
GRTS

GRTS
GRTS

GRTS
GRTS
GRTS
GRTS

GRTS
GRTS

C#x%x*%xREAD NODE TYPE. 1 AND 3 ARE DETERMINISTICe 2 AND 4 ARE PROBABILIGRTS

Caxxnx3 AND 4 CAN BE REALIZED MORE THAN ONCE.
C
READ(NCRDR 10V (INTYPE(I ! eI=24NN)
C
CHxxxr¥READ LCWER LIMIT AND CELL WIDTH FOR HISTOGRAMS,
C
READ(NCRDR#15) (XLOW(K) sK=1sNSKS)
READ (MCRDR15) (WICTHIK) 9K=19NSKS)
CALL GASP{NSET,QSET)
GJ TO 7
4C CALL EXIT
END
FEATURES SUPPORTED
ONE WORD INTEGERS
10Cs

CORE REQUIREMENTS FOR
COMMON 1072 VARIABLES 286 PROGRAM 212

END OF COMPILATION

Fig 3. FORTRAN Listing of the Main GERT Simulation Program

GRTS
GRTS
GRTS

GRTS
GRTS
GRTS
GRTS
GRTS
GRTS

10
20
40
40
50

70
80
90
100
110
120

130
140

150
160

170
180

190
200

210
220
230
240
250
260

270
280

290
300

310
320
330
340
350
360

12.

// FOR
*ONE WORD INTEGERS
#L1ST SOQURCE PROGRAM

SUBROUTINE SUMRY (NSET»QSET) SMRY 10
DIMENSION NSETI{1)4QSET(1) SMRY 20
COMMON IDsIMs INIToJEVNT o JMNIToMFASMSTOP sMX s MXCoNCLCToNHIST SMRY 30
INOQ sNORPT s NOT sNPRMS s NRUN s NRUNS s NSTAT 9QUT s ISEED» TNOW s SMRY 40
2TEBEGITFINSMXXsNPRNT o NCRDRoNEPIVNQ{31) » IMMsMAXGS s MAXNS SMRY 50

COMJMON ATRIB(1)sENQI31) 9 INNI31) 9 JCELS(5922) 9KRANK(31) oMAXNQ(31)s SMRY 0
1 MFE(31)oMLCH{31)9MLE(31)sNCELSIS)sNQI31)sPARAMI4094])9QTIVE(31) SMRY 70

2 SSUMA{191)sSUMA(S545) ¢NAME (6} 9NPROJIMONINDAY sNYR$JCLP»JTPIB(S) SMRY 80
COMMON NSINK(ES) sNSKSTsNSKSRaNSKSsNSORCIS) s NRELP(30) oAREL(30) S¥RY 90
INTYPE(30) s XLOWIS) sWIDTH{5) aTOTIMWNN sNSRC SMRY 100
21 FORMAT(1HL) SMRY 11¢C
10 FORMAT (29X s23HGERT SIMULATION PROJECTsI3s4H BY 96A2/44X»4HDATESI395¥RY 120
11H/s1391H/ 915771} SMRY 130

11 FORMAT(39X¢23H*#NETWORK DESCRIPTIONX®#//16X5HSTART16X3HENDsSX 994 ACSMRY 140
1TIVITYEX s 12HDISTRIBUTION6X 9 L1HPROBABILITY/17X4HNODE s 6X 9 6HNODE » 7X s SMRY 150

2EHNUMBER 2 1 1X4HTYPEY/) SVRY 142

12 FORMAT(11951113112+1165F19¢4) SMRY 170

13 FORMAT(//39X23H*%ACTIVITY PARAMETERS##//16X8HACTIVITY +32X s 10HPARAMSMRY 180

1ETERS/1TX6HNUMBER 9 16X1H1913X1H2 913X s1H3213X1H4/) SMRY 190

14 FCRMAT(121TXs0F1444) SMRY 200

15 FORMAT(//31X19H2%FINAL RESULTS FORsISs14H SIMULATICNS*#/) SMRY 210

16 FORMAT(16X 6HNODE 5 TX5HPROB ¢ SX4HMEAN » 8 X3HSTD A DEV. s 4X6HSMRY 220

IMINeSXGHMAX /) SMRY 230

17 FORMAT(11943X06F10e4) SMRY 24D

18 FORMAT(//43Xy LoH#*HISTOGRAMS %%/ /20X » SHLOWER ¢3X s 6HCELL/13XSMRY 250

104HNODE 23X ¢ BHLIMIT 93X 5HWIDTH 31X 1IHFREQUENCIES) SMRY 260

) 19 FCRMAT(/I1169F940sF8e1s5X»1116/38Xs1116} SMRY 270
199 FORMAT(///36X26HERROR EX1T» TYPE 98 ERROR,! SMRY 280

XRUNS = NRUN SMRY 290

WRITE (NPRNT,21) SMRY 300

WRITE (NPRNT+10) NPROJsNAME sMONsNDAY sNYR SMRY 310

g WRITE (NPRNT,11) SMRY 320
; DO 40 JA=23sNOQ SMRY 33¢
PROB = 040 SMRY 340

LINE = MFE(JQ) SMRY 350

NT=NTYPE(JQ) SMRY 360

— IF (LINE) 40540062 SMRY 370
] 42 1B = (LINE=1) * MXX + 1 SMRY 380
| IE = 18 + 2 SMRY 390
1Q = (LINE=1) % IMM + 1 SMRY 400

DPROB=QSET(IQ) SMRY 410

GO TO (72s73s72473)yNT SMRY 420

§ 73 DPROB = QSET(I1Q)=PRO3 SMRY 430
i PRO3 = PROB + DPROB SMRY 440
! 72 WRITE (NPRNT$12) JQs(NSET(I)s1=IBs1E)+DPROB SMRY 430
LINE = NSETIIE+1) SMRY 460

. IF (LINE = 7777) 4244095 SMRY 470
: 5 WRITE (NPRNT,199) SMRY 480
! 40 CONTINUE SMRY 490
o WRITE (NPRNT»13) SMRY 500
DD 50 1 = 1¢NPRMS SMRY 51C

| 50 WRITE (NPRNTs14) Is(PARAM(Is»J)sJ=1s4) SMRY 520
{ WRITE{NPRNT21) SMRY 53¢
| WRITE (NPRNTs13) NPROJsNAME sMONsNDAY sNYR SMRY 540
= WRITE (NPRNTs15) NRUN SMRY 550
WRITE(NPRNT»16) SMRY 55¢

) DO 2 1 = 1eNCLCT SMRY 57C
! IF(SUMA(T33)) 5452461 SMRY 58C
{ 62 WRITE(NPRNT+63) NSINKI(I) SMRY 590
= 63 FORMAT(I19921X 18HMNO VALUES RECORDED) SMRY 600
GO TO 2 SMRY 610

, 61 XS=SUMALT 1) SMRY 620
| XSS=SUMA(]42) SMRY 630
‘ XN = SUMA(1:3) SMRY 640
o AVG=XS /XN SMRY 650
PROB = XN/XRUNS SMRY 66C

STD=(((XN®*XSS)={XS*¥XS) 1/ {XN# (XN=140)1)%%0,5 SMRY 67C

WRITE (NPRNT#17) MSINKII)sPROBIAVGHSTDsSUMALT»4) sSUMATTS5) SMRY 680

2 CONTINUE SMRY 690

WRITE (NPRNT»18) SMRY 700

DO 82 I=1sNHEST SMRY 710

NCL=NCELS(1)+2 SMRY 720

WRITE(NPRNTs 19) NSINK(I}oXLOW(I)sWIDTHIT I 9 (JCELSIT s ad=1sNCL} SMRY 730

82 CONTINUE SMRY 740

WRITE(NPRNT$21) SMRY 759

RETURN SMRY 762

i END SMRY 770

FEATURES SUPPORTED
ONE WORD INTEGERS

CORE REQUIREMENTS FOR SUMRY
i COMMON 1072 VARIABLES 36 PROGRAM 786

END OF COMPILATION

Fig. 4 FORTRAN Listing of the GERT Version of Subroutine SUMRY

=
i
|

|
!
!
o

1
{
1

A

1
:
)
:

// FOR
ONE WORD INTEGERS
* LIST SOURCE PROGRAM

SUBROUTINE OTPUT(NSETQSET)

DIMENSION NSET(1),QSET(1)

COMMON IDoIMp INITsJEVNT s JMNITsMFA9MSTOP sMX s MXCoNCLCToNHIST s
INOQsNORPT e NOT sNPRMS o NRUN s NRUNS s NSTATsOUT s ISEEDI TNOW»
2TBEGsTFINsMXXsNPRNT s NCRDRoNEP s VNQ(31) o IMMyMAXQS s MAXNS

COMMON ATRIB{1)sENQI31)sINN(31) s JCELS(5522) +KRANKI31) sMAXNQ(31) s
1 MFE(31)oMLC(31)sMLE(3]1) oNCELS(5)sNQ{31) 9sPARAMI40+4)sQTIME(31)
2 SSUMA(1s1)9oSUMA{555)9NAME(6) sNPROJIMONINDAYINYRIJCLRIJTRIBI(S5)

COMMON NSINK(5) sNSKSTeNSKSReNSKSsNSORC(I5} s NRELP(30) sNREL(30)
INTYPE(30) o XLOWIS) oWIDTH(5) s TOTIMaNN #NSRC

RETURN

END

FEATURES SUPPORTED
ONE WORD INTEGERS

CORE REQUIREMENTS FOR OTPUT
COMMON 1072 VARIABLES 0 PROGRAM 8

END OF COMPILATION

Fig. 5 FORTRAN Listing of the Dummy Subroutine OTPUT

oTPT 10
oTPT 20
CTPT 30
CTPT 4Q
QTPT 50
OTPT 60
oTeT 70
oTPT 80
OTPT 90
OoTPT 100
OTPT 110
OTPT 120

14,

15.

Subroutine EVNTS

Is
this the start
of a new simula-
tion run?

Schedule end of activ-
Yes ity events from all
source nodes by call-
ing SCHAT

Subtract 1 from the number of
releases for the end node of RETURN

the activity just completed

Is
the end node
realized?

RETURN

Has Can

the node been it be
released released RETURN
before? again?

Are
statistics

being collected
on this
node?

Yes

>
4

Schedule end of activity
events for activities
emanating from this node

RETURN

Fig. 6 Flow Chart of Subroutine EVNTS

,,,,,,

Collect Statistics

Y

Reduce number of nodes required
to realize network by 1

Is
network

No

realized?

Collect Statistics

Have
simulation
runs been

Set control
switches to
end the sim-
ulation of
this network

RETURN

Fig. 6

completed?

Initialize for
next run

[
(RETURN)

Flow Chart of Subroutine EVNTS (continued)

16.

[

o

17.

When NEND is not zero, the number of releases associated with
NEND is decremented by one, and a test is made to determine if there
are more releases for NEND. If the end node is not realized, a return
is made to subroutine GASP. When the number of releases is less than
or equal to zero, a test is made to determine if the node has been
realized previously in this simulation run. If it has, a test is made to
determine if it can be released again, which will be the case if its
node type is either three or four. When this is the case, end of activ-
ity events are scheduled in accordance with the node type by calling
subroutine SCHAT.

If the node is being released for the first time, a test is made
to determine if statistics are to be collected for this node. If not,
end of activity events for activities emanating from the node are
scheduled in accordance with its node type.

If the node is one on which statistics are being collected, GASP
subroutine COLCT is used to obtain data from which the average, standard
deviation, minimum and maximum time and the probability that the node is
realized can be computed. Subroutine HISTO is used to prepare a histogram
on the times the node was realized. Each node on which statistics are
collected is considered as a potential terminal node. The number of
terminal nodes required to realize the network is reduced by one and when
this value is zero the network is realized. If the network is not realized,
end of activity events are scheduled if there are activities emanating

from the node.

i
1
o

E
1
eiid

FR—]
{

1
3
P

18.

When the network is realized, one complete simulation of the
network has been completed. At this point network statistics are cal-
culated and if more simulation runs are to be made for this network,
the event file is cleared and a start-up event inserted into it. The
number of releases associated with each node is reset and control re-
turned to GASP. When all simulation runs have been made, the control
variable MSTOP is set to -1 to communicate to subroutine GASP that
all runs have been made.

The FORTRAN 1listing for subroutine EVNTS 1is given in Fig.7.

Subroutine SCHAT(NODE,NSET,QSET)

Subroutine SCHAT determines which activities from the node, NODE,
should be realized and schedules end of activity events for each of
these activities. The flow chart for SCHAT is given in Fig. 8. Many
of the statements in this subroutine are required to find the Tocation
in the one dimensional arrays NSET and QSET of an activity. These
statements do not add significantly to the execution time of the program
since if two dimensional arrays were used, the FORTRAN compiling system
would perform the function.

If the node from which activities are to be scheduled is a
deterministic node, it will have a node type of either 1 or 3. When
this is the case, all activities emanating from the node will be sched-

uled to occur and an end of activity event will be inserted into the

{
i
|
3

/7 FOR
® ONE WORD INTEGERS
* LIST SOURCE PROGRAM

SUBROUTINE EVNTS(NENDsNSETQSET) EVNT
DIMENSION NSET(1)+Q5ET(1) EVNT
COMMON 1D IMe INIToJEVNT s JMNITaMFASMETOP s MX oMXCoNCLCT aNHIST s EVNT
INOQeNORPT s NOT s NPRMS s NRUN sNRUNS s NSTAT 9 QUT s ISEED s TNOW» EVNT
2TBEGsTFINIMXXsNPRNT s NCRORINEP yVNQI31) o [MMsMAXQS 9 MAXNS EVNT

COMMON ATRIBI{1)oENQIIL)oINNI31) 2 JCELS(5922) sKRANKI31)9MAXNQ(31)s EVNT
1 MFE(31)sMLC(31) sMLE(31) oNCELSIS)oNQ(31) »PARAMI4094) 9QTIVE(31) EVNT

2 SSUMAL101)95UMAISs5) sNAME {6) 2NPROJ #sMONSNDAYINYRICLR s JTRIB(S) EVNT
COMMON NSINK{5) oNSKSToNSKSReNSKSINSORCIS) 2NRELPI30) oNRELI30) EVNT
INTYPE(30) s XLOWIS)1 sWIDTHI5) »TOTIMINN s NSRC EVNT
C
CoesnnlF END NODE 15 ZERO START NETWORK BY SCHEDULING ACTIVITIES EVNT
CresxnFROM EACH SOURCE NODE EVNT
C
IF(NENDI 445 EVAT
4 DO 10 N=1sNSRC EVNT
M=NSORC (N} EVNT
CALL SCHAT(MyNSETQSET) EVNT
10 CONTINUE EVNT
99 RETURN EVNT
C
CouuxwREDUCE NOs OF RELEASES FOR END NODE BY 1. EVNT
ConxxnTEST TO SEE IF NODE 1S RELEASEDa EVNT
C
5 NREL (NEND)=NREL(NEND}=1 EVNT
IFINRELINEND)T 947999 EVNT
C
CHux%uaTEST TO SEE IF NODE CAN BE RELEASED MORE THAN ONCE. EVNT
C
9 IFINTYPEINEND}=2) 99499450 EVNT
C
CHn#xoTEST TO SEE IF STATISTICS ARE TO BE COLLECTED ON THE NODE. EVNT
C
7 DO 8 K=19NSKS EVNT
IFINEND=NSINKIK)) 840148 EVNT
8 CONTINUE EVNT
50 CALL SCHATI{NENDWINSET»QSET) EVNT
RETURN EVNT
C
Cau#2¥REDJCE NOs OF SINK NODES REALIZED BY ONEs COLLECT STATISTICS,. EVNT
<
40 NSKSR=NSKSR=1 EVNT
CALL COLCT{TNOWsK sNSET»QSET) EVNT
CALL HISTOUTNOW S XLOWIK? s WIDTHIK) oK) EVNT
C
CunnedTEST TO SEE IF NETWORK SIMULATION 1S COMPLETE. EVNT
C
IF(NSKSR) 2241004999 EVNT
999 IF{NQINEND}) 22499950 EVNT
22 CALL ERROR(22sNSETsQSET) EVNT
C

CesaaNETWORK HAS BEEN SIMULATED ONE MORE TIMEs ADD TNOW TO TOTAL TIMEWLEVNT
<

100 TOTIM=TOT IM+TNOW EVNT
¢
Crx#x#TEST TO SEE IF ALL RUNS HAVE BEEN MADE. EVNT
<
IF {NRUNS=NRUN1110+1104115 EVNT
¢
Crsun*REINITIALE FOR ANOTHER RUN BY REMOVING ALL EVENTS FROM EVENT EVNT
CHx#*»FILE AND RESETTING NETWORK VALUES, EVNT
C
115 IFING(1)122+120s116 EVNT
116 CALL RMOVE(MFE(1)»1sNSETsQSET) EVNT
GO TO 115 EVNT
120 NRUN=NRUN+1 EVNT
JTRIBI1)=0 EVNT
ATRIB(1}=0, EVNT
CALL FILEM(1sNSETsQSET! EVNT
TNOW=04 EVNT
DO 36 1J=1yNOQ EVNT
36 QTIME{1J1=00 EVNT
NSKSR=NSKST EVNT
DO 37 1J=1NN EVNT
37 NREL(IJ)=NRELP(IJ} , EVNT
RETURN) EVNT
110 MSTOP==1 EVNT
NRUNS=1 EVNT
TNOW=TOTIM EVNT
DO 142 1J=1sN0Q EVNT
162 QTIME(1J)=TOTIM EVNT
RETURN EVNT
END EVNT

FEATURES SUPPORTED
ONE WORD INTEGERS

CORE REQUIREMENTS FOR EVNTS
COMMON 1072 VARIABLES 6 PROGRAM 334

END OF COMPILATION

Fig. 7 FORTRAN Listing of Subroutine EVNTS

i0
20
30
40
50
60
Y
8y
90
100

110
122

130
l4C
150
160
17¢
180

190
200

210
220

230
240
250

260
270
280
290
300

3.0

320
330
340

350

360
37¢C
380

390
400
410
420

430
440

450
460
470
480
499
500
510
520
530
540
550
560
57¢
580

590
600
610
620
630
649
650

19.

Subroutine SCHAT

20.

the end node
have a deterministic

Sample to determine
which activity should
be realized for this
simulation run.
Schedule an end of
activity event for
the branch selected

output?

Yes

\

Schedule an end of activity
event for each branch eman-
ating from the node

The end of activity time is
obtained by adding a deviate

(DEV) obtained from subroutine
SAMPL to the current time

4
RETURN

Fig. 8 Flow Chart of Subroutine SCHAT for Scheduling
End of Activity Events

21.

event file for each activity. The end node of the activity is stored
in JTRIB(1) as shown in the statement sequenced as SCAT 230. The
parameter set for the activity is stored in JTRIB(2) and the distribu-
tion type in JTRIB(3) so that these values will be available to sub-
routine SAMPL when it is called in the statement sequenced. as SCAT 250.
After these values are defined, subroutine SAMPL is called and the time
to perform the activity is returned in the variable DEV. DEV is added
to current time, TNOW, to determine the time at which the end of the
activitvai11 occur. This is stored in the buffer storage vector
ATRIB(1). The event is inserted into the event file by calling the
GASP IIA subroutine FILEM with a file number of 1. This procedure is
continued for deterministic nodes until all activities emanating from
the deterministic node are scheduled.

When the node type is probabilistic (node type 2 or 4) then a
sampling procedure is used to determine which one of the activities
should occur. A random number is generated and tested against the
cumulative probability that a branch or one of the previous branches
stored in the file of the node will be taken. By testing in the order
in which the activities are stored in the file, the activities will be
selected with the same relative frequency as indicated by the probabil-
ities on the branches. When one activity is selected to occur it is
scheduled in the same manner as the activities emanating from adeter-
ministic pode. A return is made at this point.

The subroutine DRAND is used to generate a random number. This

subroutine uses the system random number generator. For the IBM 1130,

|
f

22.

this is subroutine RANDU and has two arguments: ISEED, an initial
random integer; and RNUM, the random number generated, If the system
random number generator is different, then only subroutine DRAND need
be changed in order to use the system random number routine.

The FORTRAN Tisting for subroutine SCHAT is given in Fig. 9.

Subroutine SAMPL(DEV ,NSET ,QSET)

Subroutine SAMPL obtains a deviate, DEV, which represents the
time to perform an activity. The value of DEV is determined by sampling
from the distribution type of the activity defined in JTRIB(3) with.the
parameter set given by JTRIB(2). Subroutine SAMPL is only called from
subroutine SCHAT where JTRIB(2) and JTRIB(3) are set. In subroutine
SAMPL, these values are assigned to the variables JP andJdD respectively.

A computed GO TO statement based on the value of JD is used to
determine the distribution type from which the deviate is to be obtained.
The flow chart for subroutine SAMPL is shown in Fig. 10, and the FORTRAN
1isting is given in Fig. 11. The computed GO TO statement for specifying
the distribution type is shown in the statement sequenced as SAMPL 130.
From Fig. 10 and 11 the following distribution type codes can be
identified:

(1) The deviate will be a constant value;

(2) The deviate will be drawn from a normal distribution;

(3) The deviate will be drawn from a uniform distribution;

(4) The deviate will be drawn from an Erlang distribution.

This subroutine has been written to permit the addition of other

distributions by inserting additional numbers in the computed GO TO

§ // FOR
¢ * ONE WORD INTEGERS
; * LIST SOURCE PROGRAM

§

|

) SUBROUTINE SCHAT(NODEJNSETsQSET) SCAT 10

| DIMENSION NSET(1)+QSET(1) SCAT 20

| COMMON IDs»IMo INITsJEVNT 9 JMNITsMFAsMSTOP sMXsMXCoNCLCT osNHIST» SCAT 30

{ INOQsNORPT s NOT s NPRMS s NRUN yNRUNS s NSTAT s OUT » ISEED » TNOW SCAT 40
§ 2TBEGTFINsMXX sNPRNT s NCRDPRsNEPsVNQ(31) s IMMsMAXQS s MAXNS SCAT 50
| COMMON ATRIB(11sENQ(31)sINN(31)sJCELS(5922)9KRANK(31)sMAXNQ(31)s SCAT 60

4 1 MFE(31)eMLC(31)sMLE(31)sNCELS(5)sNQI31)sPARAM(40,4)+sQTIME(21) SCAT 70

2 SSUMA(191)9sSUMA(595) sNAME(6) sNPROJsMOMINDAY sNYRSJCLRsJTRIB(5) SCAT 80
COMMON NSINK(5) sNSKSTsNSKSReNSKSsNSORC(5) oNRELP (30) sNREL (30} SCAT 90
INTYPE{30) 9 XLOW(S5) sWIDTH{5) s TOTIMsNN sNSRC SCAT 100
C
CouunrNEXT 15 LOCATION OF FIRST ENTRY IN FILE OF ACTIVITIES WITH START SCAT 110
Caunx#NODE= NODEe NT 1S THE NODE TYPEs SCAT 10
C
NEXT=MFE{NODE) SCAT 130
. NT=NTYPE(NODE) SCAT 140
| C
,j Crunn®GENERATE A RANDOM NUMBER RNUM. SCAT 150
C
CALL DRAND(ISEEDsRNUM) SCAT 160
C
,l Cu#%x#0BTAIN STARTING LOCATION IN NSET OF ENTRYs SCAT 170
C
- 1 INDXN=(NEXT=1)*MXX SCAT 180
C
g Caxnx#TEST IF DETERMINISTIC OR PROBABILISTIC NODE SCAT 190
C
v, GO TO (100+200+1009200) sNT SCAT 200
? 100 DO 10 1=1sIM SCAT 210
i INDX=INDXN+I SCAT 220
10 JTRIB(I)=NSET(INDX) SCAT 230
1 C ' ’
% Cruex®OBTAIN SAMPLE FOR ACTIVITY. SCAT 240
CALL SAMPL(DEVINSET4QSET) SCAT 250
! ATRIB(1)=TNOW+DEY SCAT 260
! C
CuxnxnFILE END OF ACTIVITY EVENT IN EVENT FILEs SCAT 270
C
: CALL FILEM{LlsNSET4QSET) SCAT 280
! GO TO (110s4s11004) oNT SCAT 290
C
CH#x%x#DETERMINE IF OTHER ACTIVITIES ARE IN FILEs SCAT 300
: C
'; 110 INDX=INDXN+MX SCAT 310
NEXT=NSET{INDX) SCAT 320
IFINEXT=T7777) 184423 , SCAT 330
! 23 CALL ERROR(23sNSETsQSET) SCAT 340
; 4 RETURN SCAT 350
200 INDX=(NEXT=1)#IMM+1 SCAT 3260
C
CunuxnTEST RNUM AGAINST PROBABILITY (CUMe) OF REALIZING THE ACTIVITY. SCAT 370
C
IF(QSET{INDX)=RNUMI 11041004100 SCAT 380
END SCAT 390

FEATURES SUPPORTED
ONE WORD INTEGERS

; CORE REQUIREMENTS FOR SCHAT
i COMMON 1072 VARIABLES 12 PROGRAM 170

END OF COMPILATION

2 Fig. 9 FORTRAN Listing of Subroutine SCHAT

24,

$9e1A3Q BULULRIGO 40} TdWYS 2ULIN0AGNS 4O Fuey) MO|4

SUOLINGLAISLQ PALS LS WOLY

Ndn13y

(d0)9NT43I=A30

(8¢ V)Wa4NN=A30
(€°dl)WVHYd= 9
(2°d0)WYdYd= V¥

oL ‘b4

(dr)WdONY¥=AI0

ac ‘(v ‘¢ ‘2 ‘L) 03 039

A .

d0 39S Joj3aweded pue

ar “9dA3 uoLInqLuISLp BuLumalaq

1dWYS Bulinougng

(1°dr)Wydvd=A3q

i 7/ FOR
* ONE WORD INTEGERS
L1ST SOURCE PROGRAM

§ SUBROUTINE SAMPL (DEVsNSET+QSET) SAMP 10
L DIMENSION NSET(1)sQSET(1) SAMP 20
COMAON IDs IMo INIToJEVNT s IMNITsMFAIMSTOPR sMX s MXCoNCLCToNHIST» SAMP 30
INOQINORPT s NOT 9 NPRMS s NRUNSNRUNS sNSTATsOUT s ISEEDs TNOW SAMP 40
2TBEGsTFINSMXX sNPRNT s NCRDRsNEPsVNQ(31)» IMMsMAXQS sMAXNS SAMP 50

COMMON ATRIBI1}sENQ(31)sINN(31)sJCELS15922)sKRANK(31)sMAXNQ(31)s SAMP 60
1 MFE(31)eMLC(31)sMLEL31)sNCELS(5)sNQ(31) sPARAMI4094) sQTIME(31) SAMP 70

2 SSUMA{191)sSUMA(S595) ¢ NAMEL(6) o NPROJsMONSNDAY sNYR s JCLRJTRIB(5) SAMP 80

COMMON NSINK(5) sNSKSTsNSKSRaNSKSINSORC(5) sNRELP(30)sNREL(30) SAMP 90

INTYPE(30) o XLOW(S) sWIDTH{S5) s TOTIMaNN sNSRC SAMP 190

JP=JTRIB(2) SAMP 110

JO=JTRIB(3) SAMP 120

GO TO (192935401 eJD SAMP 130

1 DEV=PARAM(JPs1l) SAMP 140

RETURN SAMP 150

2 DEV=RNORM{JP) SAMP 160

RETURN SAMP 170

3 A=PARAM(JP2) SAMP 180

B=PARAM{JP¢3) SAMP 190

DEV=UNFRM(A38) SAMP 200

RETURN SAMP 210

4 DEV=ERLNG(JP) SAMP 220

e RETURN SAMP 230

END SAMP 240
FEATURES SUPPORTED
ONE WORD INTEGERS

CORE REQUIREMENTS FOR SAMPL
COMMON 1072 VARIABLES 8 PROGRAM 82

END OF COMPILATION

Fig. 11 FORTRAN Listing of Subroutine SAMPL

i
§
4

26.

statement and providing subprograms for the calculation of DEV based on
the new distribution types. Although not included in subroutine SAMPL,
GASP 1IA has subprograms to sample from the Poisson distribution and

the log-normal distribution. These were not included in the IBM 1130

version due to storage 1imitations.*

The array PARAM (40,4) contains a maximum of four attributes
associated with a distrubution. A maximum of 40 parameter sets has
been included in the IBM 1130 version of the GERT simulation program.
This permits a network with 40 activities each with a different para-
meter set to be simulated. Normally, the number of parameter sets

required 1is significantly less than the number of activities of the

network since many activities could use the same parameter set. In

addition, if a constant is equal to the mean of the normal distribution,

then the same parameter set for the normal distribution can be used
o to obtain a deviate which is equal to a constant value. This is seen

! in statement SAMPL 140 where DEV is set equal to PARAM (JP,1). A simi-
lar discussion holds for the uniform distribution where only the minimum

and maximum values of the parameter set are required.

| Limitations and Requirements

The GERT simulation program presented in this report has been
programmed and run on the IBM 1130 system with 8192 words of core stor-

age and 1 disc unit. In order to fit the program on this computer, use

*Since these subprograms call other GASP subprograms which are put
in LOCAL storage, they could not be put in LOCAL storage. Thus, they
would take additional core storage. For larger machines, these subprograms
can easily be included.

27.

is made of the LOCAL and SOCAL features of the computer. A Toading map
for the situation where the number of activities of the network and the
maximum number of simultaneous end of activity events is less than or
equal to 30 (ID is set at 30) is shown in Fig. 12. In order to increase
the value of ID to 40,subroutine RMOVE is also put in LOCAL. From a
general point of view, an ID value of 40 is the limit for simulating
general GERT networks since a maximum of 40 different parameter sets
has also been set by the dimension of the array PARAM. When the number
of parameter sets is less than 40, simulations have been performed on
the IBM 1130 with an ID value equal to 48. (This was done without
changing the dimensions on PARAM.)

The GERT simulation program uses the system random number gener-
ator. For the IBM 1130 the system random number generator used in
subroutine RANDU(ISEED,RNUM). ISEED is the starting value and is a
fixed point variable. RNUM is the pseudo-random number obtained and is
the interval (0,1). The only subprogram which calls RANDU is subroutine
DRAND. Thus, it is only necessary to change subroutine DRAND in order
to include a particular random number generator. DRAND is required to
be a subroutine for the IBM 1130 since a function cannot call other
subprograms in this system. If DRAND can be made a function, then the
subprograms for obtaining deviates from specified distributions can be
simplified by putting DRAND directly within the statement used for
obtaining the deviate.

The largest node number which can be used with the GERT simulation

program is 31. Since node numbers must be greater than or equal to 2,

o // XEQ L1
#LOCAL »DATANSSUMRY s OTPUT sMONTR+HISTO»COLCT sRNORMSERLNG

40 0315 (HEX) ADDITIONAL CORE REQ D
43 032A (HEX) ARITH/FUNC OVERLAY S1ZE
44 O5E2 (HEX) FIO & 1/0 OVERLAY SIZE
47 0006 (HEX) WORDS AVAILABLE

03 LOAD REQUIRES SYSTEM LOCALs LEVEL 1

DVDOXN

CALL TRANSFER VECTOR

UNFRM 1152
SAMPL 10FC
SCHAT 103D
FXPN 17C4 SOCAL
FLN 1688 SOCAL
XMAX oFcC
RANDU OF25
EVNTS 00D2
; RMOVE 0D3C
FCOS 170E SOCAL
FALOG 1686 SOCAL
AMAX 0D12
AMIN 0CFO
o FAXB 1655 SOCAL
; FILEM 0C3D
SET 06CE
DRAND 0698
ERROR 0560
. GASP 0406
ERLNG 11FC LOCAL
RNORM 11FC LOCAL
COLCT 11EF LOCAL
HISTO 11FE LOCAL
MONTR 1282 LOCAL
OTPUT 11E4 LOCAL
SUMRY 1350 LOCAL
DATAN 1253 LOCAL

LIBF TRANSFER VECTOR

TTEST 10E4
EBCTB 1803 SOCAL
HOLTB 1ACD SOCAL
GETAD 1A8C SOCAL
FGETP 1838 SOCAL
XMD$S 17A6 SOCAL
FARC 1784 SOCAL
NORM 1004
§GOTO OFEE
SFIF OFB0
SFAR 0F90
STARX OF88
,,,,, ; SFARX OFAA
SIAR OF6C
S1IF OF54

HOLEZ 1A56 SOCAL
FsSuBx 1531 -SOCAL
FMPYX 1568 SOCAL
FADDX 1530 SOCAL
IFIX occz
FDVR 163A SOCAL
FSBR 1620 SOCAL
FMPY 15EC SOCAL
FODIV 1596 SOCAL
FADD 1537 SOCAL
FsuB 152C SOCAL
FLDX 0384
FLOAT oces
SCOMP 15F0 SOCAL
SWRT 1525 SOCAL
SNR 1524 SOCAL
FSTOX 0398
SIOF 156C SOCAL
SIOAI 1608 SOCAL
SUBIN 04C8
SIOFX 1602 SOCAL
SIOIX 15AB SOCAL
suUBSC 03CE
siol 1606 SOCAL
SRED 152A SOCAL
FsTO 039¢C
4 FLD 0388
4 PRNTZ 198E SOCAL
: CARDZ 1920 S0CAL
i SF10 1615 SOCAL
DIskZ 00F 4

i SYSTEM ROUTINES

1Ls02 1807
FLIPR 119¢C
02¢D {HEX) 15 THE EXECUTION ADDRe

Fig. 12 Loading Map for the GERT Simulation Program for the IBM 1130

b
i

29.

this permits a 30 node network to be simulated on the IBM 1130 system.
For computers with larger storage capacity, the number of nodes permitted
is easily extended by changing the dimension of the following variables:
VNQ, ENQ, INN, KRANK, MAXNQ, MFE, MLC, MLE, NQ, QTIME, NRELP, NREL, and
NTYPE. The last three variables are non-GASP variables and need only be
changed in the non-GASP subprograms.

The maximum number of source nodes is five. To increase this
number, the non-GASP array NSORC should be redimensioned to the largest
number of source nodes desired. The largest number of nodes on which
statistics can be collected is five. In order to increase this number
the following variables must be redimensioned: JCELS (only the first
subscript), NCELS, SUMA (only the first subscript), NSINK, XLOW, and
WIDTH. The Tast three variables named are non-GASP variables and need
only be changed in the non-GASP subprograms. To increase the number of
different parameter sets which describe the distribution of the times
to perform an activity, the first subscript of the array PARAM should be
increased. To increase the largest number of activities plus simultaneous
end of activity events, the variable ID must be read in during initial-
ization at the largest value desired. In the main program, NSET should
be dimensioned to (5*ID)and QSET should be dimensioned at ID. The GERT
simulation program is written so that only the dimension statement in the
main program need be changed to accomplish this increase in the number
of entries in the filing array. This is the reason for carrying NSET
and QSET as arguments to all subprograms.

No general statements can be made about the time requirea to simu-

late a network with a specified number of nodes and activities. The

4
|
i
o

30.

simulation time depends on:

(1) The number of nodes;

(2) The number of activities;

(3) The number of feedback branches in a network;

(4) The probability of taking the feedback branches;

(5) The number of subprograms put in LOCAL; and

(6) The number of system operations put in SOCAL.
For a network with a single feedback branch and three nodes, it took
less than three minutes to perform 1,000 simulations of the network.
For a network with ID=48 and many feedback branches, it took approx-

imately 30 minutes to perform 100 simulations of the network.

10.

11.

12.

31.

BIBLIOGRAPHY ON GERT AND RELATED TOPICS
Clapp, D. E., "The Application of Stochastic Networks," Masters
Report, Arizona State University, May 1965.

Deutsch, D., "The Theory of Blocking," Masters Report, Arizona
State University, May, 1966,

Drezner, S. M. and A. A, B. Pritsker, Network Analysis of Count-
down, The RAND Corporation, RM-4976-NASA, March, 1966.

Eisner, Howard, "A Generalized Network Approach to the Planning and
Scheduling of Research Program," Journal of Operations Research
Society, Vol. 10, No. 1, 1962.

Elmaghraby, Salah E., "An Algebra for the Analysis of Generalized
Activity Networks," Management Science, Vol. 10, No. 3, April
1964, pp. 494-514.

. "On Generalized Activity Networks," Journal of Industrial
Engineering, Vol. XVII, No. 11, November, 1966, pp. 621-631.

EnTow, R. A. and A. A, B. Pritsker, Planning R&D Projects Using
GERT, NASA/ERC, NGR 03-001-034, Arizona State University,
July, 1968,

Graham, P., "Profit Probability Analysis of Research and Development
Expenditures," The Journal of Industrial Engineering, Vol. XVI,
No. 3, May-dune, 1965, pp. 186-191.

Happ, W. W., "Flowgraph Techniques for Closed Systems," IEEE Trans-
actions, AES, Vol. 2, May, 1966, pp. 252-264.

Hi1ll, T. W., "System Optimization: A Sensitivity Approach Using
GERT," unpublished Masters Research Report, Arizona State
University, Tempe, Arizona, 1966 (Also in Bulletin #3, Industrial
Engineering Research at Arizona State University, 1966)

Ishmael, P. C. and A. A. B. Pritsker, User Manual for GERT EXCLUSIVE-
OR Program, NASA/ERC, NGR 03-001-034, Arizona State University,
July, 1968,

Definitions and Procedures Employed in the GERT EXCLUSIVE-

OR Prégram, NASA/ERC, NGR 03-001-034, Arizona State University,
July, 1968.

N
t
*
i
¥

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

32.

Ledbetter, L. R., "A Study of Computational Aspects of Network
Models for Planning and Control," Masters Thesis, Lehigh
University, 1967.

McDonald, W. W., "Analysis of Stochastic Networks," in GRAPH
THEORY, Significant Books in Operations Research Management
Information Services, Detroit, Michigan. (Also Masters
Thesis, Arizona State University, 1966.)

Naylor, T. H., et. al., Computer Simulation Techniques, New York:
John Wiley & Sons, Inc., 1966.

Powell, G. E., "Development, Evaluation and Selection of a Dodge
Continuous Sampling Plan When the Rectifying Operation is Not
Perfect,”" Masters Thesis, Lehigh University, 1967.

Pritsker, A.A.B., GERT: Graphical Evaluation and Review
Techniques, The RAND Corporation, RM-4973-NASA, April, 1966.

» User's Manual for GERT Simulation Program, NASA/ERC,
NGR 03-001-034, Arizona State University, July, 1968.

, Definitions and Procedures for GERT Simulation Program,
NASA/ERC, NGR 03-001-034, Arizona State University, July, 1968.

, and W. W. Happ, "GERT: Graphical Evaluation and Review
Technique, Part I Fundamentals," The Journal of Industrial
Engineering, Vol. XVII, No. 5, pp. 267, May, 1966.

, and G. E. Whitehouse, "GERT: Graphical Evaluation and
Review Technique, Part II Probabilistic and Industrial Engineer-
ing Applications," Journal of Industrial Engineering, Vol. XVII,
No. 6, June, 1966.

, and P. J. Kiviat, GASP II, A FORTRAN Based Simulation
Language, Department of Industrial Engineering, Arizona State
University, September, 1967.

» Simulation Using GASP II, to be published by
Prentice-Hall, Inc., 1968.

Smith, R. L., "Stochastic Analysis of Personnel Movement in Formal
Organizations," Ph.D. Dissertation, Arizona State University,
August, 1967.

Thomas, J. H., "An Investigation into the Qutput Distribution of
GERT Networks by the Use of Simulation," (Masters Thesis),
Lehigh University, 1967. ‘

33.

26. MWerberger, G., "Optimality Considerations of GERT," Masters Thesis,
Lehigh University, 1967.

27. MWhitehouse, Gary E., "Extensions, New Developments, and Applications
of GERT," Ph.D. Dissertation, Arizona State University, August,
1965.

~E 34.

APPENDIX A
GLOSSARY OF GASP IIA SUBPROGRAMS
AND VARIABLES
GASP IIA Subprograms

NAME FUNCTION

AMAX(ARG1, ARG2) Sets AMAX to the maximum of ARGl and
ARG2 .

XMAX(IARG1, IARG2) Sets XMAX to the maximum of IARG1 and
TIARG2.

AMIN(ARG1, ARG2) Sets AMIN to the minimum of ARGl and
ARGZ.

? COLCT(X, N, NSET, QSET) Sets Xi = X and collects:

gXi in SUMA(N, 1)
i

zxi2
i

in SUMA(N, 2)
Number of observations of type N in
SUMA(N, 3)

min (Xi) in SUMA(N, 4)
i

qu(Xi) in SUMA(N, 5)
i

; DATAN(NSET, QSET) Data input and initialization routine
DRAND(ISEED, RNUM) Generates a random number RNUM, using
the computer system's random number
routine.
ERLNG(J) Generates a random deviate from an

ERLNG distribution with parameters in
PARAM(J,I), I =1, 2, 3, 4.

ERROR(J, NSET, QSET) Prints error code J, NSET, and File 1
and calls SUMRY. Then calls EXIT.

EVNTS(I, NSET, QSET)
FILEM(JQ, NSET, QSET)
FINDN(NVAL, MCODE, JQ, JATT,

KCOL, NSET, QSET)

FINDQ(QVAL, MCODE, JQ, JATT,
TOL, KCOL, NSET, QSET)

GASP(NSET, QSET)

HISTO(X1, A, W, N)

LOCAT(JSW, K, JATT, NSET, QSET)

MONTR(NSET, QSET)

NPOSN(J, NPSSN)

OTPUT(NSET, QSET)

35.

Written by the programmer to call
the subroutine defining event I.

Stores the vector ATRIB in QSET and
JTRIB 1in NSET of File JQ.

Locates KCOL of File JQ that has an
attribute value in row JATT of NSET
related to NVAL according to code
MCODE. KCOL is the unknown entry.

Locates KCOL of File JQ that has an
attribute value in row JATT or QSET
related to QVAL according to code
MCODE within a tolerance of TOL, KCOL
is the unknown entry.

Selects the next scheduled event and
controls simulation from start to end.

X1 is a value to be used to form histo-
gram N. A is the lower limit. W is
the cell width.

Converts from a one dimensional repre-
sentation to two dimensional representa-
tion for JSW = 1, 2. Converts from a
two dimensional representation to a one
dimensional representation for JSW = 3,
4, JATT is always the attribute number.
For JSW =1 or 2, K is the column number
and LOCAT is set to a cell number or
index of QSET or NSET. For JSW = 3 or
4, K is the cell number of QSET or NSET
and LOCAT is set at the column number.

The subroutine that enables a programmer
to print NSET at any time during a simu- .
lation or to trace the events during a
portion of a simulation.

Generates a random deviate from a Pois-
son distribution with parameter PARAM
(9, 1), 1 =1,2, 3, 4.

A subroutine written by a programmer to
perform calculations and provide addition-
al output at the end of a simulation run.

-
|

H

H

3

36.

PRNTQ(JQ, NSET, QSET) Prints average, standard deviation,
maximum number of entries and contents
of in File JQ.

RLOGN(J) Generates a random deviate from a log-
normal distribution with parameters
PARAM (J, I), I =1, 2, 3, 4.

RMOVE(KCOL, JQ, NSET, QSET) Removes column KCOL from File JQ and
- stores attribute of NSET in the vector
i JTRIB and attributes of QSET in ATRIB.

N RNORM(J) Generates a random deviate from a normal
”i distribution with parameters PARAM(J, I),
o 1=1,2, 3, 4.

SET(JQ, NSET, QSET) Performs functions related to entry
| storage and retrieval for File JQ.

SUMRY(NSET, QSET) Prints a final GASP Summary report.

i TMST(X, T, N, NSET, QSET) Sets Xi = X and computes the time since
the last change in variable N, TTi, and
collects:

ZTTi in SSUMA(N, 1)

i

ZXi*TTi in SSUMA(N, 2)

i

ZXiZ*TTi in SSUMA(N, 2)
i

| min(Xi) in SSUMA(N, 4)
. i
] max(Xi) in SSUMA(N, 5)
i
UNFRM(A, B) Generates a random deviate from a uniform

distribution between A and B.

"
i
i
|

E

37.

GASP IIA Variables

The following is an alphabetized list of GASP IIA variables stored
in COMMON. These variables must be used by a programmer with great care.
A11 GASP variables are in COMMON except the arrays NSET and QSET. Vari-
ables are dimensioned as required by the GERT simulation program.

ATRIB(1) Buffer for attribute value being
stored in or retrieved from QSET.

ENQ(NN) Time integrated number of entries in
a file.

ID Number of columns in total filing
array, limited only by available
storage .

M Number of attribute rows in NSET
(IM=3)

IMM Number of attribute rows of QSET
(IMM=1)

INIT An indicator. The statements

INIT=1

CALL SET (1,NSET)
initialize NSET.

INN(NN) A file indicator. If INN(J)=1, entries
in File J are ordered by row KRANK(J)
from lowest value to highest value
(LVF). If INN(J)=2, the entries in
File J are ordered by row KRANK(J) from
the highest value to lTowest value (HVF).
For the GERT simulation program all
INN(J) values are 1.

ISEED The initial random number.

JCELS(NHIST, MXC) Storage array for histograms. (NHIST < 5,
MXC < 22).

JCLR

JEVNT

JMNIT

JSEED

JTRIB(3)

KRANK (NN)

MAXNQ(NN)

MFA

MFE(NN)
MLC(NN)

MLE(NN)
MSTOP

38.

An dindicator. If JCLR < 0, the simula-
tion is repeated without changing the
condition of the statistical storage
areas. If JCLR > 0, the statistical
storage areas are initialized prior

to repeating a simulation run.

Code of event to be processed. Also
used as a control in subroutine MONTR
where if JEVNT=101, NSET is printed,
and if JEVNT=100, the next event is
printed until another event with
JEVNT=100 occurs.

An indicator. If JMNIT=1, each event
is monitored. If JMNIT=0, no monitor-
ing occurs.

A local variable used in subroutine
DATAN that reads in the initial random
number seed value. JSEED must be
positive for TNOW to be set to TBEG.

Buffer for attribute values being
stored in or retrieved from NSET.

KRANK(J) is the attribute row on which
file J is ranked. In the GERT simula-
tion program, KRANK(J) always is 1.

MAXNQ(J) 1s the maximum number of
entries in File J.

Identifies the first column in NSET
available for storing an event or
entity.

MFE(J) is the first entry in File J.

MLC(J) is the next entry in File J to
be removed. If not specified, MLC(J)
is set equal to MFE(J?

MLE(J) is the last entry in File d.

An indicator for specifying method of
ending the simulation.

|

MX

MXC

MXX

NCELS(NHIST)

NCLCT

NEP

NHIST

NOQ

NORPT

NOT

NPRMS

39.

If MSTOP=0, an end of simulation event
must be included in which
MSTOP is made negative to
stop the simulation. NORPT
can then be set to call SUMRY.

If MSTOP > 0, simulation ended when
TNOW > TFIN.

Successor row in array NSET.
MX=IM+1=4

Largest number of cells to be used in
any histogram (MXC < 22).

Predecessor row in array NSET.
MXX=IM+2=5,

NCELS(J) is the number of cells 1in
histogram J not including end cells
(NCELS(J) < 20)

The number of sets of statistics that
can be collected in COLCT
(NCLCT < 5).

An indicator used in DATAN for initiali-
zation. NEP specifies the Data Card
Type at which reading of initialization
cards is to begin for the next simula-
tion run.

The number of histograms that can be
generated by HISTO (NHIST £ 5)

The number of files in filing array.
(Equal to NN).

An indicator. If NORPT >0, SUMRY and
OTPUT are bypassed. If NORPT=0,
SUMRY and OTPUT are used.

An indicator. If NOT=0, simulation
starts from beginning. If NOT > 0, a
check on NEP is made.

Number of sets of parameters
(NPRMS < 40)

i
2
]
i
3

NQ(NN)

NRUN

NRUNS

NSET(ID*5)

NSTAT

ouT

PARAM(NPRMS ,4)

QTIME(NN)

QSET(ID*IMM)

SSUMA(NSTAT,J)

SUMA(NCLCT,J)

TBEG
TFIN
TNOW
VNQ(NN)

40.

NQ(J) dis the current number of entries
in File 4.

The number of the current simulation
run.

The number of runs remaining, including
the one being processed.

The integer part of the filing array.
(ID Timited by available storage).

The number of sets of statistics that
can be collected in TMST. (NSTAT=0
in GERT simulation program)

An indicator.

If OUT=1, an entry is to be removed
from NSET. If OUT=0,
an entry is to be stored
in NSET.

Array for storing parameter values.
(NPRMS < 40)

QTIME(J) is the time of the last use
of File J.

The real valued part of the filing
array. (IM < 10, ID limited by avail-
able storage.)

Array for storing time statistics gen-
erated by TMST (NSTAT < 5).

Array for storing statistics generated
by COLCT. Not used in GERT simulation
program,

Initial value of TNOW.

Time to end the simulation if MSTOP > O.

The current time of a simulation.

Time integrated square of the number of
entries in a file.

]
ES
|
R4

APPENDIX B

FORTRAN Listing of GASP IIA Subprograms used in the

GERT Simulation Program

41.

"
i

3
i
)

// FOR

*LIST SOURCE PROGRAM

*ONE #ORD INTEGERS
FUNCTION AMIN (ARG1sARG2)
IF (ARG1=-ARGZ2) 1lsls2

1 AMIN = ARGl
RETURN

2 AMIN = ARGZ
RETURA\V
END

FEATURES SUPPORTED
ONE WORD INTEGERS

CORE REGUIREMENTS FOR AMIN
CO¥vON 0 VARIABLES Z PROGRAM

END OF COJPILATION

// FUR

*ONE WORD INTEGERS

*LIST SQURCE PROGRAM
FUNCTION XMAX (IARGLlsIlARG2)
IF (TARGL ~ ITARGZ2) 2+2s1

1 XMAX = TARG1
RETURN

2 XMAX = [TARGZ2
RETURN
END

FEATURES SUPPORTED
ONE wORD INTEGERS

CORE REQUIREMENTS FOR XMAX
COMMON O VARIABLES 2 PRCGRAM

END CF COMPILATION

/7 FQOR

#ONE WCRD INTEGERS

*IST SCURCE PROGRAM
FUACTION AMAX {ARG1sARG2}
IF (ARGl = ARGZ2} Z2slsl

1 AMAX = ARG1
RETURN

2 AMAX = ARGZ2
RETURN
cND

FEATURES SUPPORTED
ONE wORD INTEGERS

CORE REQUIREMENTS FOR AMAX
COMMON 0 VARIABLES 2 PROGRAM

END OF COMPILATION

32

34

32

AMMNA
AMNA
AMNA
AMNA
AMNA
AMNA
AMNA

XMXA
XMXA
XMXA
XMXA
XMXA
AMXA
AMXA

AMXA
AMXA
AMXA
AV XA
AMXA
ANMXA
AMXA

10
20
30
40
50
60
70

10
20
30
40
50
63
70

10
20
30
40
50
60
70

42.

3
]
]

)

7/ FOR

*ONE WORD INTEGERS

#L IS8T SCURCE PROGRAM
SURROUTINE COLCT (XyoN9nSETSQSET)
DIZENSION WSET{1)sQSET(1)

COVYON IDe IV INITaJEUNT s JMNIT 9 FAsSTOP s X s MXCoNCLCT o NHIST s
INOQeNORPT s ZOT s YPRMS s NRUN s WRUNS 9o NSTATSOUT s ISEEDs TNOW
ZTREGsTFINeMXX sNPRNT 9 NCRDR 9y NEP 9 VANQ{ 31) 9 I MM e MAXQS 9 MAXNS

CCaCN ATRIRBRILI) 9ENQ(3L) o INN(31) s JCELS(5922) 94 RANKI31) s MAXND(31) s
1 YFEL31)eVLCU31) o VLF (31) oNCELSIS) oNQU31) oFARANM (40041 9QTIVE(21)

-

IF (R} 29241

2 CALL ERROR(90sMNSETSOSET)

1 IF (N= NCLCT) 29342

3 SUYA(N1) SUMA(NsT)+X
SUMAL(NL2Z) SUAA (N2)+ X%X
SUVA(N3) SUMA{Ns3)+140
SUMA{Ne4) AVIN (SUMA(Ns4) 9 X)
SUMA(INS) AYAX (SUMA{NSS) o X)
RETURN
END

Houw ouwown

FEATURES SURPORTED
OnE wORD INTECGEKRS

CORE REQUIREMENTS FOR COLCT
CovMVYeN 944 VARTABLFS 8 PROGRAM

EAR OF COVRILATION

2 SSUMALLs1)aSUMA(S95) sNAVE(6) sNPRCIIMONIRDAY sHNYR 9 JCLR Y JTRIB(S)

124

CLTA
CLTA
CLTA
CLTA

CLTA
CLTA
CLTA
CLTA
CLTA
CLTA
CLTA
CLTA
CLTA
CLTA

10
20

30

49

90
122
112
129
i3¢
140
159
1&0
170

180

43.

/7 FOR
*LIST SCURCE PROGRAM
#OME WORO INTEGERS

SUBROUTINE DATAN(INSETSQSET)

DIMENSION NSET(1)sQSETI(1)

COMMON IR IV INITsJEVNT o JMNIToMFAsMSTOP s MX s iXC o NCLCT sNHIST

140Q 9 NORPT s NGT s NPRMS s NRUNSNRUNS s NSTATSQUT+ ISEED s TNOW s

2TBEGeTFINIMXX sNPRNT s NCRDRyNEP s VNQ(31) 5 IMMsMAXQS s MAXNS

COMMON ATRIB(1)4ENG(31)sINNI31) s JCELS(5922) sKRANK(31) sMAXND(31) s

1 MFE(31)9MLCU31) sMLE(31) yNCELS(5)aNQ(31) sPARAMIGO»4) sQTIME(31) s

2 SSUMA(ILs11sSUMA(595) sNAME(6) 9yNPROJSVONINDAY sNYR s JCLRJTRIB(5)
IF (NOT1239142

C*****UEP’IS A CONTROL VARIABLE FOR DETERMINING THE STARTING CARD
CrxxxxTYPE FOR MULTIPLE RUN PROBLEMS, THE VALUE OF NEP SPECIFIES THE

Crar¥xSTARTING CARD TYPE.
2 NT=NEP
GO TO (19546941 342989439299415920) oNT
23 CALL ERROR(95¢NSETQSET)
1 NOT = 1
NRUN = 1
CxuxxDATA CARD TYPE ONE
READ (NCRDRs101) NAMESNPROJIMONsNDAY s NYR s NRUNS
101 FORMAT (6A25144912+12s144914)
IF{NRUNS) 3043045
30 CALL EXIT
Crx®x%DATA CARD TYPE TwO
5 READ (NCRDR9803) NPRMS oNHIST oNCLCT ¢ NSTAT S 1D s IMeNOQaMXC s IMM
803 FORMAT (915)
IF (NHIST) 4144146
Coxxx%xDATA CARD TYPE THREE IS USED ONLY IF NHIST 15 GREATER THAN ZERO
CHx#x#SPECIFY NUMRBRER OF CELLS IN HISTOGRAMS WNOT INCLUDING END CELLS
6 READ [(NCRDR#103) (NCELS({I)»I=1sNHIST)
103 FCRMAT (1015)
CrxraxxDATA CARD TYPE FOUR
Crru*#SPECIFY KRANK=RANKING ROwW
CHx%x¥KRANK = 192se0eIM FOR ROW KRANK IN QSET
Cuxtn®kKRANK = 10141C254009100+IMM FOR ROW (KRANK=100) IN NSET
41 READ (NCRDR#103) (KRANK{I)}aI=1sNOQ)
Cx#xxDpTA CARD TYPE FIVE
Cxx#xnSEECIFY INN=1 FOR FIFQs INM=2 FOR LIFO
42 RFAD (NCRDRs103) (INN(I)al=1sR0Q)
IF (NPRVMS) 2344348
8 DO 9 1 = 1sNPRMS
CraexxDATA CARD TYPE SIX 15 USED ONLY IF NPRMS 15 GREATER THAN ZERO
READ (NCRDRs106) (PARAMI(IsJ)aJ=lr4)
1C6 FORMAT(4F10e4)
S CONTINUE
Cxuare)ATA CARD TYPE SEVENS THE NEP VALUE IS FOR THE NEXT RUNe SET
Cwexss JSEED GREATER THAM ZERO TO SET TAOW EQUAL TO TBEG.
43 READ (NCRDRs 104) MSTOPsJCLRsNURPTONEPsTBEGsTFINS JSEED
104 FORMAT (4]1542F1343914)
IF (JSEED) 26426427
27 ISEED=JSEED
CALL DRAND(ISEEDsRNUM)
TNOA = TBEG
DC 142 J=14N0Q

DTNA
DTNA
DTNA
DTNA

DTNA
LTNA
DTNA

DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
UTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
CTKRA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
UTNA
DTNA

10

30
40

g0
100
i1lo

120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
469
470
480
490
500
510
520
530

44,

.
)

142 QTIME(J)=TNOW
26 JMNIT = 0
Crxrxxxe [NITIALIZE NSET
CHx#xtSPECIFY INPUTS FOR NEXT RUN
Cx#ax¥xREAD IN INITIAL EVENTS
299 DO 300 JS = 141D
CxexxxDATA CARD TYPE 8
CHrxxxINITIALIZE NSET BY JQ EQUAL TO A NEGATIVE VALUE ON FIRST EVENT
CHHE##XCARD
Crux##READ IN INITIAL EVENTSe END INITIAL EVENTS AND ENTITIES WITH JQ
Cxexe%FCUAL TO ZERO
FEADY (NCRDRs1110)JQe{JTRIB{JIK) sIK=1s]M)
111C FCRYAT(8I10)
IF(JR) 445154320
G4 INIT=1
CALL SET(1sNSETSQSET)
00 TO 300
3ZC READ(NCRDR1111) (ATRIB(JK)sJK=19IMM
1111 FORMAT(8F1Ca4)
CALL FILEM(JQsNSETSQRSET)
300 CONTINUE
Crx#x*xJCLR RE POSITIVE FOR INITIALIZATION OF STORAGE ARRAYSe
15 IF({ JCLR 120420510
10 IF(NCLCT) 23411051156
116 DO 18 I = 1oNCLCT
DO 17 4 =143
17 SUMALlled) = 0o
SUMA(I94) = 140E20
18 SUMA(],5)1= =140E20
110 IF {NSTAT)2391115117
117 DO 360 I = 1sNSTAT
DO 370 4 = 1,43

370 SSUMAL(IJ) = Qe
SSUMA({Is4) = 140E20
360 SSUMA(TIs5) = =1,0E20

111 IF(NHIST)I23,209118
118 DO 380 K = 1sNHIST
DO 380 L = 1sMXC
380 JCELS(KsL) = 0O
CHx#x#PRINT QUT PROGRAM IDENTIFICATION INFORMATION
20 WRITE (NPRNT#102) NPROJsNAME sMONsNDAY sinYR 9 NRUN
102 FORMAT {1H15s12X922HSIMULATION PROJECT NOwsI&+2Xs2HBYs2Xs
1 6A2//512Xs4HDATE I3 91H/s13s1M/915912X9 10HRUN NUMBERSIS//)
Cox*u®pPRINT PARAMETER VALUES AND SCALE
IFINPRMS) 60960462
62 DO 64 1=1+NPRMS
54 WRITE (NPRNT#107) Is{PARAM(IsJ)sd=1s4)
1067 FORMAT(2CXy14H PARAMETER NOwyI1534F1244)
60 RETURN
END

FEATURES SUPPORTED
ONE wCRO INTEGERS

CORE REQUIREMENTS FOR DATAN
COMMON 944 VARIABLES 14 PROGRAM 664

ENC CF COMPILATICN

PAGE Q2

DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
UTNA
DTNA
DTiA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTiNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
CTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA
DTNA

540
550
560
570
580
590
600
610
620
630

640

650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
570
$80
g90

DTINALOGO
DTNALO10
DTNAL1Q20
DTNAL1C30

45.

// FOR
*ONE WORD INTEGERS
*LLI1ST SOURCE PROGRAM

SUBROUTINE DRANDI(ISEED sNUM) DRDA 10
CALL RANDU (ISEEDsRNUM) DRDA 20
RETURN DRDA 30
! DRDA 40

FEATURES SUPPORTED
ONE WORD INTEGERS

CORE REQUIREMENTS FOR DRAND
CovvOR J VARIABLES 0 PROGRAM 14

END CF COMPILATION

3 // FOR
#ONE WORD INTEGERS
*LIST SCURCE PROGRAM
FUNCTION ERLNG (J) ELNG 1C
COMMON IDsIMe INIToJEVNT 9 IMNIToVMFAIMSTOP smX omMiXCoNCLCTaNHIST s
INOQsNORPT o NOT s NPRMS sy NRUNsNRUNSsNSTATsCUT s ISEED s TACW s
2TREGe TFINo VXX oMPRNT ¢y NCRDP o NEP s VANQI 31) 9 IV 9 MAXIS 9 MAXNS
COMMON ATRIB{LIENQU21) s INN{21) o JCELS(5922) oKRANK{21) s MAXNG (51)
1 HFE(31) sMLCI31) 9™MULE(3L1) 9 NCELSIS)Y o NQ{BL) oPARAM{GO 9L) sQTIME(31)y
2 SSUMALLs1)sSUMALS 5) aINAYE (L) 9 NPROJ s YO NaNDAY o1 YR s JCLR I JTRIBLE)

K = PARAM(Jst) ELNG &0
IF(K=1) 851010 ELNG 90

2 WRITE (3520) J ELNG 100

20 FORMAT(/16MK = O FOR ERLNGsIT) ELNG 110

CALL EXIT ELNG 120

- 10 ERLNG = O : ELNG 130
| DO 2 1 = 1eK ELNG 140
i CALL DRAND (ISEEDsRNUM) nhNG 150
2 ERLNG = ERLNG = PARAM(Jys1)*ALOG(RNUV) ELNG 160

; IF(ERILNG=PARAM (U921 179546 ELNG 170
[7 ERLNG = PARAM (Js2) ELNG 130
o 5 RETURN ELNG 150
6 IF(ERLNG = PARAM (J331)54544 ELNG 200

; 4 ERLNG = PARAM (Js3) ELAG 210
! RETURN ELNG 220
i END ELNG 230

FEATURES SUPPORTED
| ONE WORD INTEGERS

CORE RFQUIREMENTS FOR ERLNG
CovVON 944 VARIABSLES & PROGRAV 138

END OF COMRILATION

i

// FOR

*ONE
*LIST

10¢

200

215
95

99

110
32

10
97
111

12
96

112
26
11

FEATU

CNE

CORE

WORD INTEGERS

SOURCE PROGRAV

SUBROUTINE ERROR{JsNSETSQSET)
DIVENSTION ASET{1)sQSETI{1)

COYMON IDs IV INIToJEVNT s UMNIToVFAIMSTOP ¢MXaMXCoNCLCTaNHIST s
INOQeNORPT s HCT s NPRMS 9 NRUN o NRUNRS 9 NSTAT s CUT o ISEED s TACW

2TREGTFINS XX sNPRNT o NCRORINEPSVNG{31) s IVVIMAXIS 9 MAXNS

COMMON ATRIB{1) oENQU3I) s IANI31) o JCELS(5522) sKRANK(31) oMAXNQI31)
1 MFE(31)eMLC{41) sMLEI31)oNCELS{5)9NQ(31) sPARAMIALD»4) »QTIMELSZ1)
2 SSUMAL{L191)sSUMALISs5) sNAME (61 s NPROJIMOMsNCAY sNYR s JCLRJTRIBIG)

WRITE (NPRNT100) JsTNOW

FORMAT(//36X16HERROR EXITy TYPEsI3s7H ERRORe//21H FILE STATUS AT

1TIVESF1044/)

WRITE (NPRNT$200)
FORMAT (30X s 4RNSET /)

DO 210 1=1+1D

IL=({l=1)%VXX+]

ITv=ll+¥XXe]

WRITEINPRNT $90) T 2(NSET(IJ)elJd=ILslIV)
FORMAT (13X 5159e5X91218)

WRITE (NPRNT$202)
FORMAT(//30Xs4HQSET /)

DO 215 1I=1410

IL=(l=1)%]VvNel

Iv=Il+ IMV=1

ARITE(NPRNT$95) T o{QSET(IJ)sId=ILsIV)
FORMAT (13X o[544X910{E12e682X%X1}))

WRITE (NPRXT399)

FORMAT(1IH]1)

IFINCLCT)Y 74748

WRITE (NPRNTs9H)

FORMAT (/11 ARRAY SUMAs/)

DO 1190 I=1eNCLCT

ARITE (NPRNTSR0D) Te{SUYA(I K} sK=135)
FORMAT(I1Cs5F1044)

WRITE (NPRMNT$99)

IF(NSTAT) 999410

WRITE (NPRNTL97)

FORMATII/12H ARRAY SSUMAY/)

DO 111 [=1¢NSTAT

WRITF (NPRNT$RQ) Te{(SSUMA(T K sK=195)
SRITE (NPRNT$99)

IFINSIST) 119s11s12

ARITE (NPRRNT$96)

FORMAT (/12H ARRAY JCELS/)

DO 112 I=1eNHIST

NCL=NCELS ()42

WRITE (NPRiNT926) Te(JCELS(TesK)eK=1sNCL)
FORMAT(17Xs1395X42314)

NFOOL = O

IF (NFOOL) 24443

RETURN

caLl FxIT

END

RFS SUPPORTED

wWORD INTEGERS

REQUIREMENTS FOR ERROR

CC 140N Sa4 VARIARLES 13 FPROGRAM

FXND O

F COYPILATICN

422

ERRA
ERRA
ERRA
ERRA

CRRA
ERRA
ERRA
ERRA
ERRA
ERRA
LixiRA
ERRA
ERRA
ERRA
ERRA
ERRA
ERRA
ERRA
ERRA
ERRA
ERIRA
ERRA
ERRA
ERRA
ERRA
“RRA
ERRA
ERRA
ERRA
ERRA
ERRA
ERRA
ERRA
ERRA
ERRA
ERRA
ERRA
ERRA
EXRA
ERRA
ERRA
ER<A
ERRA
ERIKA
ERRA
ERRA
ERRA
ERRA

10
29
30
40

90
109
110
129
120
140
159
160
17¢
180
190
20¢
210
220
230
240
250
260
270
25C
290
300
310
220
330
340
350
360
370
330
390
4G0
410
420
43¢
a4Q
459
460
471G
480
490
50
510
520

a7,

F B

s
}
.
!

// FOR
ONE wORD INTEGERS
* L IST SOURCE PROGRAM

SUBROUTINE FILEYM (JQeNSET9QGSET)

CIMENSICN NSETI(1),GSETIL)

COMMON ID e IV INIToJEVNT s IMNIToMFASMSTOR s MX oMXC oNCLCTaNHIST s
INCQONORPT o NOT s NPRMS o NRUNSNRUNS s NSTAT»OUT s ISEED s TNOW s
2TBEGSTFINsMXX sNPRNT s NCRORSNEPoVNQI31) 9 IMMeMAXQS s MAXNS

COVMON ATRIB(1IoENQI3L1) o INN{31) 9 JCELS(5922) sKRANK(31) oMAXNUL 31
1 YFEL3L) o LCU3L) oMLE(31) o NCELS{5) sNQ(31) 9sPARAM 4034) s QTIME(Z1)

-

£ SSUMA(1s1l)sSUMA(Se5) sNAME(H) s NPROJIMONINDIAY sNYRJCLRIJTRIB(S)

CH#xxxTEST TO SEE [F THERL IS AN AVAILABLE COLUMN FOR STORAGE

X

IF (MFA = TO) 29243
3 wRITE (NPRNTs4)
4 FORMAT (//24H OVERLAP SET GIVEN BELOW/)
CALL ERROR {R7aNSETHQSET)
C
CrerxaPUT ATTRIBUTE VALUES IN FILE
<

2 INDX = (MFA = 1) % MM
DO 1 1T = 1lelMM
INDX = INDX + 1

1 QSET(INDX) = ATRIB(I)
INDX = (MFA « 1) % MXX
DO 10 I = 1lelVv
ITNDX = INCX + 1}

10 NSETUINDX) = JTRIBI{I)
CALL SET (JGaNSETSQSET)
RETURN
END

FEATURES SUPPORTED
ONE WORD INTEGERS

CORE REGUIREMENTS FOR FILEM
COMMON 944 VARIABLES 4 PROGRAM 140

END OF COMPILATION

FILA
FILA
FILA

FILA

FILA

FILA
FILA
FILA
FILA

FILA

FILA
FILA
FILA
FILA
FILA
FILA
FILA
FILA
FILA
FILA
FILA

10
40
30
40

90

100
110
120
130

140

150
160
170
180
190
200
210
220
230
240
250

rig
§
!
3
!

g

// FOR

* LIST SOURCE PROCGRAM

#ONE WORD INTEGERS
SUBROUTINE GASP({NSETQSET)
DIMENSION NSET(1),QSET(1)
COMMON IDsIMoINIToJEVNT 9y IMNIToMFASMSTOP s MX s MXCoNCLCT o NHIST s
INOQsNORPT o NCT sNPRMS s HRUNANRUNS s NSTAT sQUT s ISEED s TNOW »
2TBEGeTFIN#MXX s NPRNT 9 NCRDRINEP s VNQ{31 1 2 IMMIMAXQS s MAXNS

COMMCN ATRIB{1)sENQ{31)oINN{31)sJCELS(5922) sKRANK(31) sMAXNG(31),
1 MFE(311yMLCI31)oMLEL31) JNCELS(5) oNQI31) 2sPARAMI4L046)9QTIME(311))

2 SSUMA{L191)sSUMALS S) s NAME(6) s NPROJSMONINDAY INYR 2 JCLRSJTRIB(S}
NOT = 0
1 CALL DATAN(MSET»QSET)
C
CHnnxxPRINT OUT FILING ARRAY
C
JEVNT = 101
CALL MONTR (NSET.QSET)
WRITE (NPRNT$403)
403 FORMAT{1H1s38X924H*#INTERMEDIATE RESULTS#*#%//)
C
CoxaxxOBTAIN NEXT EVENT WHICH IS FIRST ENTRY IN FILE 1. ATRIB(1) IS
CexaxxSVENT TIMEs ATRIB(2) 185 EVENT CODE

C
10 CALL RMOVE(MFE(1)s1sNSETHQSET)
TNOwW = ATRIB(1)
JEVNT = JTRIB(1)
C
CrenaxaTEST TO SEE IF THIS EVENT IS A MONITOR EVENT
C
IF{JEVNT = 10011341246
13 1 = JEYNT
C .
CoreasCALL PROGRAMMERS EVENT ROUTINES
C
CALL EVNTS (IsNSETsQSET)
C
Cuxrx*TEST METHOD FOR STOPPING
C
IF (MSTOP) 4048420
40 MSTOP = O
C
CxuxxxTEST FOR NO SUMMARY REPORT
C
IF (NORPT) 14,2242
2C IF(TNOW=TFIN)B8922+22
22 CALL SUMRYINSETHQSET)
CALL OTPUT (NSETQSET}
C
CHuxxexTEST NUMBER OF RUNS REMAINING
C
42 TFINRUNS=1)144+9423
23 NRUNS = NRUNS = 1
NRUN = NRUMN + 1
GO TO 1
14 CALL ERROR({93sNSETSQSET)
6 CALL MONTRINSETsQSET)
GO TO 10
C

CHa#%%#RESET JMNIT

~
.

12 IF(JMNTITI149304931
33 JMNIT = 1
GO TO 10
31 JMNIT = 0
GO TO 10
C
Cx*%%#TEST TO SEE IF EVENT INFORMATION IS TO BE PRINTED
~
8 IF(JUNITI 14910932
32 JTRIB(1} = JEVNT
JEYNT = 100
CALL MONTR{MSETWSET)

GC TO 10
Cxx#u%IF ALL RUNS ARE COMPLETED RETURN TO “Alin PROGRAM FOR INSTRUCTIONS
C
9 RETURN
END

FEATURES SUPPORTED
ONE WORD INTEGERS

CORE REQUIREMENTS FOR GASP
CONVON 944 VARIABLES 2 PROGRAM 218

END OF COMPILATION

GSPA
CSPA
GSPA
GSPA

GSPA
GSPA

GSPA

GSPA
G&FA
GSPA
GSPA

GSPA
GSPA

GSPA
GSPA
OSPA

GSPA

GSPA
GSPA

GSPA
GSPA
GSPA

GSPA
GSPA

GSPA

GSPA
GSPA
GSPA
GSPA

GSPA

GSPA
GSPA
GSPA
GSPA
GSPA
GSPA
GSPA

10
20
30
40

90
100

120
130
140
150

160
173

180
190
200

210

220
230

240
250
260

270
280

290

300
310
320
330

340

350
360
370
380
390
400
410

420

430
440
450
460
470

480

490
500
510
520
530

540

550
560

49.

5]
&
!

[P

// FOR
#L1ST SOURCE PROGRAM
#0ONE WORD INTEGERS
SUBROUTINE MISTO (XlsAsWeN)

COMMON ID»IMoINITHIJEVNT 9 JMNIT yMFASMSTOP oMX sMXCoNCLCToNMHIST
INOQoNORPT sNOT s NPRMSINRUN s NRUNSosNSTAToOUTs ISEED s TNOW
2TBEGsTFINoMXXsNPRNToNCRDRONEPIVNQ(31) o IMMIMAXQS sMAXNS

COMMON ATRIB(L1)SENQU31)eINN(31) 9 JCELS(5922) ¢oKRANK(31) sMAXNQ(31)
1 MFE(31)sMLC(31)oMLE(31)sNCELSIS5)INQ(31)sPARAMI4L4094) sQTIME(31)
2 SSUMA{1s1)sSUMA(S95) sNAME(6) sNPROJIMONINDAYSNYRIJCLRIJTRIB(S)

IF IN=NHIST) 111142
2 WRITE (39250) N
250 FORMAT(19H ERROR IN HISTOGRAMsI4//)
CALL EXIT
11 IF(N)292+3
C

CrananTRANSLATE X1 BY SUBTRACTING A IF XsLEeA THEN ADD 1 TO FIRST CELL

C
3 X = X1 = A
IF (X)697s7
6 1C = }
GO TO 8

<)
CrunwuDETERMINE CELL NUMBER ICe ADD 1 FOR LOWER LIMIT CELL AND 1 FOR

CrananTRUNCATION
(S
T IC 3 X/W + 24 440001
IF (I1C = NCELS(N) = 1) 89899
9 1C = NCELS(N)+2
8 JCELS(NSIC) = JCELSINSIC) + 1
RETURN
END

FEATURES SUPPORTED
ONE WORD INTEGERS

CORE REQUIREMENTS FOR HMISTO

COMMON 944 VARIABLES 4 PROGRAM

END OF COMPILATION

122

HSTA
HSTA
HSTA

HSTA
HSTA
HSTA
HSTA
HSTA

HSTA

HSTA
HSTA
HSTA
HSTA

HSTA
HSTA

HSTA
HSTA
HSTA
HSTA
HSTA
HSTA

10
20
30

80

100
110
120

130

140
150
160
170

180
190

200
210
2«0
230
240
250

50.

[

// FOR
*#ONE WORD INTEGERS
#LIST SOURCE PROGRAM
| SUBROUTINE VONTR(INSETQSET)
i DIMENSION NSET(1)sQSETI(1)

COVMON ID9sIMo INIToJEVNT s UVNITeMFASMSTOP s MX o MXCoNCLCTINHIST
INOQsNORPT s NOT s NPRMS s NRUN s NRUNS 9 NSTATsOUT s ISEED» TNOW
2TBEGsTFINsMXXsNPRNT ¢ NCRDRsNEP s VNQI(31) s IMMaMAXQS s MAXNS

COMMON ATRIB(1)}4ENQ(31)oINN(31)sJCELS(5922) sKRANK(31) sMAXNQ(31)
1 MFE(31)sMLC{31) 9MLEL31) oNCELSIS5) sNQU31) 9sPARAM{L0 94) sQTIVME(31)
2 SSUMA(1s1)sSUMA(595) sNAME(6) sNPROJSMONSNDAYsNYRIJCLRIJTRIB(S)

C
CHxxxx]F JEVNT oGEe 101s PRINT NSET
<

IF (JEVNT = 101) 94749
7 WRITE (NPRNTs100) TNOW
100 FORMAT(1H1s10X31H**GASP JOB STORAGE AREA DUMP ATsFl0ebs
, 1 2Xe12HTIME UNITS*%//)
g WRITE (NPRNT,200)
! 200 FORMAT (30X s4HNSET/)
DO 210 I=1,1D
) IL=(]=1)%#MXX+1
! IVlL+MXX=1
! 210 WRITE(NPRNT»90) Is(NSET(IJYsIJd=ILsIV)
90 FORMAT{13Xs1595X91218)
WRITE (NPRNT»202)
202 FORMAT(//30Xs4HQSET/)
DO 215 I=1,1D
IL={I=1)%1uMv+1]
- Iv=IL+IMM1=1
| 215 WRITE(NPRNT$95) 1s{QSETIIJ)s1d=1LsIV)
‘ 95 FORMAT(13XsI5s4Xs10(E12e692X))
RETURN
9 IF(MFE(1))34691

ERN—

i C
CruaAnn]F JUNIT = 1,PRINT TNOWsCURRENT EVENT CODEs AND ALL ATTRIBUTES OF
Cexa#x#THE NEXT EVENT
C
1 IF (UMNIT = 1) 354443
3 WRITE (NPRNT$199)
199 FORMAT(///36X26H FRROR EXITsTYPE 99 ERROR,!
CALL EXIT
4 INDX=MFE(1)
IL=(INDX=1}%¥MXX+1
) IV=IL4MXX=] "
i WRITE (NPRNT#103) TNOWsJTRIB(IL) o {NSET(I)sI=IlLslIV)
o 103 FORMAT (//20X23HCURRENT EVENTeeeoTIME =3FB8e29sS5XTHEVENT =417,
1/720X17HNEXT EVENT(NSET)es(8110})
IL=({INDX=1)%IMM+1
Iv=IL+IMM=1]
WRITE(NPRNT$120)(QSETII)YeI=ILslV)
120 FORMAT(/20X1GHNEXT EVENT(QSET)eess(6EL12e4))
5 RETURN
6 WRITE (NPRNTs104) TNOW
104 FORMAT {(10X919H FILE 1 IS EMPTY ATsF10s2)
GO TO 5
END

P

FEATURES SUPPORTED
ONE WORD INTEGERS

CCRE REQUIREMENTS FOR MONTR
COYMMON 944 VARIABLES 8 PROGRAM 420

END OF COMPILATION

MONA
MONA
MONA
MONA

MONA

V.CNA
MONA
MCNA
MONA
MONA
MONA
MONA
MONA
MONA
MONA
MONA
MONA
MONA
MONA
MONA
MONA
MONA
VONA
MONA
MONA

v ONA
MONA

MONA
MONA
MONA
MONA
MONA
MONA
MONA
MONA
MONA
MONA
MONA
MONA
MONA
MONA
MONA
MONA
MONA
MONA
MONA

10

30
40

90

100
110
120
130
140
150
l1eC
170
180
190
200
210
220
230
249
250
260
270
280G
290

300
310

320
230
340
3590
360
370
380
390
400
410
420
43C
440
450
460
470
480
49y
500

51.

i
i

// FOR
*LIST SOURCE PROGRAM
#0ONE WORD INTEGERS

SUBROUTINE MNPOSN(JsNPSSY) PSNA
COMMON IDs IV INIToJEVNT s JMNITaMFASMSTOP sMXaMXC o NCLCT aNHIST PSNA
INCQsNORPT 9 NOT ¢ NPRMS ¢ NRUN 9 MRUNS o nSTAT s OUT s ISEED s TNOW» PSNA

2TREGeTEIMsMXX s MPRMT yNCROIF ¢ NEP sVNQE31) s IMMsMAXUS s MAXMNS

COMMON ATRIB(1)9ENQI31) 9 INK{31) 9 JCELS(5922) sKRANK{31) sMAXNGQ(21)
1 MFE(31) oMLC{3L1) eMLFL31)y NCELE(S) s NQI31) sPARAMIGO 4) s QTIMEL(2])
2 SSUMA{1s1)aSUMA(Bs51 sNAMELSE]) sNPRCIIMOMsNDAY s NYRJCLRyJTRIBIS)

}
|
o

NPSSN = O BENA

END OF COMPILATION

P = PARAM (Js1) PSNA
IF (P=6e0) 23244 PSNA
o 2 Y = EXP (=) PSNA
l§ X = 160 PSNA
b 3 CALL DRAND(ISEEDsRNUM) PSNA
B X=X #RNUV PSNA
’3 IF {X=Y) 54848 PSNA
! 8 ANDSSN = NPSSN+1 PSNA
' G0 TO 3 PSNA
. & TEMP=PARAY (Jyt) PSNA
] DARAM (U4l = {(PARAM{Jy1))1%%,5 PSNA
Z NPSSN=RNORY (J) PSNA
PARAM (Jsb)=TEMP PSNA
. IF(NPSSN) L6y 5 PSNA
| 4 wK=PARAM (Je2) PSNA
| KKKSPARAM {Jy3) PSNA
NPSSNEKK+NPSSY PSNA
; [F{NPSSN=KKK] 79749 PSNA
I 9 NDSSN = PARAM (Jy3) PSNA
, 7 RETURN PSNA
€D PSNA
[FIATURES SUPPORTED
N ONE wORD INTEGERS
3 CORt REGUIREVMEANTS FOR NPOSN
i CovveN ouLt VARIABLES 16 PROGRAM 172

// FOR
#ONE WORD INTEGERS
#L1ST SOURCE PROGRAM

. C
% Cre¥##COMPUTE EXPECT NOe IN FILE JQ UP TO PRESENT THIS MAY BE USEFUL
A Cwmaxrln SETTING THE VALUE OF ID

4
)

((((((

C

13

SUBROUTINE PRNTQ (JUsNSETHQSET)

DIMENSION NSET(1)+QSET(1)

COVVON ID»IMeINITsJEVNT o JAMIToMFAIMSTOP sMX oMXCoaNCLCT o NHIST s
INCQ o NORPT s NOT s NPRYUMS s NRUN s NRUNS s NSTAT sOUT o ISEED s TROW »
ZTBEG’TFINOMXX’NPRNTtNCRDRQHEp,VNQ(31)OIMM’VAXGS'VAXNS

COVMON ATRIB{1)S$ENQI31)sINNI31) s JCELS{5922) sKRANK(31) s MAXNQ(31)
1 VFE(31) 9% LC{231) oMLE(31) sNCELS(5)aNG{31) sPARAM(4094) sQTIYE(S]L)
2 SSUMA(lyl)QSUMA(SQB)9NAME(6’QNPROJ,WONQNDAY’NYRQJCLQ’JTQIB(5)

WRITE {(NPRNTS100) JQ

IF {TNOw =~ TBEG) 1291249173

WRITE (NPRNT$105)

FORMATI(/35X925H NO PRINTOUT TNOW = TBEG //)

GO TO 2

XNQ=NQ(JQ)

X= (ENQ(JQ)+XNE* { TNON=QTIME(JQI Y 1/ {TNOw=TBEG)

STD={ (VRO {IE)+XNQEXNQ* (TROW=QTIME(JQ))) /{TNOW=~TBEG) =X*#X) #% D5
ARITE (NPRNTs104) XySTDeMAXNG(JIQ)

ARTITE (NPRNTS1211

CHx%##PRINT FILE IN PROPER ORDER REJUIRES TRACING THRQUGH THE POINTERS
Cx#*##0F THE FILE

C

2C0
230

[\

232

201

213

2220
221

205

5
199

100
101
102
103
104

136

NSQ = 1

ARITE(NPRNT 200}

FORMAT (30X s6HNSET/)

LINE = MFT(JGQ)

IF (LINE=1) 4919l

WRITE (NPRNT,L102}

RETURN

L1 = LINE = 1

GO TO (202+201)eNSQ

INDX = L1 % MXX

IB = INDX + 1

IE = INDX + MXX

WRITE (NPRiNT9106) LINEs (NSET(I)eI=IBsIE)
6o TH 2190

INDX = L1 # [MM

IB = INDX + 1

1E = INDX #+ [Mv

WRITE (NPRNTS103) LINEs (GSET(IVeI=SIBWIE)
INDX LINE % MXX = 1

LINE NSET(INDX)

IF (LINE=7777) 14222045

IF (NSQ=2) 2219242

NEG = NSR o+]

WRITE (NPRNT209)

FORYAT (//30Xs4HQSET/)

GO TO 230

WRITE (NPRNHT»199)

FORVAT(///36X26HERROR EXITs TYPE 94 ERRORS)

[}

FORMAT(//39X25H FILE PRINTOUTs FILE NOesI3)
FORVAT (/45X164H FILE CONTENTS//)
FCRMAT(/43X18HTHE FILF IS F#%PTY//)

FORVAT (13XsI544Xs10(E126632X))

FORMAT (/35492 7THAYFRAGE NUMRER IN FILE wWASesF10es4s/35Xs9HETDe LEVas

1 18X9F10e69/35Xe THYAXIMUY 926X]14)
FORMAT (13Xs1595X91218)

CALL EXIT

END

PRGA
PRQA
PRUA
PRQA

PRGA
PRUA
PRQA
PRQA
PRQA

PRQA
PRQA

PRJIA
PRUA
PRUA
PRQA
PRUA

PRUA
PREA

PROA
PRQA
PRGA
PRGA
PRQA
FRQA
PRGA
PRG

PRGQA
PruA
PRQA
PRWA
PRAA
PRQA
PRQA
PROA
PRUA
PRWA
PRGA
FPRQA
ERQA
PRQA
PRGA
PRWA
PRQA
PRUA
PRQA
PRGA

PRQA
FRUA
PRGA
PRWA
PRA
PRAA
PiwA
FROA
ERGA

10
20
30
49

U AR U AR
LRI S PV R N
SO0 GO0

U A AN
-3 o
< o

580
5%0

o

53

3
1
%

|
1
|
nd

/7 FOR
#0ONE WORD INTEGERS
#L 18T SOURCE PROGRAM

SUBROUTINE RMOVE (KCOLLsJQeNSETHQSET)

DIMENSION NSET(1)sQSET(1)eKCOLL(1)

COMMON IDsIMaINIT o JEVNT s JMNITaMFASMSTOP sMXaMXC o NCLCT o NHIST
INOQANORPT s NOT s NPRVS s NRUN S NRUNME sNSTATsCUT S ISEED s TNOV s
STOEGeTFINGMAXX oNPRATyNCRER e MEP o VNQ (311 9 [MM e MAXGS 9MAXNS

COMMON ATRIB(ILIsENGI2LY s INN(31) o JCELS{5922) sKRANK(31) oMAXNUI(3L1])
1 MFE(31) oMLC{31) oMLE(31) oNCELS(S) oNQU31) sPARAMIA40 34) 9CTIME(Z21)
2 SSUVA(Lsl)aSUMALS 5) sNAME(B) sNPROJIMONSNTAY s NYRIJCLRIJTRIBI(5)

C
CanxxaTHE DUMMY ARRAY XCOLL IS USED AS AN ARGUMENT TO FORCE THE CALL
oK SR BY NAME CGPTION ON COVPUTERS SUCH AS THE IBM 360, THE CALL
et x % BY NAME DOPTION IS REQUIRED FOR PROPER COPERATION OF THIS
(s SURRDOUTINE »
C
“COL = KCOLL{tL)
IF (KCOL) 1641692
16 CALL ERFCR (97yNSETH,WSET)
2 VLC(JG) = KCOL
C
CHxuPUT VALUES OF KCCL IN ATTRIR
C
INDX {(KCOL =~ 1) # MM
o0 3 = lslIMM
ITNEX INDX + 1
ATRIB{TI) = QSET{INDX)
INDX = (KLOL - 1) * MXX

o~ u

W

DO 10 I =1lsIM
INDX = INCX + 1
10 JTRIBUIY = NSET({INDX)

CoxxxxSET QUT=1 AND CALL SET TO REMOVE ENTRY FROM NSET
C

ouUT = 1.

CALL SET (JQeNSETsGSET)

RETURN

END

FEATURES SUPPORTED
OME WORD INTEGERS

CCRE RFQUIREMENTS FOR RMOVE
COMMON 944 VARIABLES 6 PROGRAM 142

END OF COMPILATION

RMVA
RMVA
RMVA
RMVA

RMMVA
RMVA
RMVA
K™VA

RMVA
RMVA
R¥VA
RMVA

RMVA

RMVA
RMVA
RMVA
R“VA
RMVA

RMVA
RVMVA
RiVA
R i VA

RMVA
RMVA
RMVA
RMVA

10
20
30
40

90
100
11¢
120

13¢
149
150
160

170

180
190
200
2l

220

230
2490
2590
260

270
280
290
300

54.

// FOR

*CNME WORD INTEGERS

[#LIST SOURCE

PRUOGRAM

i FUNCTION

RNORM

(J}

NORM

10 55,

COVMMON ID»Ive INIToJEVNT 9 UMNIToVFASMSTOP ¢ MX s ¥XCoNCLCTsNHIST s
INCQoNORPT o NOT o NPRMS s NRUN o NRUNS o NSTATsOUT o ISEED s TNOw 9

2TREGsTFINg VXX s NPRNT 9y NCRDR ¢ NEPSVNQ(31) 9 [¥M 9 VAXTS s VAXNS

COMMON ATRIB(I)9ENQIBL) o INN(31) 9 JCELS(5922) sKRANK(BZL Y s MAXNG (31}
1 MFEL31) sMLCU3L) oMLE(BL) o MCELSES I aMQI3L) sPARAMIGO 94) »QTIME(3 1)
2 SSUMA{L191)sSUMA(S595) 9 NAME(6) sNPROJIMOMINDAY sNYR 9 JCLRIUTRIBIS)
CALL DRAND(ISEFDsRA)

CALL DRAND(ISEEDRRB)

NORM 3¢
NORM 90

-~

V(=2 0%ALOGIRA)) ##045%C0OS (64283%R%) NORY 100
RNORM = V*DPARAM (Js4) + PARAM (Jyl) NORY 110
IF (RNORM =PARAM (J92)) &9798 NORY 120
6 INORM = PARAM (Jy2) NORY 130
o 7 RETURN NORM 140
| 8 IF (RNORM =PARAM (Js3)) 73749 NORM 150
1 9 RNORM = PARAM {Js3) NORY 160
RETURN NORM 170
g EN NORM 180
' FEATURES SUPPORTED
ONE WORD INTEGERS
i CORE REQUIREMENTS FOR RNORM
COVMON 944 VARIABLES 18 PROGRAM 122
| END OF COMPILATION
i
‘ // FOR
#ONE WORD INTEGERS _ S B}
i #L1ST SOURCE PROGRAM
‘ FUNCTION RLOGN (1) LOGN - 10

e CH%ERXTHE PARAMETERS USED WITH RLOGN ARE THE MEAN AND STANDARD DEVIATIONLOGN-—15 - .
1

| CrxuxxOF A NORMAL DISTRIBUTION LOGN &
§ C -
: VA= RNORM (J) LOGN 20
RLOGN=FXP (VA LOGMN— 30
RETURN LOGN 40
- END - — e e OGN - BO

FEATURES SUPPORTIED

ONE WORD INTEGERS

CORE REQUIREMENTS FOR RLOGN

COMMON

ENDOF _COMPILATION

0 VARIABLES

4 PROGRAM

n
©

.

e

// FOR

ARITHMETIC TRACE

TRANSFER TRACE

LIST SOURCE PROGRAM
#ONE WORD INTEGERS

SUBROUTINE SET (JQoNSET.QSET) SETA
DIMENSION NSET{1)sQSETL1) SETA
COMMON IDsIMoINIToJEVNT s JMNITsMFASMSTOP sMX sMXCaNCLCT sNHIST SETA
INOQsNORPT s NOT s NPRMS s NRUN s NRUNS s NSTAT sOUT s ISEED s TNOW SETA

2TBEGe TFINsMXX sNPRNT s NCRDRsNEP s VNQ(31) s IMMoMAXQS s MAXNS

COMMON ATRIB(1)ENG(31)oINN(31])sJCELS(5222)sKRANK(31) sMAXNQ(31)
1 MFE(31) oMLCU31)oMLE(31) sNCELS{5)sNQ(31)sPARAM(4054)9QTIME(3]1)
2 SSUMA(1351)9sSUMALI5s5) sNAME(6) sNPROJSMONSNDAY sNYReJCLReJTRIB(S)

C

Cruan#pE SINGLE ARRAY NSET OF FIXED POINT GASP 1S REPLACED BY THE TWO .SETA
Cex®xrs ARRAYS QSET AND NSETs FOR FILE 1s ATRIBU(1) IS THE EVENT TIME SETA
Cxsues AND JTRIB(1) THE EVENT CODE FOR AN EVENTs SUCCESSOR AND PREDEC= SETA
Cex#us ESSOR POINTERS ARE STORED AS USUAL IN NSETe QSET AND NSET ARE SETA
Cae#xsr ONE DIMENSIONAL ARRAYS BUT MAY BE THOUGHT OF AS TwO DIMENSIONAL SETA

Cox#k ARIAYS WITH BOTH NUMBER OF ROWS AND COLUMNS VARIABLE AT EXECU= SETA
Cruwnxs TION TIMEs FUNCTION LOCAT WILL LINK {(ROWsCOL) TO (INDEX). SETA
C

IF (INIT=1) 2728427 SETA
<
CanvnnINITIALIZE FILE TO ZEROs SET UP POINTERS SETA
CrauuseMysT INITIALIZE KRANK(JQ) SETA

CruxeamyUST INITIALIZE INN(JQ)####INN(JQ)=1 IS FIFO#*INN(JQI=2 IS LIFO SETA
C

28 KOL = 7777 SETA
KOF = 8888 SETA
KLE = 9999 SETA
MX = M+l SETA
MxX=IMe2 SETA
MAXQS = 1D # [MM SETA
MAXNS = ID # MXX SETA

<
CuruauINITIALIZE POINTERS IN NSET AND ZERO OTHER CELLS IN QSET AND NSET SETA
c

DO 2 4 = liMAXQS SETA
2 QSET(J) = 060 SETA
DO 4 J = 1sMAXNS SETA
4 NSETtJ) = 0 SETA
DO 1 I = 161D SETA
INDX = 1 # MXX SETA
NSET(INDX = 1} = I + 1 SETA
1 NSET(INDX) = 1 = } SETA
NSET(MAXNS = 1) = KOF SETA
DO 3 K = 1sNOQ SETA
NQ(K) =0 SETA
MLCEK) =0 SETA
MFE{K) =0 SETA
MAXNQ(K) = O SETA
MLE(K}=0 SETA
ENQ({K) 20,0 SETA
VNQ(K) =040 SETA
.3 QTIME(K)=TNOW SETA
C .
CunenuaFIRST AVAILABLE COLUMN = 1 SETA
C
MFA = } SETA
INIT = O SETA
OUT = 000 SETA
RETURN SETA
C
Cas##8MFEX 1§ FIRST ENTRY IN FILE WHICH WMAS NOT BEEN COMPARED WITHM ITEM SETA
Cx##22T0 BE INSERTED SETA
C
27 MFEX = MFE(JQ) SETA

<
CHuunuKNT IS A CHECK CODE TO INDICATE THAT NO COMPARISONS HAVE BEEN MADESETA
C

KNT = 2 SETA
C
Canu#eKS 1S THE ROW ON WHICH ITEMS OF FILE JQ ARE RANKED SETA
C
KS = KRANK(JQ) SETA
KSJ = 1 SETA
IF (kS = 100) 1020310091000 SETA
1000 KSJ = 2 SETA
KS = XS = 100 SETA
<
Cax#naTEST FOR PUTTING VALUE IN OR OUT SETA
Ca#x#uxlF OUT EQUALS ONE AN ITEM 1S TO BE REMOVED FROM FILE JQs IF OUT SETA
Cuxnuxls LESS THAN ONE AN ITEM IS TO BE INSERTED IN FILE JQ SETA
C

1020 IF (OUT = 1s0) 855,100 SETA

10
20
30
40

90
100
110
120
130
1«0
150

160

170
180
190

200
210
220
230
240
250
260

279

280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450

460

470
480
490
500

510
520

530
540
550
560
570
580
590
600
610
620
630
640

650

§
§

<

CeanesPUTTING AN ENTRY IN FILE JQ

CreanaTHE ITEM TO BE INSERTED WILL BE PUT IN COLUMN MFA
C

8 INDX = MFA # MXX = 1
NXFA = NSET(INDX)
C
CoesuniF INN(JQ) EQUALS TWO THE FILE IS A LIFO FILEs IF INN(JQ) IS
CoeuaeQONE THE FILE IS A FIFO FILEe FOR FIFO FILES TRY TO INSERT
CaeeneSTARTING AT END OF FILEe MLEX IS LAST ENTRY IN FILE WHICH HAS
CranasnOT BEEN COMPARED WITH ITEMS TO BE INSERTED,
C
IF (INN(JQI=1) 1009796
7 MLEX=MLE(JQ)
C
Cenuun]F MLEX IS ZERO FILE IS EMPTYs ITEM TO BE INSERTED WILL BE ONLY
CHa#nu]TEM [N FILE,
<
IF (MLEX) 10010911
10 INDX = MFA % MXX
NSETLINDX) = KLE
MFELJQ) = MFA

C
CaunnnTHERE IS NO SUCCESSOR OF ITEM INSERTEDe SINCE ITEM WAS INSERTED
CaununlnN COLUMN MFA THE LAST ENTRY OF FILE JO IS IN COLUMN MFA,

C
17 INDX = MFA # MXX =]
NSET(INDX) = KOL
MLE{JQ) = MFA

C
ConunnSET NEW MFA EQUAL TO SUCCESSOR OF OLD MFAes THAT 1S NXFAs THE

CresunNEW MFA HAS NO PREDECESSOR SINCE IT IS THE FIRST AVAILABLE COLUMN

CrneanFOR STORAGE,
o
14 MFA =NXFA
IF(MFA=KOF) 2379238,238
237 INDX=NXFA#MXX
NSET(INDX) = KLE
C
CranaePDATE STATISTICS OF FILE JQ
C
238 XNQ=NQ(JQ)
ENG(JQ) = ENQ(JQ)}+XNQ#({TNOW=QTIME(JQ)}
VNO{JQ)I=VNQL{JQ) +XNQRXNQ* (TNOW=QTIME(JQ})
QTIME(JQ) = TNOW
NQ(JQ) = NQLJQ) + 1
MAXNQ(JQ) =XMAX{MAXNQ(JQ) eNQLJQ})
MLC{JQ) =MFE L JQ)
RETURN
C
CounauTEST TO DETERMINE IF RANKING ATTRIBUTE IS IN QSET (KRANK:LT«100)
Cueaa#OR NSET (KRANK ¢GTe100)e
C
11 GO TO (1100%1120) sKSJ
1100 INDX1 = (MFA = 1) # [MM + KS§
INDX2 = (MLEX = 1) #» IMM + KS
IF (QSET(INDX1) = QSETUIINDX2)) 12513413
1120 INDX]l = (MFA « 1) # MXX 4 KS
INDX2Z = (MLEX = 1) # MXX + K$

<
CrunusTEST RANKING VALUE OF NEW ITEM AGAINST VALUE OF ITEM IN COLUMN
CaerreMLEX
C

1F (NSET(INDX1) = NSET(INDX2)} 12913413
[«
CanrunnINSERT ITEM AFTER COLUMN MLEXe LET SUCCESSOR OF MLEX BE MSUs
C

13 INDX = MLEX # MXX = 1

MSU = NSET{INDX)

NSETUINDX) = MFA

INDX = MFA # MXX

NSET(INDX) = MLEX

GO TO (18917) oKNT

C
CrueaeaSINCE KNT EQUALS ONE A COMPARISON WAS MADE AMD THERE IS A
CrenunSUCCESSOR TO MLEXs [sEes MSU IS MOT EQUAL TO KOLe POINT COLUMN
CenueaMFA TO MSU AND VICE VERSA.
C
18 INDX = MFA #% MXX = 1
NSET(INDX) = MSU

SETA
SETA

SETA
SETA

SETA
SETA
SETA
SETA

SETA
SETA

SETA
SETA

SETA
SETA
SETA
SETA

SETA
SETA

SETA
SETA
SETA

SETA
SETA
SETA

SETA
SETA
SETA
SETA

SETA

SETA
SETA
SETA
SETA
SETA
SETA

660
670

680
69Q

700
710
720
730

740
750

760
770

780
790
800
8lo

820
830

840
850
860

870
880
890

900
905
91¢
920

930

940
950
960
970
980
990

SETA1000
SETAL1010

SETALQ20Q
SETALQ30

SETA1040
SETALO50
SETA1060
SETALQ070
SETAl080
SETA1090

SETAL1100
SETA1110

SETA1120

SETA1130

SETAll«0
SETAL150
SETALLls0
SETAll70
SETAllB0
SETA1190

SETAL1200
SETAl210
SETAl220

SETAl230
SETAL240

57.

!
o

E
i

INDX = MSU # MXX SETA1250
NSET(INDX) = MFA SETA1260
. GO TO 14 SETA1270
g#nui*ser KNT TO ONE SINCE A COMPARISON WAS MADEs SETA1280
. 12 KNT = 1 SETA1290
Cex#aaTEST MFA AGAINST PREDECESSOR OF MLEX BY LETTING MLEX EQUAL SETA1300
C#uus%PREDECESSOR OF MLEXs SETA1310
c
INDX = MLEX # MXX SETA1320
MLEX = NSET(INDX) SETA1330
IF(MLEX=KLE) 11s16511 SETA1340
c
Crunnr]F MLEX HAD NO PREDECESSOR MFA 1S FIRST IN FILE. . SETAl3a0
< .

16 INDX = MFA # MXX SETA1360
NSET(INDX] = KLE SETA1370
MFE(J@) = MFA SETA1380

¢
Ce####SUCCESSOR OF MFA 1S MFEX AND PREDECESSOR OF MFEX IS MFAe (NOTE AT SETA1390
C###r2THIS POINT MLEX = MFEX IF FIFO WAS USED}e SETA1400
c

26 INDX = MFA # MXX = 1 SETA1410
NSET({INDX) = MFEX SETAL420
INDX = MFEX # MXX SETA1430
NSETCINDX) = MFA SETAL440

. GO TO 14 SETA1450
C####8FOR LLIFO OPERATION TRY TO INSERT ITEM STARTING AT BEGINNING OF SETAL460
ConsuuFILE JQs SETA1470
ComuuulF MFEX 1S Oy NO ENTRIES ARE IN FILE JQs THIS CASE WAS CONSIDEREDSETA1480
Cs»#%PREVIOUSLY AT STATEMENT 10, SETA1490
c

6 IF (MFEX) 100510519 SETA1500
Cox##4TEST RANKING VALUE OF NEW ITEM AGAINST VALUE OF ITEM IN COLUMN SETA1510
CHRERIMFEX o SETA1520
¢

19 GO TO (120051220) sKSJ SETA1530

1200 INDX1 = (MFA = 1) # IMM + K$ SETA1540
INDX2 = (MFEX = 1) # IMM + KS SETA1550
IF {QSET(INDX1) = QSET(INDX2)) 20s21s21 SETA1560
1220 INDX1l = (MFA = 1) # MXX + K§ SETA1570
INDX2 = (MFEX = 1) * MXX + KS SETA1580
IF (NSET(INDX1) = NSET(INDX21) 20s21s21 SETA1590
<
CusuunlF NEW VALUE IF LOWER, MFA MUST BE COMPARED AGAINST SUCCESSOR OF SETA1600
CorruuMFEX o SETA1610
¢
o RN SETA1620
Ce#naslET MPRE = MFEX AND LET MFEX BE THE SUCCESSOR OF MFEXe SETA1630
¢
MPRE = MFEX SETAL640
INDX = MFEX # MXX = 1 SETA1650
MFEX = NSET(INDX) SETA1660
IF (MFEX=KOL) 1952419 SETA1670
c ,
Cun#sanlF NEW VALUE 1S MIGHERs 1T SHOULD BE INSERTED BETWEEN MFEX AND 1TSSETA1680
CanunuPREDECESSORS SETAL690

ceunnulF KNT = 25 MFEX HAS NO PREDECESSORs GO TO STATEMENT 16e [IF KNT SETA1700
Casnnkz 1y A COMPARISON WAS MADE AND A VALUE OF MPRE HAS ALREADY BEEN SETA1710
CexaasOBTAINED ON THE PREVIOUS ITERATIONs SET KNT = 2 TO INDICATE THIS.SETA1720

21 GO TO (229+16) KNT SETAL1730
22 KNT = 2 SETA1740
<
Canuna#MFA 1S TO BE INSERTED AFTER MPREe MAKE MPRE THE PREDECESSOR OF SETALT50
CuxsuaMFA AND MFA THE SUCCESSOR OF MPREs SETALIT60
4
24 INDX = MFA # MXX SETALTTO
NSET(INDX) = MPRE SETALT80
INOX = MPRE # MXX = 1 SETALTS0
NSETUINDX) = MFA SETALB0D

o
cessanlF KNT WAS NOT RESET TO 2s THERE IS NO SUCCESSOR OF MFAe. POINTERSSETAlB10
CasenaARE UPDATED AT STATEMENT 17e¢ IF KNT = 25 1T WAS RESET AND THE SETAL820

CrunnaSUCCESSOR OF MFA IS MFEXs SETAL1830
GO TO (17+26)s KNT SETA1840

<

C#eara#REMOVAL OF AN I1TEM FROM FILE JQe SETA1850

Ces#2eRESET OUT TO O AND CLEAR COLUMN REMOVED. LET JL EQUAL SUCCESSOR SETAl860

Cu#uas0Ff COLUMN REMOVED AND JK EQUAL PREDECESSOR OF COLUMN REMOVEDs SETA1870

CounaslF JL = KOLs MLC WAS LAST ENTRYs IF JK = KLEe MLC WAS FIRST ENTRYSETA1880
CrauauMLC WAS NOT FIRST OR LAST ENTRYe UPDATE POINTERS SO THAT Ji IS SETAL890
CeunnsSUCCESSOR OF JK AND JK 1S PREDECESSOR OF JLe SETAL900
<

58.

o
1
i
¢

B
!
i

5 QUT = 000
C

SETAL910

CasansUPDATE POINTING SYSTEM TO ACCOUNT FOR REMOVAL OF MLC (JQ)e COLUMNSETAL1920

CaunnxREMOVED 1S ALWAYS SET TO MLC(JQ) BY SUBROUTINE RMOVE.
C
INDX = (MLC(JQ} = 1) * MM
DO 32 I=lelMM
INDX = INDX + 1
32 QSET(INDX] = Q60
INDX = (MLC{JQ) = 1) # MXX
DO 1300 I= 1leIM
INDX = INDX + 1
1300 NSET(INDX) = O
INDX = MLC(JQ) % MXX
JL = NSET(INDX = 1)
JK = NSETUINDX)
IF (Jl= KOL) 33936933
33 IF (JK= KLE} 35536935
35 INDX = JK # MXX = 1
NSET(INDX) = JL

INDX = JL # MXX
NSET(INDX) = JK

C
ConunetUPDATE POINTERS,
<
37 INDX = MLC(JQ) # MXX = 1
NSET(INDX) = MFA
NSET(INDX+1}) = KLE
INDX=aMFA®#MXX
NSETLINDX) 2MLC(JQ)
MFA = MLC{JO)
MLCIJQ) = MFE(JQ)
C
CexnarUPDATING FILE STATISTICS
C
XNQ = NQ(JQ)
ENQ(JQI=ENQ(JQ)+XNQ# { TNOW=QT IME(JQ))
VNQ{JQ)=VNQIJQ) +XNQ#XNQ#* { TNOW=QT IME(JQ))
QTIME(JQ) = TNOW
NQ{JQ) = NQ(JQ)=]
RETURN
C

CruxeuMLC WAS FIRST ENTRY BUT NOT LAST ENTRYs UPDATE POINTERSe
C
36 INDX = JL # MXX
NSETLINDX) = KLE
MFE(JQ) = JL
GO TO 37
34 IF (JKeKLE) 38439438
<
CoennsMLC WAS LAST ENTRY BUT NOT FIRST ENTRYe UPDATE POINTERSs
c
38 INDX = JK #MXX = 1
NSET(INDX) = KO
MLE(JQ) = JK
GO TO 37
<
CexnaaMlLC WAS BOTH THE LAST AND FIRST ENTRYs THEREFOREs IT 1S THE ONLY
CaaanraENTRY,
<
39 MFE(JQ) = O
MLE(JQ) = O
GO TO 37
100 CALL ERROR (88sNSETQSET)
RETURN
END ¥

FEATURES SUPPORTED
TRANSFER TRACE
ARITHMETIC TRACE
ONE WORD INTEGERS

CORE REQUIREMENTS FOR SET
COMMON 944 VARIABLES 28 PROGRAM 1388

END OF COMPILATION

SETAL1930

SETAL1940
SETAL950
SETA1960
SETAL1970
SETA1980
SETA1990
SETA2000
SETA2010
SETA2020
SETA2030
SETAZ2040
SETA2050
SETA2060
SETA2070
SETA2080

SETA20¢0
SETAZ100

SETA2110

SETA2120
SETA2130
SETA2140
SETA2150
SETA2160
SETA2170
SETA2180

SETA2190

SETAZ2200
SETA2210
SETAZ2220
SETA2230
SETA2240
SETA2250

SETA2260

SETA2270
SETA2280
SETA2290
SETA2300
SETA2310

SETA2320

SETA2330
SETA2340
SETA2350
SETA2360

SETA2370
SETA2380

SETA2390
SETA2400
SETA2410
SETA2420
SETA2430
SETA2440

59.

|
|
i

|
.
i

/7 FOR
1ST SOURCE PROGRAM
#0ONE WORD INTEGERS

FUNCTION UNFRM (AsB)

COMMON ID s IMs INIT o JEVNT s JMNITsMFASMSTOP 9MX sMXCoNCLCT sNHIST s
INOQsNORPT o NOT s NPRMS s NRUN s NRUNS s NSTAT»OUT 2 ISEEDs TNOW »
2TBEGsTFINsMXX sMPRNT s NCRDRSNEP s VNQ(4) 2 IMMsMAXQS s MAXNS

COMMON ATRIB(10)sENQU&4) s INN(4) s JCELS(5322) sKRANK (&) sVAXNQ(4) oM
IFELG) oMLC(4) sMLE(L) oNCELS{S) sNQ(G) sPARAM{ 206) yQTIME (L) 5 SSUMA
2(1095) sSUMA(1095) sNAME(6) sNPROJIMON g NDAY sNYRsJCLRsJTRIB(12)

CALL DRAND (1SEEDsRNUM)

UNFRM = A+ {B=A)*RNUM

RETURN

END

FEATURES SUPPORTED
ONE WORD INTEGERS N

CORE REQUIREMENTS FOR UNFRM
COMMON 608 VARIABLES 4 PROGRAM 26

END OF COMPILATION

UNFA 19
UNFA 20
UNFA 30
UNFA 40
UNFA 50
UNFA 60
UNFA 70
UNFA £0
UNFA 90
UNFA 100
UNFA 110

60.

