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ENGINEERING ESTIMATES FOR SUPERSONIC FIUITER OF
Y CURVED SHELL SEGMENTS

3 William J. Anderson and Kuo-Hsiung Hsu

The University of Michigan

#

ABSTRACT

B

Static aerodynamic theory is used to find design curves for the
flutter of curved panels. The panels are rectangular segments cut from
- a circular cylindrical shell. Supersonic flow is directed parallel to
the generators of the shell segment. The pressure expression used is

general enough to encompass a wide range of physically possible pres-

-

sure distributions. Design curves are given in the form of a thickness

parameter required to prevent flutter as a function of curvature and

length-to-width ratio. Upper and lower bounds for the onset of coupled-

e mode panel flutter are given. Comparisons with other theories and experi-
éé ments are made. The results are intended to aid in design of wind tunnel
models for panel flutter tests. ' - — — —
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- D . . En?/[12(1-v?)]
F Airy stress function 1/
3 i 5
L o1 a2
: . a h
— H Thickness parameter, N T
(1-v2,q
C h Panel thickness
L Length of panel
. M Mach number
e m Axial wave number
v N Number of modes
e N, ,Ng Stress resultants, see equations (5) and (6)

= p(x,0,t) Aerodynamic load

q Integer, also dynamic pressure
R Radius
t Time
v Flow velocity
W Width of panel
weff Effective width of panel, W/n
_ W Panel displacement in radial direction
= X Spatial coordinate, flow direction
N Z Curvature t Lk el
H re parameter, R 5 V1"
e qu Kronecker Delta
L= &) Angular coordinate
E £ % Included angle of shell segment
i =]
R Q Eigenvalue
= 0 Fluid density




oo

-
e

N

=

Py Panel density
¥ Spatial phase shift
w Frequency, rad/sec
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Shell segment.
Elastic shell segment imbedded in a cylinder.

Thickness regquirement for a cylindrical shell segment,
¥ = 0° (Ackeret theory).

Thickness requirement for a cylindrical shell segment,
¥ = 90° ("slender body" theory).

Upper and lower bounds for thickness requirement.
Freely supported edges.

Comparison with other theories and experiments.

Stability boundaries, ¥ = 0° (Ackeret theory), four mode solution.
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Stability boundaries, ¥ = 90° ("slender body" theory).

Approximate upper and lower stability boundaries.
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1. INTRODUCTION

There is a need for rough estimates of panel flutter boundaries in
design work. One specific area which has not been studied extensively
involves the flutter of a rectangular panel with curvature (Fig. 1).

This panel would in general form a portion of a ¢ylindrical body (Fig. 2),
and would be supported at its edges by heavy bulkheads or stringers.

Some portions of the outer skin of a missile would correspond o this

case., For conventional aircraft, such a panel might represent a window,
where the window is relatively weak compared to the surrounding structure.
Such windows can be a problem in high speed flight where temperature lowers
their rigidity.

The exact mathematical solution to this problem is so difficult,
and the results dependent on so many parameters, that there is serious
doubt whether it is of any practical value. On the other hand, recent
research [1] for cylindrical shells indicates that approximate results
can be found by using a steady flow (quasi-static) theory. The approach
taken here is to recommend a set of design curves developed by a simple
theory with the intent that corrections to these curves are to be made
as experimental data are obtained. It is felt that the design parameters
used here are somewhat universal and will be the ones which will prove
useful in the long run, even after more precise theories are available.

In the mathematical development of the problem, we will remain with-

in the framework of linear shell theory and steady flow theory. A modal

p)
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apprcach will be used, hence the aerodynamic problem resolves to finding
pressures on sinusoidally deflected walls. The aerodynamic pressure
distribution used in this problem will be generalized in the manner studied
in Ref. [2]. A parameter V¥ 1s introduced to typify the spatial pressure
distribution. Then V¥ is allowed to vary over the range of values which can
be expected for such a panel under different physical conditions including
boundary layer effects and length-to-width ratio effects. The result is

an approximate theory which gives upper and lower limits to the panel
thickness requirement, to prevent flutter. The upper limit corresponds

to the use of Ackeret theory. the lower 1imit corresponds lccsely to a
"slender body" type of theory. These two bounds represent extremely dif-
ferent flow situations, yet the dynamics of the system are so insensitive
to the details of the pressure distribution as to cause a variation from
upper to lower bound of only 55% for most cases.

A series of figures will be presented for design purposes. These
should be especially useful in designing models for wind tunnel testing.
Previous work has been done on related problems. Dzygadlo [3]

studied the elastic instability of an infinitely long elastic segment

of an infinitely long cylinder. The stability boundaries were found for

//U/\
~
o da(x-v,) et —
wix,6.t) = w(0Q) e t ’EEE><////'

a traveling wave form:
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A get of integro-differential equations of motion resulted. These were
solved with the aid of a Fourier series in the © variable. Much effort
was placed on a study of the effect of structural (Voigt) damping on the
stability boundaries. For moderate amounts of damping, unexpected changes
in the panel's stability resulted. The numerical results presented were
not extensive. It was concluded that for small damping ratios and for
fixed shell thickness and radius, the critical Mach number does not vary
greatly for included angles for the segment lying between n/l and =.
Another study of interest was by Dowell and Widnell [4]. The case
considered was a finite length elastic segment in an infinitely long
rigid cylindrical shell. 1In this case, the generalized aerodynamic forces

were found for deflections of the type

iwt LommXx
w(x,0,t) = e “cos ne@ sin —p-

Dowell made several comments about the stability of the shell segment
merely by looking at the character of the generalized forces. First of
all, in the low supersonic Mach number range, a single degree of freedom
type of flutter is possible. Secondly. for shell segments with long
length-to-width ratios, static divergence takes place. Flutter boundaries
for the "coupled-mode" type of flutter were not presented.

Neither of these studies is easy to extend to the current problem.
Neither case yields useful design curves (nor were they intended to).

The approach used by Dowell would be the more easy to extend to the present

7

case.
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The present solution parallels the approach used by McElman [5] to
some extent. McElman studied a curved orthotropic panel segment by using
a two mode analysis with Ackeret theory. No design curves of the type
shown here were presented in McElman's work. (In order to work with lower

agspect ratio panels, one needs many modes rather than two. )

2, STATEMENT CF PROBI:EM

Consider a ecylindrical shell segment as shown in Fig. 1. Super-
sonic flow passes over the outer surface of the segment, with flow dil-
rection parallel to the cylinder axis. The segment is of uniform thickness
and of isotropic, homogeneous elastic material. Conventional cylindrical
coordinates x, r, O are used. The shell segment 1s defined by
r = R
0<x<L
%0 5<%
2 - — 2
Deflection of the surface of the segment will be given by w(x,0,t) measured
from the mean radius of the shell. The edges of the shell will be "freely-

supported” as defined below. The shell may be internally pressurized.

No structurasl damping will be included.

STRUCTURAL DETATLS
The shell is thin and 1nitially circular. Radial deflections are

restricted to be small:
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The in-plane motions of the shell u(x,0,t) and v(x,0,t) are small compared
to w(x,@,t) s0 that inertial effects due to in-planevmotion can be neglected
(Reissner's assumption). The included angle Oy Will be less than n/2 50

that Donnell's shallow shell equations can be used.

2 Vo 32 2 2
L = 07w Mo d%w 1 3°F o<W _
w W - NX BXE %{?- 552 + R g}'{-ﬁ- + Dh ——atg + p(X,Q,t) ] (1)
b,  Eh d<w
VF « 2w =—— = 0 (2)
R axe

where D is the bending rigidity of the shell, N and Ny are constants
rerpresenting the components of membrane stress due to internal pressuri-

zation and F(x,0,t) is the stress function defined so that

o L J°F

Ny(x,0,t) = o5 355 (3)
= 3F

N@(X.@,t) = 525 (4)

Note that N; and ﬁé are the time dependent components of membrane stress

due only to ranel motion. The total membrane stresses are

Ty + N (x.0,t) (5)

il

NX(X:Q;t)

(x,6,t) W, + fg(x.0,t) (6)

i

e

Boundary conditions to be appliled at x == C, x = L are

- %y ¥°F
VoW s oE s S - 0 (7)
9
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Boundary conditions at 6 = % TQ are

2 2
o~w O°F
W = —a—? = u = é;g - O (8)

These freely supported boundary conditions have been chosen primarily

because they are satisfied (term by term) by the series

0<x <L

...@O a)

. . N
it 7
w(x,0,t) = ™ Y a cos 0 sin E%E
—2<eo< S0 (9)
2 — -

m=1 @o
These boundary conditions are useful, however, because they result in s
dynamically "weak" plate. Hence, the stability boundaries will tend to
be congservative for design purposes when applied to damped plates.
At this point, the structural problem has been posed. We need to

find the aerodynamic pressures p(x.0,t) generated at the panel surface.

AERODYNAMIC DETAILS
A strong assumption on the aerodynamic pressures will be made. The

pressure on a panel deflection

i @ . mnX
0,t) = ¢ ™ cogq 81~ —_ 10
w(x,0,t) e cos g sin (10)
will be assumed to be
_ dwt pU e mr nne mix
p(x,6,t) = < e B — I cos 5 cos + ¥ (11)
w1 b © L

In other words, the pressure will have a magnitude equal to that given
by Ackeret theory and a spatial pressure distribution that can vary as
desired. (It would be possible to discuss this same assumption later

in terms of generalized forces, but this is not as meaningful.)

10
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The above assumption appears to be a strong oversimplification at
first glance. One wonders how to choose a proper value of ¢ for a cy-
lindrical shell segment. In Reference 6, extensive numerical work was
done for pressures on oscillating cylinders exposed to potential flow.
The phase angle ¥ was found to vary only between 0° and 90°. Hence, we
will include values of ¥ between 0° and 90° in the present study. In
Reference 2, the dynamic results of such an assumption are studied in
detail. It is found that the choice of ¢ does not drastically affect

the thickness requirement for cylindrical shells.*

STABILITY DETAIILS
Galerkin's method is used to pose the problem in matrix form. The

deflections of the shell segment are

it ] N
w(x,0,t) = e cos Z= T g, sin 9%5 (12)

e, m=

Note that this expression allows n half waves in the circumferential
direction of the panel. If n takes a value higher than 1, then the ef-
fective length-to-width ratio of the panel increases accordingly because

there are stationary nodal lines down the length of the panel.

*Footnote: The thickness required to prevent flutter is a continuous
function of ¥. For the case studied in Ref. [2], the thickness require-
ment has a minimum near ¥ = 30°., This value of the thickness ratio at
¥ = 30° is practically identical with that at ¥ = 0°. Because the
calculation for ¥ = 0° has more physical meaning (Ackeret theory) it
is used as a reference rather than ¥ = 30°.

11
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The expression for pressure, Eq. (11), is used in conjunction with

Eqs. (1) and (2) to yield the set of linear algebraic equations of motion:

N 2 U N_I° NI

12 27 m x 2] L\2
L a @2 + (22 + + m? + 23— (5
m=1 ™ eff AP+ (B)2F  °D 7D Werr
' weff

n e
(g 1,25...n)
where:
= o |13
g oo [Vl 7 R
(1__,-i/-a)_ L
L L
2= gpVies
Ln
LiVers = Fo,
A pshsz)-‘r
)\- = }_I‘
a D
0 m+q even
T] P hm
qm _:9 : m+qg odd
g -m”

Thus, a set of linear algebraic equations are obtained. The occurrence
A
of a negative eigenvalue A signifies static divergence of the panel and

A
complex A signifies flutter.

3. RESULTS
Stability boundaries have been calculated for the aerodynamic loading
discussed sbove. All results will be given for cases with zero membrane

stresses Wx and Ny. This theory would be more inaccurate at positive

12



éé values of membrane stress which would cause higher flutter frequencies.
t ,

The results are presented using the effective length-to-width ratio
— L/Weff’ a curvature parameter Z and a thickness parameter H. The plots
Eé of H versus L/Weff are given as a generalization of the work of Kordes,
- Tuovila, and Guy [7], and the curvature parameter Z is chosen to cor-
éé respond to Batdorf's study of cylinder buckling [8].
?E' A four mode solution for ¥ = O (Ackeret theory) is given in Fig. 3.
]
o It is easily seen that curvature helps to stiffen the panel and reduce
= the thickness requirement. An interesting effect is obtained in the
éé regions where H increases with increasing L/weff' This means that a panel
.. of given physical length and width will flutter in a mode with n > 1, giving
= a higher critical value of L/Weff° As an example, a panel of length 10
%% inches and width 2 inches has a physical length-to-width ratio of 5. If
- Z = 8000 for this panel then it must have a thickness ratio of H = 0,065
%% to prevent flutter from occurring at an effective length-to-width ratio
Eé of 15. This particular panel flutters with n = 3, i.e., it has two in-
- terior nodal lines extending down its length.
EE Results for ¥ = 90° are given in Fig. 4. These results are some-
éﬁ what similar to the ¥ = O curves except that the instabilities in the
- lower left corner are due to static divergence. Again, one must observe
= the cases where H increases with L/Weff and one must choose the multiple
%g of the geometric length-to-width ratio which gives the critical value
- of H.
=

13
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Finally, several of the curves for V¥ = 0° and ¥ = 90° are combined
in Fig. 5. These are approximate bounds for the thickness required to
prevent an instability. Note that the difference between the two bound-
ing curves is not great, particularly in certain intermediate regions of
L/Weff. This may be an indication as to why Ackeret theory gives relatively
good results for the cylinder experiments discussed in Ref. 1. In these
tests, a cylinder fluttered in a mode which yields an effective L/Weff =
9.21 and with Z = 6,950. Flutter occurred at H = 0.062k,

It is felt that figures such as Fig. 5 can be very useful to designers.,
The curves give rough bounds for the onset of flutter or divergence for
freely supported panels. As experiments are carried out, confidence can
be obtained for accuracy of such curves.

It is suspected that for L/weff large, more modes are needed to
ensure convergence. Gaspars and Redd [9] studied carefully the number
of modes required for convergence on finite aspect ratio flat plates
when Ackeret theory is used. They found that as many as 50 modes were
needed for flat plates with aspect ratios of 10 or more. The present
results are less sensitive to convergence problems because of the presence
of curvature and because the flutter parameter H is less sensitive to
error in the elgenvalue of the matrix problem.

Other theories and experiments are shown in Fig. 6. Several of the
points shown correspond to work for full cylindrical shells. The pro-
blem of a shell gsegment is closzely related to that of a full cylinder.

Structurally, the major difference 1s that the full cylinder can flut-

14
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ter in modes with waves travelling in the circumferential direction whereas
the segment cannot. Of particular interest in Fig. 6 are the experimental
points found for full cylinders by Olson and Fung [1] and by Stearman,
Lock and Fung [10]. It is now suspected that these cylinders did flutter
in circumferentially travelling waves [1l1]. This might explain why the
experimental values occurred at slightly higher values of thickness ratio
than predicted by the present theory. The experiments of Tuovila and

Hess [12] were carried out for a shell segment clamped all around. The
tests were done at Mach 1.3, which unfortunately brings in transonic ef-
fects into the comparison. In transonic flow the unsteady aerodynamic
terms are of importance and there effects are neglected in this theory.

The theories of Voss [13] and Shulman [14] both were done for a
complete cylinder with the use of Ackeret theory. These should (and do)
correspond with the present calculations and serve as a check.

The theory of Dyzgadlo [15] was carried out for a more exact aero-
dynamic theory on a finite length cylinder. These were mode calculations.
These appear to yield values of H slightly higher than the current work
which may reflect the fact that fewer modes were used by Dzygadlo.
(Gaspars and Redd [8] indicate that the thickness requirement decreases
with an increase in the number of modes.)

All in all, there are no unclassified experiments known to the
authors which furnish the proper comparison with the theory. Such tests
would be useful.

Figures 7-9 are cross plots of the same data given in Figs. 3-5.

15
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L, CONCLUSIONS

Design curves have been given for prevention of aercelastic insta-
bility of curved shell segments. The calculations are approximate in the
gense that unsteady aerodynamic effects are ignored and because a modal
approach was used. These are the very reasons that the results are under-
standable, however. From a practical standpoint, these design curves,
as corrected by experiment, will probably be more useful than exact theories.

The only case illustrated here was the case of freely supported edges.
The resulty should be conservative if applied to panels with calmped edges.

One shortcoming of the current calculetions is the limited number
of modes used. Only four mode solutions were carried out. If more modes
were used, the results presented at higher values of L/Weff would become

more accurate.

16
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Elastic shell segment imbedded in a cylinder.
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