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ENGINEERING ESTIMATES FOR SUPERSONIC FLUTTER OF

CURVED SHELL SEGMENTS

William J. Anderson and Kuo-Hsiung Hsu

The University of Michigan

ABSTRACT

Static aerodynamic theory is used to find design curves for the

flutter of curved panels. The panels are rectangular segments cut from

a circular cylindrical shell. Supersonic flow is directed parallel to

the generators of the shell segment. The pressure expression used is

general, enough to encompass a wide range of physically possible pres-

sure distributions. Design curves are given in the form of a thickness

parameter required to prevent flutter as a function of curvature and

length-to-width ratio0 Upper and lower bounds for the onset of coupled-

mode panel flutter are given. Comparisons with other theories and experi-

ments are made° The results are intended to aid in design of wind tunnel

models for panel• f].utter tests. _ --
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Airy stress function

Thickness parameter,

Panel thickness

Length of panel

Mach number

Axial wave number

Number of modes

Stress resultants, see equations (5) and (6)

Aerodynamic load

Integer_ also dynamic pressure

Radius

Time

Flow velocity

Width of panel

Effective width of panel, W/n

Panel displacement in radial direction

Spatial coordinate_ flow direction

LLI__v2Curvature parameter, _

Kronecker Delta

Angular coordinate

Included angle of shell segment

Eigenvalue

Fluid density

2



I
I

!]

w

w

9

h_

H

LJ
I

U

L_

D

H
N
t_

w

Ps

6o

Panel density

Spatial phase shift

Frequency_ rad/sec

3



i

L_
11

H

H

N

L

LJ

H

H
t]

.[_

Fig. i.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

LIST OF FIGURES

Shell segment.

Elastic shell segment imbedded in a cylinder.

Thickness requirement for a cylindrical shell segment,

= 0 ° (Ackeret theory).

Thickness requirement for a cylindrical shell segment,

= 90 ° ("slender body" theory).

Upper and lower bounds for thickness requirement.

Freely supported edges.

Comparison with other theories and experiments.

Stability boundaries, , = 0 ° (Ackeret theory), four mode solution+

Stability boundaries, * = 90 ° ("slender body" theory).

Approximate upper and lower stability boundaries.

u

[]

r_

N

m



'ii

[l

L_
L=

t_
H

m

w

m

L

F

io INTRODUCTION

There is a need for rough estimates of panel, flutter boundaries in

design work. One specific area which has not been studied extensively

involves the flutter of a rectangular panel, with curvature (Fig° i)o

This panel, would in general form a portion of a cylindrical body (Fig° 2)_

and would be supported at its edges by heavy bulkheads or stringers,,

Some portions of the outer skin of a missile would correspond to this

case° For conventional, aircraft_ such a panel might represent a window,

where the window is relatively weak compared to the surrounding structure°

Such windows can be a problem in high speed flight where temperature lowers

their rigidity.

The exact mathematical solution to this problem is so difficult_

and the results dependent on so many parameters, that there is serious

doubt whether it is of any practical value. On the other hand_ recent

research [].] for cy].ind:rica] shells indicates that approximate results

can be found by using a steady flow (quasi-static) theory° The approach

taken here is to recommend a set of design curves developed by a simple

theory with the intent that corrections to these curves are to be made

as experimental data are obtained° It is felt that the design parameters

used here are somewhat universal and will. be the ones which will prove

useful in the long run_ even after more precise theories are availab]eo

In the mathematfca] development o:f the probl.em, we will remain with,-

in the framework of linear shell theory and steady flow theory. A modal
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approach will be used, hence the aerodynamic problem resolves to finding

pressures on sinusoidal]y deflected wall.So The aerodynamic pressure

distribution used in this problem, will be generalized in the manner studied

in Refo [2]o A parameter _ is introduced to typify the spatial pressure

distribution° Then _ is allowed to vary over the range of values which can

be expected for such a panel under different physical conditions including

boundary layer effects and length-to,-width :ratio effects° The result is

an approximate theory which gives upper and lower limits to the panel

thickness requirement to prevent flutter° The upper limit corresponds

to the use of Aekeret theory, the lower ]_imit corresponds loosely to a

"slender b<_d.y" type of theory° These two bounds represent extremely dif,-

ferent flow situations, yet the dynamics of the system are so insensitive

to the details of the pressure distribution as to cause a variation from

upper %o lower bound of only 35_ for most cases°

A series of figures will be presented for design purposes,, These

should be e_pecially useful in designing models for wind tunnel testings.

_mevious work has been done on related problems° Dzygad]o [3]

studied the elastic instability of an infinitely long elastic segment

The ,_tability boundaries were :found forof an infinitely long cylinder_

a traveling wave form:

6
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A set of [ntegro-differential equations of motion resulted,, These were

solved with the aid of a Fourier series in the @ variable,, Much effort

was placed on a study of the effect of structural (Voigt) damping on the

stability boundaries. For moderate amounts of damping_ unexpected changes

in the panel's stability resulted° The numerical results presented were

not extensive_ It was concluded that for small damping ratios and for

fixed shell thickness and radius_ the critical Mach number does not vary

greatly for included angles for the segment lying between z/4 and _o

Another study of interest was by Dowel] and Widnell [4]° The case

considered was a finite length elastic segment in an infinitel.y long

rigid cylindrical shell° In this case_ the generalized aerodynamic forces

were found for deflections of the type

i_t mn x
w(x,%t) = e cos n@ sin 7

_U ._

Dowel]. made several comments about the stability of the shell segmenl

merely by looking at the character of the generalized forces° First of

all_ in the low supersonic Mach number range, a single degree of freedom

type of f].utter is possfble° Secondly, for she].] segments with long

length,:_to.=width ratios_ static divergence takes p]ace_ Flutter boundaries

for *he "coup]ed.-mode" type of flutter were not presented,

Neither of these studies is easy to extend to the current problem°

Neither case yields useful design curves (nor were they intended to)o

The ap}roach used by Dowell would be the more easy to extend to the present

case°

7
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The presen+ solution parallels the approach used by McElman [5] to

some extent_ McE]m_n studied a curved orthotropic panel segment by using

a two mode analysis with Ackeret theory_ No design curves of the type

shown here were presented in McE].man's work° (In order to work with lower

aspect ratio panels_ one needs many modes rather than two°)

2o STATEMENT OF PROBI,ZM

Consider a cylindrical shell segment as shown in Fig. lo Super-

sonic f].ow passes over the outer surface of the segment with flow di.-

rection parallel to the cylinder axis° The segment .is of uniform, thickness

and of isotropic, homogeneous elastic material° Conventional cy]indrical

coordinates x, r. @ are used° The shell segment is defined by

r = R

0<x<L

-0° < O < @o
2 - - 2

Deflection of the surface of the: segment will be given by w(x_%t) measured

from the mean radius of the shel]_ The edges of the she]] wi]] be "free]y-

supported" as defined below° The she].] may be internally pressurized,_

No s_ructural damping wi].l be included°

STRUCTURAL DETAILS

The shell is thin and initially circu]aro Radial deflections are

restricted to be small:

8



_t,) << 1
h

i|i

r

J

L

y

_4

H

m]

L_

0

H

The in-plane motions of the shell u.(x;@_t) and v(x;@_t) are small compared

to w(x_@.,t) so that inertia], effects due to in-plane motion can be neglected

(Reissner's assumption) o The included angle @o will be less than _/2 so

that Donnel]'s shallow shell equations can be used_

DV4w - _x _2w N9 _2w + I _2F _2w
_x--_ _ _ _ _ _x_.+ _h _7_ _ _(x,O,t) : o (]_)

V_F EhbOw : 0 (2)
R bx 2

where D :is the bending rigidity of the shell, _x and N@ are constants

representing the components of membrane stress due to interns] pressuri-

zation and F(x,%t) is the stress function defined so that

]. b2_
_x (x,%t) - _2 _2 (_)

_(_._,t) _ _r (4)
_x 2

Note that _x and N% are the time dependent components of membrane stress

due only to _anel motions, The tots] membrane stresses are

Nx(X,%t) : N-_, _x(X.O,,) (_)

so(_.,o,t) = N_ • _e(x,O,t) (6)

Boundary conditions to be applied at x ::0; x : L are

_2 w _2F
V =: W :_- _--_ -__- : _ 0 (v)

9
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Boundary conditions at @ = + 0o
- Tare

_2 w $2F
= 0 (8)

-w = = u bx 2

These freely supported boundary conditions have been chosen primarily

because they are satisfied (term. by term) by the series

i_t N n_@ m_x 0A x < L

w(x,@,t) = e m=l_' a m cos _ sin X k-2@o- --

These boundary conditions are useful; however_ because they result in a

dynamical].y "weak" plate° Hence; the stability boundaries will tend to

be conservative for design purposes when applied to damped p]ateso

At this point_ the structural problem has been posed° We need to

find the aerodynamic pressures p(x_@_t) generated at the panel, surface.

AERODYNA_ilC DETAILS

A strong assumption on the aerodynamic pressures will be made° The

pressure on a panel, deflection

w(x,0,t) • n_O m_x (I0)
= _ e1_t cos _ sin I-T-

will be assumed to be

p(x:,0,t)

In other word:;_ the pressure wi].] have a magnitude equal to that given

by Ackeret theory and a spatial, pressure distribution that can vary as

desired° (It: would be possible to discuss this same assumption later

in terms of generalized forces_ but this is not as meaningful.)

i0
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The above assumption appears to be a strong oversimplification at

first glance. One wonders how to choose a proper value of _ for a cy-

lindrical shell segment. In Reference 6, extensive numerical work was

done for pressures on oscillating cylinders exposed to potential flow.

The phase angle % was found to vary only between 0 ° and 90 ° . Hence, we

will include values of _ between 0 ° and 90 ° in the present study. In

Reference 2, the dynamic results of such an assumption are studied in

detail. It is found that the choice of _ does not drastically affect

the thickness requirement for cylindrical shells.*

STABILITY DETAIIS

Galerkin's method is used to pose the problem in matrix form. The

deflections of the shell segment are

N

n____@@_l sm sin m_x (12)w(x,@,t) = ei_t cos @o m -_-

Note that this expression allows n half waves in the circumferential

direction of the panel. If n takes a value higher than l, then the ef-

fective length-to-width ratio of the panel increases accordingly because

there are stationary nodal lines down the length of the panel.

*Footnote: The thickness required to prevent flutter is a continuous

function of _. For the case studied in Ref. [2], the thickness require-

ment has s minimum near _ = 30 ° . This value of the thickness ratio st

= 30° is practically identicsl with that st _ = 0 °. Because the

calculation for _ = 0 ° has more physical meaning (Ackeret theory) it

is used as a reference rather than _ = 30° .

ll
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The expression for pressure, Eqo (ii), is used in conjunction with

Eqso (i) and (2) to yield the set of linear algebraic equations of motion:

[I (r,)212 z2 z2 4 NxL? N_ T,2Z am [m2 + __ + m _2 +_2D _ (W)ffm_:l Weff ,_4[_+ (_)2]2+ --
,ie ff

-k - _ sin 5qm _ _qm cos _ = 0

(q = 1,2, o..n)

where :

m

L/Wef f

^ PshW2L 4
k =

"4 D

F
qm = I_

_,q -m-

m+q even 1

m+q oddJ

Thus; a set of linear algebraic equations are obtained_ The occurrence

A
of a negative eigenvalue k signifies static divergence of the panel and

A

comp].ex _ signifies flutter.

3o RESULTS

Stability boundaries have been calculated for the aerodynamic loading

discussed above° All results will be given for cases with zero membrane

stresses Ix and N@o This theory would be more inaccurate at, positive

12
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val.ues of membrane stress which would cause higher flutter frequencies.

The results are presented using the effective length-to-width ratio

L/Weff_ a curvature parameter Z and a thickness parameter Ho The plots

of H versus L/Wef f are given as a generalization of the work of Kordes;

Tuovila; and Guy [7]_ and the curvature parameter Z is chosen to cor-

respond to Batdorf's study of cylinder buckling [8],

A four mode solution for _ = 0 (Ackeret theory) is given in Fig. 3,

It is easily seen that curvature helps to stiffen the panel and reduce

the thickness requirement, An interesting effect is obtained in the

regions where H increases with increasing L/Wef f. This means that a panel.

of given physical length and width will flutter in a mode with n > Ij giving

a higher critical, value of L/WeffO As an example_ a panel of length lO

inches and width 2 inches has a physical length-to-width ratio of 5, If

Z = 8000 for this panel then it must have a thickness ratio of H = 0°065

to prevent flutter from occurring at an effective length-.to-width ratio

of 15o This particular panel flutters with n = 3_ ioeo_ it has two in-

terior nodal lines extending down its length,

Results for _ = 90 ° are given in Fig, 4o These results are some-

what similar to the 9 = 0 curves except that the instabilities in the

lower ].eft corner are due to static divergence° Again_ one must observe

the cases where H increases with L/Wef f and one must choose the multiple

of the geometric length-to-width ratio which gives the critical value

of H_

W

° --

13
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Finally_ several of the curves for _ = 0 ° and _ = 90 ° are combined

in Fig. 5, These are approximate bounds for the thickness required to

prevent an instability. Note that the difference between the two bound-

ing curves is not great, particularly in certain intermediate regions of

L/WeffO This may be an indication as to why Ackeret theory gives relatively

good results for the cylinder experiments discussed in Ref_ i. In these

tests_ a cylinder fluttered in a mode which yields an effective L/Wef f =

9.21 and with Z = 6,950° Flutter occurred at H = 0.0624°

It is felt that figures such as Fig. 5 can be very useful to designers°

The curves give rough bounds for the onset of flutter or divergence for

freely supported panels. As experiments are carried out_ confidence can

be obtained for accuracy of such curves.

It is suspected that for L/Wef f large_ more modes are needed to

ensure convergence. Gaspars and Redd [9] studied carefully the number

of modes required for convergence on finite aspect ratio flat plates

when Ackeret theory is used° They found that as many as 50 modes were

needed for flat plates with aspect ratios of I0 or more. The present

results are less sensitive to convergence problems because of the presence

of curvature and because the flutter parameter H is less sensitive to

error in the eigenvalue of the matrix problem°

Other theories and experiments are shown in Fig° 6_ Several of the

points shown correspond to work for full cylindrical shells° The pro-

blem of a shell segment is closely related to that of a full cylinder_

Structura]lyj the major difference is that the full cylinder can flut-
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ter in modes with waves travelling in the circumferential direction whereas

the segment cannot. Of particular interest in Fig° 6 are the experimental

points found for full cylinders by 01son and Fung [1] and by Stearman_

Lock and Fung [lO]. It is now suspected that these cylinders did flutter

in circumferentially travelling waves Ill]. This might explain why the

experimental values occurred at slightly higher values of thickness ratio

than predicted by the present theory° The experiments of Tuovila and

Hess [].2] were carried out for a shell segment clamped all around. The

tests were done at Mach 1o3, which unfortunately brings in transonic ef-

fects into the comparison. In transonic flow the unsteady aerodynamic

terms are of importance and there effects are neglected in this theory°

The theories of Voss [15] and Shulman [14] both were done for a

complete cylinder with the use of Ackeret theory° These should (and do)

correspond with the present calculations and serve as a check.

The theory of Dyzgadlo []5] was carried out for a more exact aero-

dynamic theory on a finite length cylinder. These were mode calculations°

These appear to yield values of H s]ightly higher than the current work

which may reflect the fact that fewer modes were used by Dzygadlo.

(Gaspars and Redd [8] indicate that the thickness requirement decreases

with an increase in the number of modes.)

All in a].l; there are no _inclassified experiments known to the

authors which furnish the proper comparison with the theory° Such tests

would be useful°

Figures 7-9 are cross plots of the same data given in Figs° 3-5,

z5
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4+ CONCLUSIONS

Design curves have been given for prevention of seroelastic insta-

bility of curved shell segments° The calculations are approximate in the

sense that unsteady aerodynamic effects are ignored and because a modal

approach was used+ These are the very reasons that the results are under-

standable_ however. From a practical standpoint_ these design curves;

as corrected by experiment_ will probably be more useful than exact theories+

The only case illustrated here was the case of freely supported edges+

The results shou].d be conservative if applied to panels with calmped edges+

One shortcoming of the current calculations is the limited number

of modes used+ 0nly four mode solutions were carried out° If more modes

were used; the results presented at higher values of L/Wef f would become

more accurate.

+
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Approximate upper and lower stability boundaries.
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