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JC 
Cascade Theory of Plasma Turbulence 

C .M. Tchen 

Abstract  

The Fourier  ana lys i s  of the  hydrodynamic and e l e c t r o s t a t i c  equations has given a 

s tochas t i c  hierarchy of equations of correlat ions.  This hierarchy, which is  slowly 

.convergent, i s  transformed in to  a more convergent cascade hierarchy, describing the 

mixing of a group of small eddies with a group of bigger ones which provide a gradient 

type of d i f fus ive  background flow. A quasi l inear  approximation is  applied t o  the  mo- 

t i o n  of the  small eddies a t  the e a r l i e s t  closure.  It determines the  turbulent d i f fu -  

s ion  from the  nonlinear e f f e c t  of t he  small eddies on t h e i r  background flow. The 

spec t r a l  equations f o r  ve loc i ty  and e l e c t r o s t a t i c  f luc tua t ions  a r e  derived and t h e  

spec t r a l  l a w s  a r e  obtained. 

k-3 l a w .  

( i n i t i a l - d i f f u s i v e  range) are also derived. I n  the  framework of hydrodynamic turbu- 

lence,  t he  present scheme degenerates t o  the  Heisenberg equation of spectrum, correct-  

ed f o r  i ts  divergence a t  large wave numbers. 

In  the  inviscid ranges, the two power spectra  follow the 

The spec t ra  i n  the d i s s ipa t ive  ranges, together with the  mixed range 

- 
JC 
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I. INTRODUCTION 

The study of.plasma turbulence has recent ly  gained i ts  importance i n  seGeral 

d i rec t ions .  Turbulent f luctuat ions i n  electric and magnetic f i e l d s  have been ob- 

served i n  so la r  photosphere [Vasilyeva, 1963, 19641, and i n  interplanetary space. 

Turbulent spectra  have been determined i n  laboratory plasmas [D'Angelo e t  a l . ,  1966; 

Chen, 19651 . 
rad ia t ion  from an ionosphereor a wake of  a space vehicle i s  a recognized important 

problem. An incident rad ia t ion  of frequency UOand wave-number k w i l l  be sca t -  

t e red  by the plasma (W , k) a t  the frequency or and wave number k' : 

The e f f e c t s  of turbulence on the  sca t t e r ing  of an electromagnetic 

-0 ' 
r5r 

k' = k, kk- 
N h 

The sca t te red  in t ens i ty  is  proportional t o  the  cross  sect ion,  o r  proportional t o  the 

spectrum of densi ty  n 

W e  can dis t inguish two cases: 

A .  I f  an o s c i l l a t i o n  is  present i n  the  plasma, t he  hydrodynamic theory predicts  

e a s i l y  a spectrum i n  the  form of a 

quency, and the k ine t i c  theory predicts  a broadening of the  spectrum. 

exhib i t s the  nonlinear i n t e ra t ion  between the  wave and the  plasma [Tchen, 19611 . 
&-function, peaked a t  the e lec t ron  plasma f r e -  

A quasi l inear  theory 
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B. I f  t h e  plasma medium is turbulent  , the  spectrum can be divided in to  an 

inertial range and a d i s s ipa t ive  range. 

plasma w i l l  be invest igated i n  the  present work. 

The spec t r a l  d i s t r i b u t i o n  i n  a turbulent  

The theor ies  of plasma turbulence, connected with the  backscat ter  of e l ec t ro -  

magnetic rad ia t ion ,  can be divided in to  three groups-: 

type of mixing, t he  second on t h e  modal t ransfer ,  and the  th i rd  on the random mixing. 

The f i r s t  group, as represented by the works of Gal le t  [1955], V i l l a r s  and Weisskoff 

[1955], proposes t h a t  the -. r . m . s i  - -. of - t h e  difference of densi ty  f luctuat ions a t  two 

points 

One is  based on the gradient - -  

2 %  < (A n) > nl 

_ -  - _ -  ._ 

is &oportional t o  the  gradient of the  mean density- N i n  the following manner : ' 

w h e r  

1 

R i the  separat ion 1 

nl = -R'grad N , 

ngth. This formula i s  known i n  f l u i d  mechani s as  the  

The second group i s  
- .. .- - -  - 

mixing length hypothesis, f i r s t  proposed by 'Boussinesq 

represented by the  works of Krasi lnikbff  [1949], Silverman [1956], and more recent ly ,  

by Salpeter  and Treiman [1964]. 

turbulence t o  the rad io  sca t t e r ing  from charged pa r t i c l e s .  Since the  Kolmogoroff 

theory predicts  a ve loc i ty  f luc tua t ion  according t o  the  law 

18971. 

They applied the Kolmogoroff [1941] theory of f l u i d  

where 

9 
2 213 u1 - R 

and i f  the suspended pa r t i c l e s ,  which serve as sca t t e re r s ,  - .  follow the f l u i d  motion, 
- .  

then i t  i s  legi t imate  t o  w r i t e  accordingly 

(2b) 
2/3 n'2 N R 



a formula independent of gradN 

because of t h e  s tochas t i c  nature  of the  d i f fus ion  of pa r t i c l e s .  

cor re la t ion  between dens i t i e s  of  t he  exponential type [Tchen, 19521: 

The t h i r d  group introduces a random walk model, 

This leads to a 

1 ’  
or ,  i n  t e r m s  of n 

-K a 2 < n(0) n(R) >/< n > = e , 

2 
1 < n(0) n(X)> 
2 

* n  
- = I -  
< n >  

1 - 2 ’ 
< n  > 

(3) 

where l / K  is the  length of cor re la t ion .  

The above formulas of co r re l a t ions  can be converted in to  formulas of spec t ra l  

functions by means of a Fourier transform: 

F(k) = dR < u(0) u(R)> cos kR , 
0 

W 

G(k) = dR < n(0) n(R)> cos kR . 
0 

Then (1)’ (2b) and (3) are transposed respect ively in to  the  following: 

mixing length, G(k) - k-3 , 
k-5/3 

Kolmogoroff, G(k) - I 

/ 
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Booker [1959] - Gordon [1952]: 

2 -1 
G(k) - '  ( K 2  + k ) (7) 

Formula (7) is recognized as the  Booker [1959] formula, widely applied t o  the rad io  

sca t t e r ing  problem. Although sometimes convenient, t h e  random walk model yielding 

(3) and (7) lacks the nonlinear dynamical basis .  On the  other hand, the mixing 

length formulas (1) and (5) break down i n  a turbulent medium which does not possess 

a mean density gradient.  F ina l ly  t h e  Kolmogoroff law (2a)is a t t r a c t i v e ,  because of 

ixs implici t  nonlinear dynamics of veloci ty  f luc tua t ions ,  but i ts  extension t o  densi ty  

f luctuat ions (2b) can only be v a l i d  under very r e s t r i c t e d  conditions.  

generalize t h i s  r e s u l t ,  and t o  explore the nonlinear in te rac t ion  between densi ty  and 

ve loc i ty  fluctuations,  theories  have been developed f o r  the  determination of t he  den- 

s i t y  spectrum of neut ra l  p a r t i c l e s  under various turbulent conditions [Tchen, 19651. 
However, as  the pa r t i c l e s  are t r ea t ed  as neutral ,  - the theories  do not apply t o  plasmas. 

I n  order t o  

For the treatment of plasma turbulence, we s h a l l  confine ourselves t o  s ta t ionary ,  

i so t ropic  an6 homogeneous e l e c t r o s t a t i c  turbulence, without the presence of any 

ex terna l  f ie ld ,  and shall attempt t o  determine the spec t ra  of turbulence and e l e c t r o s t a t i c  

f luctuat ions,  I n  order t o  i l l u s t r a t e  the dominant gross physical fea tures  of plasma 

turbulence, we s h a l l  ou t l ine  <he problem f i r s t  by s imil i tude considerations (Section 

- . _  

2) * 

A mathematical program, based upon the nonlinear Navier-Stokes equation of 

motion and its Fourier decomposition would ca l l  for  a s tochas t ic  hierarchy of equa- 

t i ons  of correlations,  involving the  problem of i ts  closure.  The sampling summation 

by the  diagram technique in  the perturbation theory helps  i n  the so lu t ion  of the  

hierarchy. 

the  method leads t o  Kraichnan's s tochas t ic  equations, and t o  a system of equations 

yielding the Kolmogoroff spectrum on a more complex approximation. 

generally agreed :hat the Kolmogoroff law is  cor rec t ,  but one wishes t h a t  it could 

be understood without requiring t h e  above elaborate method, as it w i l l  be d i f f i c u l t  

t o  extend t o  plasma turbulence, 

Shut'ko [I9651 has shown t h a t ,  with a ce r t a in  order of approximation, 

It is by now 

O n  t he  other hand, the  dimensional arguments of 
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Kolmogoroff, and the  Heisenberg [1944] equation based upon the analogy between the 

d i s s ipa t ions  by molecular and turbulent motions, should be c l a r i f i e d  on a mathe- 

matical ground. 

i n  the s l o w  convergence of t he  s tochas t ic  hierarchy, and i n  the  highly skew nature 

The main d i f f i c u l t y  of a mathematical theory of turbulence res ides  

of the odd order co r re l a t ions .  Therefore w e  s h a l l  transform t h i s  s tochas t ic  

hierarchy, governing the  s t a t i s t i c a l  behavior of ind iv idua l -e  es, i n to  a- cascade hierarchy - ___ . -. - . .__ 

governing two groups of eddies.  

i t  embodies the  cascade process. 

The la t ter  hierarchy becomes highly convergent a s  

A s  a tes t  of i t s  effect iveness ,  the f i r s t  approxi- 
- . . . . - - . -  - -  

miat ion-degene-rates t h e  hierarchy i n t o  the  Heisenberg equation of . - - %  

spectrum. The ve loc i ty  cascade is  developed i n  Section 3, and the  densi ty  cascade 

in  Section 4. 
and their solut ions determine the spec t ra l  laws (Section 6). 

of molecular motions on the  turbulent  diffusions are  investigated i n  Section 7. The 

Perturbat ions of t he  cascades lead t o  spec t ra l  equations (Section 5),  

F ina l ly  the  e f f e c t s  

- -  _. . . I new spec t r a  a r e  convergent a t  l a rge  wave numbers and f o r  high order moments. 

2.  SIMILITUDE CONSLDERATIONS 

In a homogeneous system, w e  use the Navier Stokes equation fo r  describing the  

turbulent  f luc tua t ions  i n  ve loc i ty  u of the plasma 
N 

where X 

brownian movements. 

importance i n  the  study of energy spectrum. W e  assume 

is a s tochas t i c  force  (noise), representing f luc tua t ions  i n  pressure and 
N 

The pressure is lumped ih t h i s  way, because of i ts  lesser 

N 

< x u > = o  . 
Nu 
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Further v i s  the  kinematic v i scos i ty ,  and N E i s  the e l e c t r o s t a t i c  force p e r  un i t  

m a s s ,  which is  the  product of t he  e l e c t r o s t a t i c  f i e l d  by e / m  , e is  the-charge 

and m is the mass. If  n i s  the  density f luctuat ion,  then N E and n are 

r e l a t ed  by the Poisson equation 

with 

2 2 
75 = 4 x e  /m . 

A di f fus ion  equation is used t o  describe the f luc tua t ions  in  concentration, 

o r  number-density n , as  follows: 

2 a n  - x -  2 a t  - ax 
Bn an - + u  - - 

ax2 N 

N 

where 1 is the molecular d i f fus ion  coef f ic ien t .  

It i s  t o  be noted the e f f e c t s  of compressibil i ty may manifest themselves 

through X and the  molecular t ransport  coef f ic ien ts  v and X , and a re  considered 

not important i n  the  i n e r t i a l  range of the spectra.  
N 

It may be worthwhile t o  r e c a l l  the  e s s e n t i a l  argument of s imil i tude f o r  a r r i v -  

ing a t  the Kolmogoroff [1944] law of turbulent s p e c t r u m  (2a). 

t he  turbulent spectrum i n  a neut ra l  f l u i d  i s  characterized by a constant f l u x  of 

energy t r ans fe r  between the  modes (modal t ransfer )  without viscous diss ipat ions.  

The i n e r t i a l  range of 

A s  
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determined by the nonlinear t e r m  of ( S ) ,  the  energy t r ans fe r  i n  a length 

dimens iona l ly  

R is 

o r  more spec i f i ca l ly ,  

u i  / A  = constant.  

This leads immediately t o  the  Kolmogoroff law (2a). 

drop by the ac t ion  of viscous d iss ipa t ion .  However, i n  a plasma the spectrum (2a) 

should f i r s t  drop on account of i t s  p a r t i t i o n  and randomization i n t o  e l e c t r o s t a t i c  

f i e l d s ,  i n  the  form of a co r re l a t ion  

This spectrum is expected t o  

< E u >  , 
M) 

o r  

where 

and 

r = R/ul 

4- €3 
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is the  durat ion of cor re la t ion .  

s t a t i c  f i e l d s  and therefore  be replaced by 

Thus f o r  a plasma, ( l l a )  should include e l ec t ro -  

2 R  - =  const E - a . 

Applying the s a m e  argument t o  ehe nonlinear term i n  ( lo) ,  a f t e r  being mult ipl ied by 

the  density,  we can wr i t e  

2 

nl - constant . UIR - 

Fina l ly  (9) gives 

2 = E T  n l .  - 
R 

The three  equations ( l l c ) ,  (12), and (13) e a s i l y  determine the three  var iab les  

as follows: 

u1 = const R , 
El = const R , 
n1 = const , 

corresponding t o  the following spec t ra  

F = const k-3 , 
GE = const km3 , 
G = const k-' , 

f o r  veloc i ty ,  e l e c t r o s t a t i c  f i e l d  and densi ty  f luc tua t ions  respect ively.  
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3. CASCADE PROCESS FOR THE MIXING OF EDDIES 

I€ the  ve loc i ty  N u( t  ,xJ is decomposed into-Fourier  - . -  - components - -  : - _- 

i k ' x  03 

N N  

N N  u(x) = dk' v _Y u(k') .u e 3 

covering wave numbers of a l l  amplitudes from 0 t o  a , w e  can d is t inguish  t w o  

par t s : .  one part 'covering wave-numbers of amplitudes from 0 t o  k , a s  denoted 

bY 

and the other par t  covering wave-numbers of amplitudes from k t o  , as  denoted 

by 

ik ' x  00 

N rv 

N ut(%) = dk' N u(k')  v :v e 9 

k 

with 

H e r e  

k 0) s dk' and 

0 k 

dk' 
N N 
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are volume in tegra ls  inside and outside of a sphere of radius  

a turbulent motion of ve loc i ty  

u and u' represent respect ively the v e l o c i t i e s  of b ig  and small eddies,  o r  waves 

of wave-numbers smaller or  grea te r  than k . 

k A s  we consider 

without the presence of a mean flow, the  notations 

cv -0 

The formulas (15) can be more conveniently wr i t t en  i n  the  following form: 

a f t e r  the introduction of 

03 i k ' x  
N N  

u (x), = dk' - N O  u (k ' )  N e 7 .--ON 

00 ik'x 
- C y  

ry ~'(5)  = dk' W Y V  u'(k' )  e > 
-00 

u(k')  , f o r  0 k' 5 k , 

0 ,  f o r  k € k' 5 , 
I -- 
\ 

u (k') = 
-0 - 

0 ,  f o r  0 5 k' < k , 
/ 

Iu u y >  = 

\ u(k') , f o r  k 5 k' 5 a 
C V N  

A d i s t inc t ion  between the  two motions u' and are  useful :  The movements of 

t h e  small eddies 

sion, while t h e  large sca le  flow configuration 

ground flow, i n  which medium the small eddies a re  t o  evolve and t o  draw momentum. 

cu 

u' exert on the  large sca le  flow a stress re l a t ed  t o  d i f fu-  
N 

shapes a gradient type of back- 
b 
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A s  a r e s u l t  of such an in t e rp l ay  a general  flow of energy from & i n t o  u' i n  

the  form of a cascade process can be accounted. 

embody the major energy, the  equation governing the  evolution of 

l inear ized ,  while the  equation f o r  u remains nonlinear. 

N 

Since the s m a l l  eddies do not  

2' can be 

-0 

The Fourier decomposition as presented i n  (17) and (18), means t h a t  the func- 

t i o n  ~ ' ( x )  is  truncated a t  t h e  length l/k , so t h a t  an average 
N 

< 0 . .  >k 

over such a length w i l l  smooth out a l l  configurations of smaller sca les ,  i.e. 

u'(z) , while keeping %(E) i n t a c t .  Under t h i s  circumstance, an equation govern- 

ing u can be derived by subs t i t u t ing  (16) in to  the  equation of motion (8) fo r  

u , and by subsequently performing the  average. W e  have 

N 

-0 

N 

< u'(x) >k = 0 , 
N N  

Dis t inc t ion  should be made between the above shor t  truncation, of length 

l/k , which smooths out the  %' motion by'an average (19), and leave the large 

sca l e  motion ,uo i n t a c t ,  compare(20), and a long t runcat ion of length R 0 -> 5 

which would average out t he  motion too 
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Such an  average w i l l  be denoted by brackets without a subscr ipt ,  

Thus by an average of t h e  type (19) over (8), we ob ta in -  

.By substract ing (21a) from ( 8 ) ,  w e  fu r the r  ob ta in  

The l inear ized equation (21b) has omitted the  terms 

which a re  assumed negl ig ib le  i n  the  present quasi l inear  approximation. 

we have a l so  wr i t t en  here  

Like i n  (16), 

I E = E + E '  
N -0 - 

2 2 and act' has been chosen, i n  the place o f ,  v 73 u t / &  , to represent  a damping. 
N N N  

This means that 

U 
Q = const - 

x2 
. 
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Integrat ion of (21b) along the  t r a j e c t o r y  of t he  u' motion gives 

where 

x - u (t-t') E' - - 
N :a 

On the  bas i s  of (23 ) ,  w e  can ca lcu la te  

t 
- C Y ( t  -t ' ) 

<u!(t',x') J u p , x ) > k ,  

Y 

where 

t - CY( t -t ' ) = r d t '  e < u y t ' , x ' )  u' (t ,x) > uk - a -  

i s  the turbulent  coef f ic ien t  of diffusion,as contributed by small eddies.  

(24 )  

Formula 
was obtained i n  the assumption of loca l ly  i so t ropic  and homogeneous turbulence 

i n  the  u'-field. Thus the  e f f e c t s  of the  motion of the  small eddies a re  t o  cont r i -  
N 
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bute t o  a d i f fus ion  i n  

the  equation of motion 

the la rge  scale mo,tion u as w a s  expected, and t o  modify 

(2la) i n t o  the  following: 
-0 ' 

.Equations (21b) and (26) govern the  basic  process of eddy mixing i n  the  form of a 

cascade. 

We note t h a t  the  l a s t  term on the  r i g h t  hand s i d e  of (26) gives already the  

ingredient f o r  the  s t ruc tu re  of the  turbulent  d i s s ipa t ion ,  necessary i n  the  deriva- 

t ion of the  He isenberg equation. 

4. DENSITY CASCADE 

The method used i n  Section 3 t o  develop the  ve loc i ty  cascade on the  b a s i s  of 

t he  dynamical equation ( 8 ) ,  can be repeated t o  der ive the  density cascade on the  

bas i s  of the d i f fus ion  equation ( l o ) ,  by making the superposit ion 

n =  n f n '  , 
0 

into-  big a n d  s m a l l  eddies l i k e  i n  (lb). The system of quas i l inear  equations 

governing n and n '  follows from ( l o ) ,  and is  of the  form 
0 

2 
0 a an1 an an* 

a t  -0 ax 
- - ax 'k ' f u  - - - - N 

N 

4-15. 



where 

i n  the  place of 

represents  a damping of the wave motion n '  . After.  in tegra t ion  of (27b) and some 

s implif icat ion,  we f ind  

2 
a no >, = - A, - an' < u '  - 2 '  

3X 
N 

- %  

with 

being the coef f ic ien t  of turbulent  d i f fus ion  of pa r t i c l e s .  Upon subs t i t u t ion  of 

(28), w e  rewri te  (27a)  a s  follows: 

Equations (27b) and ( 3 0 )  governs the densi ty  cascades. 

-4-16 



5 ,  SPECTRAL EQUATIONS 

W e  s h a l l  study the  ve loc i ty  and the  densi ty  spectra ,  and the  cor re la t ion  

between the  ve loc i ty  and the  densi ty .  

(a) Velocity spectrum 

The function ~ ~ ( z )  , defined by (15a), is convenient t o  study the  spec t ra l  

function of ve loc i ty  F . By r a i s i n g  it t o  the  square, w e  can write 

i (k '+k")x , N rc) .?J 

k k  
[u0(x)12 = dk' *u dk" Y W V  u(k ' )*  N u(k") .-.a e 

0 0  

and i ts  average over a long t runcat ion length R +a, is 
0 

+R, k k  i(k'+k'')x N .v M 

3 s dx N s s dk' N dk" '-4 cy u(k ' )*  -v u(k") W C V  e I 
2 4 < [u,(x)] > = 4 l i m  

(2Ro) -$ 0 0  
0 

l o  

k 
= J dk F(k) , 

0 
as 

(31a) 

4- 17 



Further the der ivat ives  can be calculated i n  the  same way. For example we have 

f r o m  (15a) 

i k '  x 
N N  

k 
auoi - = dk' ik!  u . (k ' )  e > J 1 .w v 9 0 

and 

k k  . +ao 

-RO 

dx dk' dk" ik!  ik'! 
J J  

suo, 2 
3 N .v I V  

< ( -)>= lim 

0 0  a. 3 (2 JJ 
ax 
j 

i ( k '  3. k") x 
N N N  

X u(k ' )  * u(k") e 
N .w N W  

k 
T t 3  2 

0 0  
= ( r) / dk' k '  u(k ' )*  u(-k') 

N N  N 

k 
= 2 / dk' k J 2  F(k')  'Roe 

0 

Obviously when we put k -+ ~1 i n  (31) ,  we reduce t o  

m 
2 

% <U > = dk F(k) > 

0 

and 
m 

'Ui 2 2 < (x) > = 2 dk k F(k)ER . 

9 

0 J 
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(b) Dssity spectrum 

It is t o  be noted t h a t  G and GE a r e  r e l a t ed  through (9), a s  follows: 

(32): 
4 

GE = W k-2G . 

In  analogy with (31a), t he  densi ty  spectrum G and the e l e c t r o s t a t i c  spectrum 

GE assume the  expressionc: 

(33 1 

k 
'' 

2 
% < [zO(x-)] > = dk' G(k') , / 

0 

k 
f dk'  GE(k') , 
0 

2 
k < [%(%)I > = 

and 

2 k 2 
< (an 0 /aXj) > = 2 dk' k' G(k')= Jo ? 

0 

which become 

and 

0 

W 
2 k < E > = dk GE(k) , 

0 

Q, 

2 2 < (&/ax.) > " 2 1  dk k G(k) E J , 
0 

J 
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respect ively,  when k -, 05. 

Similar ly ,  

( c )  Correlat ion and Diffusion 

We may remark t h a t  <u’a >, which i s  t h e  b a s i s  of vk¶  i s  a d i f fus ion  

i n  t h e  configurat ional  space. Similar ly ,  

can be regarded a s  a d i f fus ion  by e l e c t r o s t a t i c  f luc tua t ions ,  i .e. ,  

a d i f fus ion  i n  t h e  ve loc i ty  space. I ts  s t ruc tu re  can be determined by 

t h e  equations (9),  (26 )  and (30)  governing $ and u . By multiplying t h e  
-0 

equations f o r  

a% and - - % 
a t  a t  

by & and respec t ive ly ,  w e  have 

. J  

which reduces t o  
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N a~~~ auoi 
- ( v  3- li;) < - - ’ ¶  axj axj 

- = d o >  aDE 2 
a t  

on account of homogeneous turbulence. Here 

and 

a re  the t o t a l  v i scos i t ies .  

According t o  ( l l b ) ,  the  time scale of the  development of t he  diffusion 

DE i s  

Therefore, w e  can rewrite (34)  i n  the form 

-1 aEoi auoi 
T D E = < E o > -  ( 7 3 - X ) < - -  > ¶ axj axj 

or 

0 DE = DE - DL ; 

where 

- 2 2 1 /2  , = CE (z- h ) n r  (no > > 



and 

is t h e  c o r r e l a t i o n  coe f f i c i en t .  
0 It i s  t o  be remarked t h a t  DE governs t h e  b ig  eddies,  and therefore  

i s  not re levant  t o  t h e  de r iva t ion  of t h e  universa l  spectrum (smal l  

eddies) .  

The funct ions vk , \ are wr i t ten  i n  terms of F and G a s  follows: 

We have l e f t  out  t h e  damping e f f e c t  i n  t h e  eddy v i scos i t i e s .  

sake of s impl i f i ca t ion  of wr i t ing ,  w e  s h a l l  rep lace  a l l  t h e  coe f f i c i en t s  

For t h e  

by uni ty .  

( d )  Spec t r a l  equations 

I n  order  t o  der ive t h e  equations governing t h e  temporal evolution of 

t h e  s p e c t r a l  funct ions F and G ,  it su f f i ces  t o  multiply (26)  and (27a) 

by uo and no respec t ive ly ,  and t o  perform a s p a t i a l  average over an 

i n f i n i t e  i n t e r v a l  R 4 00.  Thus, w e  have 
0 

a 2 - <u > = - ( v  f vk) Ro - DL , a t  o 
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* Here we have l e f t  out t h e  convection terms, a s  they should disappear i n  

a homogeneous turbulence.  

With t h e  a i d  of ( 3 3 ) ,  it i s  a simple matter t o  transform (36)  i n t o  

t h e  following equations determing t h e  spectra:  

k k 
a s dk F ( k )  = - 2(v + vk) dk k 2 F (k )  - Dl(k) , 

0 0 
a t  

k k a 
at 0 0 
- s dk G(k) = -2(h + \) [ dk k 2  G(k) , 

where \, \ and DL(k) have been defined by ( 3 5 ) .  

In  a s t a t i s t i c a l l y  s t a t iona ry  turbulence,  t h e  time derivatives 
- 

vanish, and t h e  s p e c t r a l  equations ( 3 7 )  reduce t o  

N 

v Ro + DL = e, , 

cu 

1 
Di = ( y+  x) So 7 .  

Here , 

and 

( 3 7 )  

a r e  t h e  d i s s i p a t i o n s .  

The t h r e e  equations (38a) ,  (38b)  and ( 3 2 )  determine t h e  t h r e e  

s p e c t r a l  funct ions F ,  G and GE. 
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It i s  in t e re s t ing  t o  note  t h a t  i n  t h e  framework 

turbulence, t h e  above system (38)  degenerates simply 

N 

v R o =  > 

of hydrodynamic 

t o  

(39) 

t h e  fundamental equation of spectrum proposed by Heisenberg [see 

Heisenberg, 1948; Tchen, 19541, on the  bas i s  of an  analogy between 

t h e  d iss ipa t ions  by molecular and turbulent  d i f fus ions .  Thus, it 

is  shown t h a t  the Heisenberg equation (39)  f i t s  w e l l  i n t o  the quasi- 

l i n e a r  approximation of t h e  present cascade theory d.escrib&~g t h e  - - __ 

in te rp lay  between the two motions 

__. 

and g*. 

6. SPECTRAL LAWS 

We s h a l l  solve the system of s p e c t r a l  equations f o r  various 

ranges. 

(1) Invisc id  ranges 

We s h a l l  inves t iga te  t h e  s p e c t r a l  laws i n  the invisc id  ranges, 

a l s o  

term 

ca l l ed  t h e  i ne r t i a l  and convective ranges, where 

of t h e  Navier-Stokes equation and 

d i f fus ion  equation play t h e  main role. 

v >> k 

- 

the convection 

We have here  

V Y  

the i n e r t i a  

term of t h e  



This requi res  a. gas of high ionizat ion and high Reynolds number. I n  

these  ranges,  t h e  system of equations (38) reduces t o  

and 

1 - 
v (R + 2S02) = ev . k o  

Unlike the  case of hydrodynamic turbulence,  where t h e  i n e r t i a l  

range was characterized by a constant modal t r a n s f e r  

V k %  , 

the occurance of d i f fus ion  i n  t h e  e l e c t r o s t a t i c  turbulence should 

dra in  t h i s  t r a n s f e r .  For such a balance t o  exist, the spectra  must 

have developed s u f f i c i e n t l y  toward t h e  l a rge  wave number, so t h a t  

J o Z J  ; 

but t h e  molecular ac t ions  a r e  s t i l l  inef fec t ive .  

Under such circumstances, w e  s h a l l  d i f f e r e n t i a t e  (40b) t o  g e t  

1 W 

k 

1 1 

(R + 2 S2) + 2(k2F + S- ' $G)  dk = 0 . (42) 

Here use has  been made of (41) .  Solving (40a) and- (42) ,  w e  f i n d  
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F = Akm3 , ’ 

G = Bk‘l ; 

where A,B s a t i s f y  t h e  r e l a t i o n s :  

(43)  

( 44a 1 

1 -  
2 
- 

A B = e h  , 

- 1 
A = ( R + 2 w  r 2  ) - S T w 4 B  . 

It can be ve r i f i ed  t h a t  t h e  l a s t  term 

has a negl ig ib le  cont r ibu t ion  a s  compared t o  t h e  other  terms, because 

t h e  r a t i o  

-- 1 ’  1 
s 2 T 4  7 BAT 

r 2  $ (R-I-2w ) 

is  of t h e  order of 

which i s  negl ig ib le  i n  t h e  present case. We thus  obtain 
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where 

1 

From (32)  and (44a),  w e  f i nd  t h e  spectrum of e l e c t r o s t a t i c  f i e l d  

* It follows from 

t h e  spectrum of e l e c t r o s t a t i c  po ten t i a l  

4 G = Bw km5 
cp 

It i s  t o  be noted t h a t  t h e  turbulent  spectrum F i n  (43) drops 

f a s t e r  than  t h e  k - 5 / 3  law (Kolmogorof f law), because here t h e  ve loc i ty  

cascade is  drained by a d i f fus ion  from e l e c t r o s t a t i c  f luc tua t ions .  

The km5 law (44c)  f o r  t h e  e l e c t r o s t a t i c  p o t e n t i a l  is i n  agreement 

with seve ra l  experimental r e s u l t s  [D'Angelo, et .  a 1  1966; Chen, 19651. 

The present method gives  t h e  spec t r a l  r e s u l t s  (43) , (44a) and (44b) 

i d e n t i c a l  t o  (14a) ,  (14c) and (14b), obtained e a r l i e r  by s imi l i tude  

considerat ions (Sect ion 2 ) .  

( 2 )  Diss ipa t ive  ranges 

In t h e  d i s s i p a t i v e  ranges of t he  spectra ,  t h e  molecular v i scos i ty  

The ranges of wave numbers and t h e  molecular d i f fus ion  a r e  important. 

a r e  suck t h a t  
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. << v , and vk << X . 

By d i f f e r e n t i a t i n g  t h e  s p e c t r a l  equations (38), we have 

1 1 1 -(>y cRo + 2S51, + v [2k 2 F + ~ U J S ~ ~ G ~ - , ~ =  4 - -  0, 4 a  

2 G = O .  

By replacing 

and neglecting 
1 - -  

a4 So G , 

f o r  la rge  k ,  we f i n d  . 

I - - (>)$ ( R  + 2S2) -I- 2vk 2 F = 0 , 

- ( > ) $ J + 2 ? k G = O  2 . 
f 

The so lu t ions  a re :  

2 

F=($) ( 1 + 2 w  > 

G = - -  
2v2 2X2 
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where 
-2  
7 = R. 

When t h e  dens i ty  f l u c t u a t i o n s  a r e  negl ig ib le  

(45) degenerates t o  t h e  d i s s i p a t i v e  spectrum of hydrodynamic turbulence 

which i s  the s p e c t r a l  law proposed by Heisenberg. 

(3 )  

i n e r t i a l  t u rbu len t  regime 

When t h e  charged p a r t i c l e s  a r e  of low concentration, w e  can 

Convection and d i f fus ion  of charged p a r t i c l e s  under s t r o n s  

assume 

Moreover, when t h e  s t rong tu rbu len t  f i e l d  of a high Reynolds number 

i s  maintained i n  i t s  i n e r t i a l  regime, under which the charged p a r t i c l e s  

undergo a convection or a d i f fus ion ,  w e  have 

Under such circumstances, t h e  turbulen t  spectrum F i s  not much modified 

by the weak e l e c t r o s t a t i c  d i f fus ion ,  but s a t i s f i e s  equation (38a) which 

i s  s implif ied t o  t h e  form 



and gives the Kolmogoroff law 

> 
F = A1 k- 5/3 

with 

213 
A1 = (2). 

* O n  t h e  other  hand, t h e  d i f fus ion  of t h e  p a r t i c l e s  s a t i s f i e s  equation 

(38b), rewr i t ten  a s  

After  a simple d i f f e r e n t i a t i o n ,  w e  obtain 

2 G =  
Vk) 2k 

where 
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i s  a c r i t i ca l  wave number, c h a r a c t e r i s t i c  of t h e  t r a n s i t i o n  between the 

convection and the d i s s ipa t ion  of the densi ty  spectrum. 

(47b) has  been considered i n  experiments [Gratstein e t .  a l ,  19661. 

The -13/3 law 

I f  t h e  dens i ty  f luc tua t ions  i n  the d i s s i p a t i v e  range and the 

turbulent  f i e l d  i n  the i n e r t i a l  range a r e  not cor re la ted ,  t h e  

following spectrum is  obtained 

‘A k-17/3 
G = A l -  > 

3 A3 

instead of (47b). The spec t r a l  law (48) agrees with t h e  one r e l a t ed  

t o  the  d i f fus ion  of n e u t r a l  pa r t i c l e s  i n  a tu rbulen t  f l u i d  [Tchen, 19651. 

7. E F F E C T S  OF DAMPING ON TURBULENT D I F F U S I O N  

The Heisenberg law i n  (45) and (46) would give a divergent i n t e g r a l  

f o r  m - 2 -  3. This d i f f i c u l t y  of divergence has worried inves t iga tors  of 

hydrodynamic turbulence i n  the pas t  [Pao, 19651. Here w e  s h a l l  show 

t h a t  it can be remediated by including t h e  e f f e c t s  of damping i n  the 

turbulent  d i f fus ion  a s  provided by the  present theory.  According t o  

(22) and ( 25) t h e  damping f a c t o r  i s  

where T i s  t h e  l i f e  time of t h e  small  eddies; a s  characterized by t h e  
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2 parameters v and E it i s  
V’ 

yielding a damping f a c t o r  

with 

- k2/kv2 
e ,, 

The numerical coe f f i c i en t  can be found from a determination of t h e  

viscous cutoff of t h e  i n e r t i a l  spectrum [Tchen, 19651. Thus, by 

at taching the damping f ac to r  t o  the d i f fus ion  formulas (25 )  and (35b) ,  

w e  f i nd  

instead of (35b)= I n  t h e  i n i t i a l  range of t h e  spectrum where 

t h e  damping i s  ine f fec t ive  . 
Similar arguments applied t o  t h e  damping of t h e  p a r t i c l e  d i f fus ion ,  

with a f a c t o r  * 
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y ie ld  

where 

2 1/4 
kD = const ( c V / h  v)  . 

On t h e  bas is  of t h e  new di f fus ion  coe f f i c i en t s  (50a) and (50b) 

including t h e  e f f e c t s  of damping, t he  spectra  i n  the d i s s ipa t ive  ranges 

t ake  t h e  new formulas, 

and 

instead of (45b). 

from 

Further,  t he  ine r t i a l -d i f fus ion  spectrum, as derived 

a modified form of ( 45a ) , becomes 
* 

1/2 ‘AX k-13/3 e -k2/kD2 
- ,  G = Ax - 

2 h2 

3 
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instead of (47b)- 

Unlike the- Heisenberg formula ( 45b), the  formulas 

a t  large gave num-er_s._ and fo r  high order moments CP?] 
(51)  a r e  convergent 

. - ---- 
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