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Cascade Theory of Plasma Turbulence

by .
C.M. Tchen

Abstract

The Fourier analysis of the hydrodynamic and electrostatic equations has given a
stochastic hierarchy of equations of correlatioms. This hierarchy, which is slowly
*convergent, is transformed into a more convergent cascade hierarchy, describing the
mixing of a group of small eddies with a group of bigger ones which provide a gradient
type of diffusive background flow. A quasilinear approiimation is applied to the mo-
tion of the small eddies at the earliest closure., It determines the turbulent diffu-
sion from the nonlinear effect of the small eddies on their background flow. The
spectral equations for velocity and electrostatic fluctuations are derived and the
spectral laws are obtained, In the inviscid ranges, the two power spectra follow the
k-3 law. The spectra in the dissipative ranges, together with the mixed range
(initial-diffusive range) are also derived., In the framework of hydrodynamic turbu-
lence, the present scheme degenerates to the Heisenberg equation of spectrum, correct-

ed for its divergence at large wave numbers.

" This work was supported by the National Aeronautics and Space Administration,
Contract R-127.
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I. INTRODUCTTON

~

The study of plasma turbulence has recéntly gained its importance in several
directions. Turbulent fluctuations in electric and magnetic fields have been ob-
served in solar photosphere [Vasilyeva, 1963, 1964], and in interplénetary space,
Turbulent spectra have been determined in laboratory plasmas [D'Angelo et al}, 1966;
Chen, 1965] . The effects of turbulence on the scattering of an electromagnetic
radiation from an ionosphew or a wake of a space vehicle is a recognized important
problem. An incident radiation of frequency )  and wave-number ,Ec,’ will be scat-

tered by the plasma (w , k) at the frequency «' and wave number k'

&
]
H-
e

The scattered intensity is proportiomnal to the cross section, or proportional to the

spectrum of density =n

< nwk)n (w,k)> .

We can distinguish two cases:

A, If an oscillation is present in the plasma, the hydrodynamic tﬁeory predicts
easily a spectrum in the form of a ®-function, peaked at the electron plasma fre-
quency, and the kinetic theory predicts a broadening of the spectrum, A quasilinear theory

exhibits the nonlinear interation between the wave and the plasma [Tchen, 1961] .



B. If the plasma medium is turbulent, the spectrum can be divided into an
inertial range and a dissipative range. The spectral distribution in a turbulent

plasma will be investigated in the present work,

The theories of plasma turbulence, connected with the backscatter of electro-
magnetic radiation, can be divided into three‘gtodpé{‘ One ié based on the gradient
type of mixing, the second on the modal transféf,MAQAVthe third on the random mixing.
Thé first group, as represented by the works of Gallet [1955], Villars and Weisskoff

[1955], proposes that the T.m.s. of the difference of demsity fluctuatioms at two
points

. 1
< (& n)2 > = n;

e ey

,W”.:iéif}éédfﬁESQAimfbbfhé”gfé&iénthdfwfhe;hééﬁiaéﬁéiEYffN-»iﬁ‘thé?foliﬁﬁinéwmannerA :

n, = -4 grad N s L

where £ 1is the separation length. This formula is known in fluid mechanics as the
mixing length hypothesis, first proposed by ?ﬁégésiﬁé§§ f1897]. The second group is
represented by the works of Krasilnikoff [19491], Silverman [1956], and more recently,
by Salpeter and Treiman [1964]. They applied the Kolmogoroff [1941] theory of fluid
turbulence to the radio scattering from charged particles, Since the Kolmogoroff

theory predicts a velocity fluctuation according to the law

W~ 23 . @a)
where E
2
ufi- = <@Gw'>,

and if the suspended particles, which serve as Bcatterers, follow the fluid motion,

then it is legitimate to write accordingly

02 ~ 23 (2b)
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a formula independent of gradWN » The third group introduces a random walk model,
because of the stochastic nature of the diffusion of particles. This leads to a

correlation between densities of the exponential type [Tchen, 19521]:

) )
<n(0) n(4) >/<n>=e s (3)

or, in terms of n_,
1

2 :
1 2y 1 < n(0) n(L)>
2. 2 2 J
<n > <n >
K4
=1~ s

where 1/K is the length of correlation.

The above formulas of correlations can be converted into formulas of spectral

functions by means of a Fourier transform:

w0
F(k) = [ df<u(0) u(£)>cos k& ,

o - .

(4)

6(k) = [ de<n(0) n(L)>cos k& .-

0 . .

Then (1), (2b) and (3) are transposed respectively into thé‘following:

mixing length, G(k) ~ k“3 s (5)
Kolmogoroff,  G(k) ~ k'5/3,_ , (6)

44



Booker [1959] - Gordomn [1952]:

ey ~ (¥ +H7t %

Formula (7) is recognized as the Booker [1959] formula, widely applied to the radio
scattefing problem., Although sometimes convenient, the random walk model yiélding

(3) and (7) lacks the nonlinear dynamical basis, On the other hand, the miXing

length formulas (1) and (5) break down in a turbulent medium which does not possess

‘a mean density gradient. Finally the Kolmdgoroff law (2a)is attractive, because of
its implicit monlinear dynamics of velocity fluctuations, but its extension to density
fluctuations (2b) can only be valid under very restricted conditions. In order to
generalize this result, aﬁd to explore the nonlinear interaction between density and
velocity fluctuations, theories have been developed for the determination of the den~
sity spectrum of neutral particles under various tﬁrbulént conditions [Tchen, 1965],

However, as the particles are treated as neutral, the theories do not apply to plasmas.

For the treatment of plasma turbulence, we shall confine ourselves to stationary,
isotropic and homogeneous electrostatic turbulence, without the presence of any
external field, and shall éttéﬁét-ﬁéhdétefminéjthé“éﬁéétra”bﬁ tﬁfbﬁléﬁée1éhdté1écffbéggtié”i
fluctuations. In order to illustrate the dominant gross physical features of plasma

turBulence, we shall outline the problem first by similitude considerations (Section
2).

A mathematical program, based upon the nonlinear Navier-Stokes equation of
motion and its Fourier decomposition would call for a stochastic hierarchy of equa-
tions of correlations, imvolving the problem of its closure. The sampling summation
by the diagram technique in the perturbation theory helps in the solution of the
hierarchy. Shut'ko [1965] has shown that, with a certain order of approximation,
the method leads to Kraichman's stochastic equations, and to a system of equations
yielding the Kolmogoroff sgectrum.on a more complex approximation, It is by now
generally agreed that the Kolmogoroff law is correct, but one wishes that it could
be understood without requiring the above elaborate method, as it will be difficult

to extend to plasma turbulence, On the other hand, the dimensional arguments of



Kolmogoroff, and the Heisenberg [1944] equation based upon the analogy between the
dissipations by molecular and turbulent motions, should be clarified on a mathe-~
matical ground, The main difficulty of a mathematical theory of turbulence resides
in the slow convergence of the stochastic hierarchy, and in the highly skew nature
of the odd order correlations, Therefore we shall transform this stochastic

hierarchy, governing the statistical behavior of individu

al eddies, into a cascade hierarchy
governing two groups of eddies., The latter hierarchy becomes highly convergent asw.A’.wwm"W
it embodies the cascade process. As a test of its effectiveness, the first approxi-

“mation degenerates the hierarchy into the Heisenberg equation of
spectrum, The velocityicéscade is developed in Section 3, and the density cascade

in Section 4.. Perturbations of the cascades lead to spectral equations (Section 5),

and their solutions determine the spectral laws (Section 6). Finally the effects

of molecular motions on the turbulent diffusions are investigated in Section 7. The

{ new spectra are convergent at large wave numbers and for high order moments.

2, SIMILITUDE CONSIDERATIONS

In a homogeneous system, we use the Navier Stokes equation for describing the

turbulent fluctuations in velocity u of the plasma

2
> > ° 1
(f+ e d)e-2rvF+x, ®

where X 1is a stochastic force (noise), representing fluctuations in pressure and
ot
brownian movements. The pressure is lumped in this way, because of its lesser

importance in the study of energy spectrum. We assume

<X~g>:0 .
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Further p 1is the kinematic viscosity, and E 1is the electrostatic force per unit
mass, which is the product of the electrostatic field by e/m , e is the-charge

and m is the mass. If n is the demsity fluctuation, them E and n are

related by the Poisson equation

O 2
&=w-f(n 3 9

with

A diffusion equation is used to describe the fluctuations in concentration,

or number-density n , as follows:

Ei_:”‘-llaé;: )\—”2— , (10)

where X is the molecular diffusion coefficient,

It is to be noted the effects of compressibility may manifest themselves
through X and the molecular transport coefficients yp and A , and are considered

not important in the inertial range of the spectra,

It may be worthwhile to recall the essential argument of similitude for arriv-

ing at the Kolmogoroff [19441 law of turbulent spectrum (2a). The inertial range of

the turbulent spectrum in a neutral £luid is characterized by a constant flux of

energy transfer between the modes (modal transfer) without viscous dissipations, As



determined by the nonlinear term of (8), the eﬁergy transfer in a length £ is

dimensionally
N
(velocity)™. /& ,

or more specifically,

ui}lz = constant. (11a)

This leads immediately to the Kolmogoroff law (2a), This spectrum is expected to
drop by the action of viscous dissipation., However, in a plasma the spectrum (2a)
should first drop on account of its partition and randomization into electrostatic

fields, in the form of a correlation

<E>
or

2

Ey T
where

2
Ei = <(AE)’>

and

T = Al (11b)



is the duration of correlation. Thus for a plasma, (lla) should include electro-

static fields and therefore be replaced by

= const E

u3
1 2 4 .
R 1o - (11¢)

b |

Applying the same argument to the nonlinear term in (10), after being multiplied by

the density, we can write

2
e}
)

constant . (12)

Finally (9) gives
E
1 2
72 = W n; . (13)

The three equations (1lle), (12), and (13) easily determine the three variables

as follows:

uy = const 4 ,
E, = const 4 ,
n, = comst
corresponding to the following spectra .
F = const k—3> >(14
= , (l4a)
G, = comst K (14b)
¢ = -1
= const k 5 (l4e)

for velocity, electrostatic field and density fluctuations respectively,

- 4-9



3. CASCADE PROCESS FOR THE MIXING OF EDDIES

If the velocity u(t,x) is decomposed into Fourier components:_
= ] o ukD e .

covering wave numbers of all amplitudes from 0 to ¢ , we can distinguish two

parts: one part covering wave-numbers of amplitudes from 0 to k , as denoted

by
ik'x,
(15a)

© , as denoted

and the other part covering wave-numbers of amplitudes from k to

by
)y ik'x
5@ = [ ok uk)e ; (15b)
k
with
u(x) = v (x) + ') . (16)
[0 ]
Here
k o«
_j’ dk' and j’ dk’
0 k
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are volume integrals inside and outside of a sphere of radius k  As we consider

a turbulent motion of veloecity u without the presence of a mean flow, the notations
u and u' represent résPectively the velocities of big and small eddies, or waves
~0 ~

of wave-numbers smaller or greater than k .,

The formulas (15) can be more conveniently written in the following form:

. ik'x
56 = Jag sy e, 172
-0 ’
© i}&'}i .
W@ = [ k' u'k) e , (17b)
¢ "~ o ~7 o~ J
after the introduction of
u(k') , for 0<k'<k ,
7T ‘
HED =
0, for k<k'<e ,
(18)
0, for 0<k'<k ,
ey =/ |

Eﬂkﬁ) s for k < k'

A
8

A distinction between the two motions u' and u, are useful: The movements of

o~

the small eddies u' exert on the large scale flow Eo a stress related to diffu-

sion, while the large scale flow configuration u shapes a gradient type of back-

o
ground flow, in which medium the small eddies are to evolve and to draw momentum,

4-11



As a result of such an interplay a general flow of energy from 1, into E; in

the form of a cascade process can be accounted, Since the small eddies do not

embody the major energy, the equation governing the evolution of Ef can be
linearized, while the equation for u remains nonlinear.

- The Fourier decomposition as presented in (17) and (18), means that the func~

+ tion wu'(x) is truncated at the lemngth 1/k , so that an average

< eee >y (19)

over such a length will smooth out all configurations of smaller scales, i.e.
u'(x) , while keeping 30(5) intact, Under this circumstance, an equation govern-
ing b, can be derived by substituting (16) into the equation of motion (8) for

u , and by subsequently performing the average, We have

(20)

<'50(§) >k = ;EO(E) *

Distinction should be made between the above short truncation,'of 1éngth'
1/k , which smooths out the 2} motion by'an average (19), and leave the large
scale motion 4, intact, compare(20), and a long truncation of length Eo »® o,

which would average out the u, motion too

<,'E°(§‘).> =0 ,

. 4-12



Such an average will be denoted by brackets without a subscript.

Thus by an average of the type (19) over (8), we obtain-

iy =2 = g +py 2 .<gu jaé> (21a)
ot ~0 O ~0 v&xz '~B;cvk °

" By substracting (2la) from (8), we further obtain

du

’_5_.' ..a_> ' e oot 2 '
<at+£oa;\<‘ u' +au = 55§+£ + X (21b)
The linearized equation (21b) has omitted the terms
a,ul aul
Y B v
S TR

which are assumed negligible in the present quasilinear approximation; Like in (16),

we have also written here
£ = E 4+ E!

and « R‘ has been chosen, in the place of . v Bzu'/agiz , to represent a damping.

This means that

o = const _1_/2_ . (22)

- 4-13



Integration of (21b) along the trajectory of the u' motion gives

du t .
e - - 22 Far Uy
~ ot

(o]

t - ) ~
+ Idtl e alt~-t') [E’a(tr,il) + }i(t"}—g)]’ (23)
A .
o .
where
'

S I O S

On the basis of (23), we can calculate

Su! du_. ¢t 1
i _ o1, y =o(E-t") Vet ot 1
< uj@ o >k. = - —-———"‘ax‘x ‘J'Idt e <U.j(t Fr:s ) u,@(tjx)>k )
4 it .
o
2
0 ug
. 0 (24)
=TRE
J
where
t . C
- T 7 7 .
Uk _ J\ dt' e a(t-t") < u},(t"i') u},(t’ﬁ) > (25)
t SR
o
is the turbulent coefficient of diffusion,as contributed by small eddies. Formula

(24) was obtained in the assumption of locally isotropic and homogeneous turbulence

in the E}-field. Thus the effects of the motion of the small eddies are to contri-

4-14



bute to a diffusion in the large scale motion U, » as was expected, and to modify

the equation of motion (21a) into the following:

%, %, 3,
3t TR0 TBx " E,twHy) 3 (26)

" Equations (21b) and (26) govern the basic process of eddy mixing in the form of a

cascade,

We note that the last term on the right hand side of (26) gives already the
ingredient for the structure of the turbulent dissipation, necessary in the deriva-

tion of the Heisenberg equation,

4. DENSITY CASCADE
The method used in Section 3 to develop the velocity cascade on the basis of

the dynamical equation (8), can be repeated to derive the density cascade on the

basis of the diffusion equation (10), by making the superposition

n = n_+n' R
)

;Wiﬁéaiﬁig aﬁdhsmglifédd{ésuifke‘in (ibj; h The system of 'quasilinear équations

gdverning o and n' follows from (10), and is of the form

2

on on o n

_o° _o _ o _ y on'

st Ro Aaxz Sy (272)
on

an' n'

TR n = - Bn - 5T (27b)



where

in the place of

azn'
AT
3

represents a 'damping of the wave motion n' . After  integration of (27b) and some

simplification, we find

on
on' o
<u'T/—> = - A R (28)
~ ai k k BE?
with
t L
A = Jarr e PETED cpner ey wre x>, (29)
t

o]

being the coefficient of turbulent diffusion of particles, Upon substitution of

(28), we rewrite (27a) as follows:

an, on ' ‘azno
Fral O 5%7 = A+ X)) 2 . (30)

-~

Equations (27b) and (30) governs the demsity cascades.
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5. SPECTRAL EQUATIONS

We shall study the velocity and the density spectra, and the correlation

between the velocity and the density.

(a)\Velocity spectrum

The function u (%) , defined by (15a), is convenient to study the spectral

function of velocity F . By raising it to the square, we can write

(5 HOE

: k
o) 1" = [ [ dk' ar wk- u(h e ’
0

Ead

and its average over a long truncation length zo >  is

) . +, K Kk £ (k") x
E< 001 >=% lin —F— [ ax [[ ag e aeeu@ne © 7
2 (220) -ﬂb 00
18 3 k
= 55 ) [k wkD- u-k) o,
(3 O )
k |
= [ dkF(k) , (3la)
0

as
ikgL 3 ‘
T = (21 8(k) B(k,) B(k

©@
f dx e 3)
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Further the derivatives can be calculated in the same way. For example we have
from (15a)

Buoi k i}&' X
= st 1
. 7 fdlf, 1kj ui(_l.&) e s
J 0
and
Bpo. 2 1 ’ -H"o k k 4 -
<(g>= lim ——— [ dx [ [k dgoakg ik
j Ly = (2407 00 -
(o]
i KD %
X u(k') * u(k") e s
3 K )
= () [ e w? a) ukn :
(o] 0 )
K 2
= 2 [dak' &' F(k") =R . (31b)
0
Obviously when we put k =+« in (31), we reduce to
2 f=e]
b<d > = [ dk F(k) ,
' 0
and
Qdu, 2 @
i 2 -
< (5;;) > = 2 [dk K" F(k)=R .
: 0

4-18



(b) Density spectrum

It is to be noted that G and GE are related through (9), as follows:

c. = o xle . (32)°

In analogy with (3la), the density spectrum G and the electrostatic spectrum

G assume the expressiong:

E
(33)
k
2 L
5<,®1> = [ e, I
0
2 k
¥<[E®I> = [dk 6 (k")
5 < [E; (% gD
5 ,
and
J® =2 [ae 02 e
< (o fm)> =2 ] Tek)=J
0

which become

©
y<o>= [ e ,
5<E>= [ dke ),

0

and

i

S 2 )
< (ap/axj)2> ZI dk k" G6(k) = J ,

O,;:

4-19 -



respectively, when k - =,

Similarly,

E .V k ) i s
o1 — . — - -
<(BX)>_2£dkkGE—,mj(‘)de-sO ,

<-é—}z5>=2j;dkk Gy =S .

(c¢) Correlation and Diffusion

We may remark that <u’4 >, which is the basis of Vg 2 is a diffusion

in the configurational space. Similarly,

can be regarded as a diffusion by electrostatic fluctuations,bi.e.,
a diffusion in the velocity space. Its structure can be determined by
the equations (9), (26) and (30) governing Eo and 4 By multiplying the

equations for

ou 9
~0 ~0
-a—-—'- and "a-_'t—
by E, and Y, respectively, we have
oD E . du_.
E IS _ 2 ~ oi oi
SE TR, Voj UYoi Boi” T Eo - (v M) <mp—sm o>
J ) ‘ J J
2D
T A A ST (34)
ij

which reduces to



3D E . du .
E _ 2 SR ) ol ol
3T <EO > - (.\)' + )\)-<

ox 3 an

on account of homogeneous turbulence. Here

v=y o4 Vi s

and

>

= N+ xk
are the total viscosities.
According to (11b), the time scale of the development of the diffusion

DE is

G-
T= <] > .

ox .
J

Therefore, we can rewrite (34) in the form

E . du_.
-1 2 ~ o1l ol
D, =< ™> - (v + <
T E o ( M 2% 9% ?
J J
or
- n° _ n’
Do = Dp - D

“where

— o OO

t . o

o _ ’ VN T

op = [ at’ <€ (tx") - B(tx)>
t .
O

\2
JE . 1/2 , |
P a1 I OV
DE = (v + X)<:(axj ) > HCE-;" CE(v +i1)80 ) (35a)
- ~ o~ 2 2.1/2 .
= CE (v+ 2w < ,7> 5

-4-21



and

ol

21 2
dE . du._. JFE . = ou
o1 oi oi 2 or
Cg =< K. X >//< (ax- ) > <:(Bx ) z

J J

is the correlation coefficient.

It is to be remarked that Dg governs the big eddies; and therefore
is not relevant to the derivation of the universal spectrum (small

eddies).

The functions Ve s Ak are written in terms of F and G as follows:

K)o Xu) wdk k3':éL' i 35b)
(}‘k) (Xn { o @A 35

We have left out the damping effect in the eddy viscosities. For the

sake of simplification of writing, we shall replace all the coefficients

%u? %> Cp

by unity.

(d) Spectral equations

In order to derive the equations governing the'fempofal evolution of
the spectral functions F and G, it suffices tQ multiply (26) and (27a)
by u, and n, respectively, and to perform a spatial average over an

infinite interval 20 - », Thus, we have

3 _ 2 _ A
3 <uo> = - (v + vk) RO "»DE ’;T[
‘ (36)
3 _ 2 _ _
5T Ng” = (A + A JQ_.

4=22



Here we have left out the convecfion terms, as they should disappear in

" a homogeneous turbulence.

With the aid of (33), it is a simple matter to transform (36) into

the following equations determing the spectra:

K : K
5] _ 2 - ?
2 j;dk B(k) = - 2(v + v) jc;dk Kk F(k) - Di(k)
K k 7
d 2
e gk 6) = —2(h + N [ dk k® 6(k)
9 o

where Vs Kk and Dé(k) have been defined by (35).

In a statistically stationary turbulence, the time derivatives

vanish, and the spectral equations (37) reduce to N

o = v 2 (38a)
KJO=G>\ , (38b)
1
' o )
DE (v + ) So .
Here,
€, = Vv R >
and
€y = Ad

are the dissipations.

The three equations (38a), (38b) and (32) determine the three

spectral functions F, G and GE'

4-23



It is interesting to note that in the framework of hydrodynamic

turbulence, the above system (38) degenerates simply to

'JRO% €, (39)

tﬁe fundamental equation of spectrum proposed by Heisenberg [see
Heisenberg, i948; Tchen, 19541, on the basis of an anaiogy between
 the dissipations by molecular and turbulent diffusions. Thus, it

is shown that the Heisenberg equation (29) fits well into the quasi-

linear approximation of the present cascade theory describing the

interplay between the two motions u  and u'.

6. SPECTRAL LAWS
We shall solve the system of spectral equations for various

ranges.

(1) Inviscid ranges

We shall investigate the spectral laws in the inviscid ranges,
also called the inertial and convective ranges, where the inertia
term of the Navier-Stokes equation and the convection term of the

diffusion equation play the main role. We have here

Vk >y,

v, > A

k

4-24



This requires a gas of high jonization and ﬁigh Reynolds number. In

these ranges, the system of equations (38) reduces to

Vi JO = ey o (40a)
and
L
v (Ry + 2802) = e, - (40Db)

Unlike the case of hydrodynamic turbulence, where the inertial

range was characterized by a constant modal transfer

Yk Ro 4
the occurance of diffusion in the electrostatic turbulence should

drain this transfer. For such a balance to exist, the spectra must

have developed sufficiently toward the large wave number, so that

R, ER
. (41)
J, 23
but ‘the molecular actions are stlll ineffective.
Under such c1rcumstances, we shall dlfferentlate (40b) to get
(%) R+ 287 + 2x% + 5 2 G)jdk =0 . (42)
x> x>

Here use has been made of (41). Solving (40a) and (42), we find

4-25



F=akc, (43)
N §
G =Bk 7 ; (44a)
where A,B satisfy the relations:

_l-.
A% B

1l

6)\ s

21
A= (R+ 20°%) -8 24 3

It can be verified that the last term

1

s 24's

has a'negligible contribution as compared to the other terms, because

the ratio
_%‘ 1
s < o BAZ
(R+2w'2).2
is of the order of
A
w

which is negligible in the present case. We thus obtain

A=R4+ 2% ,

1
e)\(R + 2(»’2) 2 )

w
1

4-26



where

1
w12 = 4n <n2>

N

‘ez/m .
From (32) and (44a), we find the spectrum of electrostatic field
G. = B k . (44Db)

It follows from

E=-Vp ,

the spectrum of electrostatic potential
G =Bw k ~ . (44¢c)

It is to be noted that the turbulent spectrum F in (43) drops

5/3

faster than the k~ law (Kolmogoroff law), because here the velocity .

cascade is drained by a diffusion from electrostatic fluctuations.

The k~°

law (44c) for the electrostatic potential is in agreement
with several experimental results [D'Angelo, et. al 1966; Chen, 1965].
>The present method gives the spectral results (43), (44a) and (44b)
identical to (14a), (1l4c) and (14b), obtained earlier by similitude

considerations (Section 2).

(2) Dissipative ranges

In the dissipative ranges of the spectra, the molecular viscosity
and the molecular diffusion are important. The ranges of wave numbers

are such that

. 4-27



Vi <<v, and Vi < A .

By differentiating the spectral equations (38), we have

_(E\2 7 2 4o~ A
(k3> [R) + 282 o + v [Z°F + 2m _So?G]k-»w“ 0,
1
- (53)2 J_+ 2% G = 0. (45a)
k ¢}

By replacing

(RO, Jgs so> by (R, J, S) ,

and neglecting

2
4
2w s, %G,
for large k, we find -
1 3
—(%)2 (R + 28%) + 2vk’F =0
k
1 |
2 g+ 2%%G=0 .

g

The solutions are:

??'{"l‘.l
NP

(45b)



_where
7% =R,

When the density fluctuations are negligible

which is the spectral law proposed by Heisenberg.

(3) Convection and diffusion of charged particles under strong

inertial turbulent regime

When the charged particles are of low concentration, we can

‘assume

Nl

<< .
SO RO

Moreover, when the strong turbulent field of a high Reynolds number
is maintained in its inertial regime, under which the charged particles

undergo a convection or a diffusion, we have

1

v << A,

Under such circumstances, the turbulent spectrum F is not much modified
by the weak electrostatic diffusion, but satisfies equation (38a) which

is simplified to the form




and gives the Kolmogoroff law

F=n, kK%,

with
2/3

83\;)
P17 \ox /-

On the other hand, the diffusion of the particles satisfies equation

(38b), rewritten as

After a simple differentiation, we obtain

1
c = A 1 (E\2
(M + vk)2 a2 \k3) °
2 &\ . -3 (k/kd)—S/3
=35 K 735 5 (473)
(1 + (k/kg) ]
2 ¢ '4/ ‘
/'S"Xl\kdé' 'k—S/Sr’k«kD >
=  (47b)
N\, ©

2 &\ . 4/3  -13/3 '
Rl S s k>

where



isra critical wave number, characteristic of the transition between the
convection énd the dissipation of the density spectrum. The -13/3 law
(47b) has been considered in experiments [Gratsteih et. al, 19667.

If the density fluctuations in the dissipative range and the
furbulent field in the inertial rangé are not correlated, the

following spéctrum is obtained

[
A -17/3

G=2RA
, 3%3

1 , (48)
instead of (47b). The spectral law (48) agrees with the one related

to the diffusion of neutral particles in a turbulent fluid [Tchen, 1965].

7. EFFECTS OF DAMPING ON TURBULENT DIFFUSION

The‘Heisenberg law in (45) and (46) would give a divergent integral

u. om
<‘(——-1) >=2 [ & k™ BK), (49)
aXJ o

for m”§;3. This difficulty of divergence has worried investigators of
hydrodynamic turbulence in the past [Pao, 1965]. Here we shall show
that it can be remediated by including the effects ofkdamping in the
turbulent diffusion as provided by the present theory. According to

(22) and (25) the damping factor is

exp (- vk21)

where T is the life time of the small eddies; as characterized by the
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2 parameters v and €, it is
/2

¢ = const (v/ev)l ,

yielding a damping factor

with
1/4 1/4
k =(é x2) (ev/VS) .

The numerical coefficient can be found from a determination of the
viscous cutoff of the inertial spectrum [Tchen, 19657]. Thus, by
) attaching the damping factor to the diffusion formulas (25) and (35b),

we find

@ /2 (/)
we=xfa @y e TV, - (50a)
k ,

instead of (35b). In the initial range of.the spectrum where

k <z:kv s

the damping is ineffective.
Similar arguments applied to the damping of the particle diffusion,

with a factor

oAk T
e
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yield

- | 2
: -(k/k)

N=x [ (P/k3)l/2 e D
X

, " (50b)

where

_ o 1/4
k, = const (ev/h v)
On the basis of the new diffusion coefficients (50a) and (50Db)

including the effects of damping, the spectra in the dissipative.ranges

take the new formulas,

xe, N2 _, -z(k/k;))2
and

._ 2

%E., %€ _ -2(k/k)
6=y 3k e D , (51b)
2v° 2\

instead of (45b). Further, the inertial-diffusion spectrum, as derived

from
%3G - . (P/k3)1/2 —kz/sz 1}' i wdk k%G =0 ,
0
a modified form of (45a),becomes
G = 11/2 fl% 13/3 e—kz/kD'2 > (51e)

2\
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instead of (47b).

Unlike the Heisenberg formula (45b), the formulas (51) are convergent

at large wave numbers and for high order moments (49). . .
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