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ABSTRACT 

The flow and temperature fields are considered in the region 

between a rotating and stationary disk. The governing equations 

are changed by a radial transformation into ordinary differential 

equations. 

numbers are clarified and the equations are solved accordingly. 

The trend toward boundary layer formation is confirmed by these 

solutions. 

Distinctions between regimes of large and small Reynolds 

The thermal problem is treated in a similar manner with 

Prandtl number also being of importance in this case. 

Finally, quantities which are of design importance are dis- 

cuesed based on the dynamic and thermal solutions. 
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CHAPTER I 

INTRODUCTION 

1. Description of Device 

With the development of space power systems has arisen the 

need for a seal demanding little power for operation and possessing 

very high sealing abilities across pressure differences of 

approximately one atmosphere. 

to meet these requirements. 

The slinger seal has been proposed 

The slinger seal is a fluid, shaft sealing device. The 

configuration is presented in Figure 1. Fastened to, and spinning 

with, the shaft is a thin disk. This assembly is enclosed in a 

cylindrical, stationary housing. Liquid occupies the narrow gap 

between the disk and housing faces. 

the angular motion of the disk is imparted to the liquid slinging 

it outward to the housing periphery. The liquid acts as the sealing 

medium, and the pressure difference that can be supported is 

related to the gap distance and the difference of radial distances, 

from the axis of rotation, of the two interfaces. 

Through the action of viscosity, 

Important secondary flows arise, There is a radially out- 

ward secondary flow along the rotating disk and a radially inward 

flow along the housing wall. 

fluid, the integrity of the interface must be maintained. This 

requires adequate surface tension at the interface t o  qrrest the 

radial inflow and redirect it axially so that it may flow outward 

In order to prevent leakage of the 

- 1 -  
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along the  r o t a t i n g  disk.  This repor t  does not  inves t iga te  the  

in t e r f ace  dynamics, bu t  i t  is recognized t h a t  such an ana lys i s  

would s t rongly depend on the  dynamics i n  the  main body of t he  f l u i d  

away from t h e  neighborhood of t he  in t e r f ace ,  

The flow can be e i t h e r  laminar or turbulent .  The subjec t  

of t h i s  repor t  is the  ana lys i s  of t he  f l u i d  f i e l d  f o r  laminar flow. 

Spec i f ica l ly ,  t he  region of interest is t h a t  which comprises the  

bulk of t he  f l u i d  exclusive of the  end e f f e c t s  of t he  i n t e r f a c e  

and t h e  r a d i a l  end w a l l .  

2,  Previous Inves t iga t ions  of Related Problems 

The q u a l i t a t i v e  aspects  of a f l u i d  between two i n f i n i t e ,  

ro t a t ing  d isks  were discussed by Batchelor [l]. For t h e  spec ia l  

case of one of t he  d i sks  held s ta t ionary ,  Batchelor 's  problem 

becomes the  model adopted f o r  t h i s  analysis., 

Within t h e  laminar flow regime, two l imi t ing  cases can be 

ident i f ied :  1) f u l l y  viscous behavior, and 2) boundary layer  

behavior, I n  the  f u l l y  viscous l i m i t ,  t he  e f f e c t s  of v i scos i ty  

dominate everywhere across  the  gap. This is analogous t o  a f u l l y  

developed Couette flow, By cont ras t ,  in  the  boundary l aye r  l i m i t ,  

t he  e f f e c t s  of v i scos i ty  are contained i n  t h i n  layers  adjacent t o  

the  d isk  and housing w a l l .  

Core r o t a t i o n  is  assumed between t h e  two boundary layers  

when solving f o r  t h a t  l imi t ing  case. Each boundary Layer is  

t rea ted  separa te ly  with ai4 appropriate  matching condition invoked 

t o  determine t h e  angular ve loc i ty  of the  core. Karman [ 7 ]  
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considered t h e  problem of a ro t a t ing  d i sk  i n  an i n f i n i t e  ex ten t  of 

f l u i d  a t  rest; and Bodewadt 181 a s t a t iona ry  d isk  i n  an i n f i n i t e  

ex ten t  of ro t a t ing  f lu id .  A study of both f l u i d  and d i sk  r o t a t i o n  

was made by Rogers and Lance 191, 1151. 

This repor t  ca lcu la tes  t he  core  rate of ro t a t ion  by two 

methods. The f i r s t  embodies cont inui ty  and the  second is  based on 

an i n t e g r a l  momentum balance. Results of these two methods disagree 

s l i g h t l y ,  and reasons are given f o r  accepting t h e  momentum r e s u l t ,  

Schultz-Grunow [5] examined the  two d isk  problem and invoked an 

i n t e g r a l  momentum balance, assuming parabol ic  ve loc i ty  p r o f i l e s ,  

t o  determine the  rate of core ro ta t ion .  

A clear and complete p i c tu re  of t he  t r a n s i t i o n  from t h e  

viscous l i m i t  t o  t he  boundary layer  l i m i t  is  d i f f i c u l t  t o  achieve. 

A s  Re/S , Reynolds number based on gap width, increases ,  t he  present 

numerical so lu t ions  become divergent as do series expanded i n  terms 

of Re/S However, numerical so lu t ions  have been car r ied  f a r  enough 

by Grohne 123, 1161 and by Lance and Rogers [15] t o  e s t a b l i s h  the  

2 

2 

type of departure  from f u l l y  viscous behavior. The present paper 

a l s o  determines the  core angular ve loc i ty  i n  the  boundary l aye r  

l i m i t  

The associated heat  t r ans fe r  problem may a l s o  be iden t i f i ed  

with two types of l imi t ing  behavior which, as i n  the  dynamic problem, 

determine the method of analysis .  Depending on the  absolute  and 

r e l a t i v e  magnitudes of Re/S and Pr ,  the  temperature d i s t r i b u t i o n  
2 

w i l l  range from the  parabol ic  conduction type t o  a thermal boundary 
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l ayer  a t  each disk.  

There has been very l i t t l e  previous work done i n  connection 

with t h e  thermal aspects  of t h e  problem. Millsaps and Pohlhausen 

[6] have solved the  case of hea t  t r ans fe r  f o r  t h e  Karman problem, and 

the  compressibi l i ty  aspects  are discussed by Ostrach and Thornton 

3. Objectives of Analysis 

The object ives  of t h i s  laminar flow ana lys is  are: 

1 )  For f i n i t e  Re/S2, t o  resolve the  discrepancies 

i n  the  mode of departure  from the  viscous l i m i t .  

To review matching cri teria i n  t h e  boundary layer  

l i m i t  and provide appropriate  solut ions.  

To solve the  r e l a t ed  heat t r a n s f e r  problem. 

To formulate design cri teria f o r  the  use of 

2) 

3) 

4) 

s l i n g e r  seals. 



CHAPTER 11 

GOVERNING EQUATIONS 

1. Assumptions 

The fluid model chosen is an incompressible, constant 

property, Newtonian fluid. Body forces and effects of radiation 

are neglected. The bounding walls of the fluid are impermeable, 

and the fluid on the surface of those walls moves with the velocity 

of the walls. The flow is steady and symmetric about the axis of 

rotation of the disk. 

The assumptions and the geometrical confines of the fluid 

are simfiar to those of the fluid in a vortex magnetohydrodynamic 

generator analyzed by Loper [14], Much of the development of the 

basic equations parallels Loper's development. 

1 3 .  Non-Dimensionalization of Equations 

The problem is most easily treated in cylindrical COF 

ordinates. 

azimuthal derivatives to be neglected. 

Steady flow and rotational symmetry allow time and 

The continuity, Navier-Stokes, and energy equations, under 

the assumptions specified, are as follows: 

- 5 -  
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aT - aT - k ( B + - - + _ Z _ )  1 aT a2T + 
a? a z  ai? r a i  $2-2 

p c { i i - - + w f )  - - 
L- 

I- 

In an effort to simplify these equations by comparing the 

order$-af-magnitude of the various terms, the variables will be 

non-dimensionallzed as follows. 

(6) 
T - - -  - - - 

z u v w  
z = -  p = *  ' u,v,w = I;@'. ' T = - r r = -  R' TR a' 
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Substitution of equations ( 6 )  into equations (1)-(5) yields the 

following dimensionless set of equations: 

Y 

... . 

1 & 1 aw + s2 a2w 
( + - -  -1 a z 2  

aw aw u - + S w -  = - S E h + -  ar az az Re a r 2  r ar 

aT 1 1 aT + s2  
R e P r  

2 2 

R e  
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PWRp Where: Re = Reynolds No. = 
li 

P E = Euler No. = 

E( S = Geometry Factor = - a 
R2,* lee = Eckert No. = - CTg- 

Pr = Prandtl No. = k 

3. Boundary Conditiens 

A. Velaeity Boundary Conditions 

Let z = 0 be the face of the rotating disk. The non-slip 

and impermeability conditions on the disk and on the face of the 

stationary housing (i = a) are: 

which in non-dimensional form are: 

at z = 0: u = Q ,  v = r ,  w = O  (13) 

at z > =  1: u = O ,  v - 0 ,  w = O  (14) 

An additional, integral, condition on the radial velocity, 

u , is obtained by noting that there can be no net radial flow 
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across the gap. This condition is expressed by: 

0 

B. Thermal Boundary Conditions 

If the disk is not cooled, then maintenance of steady state 

conditions requires that all heat generated by viscous dissipation 

be removed at the housing wall; therefore, heat transfer at the 

disk is zero 

aT - 5 0  az at z = 0, 

The ability to cool the housing wall suggests that at z = 1, 

, the temperature could be maintained at any arbitrary level 

where Tw is usually constant . 
Tw 

at z = 1, T - Tw 
Tbe disk temperature is left unspecified and will result 

. from ihe solution of the energy equation. 

4. Series Expansion of Dependent Variables 

The non-dimensionalization has served to consolidate the 

many quantitfes of the problem into a few familiar, dimensionless, 

parameters such as Re, Pr, etc. 

Each term in the differential equations consists of a 

variable portion of nominally unit order modified by a dimensionless 

coefficient. The salient features of the problem can be isolated 
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by solving equations consisting of the largest terms of the 

complete equations based on their indicated magnitudes. 

problem leads also t o  mathematical simplification as well. 

This 

To this end, the dependent variables will be expanded in 

power series of some dimensionless parameter. 

or their reciprocals are available; S, E, and Re . Of these 
three, 

geometry will always embody a large aspect ratio. 

Three such parameters, 
i 

S is the only one which is consistently large, as the 

expansions of the independent variables will be done in 

powers of 1/S . 
1 1 u = u  +-u1+-u2+. . . . . . . .  o s  S2 

1 v = v  + Z V l +  . . . . . . . . . . . .  
0 

1 
o s  w = w  + - - I +  . . . . . . . . . . . .  

1 p = p 0 + x p 1 +  . . . . . . . . . . . .  
1 

o s  
T I T  +-Ti+ . . . . . . . . . . . .  

The functions uo, ul, u2, . . .  v VI, . . .  etc. are nominally 
of unit order of magnitude. 

0’ 

In the geometrically limiting case of infinite disks, for 

which! equations (18) must remain valid, the zeroth order terms will 

be the only term in each series. 

that must satisfy the boundary conditions. For finite l/S , the 
It is these terns, therefore, 
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higher order terms must then assume zero values at the boundaries. 

Equations (7) to (11) are to be expanded with the series 

(18) and the ordering is accomplished by collecting the terms 

multiplied by a given power of 

equal to zero. 

S and setting each collection 

To leading order, the continuity equation yields 

awO 
az - - 0  

Boundary conditions on w determine that 

w 5 0  
0 

Ordering the "z" momentum equation (10) and taking into account 

that wo = 0 , yields 

aw 
az 

0 Since - = 0 , the next order terms of the continuity equation 
are: 

The leading significant terms of the "rtr and "4" momentum 

equations (8) and 69) are: 



To 

U 
0 

leading significant order, the energy &@ation is: 

aT0 
az - = o  z = 0, 

Equations (22) - (25) constitute a mathematical statement 
of the hydrodynamic flow in and thermal behavior of the fluid. 

The incompressibility assumption results in the uncoupling of the 

momentum equation from the energy equation allowing the temperature 

distribution to be calculated after the flow field has been 

determined. The solution of the flow field is described in the 

next chapter and the solution of the energy equation is treated 

separately in Chapter IV. 



CHAPTER 111 

SOLUTIOM OF THE FLOW FIELD 

The distributions of radial, azimuthal and axial velocity 

result from simultaneous solution of the continuity and three 

momentum equations. 

1. Karman Similarity 

The equations (9) and (10) are idenpically the equations 

governing the flow over a disk rotating in an infinite extent of 

fluid. 

lies in the boundary conditions. 

The difference between that problem and the slinger seal 

Karman [ 7 ]  noted that these partial differential equations 

z may be reduced to ordinary equations in 

transformations: 

by the following 

Let: 

In order that continuity, equation (7 

must have the following form: 

u = - tF'(z) 
0 

Also, let ' 

v = rG(z) 
0 

F(z) and G(z) are functions of z 

, be satisfied, uo 

(30) 

only. Primes denote 

dffferentiatfon w i t h  respect to z . The argument, z , of 

- 13 - 
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and G(z) will no longer be carried along as it is understood. 

The use of this transformation in the present problem de- 

pends on its compatibility with the boundary conditions (13)-(15)* 

It can be shown in fact that the use of this transformation auto- 

matically requires that there be no net radial flow in this problem 

(equation 15). If there were t o  be a net radial through-flow then 

one could not have Karman similarity. 

Substitution of the transformation, equations (28), (291, 

and (30) into the "r" and "I$" momentum equations (8) and (91, 

yields 

- S2 G" - 2G'F + 2gf' 
Re 0 

- 0, the right-hand side of equation Recalling that - 
(31) is a function of r, only, while the left-hand side is a function 

of z, only. Thetefore, each side of that equation can at most be 

equal to a mutual constant, defined as B .  

aPO 

- =  _ _  B r  dpO E 
dr (33) 

One integration of equation (33) reveals that p varies 
0 

with r20 The strength of this variation depends on B .  
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The boundary conditions i n  terms of F and G are: 

z = 0: F ' = O ,  G = l ,  F = O  

2 = 1: F ' = O ,  G P O ,  F = O  

(34) 

(35) 

Equations (31), (32) and (341, (35) are t h e  transformed 

governing equations and boundary conditions on the  ve loc i t i e s .  

Note t h a t  t he  equations are ordinary,  non-linear, and coupled 

i n  t h e  two unknowns, F and G. Also note  t h a t  t he re  are two deriva- 

tives on G, th ree  der iva t ives  on F , two boundary conditions on 

G, but  four  boundary conditions on F. The extra condition t o  be 

m e t  is associated with the  proper determination of B o  

B w i l l  be t h a t  f o r  which a l l  t he  boundary conditions are s a t i s f i e d .  

The cor rec t  

2, Range of Re/S2 and Types of Flow 

Equations (31) and (32) are seen t o  depend on the  one 

parameter Re/S2 

the  types of flow and the  approach t o  solving the  equations. 

The magnitude of t h i s  parameter w i l l  determine 

For s m a l l  values of Re/S2 , the  VPSCOUS forces  dominate. 

For t h e  l imi t ing  viscous case of Re/S2 - 0 ,  there  w i l l  be no a x i a l  

nor r a d i a l  v e l o c i t i e s  and the  azimuthal ve loc i ty  decreases l i nea r ly .  

Large values of Re/S w i l l  r e s u l t  i n  boundary layer  flow; 

presumably separa te  boundary layers  a t  the  d i sk  and a t  t h e  housing. 

The boundary conditions f o r  t h i s  type of flow are determined from 

the  assumption t h a t  t he re  e x i s t s  a p o t e n t i a l  core of f l u i d  ro t a t ing  

as a s o l i d  body i n  the  c e n t r a l  region between t h e  two boundary 

l aye r s  e 
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Intermediate values of Re/S2 represent transitional behavior 

between the two extremes just discussed. Investigation of this 

range of Re/S2 will shed light on the nature of the trend toward 

core rotation as Re/S2 increases. 

3. Viscous Limit and Its Environs 

The methods of solution for small Re/S2 will now be 

discussed in detail. 

A. Series Solution 

For small Re/S2, the functions F(z) , G(z) , and the 
constant B have been expanded in the series: 

2 
G = G o + ~ G 1 + ( g ) G 2 + .  Re . . . , 

2 B = B o + 7 B 1 + ( ~ ) B 2 + .  Re Re . . 

(37) 

where F and G satisfy the boundary conditions equations (34) and 

(35), and the higher order functions F , F' , and G satisfy 

homogeneous boundary conditions at z = 0 and z = 1. 

0 0 

= F'i = Gi = 0 Fi z = 0, 

for i = 1,2,3, . . 
z = 1, Fi = Fti = Gi = 0 
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Substitution of the series into equations (31) and (32) 

and collecting coefficients of like powers of Re/S2 gives the fol- 

lowing sequence of equations. 

62" + 2Fo'Go - 2FoG0' = O (42a,b) 

(k3a,b) 
G3" + 2(F 'G1 f F 'Go) - 2(FoG1' + FIGo') 0 

0 

64'' + 2(F 'G2 + Fl'Gl + F2'Go) - 2(F0G2' + FlGl' 
0 



-18- 

Inspection of these equations and the associated boundary 

conditions reveals that the odd-subscripted functions Fi, 

Gi, B. are identically zero. 

remaining equations when solving for the even-subscripted F 

This fact somewhat simplifies the 
1 

i’ Gi, 
and B.. 

1. 

Equations (40a,b) may be solved by twice integrating 

‘I = 0 ,  substituting into equation (40a) and performing three 
GO 

0 
integrations on F ‘I’ . 
are determined to satisfy the six appropriate boundary conditions. 

The resulting Fo and G are substituted into equations (42a,b) 

to obtain G2 and the F2 . 
successive even-subscripted set of equations. 

Tbe five integration constants and B 
0 

0 

This sequence is carried out for each 

In this procedure, each Fi and Gi evolves as a polynomial 

and, although the principle is simple, the polyngmials become 

lengthy and the process is very tedious. Furthermore, convergence 

of the series ( 3 6 )  to (38) cannot be guaranteed particularly for 

Re/S2 > 1. 

The series solutions, as far as they were carried out, are 

G 0 = l - z  

p - -  7 1 .4 + 1. .5 
FO 20 .2+’-BTiz3-- 12 60 

3 
Bo = -  - 10 (454 
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G2 e - 1 2  (- ,7 - -6 2 + - 17 25 - 224 + ,3  - - 9 
30 21 3 10 70" 4 

. .  

F2 = 0.00011586~~ - 0.000357~~ + 0.000143~~ + , 

0.000361~~' - 0.0005198~~ + 0.000327~~ - 
0.000111z9 + 0.0000243g'0 + 0.00000261~~~ + 
0.00002942 (46b) 

' and G are presented in Fo 0 
The zeroth terms Fo, 

Figure 2. 

and how core rotation will form for larger Re/S2; 

Deviation of G(z) from the linear Go will indicate if 

B. Numerical Integration 

Numerically integrating the two point boundary value problem 

(equations (311, (32) and boundary conditions ( 3 4 ) ,  (34)) could be 

done only up to Re/S2 = 5.70, 

and its limitation up to Re/S2 = 5.70 are discuqsed in Appendix A. 

The series solutions using only the zeroth and second terms 

Details of the numerical procedure 

are compared to the numerical solutions by looking at G' at 

z = 0 and z = 1 and the constant B for various Re/S2 up to 5.70 

(See TabSe 1) e 

Good agreement appears between the two methods for values of 

Re/S2 less than 1, as might be expected, while discrepancies 

are held to be about 1% anywhere in the range 0 < Re/S2 < 5.70. 
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Grohne [2] and So0 [3] have also looked at this problem for 

small but finite Re/S . Grohne had his higher order Gi satisfy 
the same boundary condition as Go 
G = Go + (y) G2 + . . . could not satisfy the proper boundary 
condition G(0) = 1 except for the case Re/S2 = 0 . 

so that the overall series for 
Re 

Soo's zeroth order solution is in agreement with equations 

(45a, b, c). 

higher order terms in series such as equation (36)-(38), So0 

preferred to calculate the corrections by two separate series 

Rather than taking higher order corrections tQ be the 

I expansions; one from z = 0 forward to z = - , and another from 
z = 1 backward to z = - , under the conditions that the two 2 
also that G'(0) = G'(1). This last condition was argued from the 

fact that across any constant radius surface, the flux of angular 

momentum is small, therefore the torques on the disk and housing 

must be equal. 

true. For example, for Re/S2 = 1.0, calculations show (Refer 

to Table 1) that G'(0) = - 1.0042 while G'(1) = 0 0.99872. 

Although the difference is small, important qualifative differences 

arise between Soo's method and the numerical solution for small 

but finite Re/S2 . 

2 

The numerical results show this to be not quite 

Referring to Figure 3,  Soo's solution of G(z) deviates 

in an "S" shape indicating that for finite Re/S2 , from Go(z) 

boundary layers are beginning to form at both walls. The numerical 

solution deviates from G (z) by falling below Go(z) , indicating 

a trend toward boundary layer formation adjacent to the disk only. 
0 
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Before concluding on t h e  f i n a l i t y  of t h i s  trend, it w a s  decided 

t h a t  i f  a t  a l l  possible ,  t he  so lu t ions  should be taken t o  l a rge r  

Re/S2 . 

C. Analog Solution 

The equations (31) and (32) w e r e  programmed on an analog 

computer. Solutions t o  the  two point  boundary value problem w e r e  

obtained up t o  Re/S2 = 

of G ( z )  f o r  Re/S2 = 0, 10, 25, 50. Although boundary layer  

formation is more pronounced a t  the  d i sk  s ide ,  i t  is  c l ea r ly  evident 

t h a t  at  Re/S2 - 25 an i n f l e c t i o n  point  appears ind ica t ing  boundary 

layer  behavior a t  the  housing s ide.  

case is  s t i l l  t o t a l l y  on one s i d e  of 

layer  thickness decreases, it is reasonable t o  suggest t h a t  G ( z )  

50. Figure 4 presents  t h e  analog so lu t ions  

The deviat ion from the  l i n e a r  

Go . However, as the  boundary 

near the  housing w i l l  c ross  over t o  the  top s i d e  of 

t h a t  G ( z )  

of G ( z )  f o r  Re/S2 = 25. The analog so lu t ions  have been the  

s t ronges t  evidence ye t  of a trend toward t h e  formation of a ro t a t ing  

core a t  l a rge  values of 

Go. Notice 

f o r  Re/S2 = 50 has already crossed t o  t h e  top s i d e  

Re/S2 . 
4. Boundary Laver L i m i t  

A. Boundary Layer Equations 

Having es tab l i shed  the  l ikel ihood of boundary layer  formation 

a t  both w a l l s  and core ro t a t ion  between them, w e  are now i n  a 

pos i t ion  t o  look a t  each boundary l aye r  individual ly .  
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For large Re/S2, define the boundary layer transformations 

The radial pressure gradient existing in the core will. be the 

gradient within both boundary layers. 

in the core; its angular velocity is constant but there is also 

axial flow through the core. 

Viscous effects are absent 

The Bernoulli equation for the core is: 

where Ve is the azimuthal velocity, linear in I: substituting 

into equation (30) yields 

-- E dPo = Ge2 r dr 

Ge is an unknown constant whose physical importance is that 

Determina- the pressure gradient at large 

tion of 

will be discussed later. 

Re/S2 is related to it. 

Ge will be by one of several "matching conditions" which 

Substitution of equations (47), (48a,b) and (50) into 

equations (31) and (32) give the following 

f ' 1 '  - 2f"f f ' 2  - (92 1 ce2) = 0 

g" - 2g'f 4- 2gf' = 0 



-23- 

B. Boundary Conditions f o r  Disk Problem and f o r  Housing 

Problem 

Equations (51) and (52) are va l id  f o r  e i t h e r  t he  d i sk  o r  

housing boundary l aye r  problem. However, t h e  two problems are 

dis t inguished by t h e i r  boundary conditions. 

For the  d isk ,  F = 0 on the  d isk  sur face  and increases  

pos i t i ve ly  i n t o  the  f l u i d .  For the  housing 5 = 0 on t h e  housing 

sur face  and increases  pos i t i ve ly  i n t o  the  f l u i d ,  

Disk problem: 

5 = 0: f = 0 ,  g = 1 ,  f ' = O  

5 -+ w: f '  -+ 0, g -+ G e  
(53) 

Housing problem: 

5 = 0: f = O ,  g = O ,  f ' = O  
(54) 

5 -+ w: f '  -+ 0, g -+ G e  

Notice t h a t  f o r  t h e  spec ia l  case of G e  = 0 , the  d isk  

problem reduces t o  t h a t  of a spinning d isk  i n  an i n f i n i t e  body of 

f l u i d  a t  rest. Karmn 171 has solved t h i s  problem. Unfortunately, 

no sca l ing  e x i s t s  such t h a t  f and g f o r  G e  # 0 may be obtained 

using Karman's so lu t ion  f o r  G e  = 0 . 
For the  spec ia l  case of G e  = 1 , the  housing problem 

reduces t o  t h a t  of a s t a t iona ry  d isk  i n  a i n f i n i t e  f l u i d  ro t a t ing  

with non-dimensional ve loc i ty  of 1. 

by Bodewadt [ 8 ] .  

a r b i t r a r y  G e  by t h e  transformation: 

This problem has been analyzed 

It is  poss ib le  t o  scale Bodewadt's so lu t ion  t o  
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1 1/2 -1/2 
f = 2" fg; g = GegB; 5 = Ge 5, 

where fB(EB) and gB(SB) are solutions to Bodewadt's problem. 

C. Matching Conditions 

It should be noted that for both the disk and housing prob- 

lems, a family ,of an infinite number of solutions may be generated 

by allowing Ge to vary between 0 and 1 e Batchelor [l] 

and Stewartson [4] propose that the correct Ge , and hence the 
correct solutions in the two boundary layers, be determined by 

matching f(w) for the disk and housing problems. 

a statement of continuity.that the axial. outflow from the housing 

must equal the axial inflow towards the disk. 

This is basically 

Schultz-Grunow [5] attacked the problem in the following way. 

Assuming core rotation, he integrated the equations of motion over 

both boundary layer thicknesses assuming parabolic profiles for the 

radial and azimuthal velocities within the boundary layers and 

neglecting the axial component. Then, matching the frictional 

shears at the disk and housing walls, the value of 

resulted, 

for finite Re/S 

equal. 

Ge, viz. an angular momentum balance on a toroidal control volume 

with a rectangular cross-section whose control surfaces are composed 

of the disk, the housing, and two cylindrical surfaces each of a 

Ge = 0.54 

It has been pointed out previously in this report that 

the shears at the two bounding walls are not 

This suggests another condition for the determination of 
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d i f f e r e n t  constant radius.  

is derived i n  Appendix B and takes  i n t o  account t h e  t ranspor t  of 

angular momentum across  the surfaces  of constant radius ,  

This angular momentum i n t e g r a l  condition 

For severa l  so lu t ions  t o  the  d isk  and housing problem tha t  

have been computed f o r  a common value of G e  , it has been observed 

t h a t  t he  a x i a l  v e l o c i t i e s  of t h e  two boundary layers  are not 

necessar i ly  equal. I f  the  momentum i n t e g r a l  condition is s a t i s f i e d  

by a value of f o r  which the  a x i a l  v e l o c i t i e s  do not match, 

then the  cont inui ty  condition must be reckoned with by a l t e r i n g  

the  p i c tu re  of t he  core v e l o c i t i e s  t o  include r a d i a l  flow. 

discussed i n  d e t a i l ,  along with the  der iva t ion  of the  momentum 

i n t e g r a l  condition, i n  Appendix B. 

G e  

This is 

The axial ve loc i ty  match is: 

fD(W> fH(m) 

The angular momentum matching condition is: 

DO H0 

The boundary l aye r  equations (51) and (52) have been solved 

numerically (see Appendix A) f o r  t h e  cases of G e  = 0.29, 0.31, 

and 0.33. Refer t o  Appendix C and Figures 5 and 6 f o r  the  calcula- 
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tion of the matching conditions. 

Graphically, the axial velocity match determines Ge to 

be 0,308 while the momentum integral condition determines Ge 

to be 0.313 . 
For Ge = 0.313 the difference in the axial velocities is 

0.005, This means that the core radial flow (outward, because 

fH(=) > f , (m) ) is about 0.006/0.380 = 1.5% of the radial flow 

in the disk boundary. 

appear in Tables 2 and 3 and Figures 7 and 8 .  

The disk and housing boundary layer functions 



CHAPTER IV 

SOLUTIOEl OF ENERGY EQUATION 

1. Radial Transformation and Boundary Conditions 

Having obtained solutions for the velocities, the energy 

equation may now be solved. The W r g y  equation (25) is 

a d  has the boundary conditions 

- 0  0 
aT - z = 0:. az 2 = 1: T = Tw(r) (26,27) 

0 

Recallisg equations (28) - (30) , 

a similarity transformation exists for the temperature T of 

the form: 

0 

T = Ec(r2B(z) + const.) ( 5 8 )  
0 

where const. may assume any value because 04.y derivatives of 

appear in equation (25). 

To 

Substitution of the velocity and temperature similarity 

transformations into equation (26) yields: 

-27-. 



The boundary conditions are: 

2 = 0: 0'(0) = 0 

If a constant housing wall temperature is assumed, 

Tw(r) = Tw , then const. in equation (58 )  is: 

const. = Tw/Ec 

So that 

Equation ( 5 9 )  with boundary conditions (60a, b) is sufficient 

to describe the temperature distribution in the fluid field. 

Equation ( 5 9 )  is an ordinary, second order, non-homogeneous, 

linear, differential equation for the variable e ( z )  with non- 

constant coefficients. 

problem, Re/S2 and Pr , as opposed to only one parameter, Re/S2, 

in the momentum equations. 

There are two physical parameters in this 

2. Range of Parameters and Types of Temperature Distribution 

The general types of temperature profiles may be deduced 

from the relative and absolute magnitudes of the dimensionless 

parameters Re/S2 and Pr . 
I. Limiting case of Re/S2 -L 0 . 
The solution of 8 for Re/S2 -L 0 is rather easily 

obtained and will be solved for, summarily. For any finite Pr , 
no matter how small or large, the coefficient of 8" tends to 

infinity. A conduction profile may be expected throughout 
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the region. 

pation, one might expect 8 to have a parabolic variation. 

Since the. viscous limiting case considers di-ssi- 

11. Finite Re/S2 . 
For finite Re/S2 and Pr , the thermal behavior ranges 

from fttlly viscous, as in Case I, to the development of thermal 

boundary layers as the number S2/(RePr) ranges from large to small. 

111. Re/S2 very large. 

For Pr << 1 , the intermediate type behavior as discussed 
Therefore, to focus on the limiting in Case I1 will often prevail. 

regimes, the thermal conditions will be studied for Pr-0(1) 

and Pr >> 1 so that both Re/S2 and RePr/S2 are very large. 

One immediate qualitative comparison can be drawn. The order of 

the thermal boundary layer thickness is less than or equal to the 

order of the velocity boundary layer thickness depending on, 

respectively, whether Pr 

of magnitude. 

is greater than or equal to unit order 

Solutions will be investigated in detail only for the 

limiting cases: 

1) Re/S2 very small 

2) Re/S2 and RePr/S2 very large (Pr O(1)) 

I . A  

3. Series Solutions 

For small values of Re/S2 , a series expansion for 8 in 

powers of Re/S2 is assumed. 



The boundary conditions being 

Substitution of equation (61) and the series expansions of 

the velocities, equations (36), (371, into the energy equation (59) 

and collecting terms of like powers of Re/S2 

following sequence of differential equations. 

results in the 

Recalling that odd-subscripted Fi and Gi vanish identically, 

and taking into account the boundary conditions equation (62); 

inspection reveals that odd-subscripted ei vanish, also. The 

solutions to the equations for 

to the' sgries solutions for the velocities. 

are obtained in a manner similar 

Tediousness increases 

rapidly with higher order terms. The solutions to eo and 92 are 
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where equation (67) also represents the temperature distribution 

for the limiting case of Re/S2 + 0 , and 

02 - Pr(-0.00278~~ + 0.02222~~ - 0.06778~~ + 
0.10000z5 - 0.07417~~ + 0.02333~~ - 
0,00071~~ - 0,00012) + Pr2(0.00089z8 - 
0.00397~~ + 0,00111~~ + 0.01667~~ - 
0.02917~~ + 0.01667~~ - 0.00220) 

4. Thermal Boundary Laver Limit and Boundary Conditions 

For large values of Re/S2 , the velocity coefficients of 
the temperature terms and the viscous dissipation terms are given 

as the velocity boundary layer functions, f(6) and g(E) , and 
the boundary layer co-ordinate, 5 . The temperature, therefore, 
will also be solvedforia the 5 co-ordinate system. 

Allow 

Substituting equation (70) and equations (47) and (48a,bJ 

for the co-ordinate and velocities into the energy equation ( 5 9 ) ,  

the result is 

Equation (71) is the thermal boundary layer equation valid 

at both the disk and housing. For each of these two separate 
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appl icat ions,  t h e  co-ordinate 5 is considered t o  increase  posi t ive-  

l y  into t he  f l u i d .  

l aye r  ptoblems, the  funct ions f ang g can be taken from the  

solut'ion for t he  dynamic boundary layers .  

Since t h i s  w a s  tlje case f o r  t he  ve loc i ty  boundary 
I .  

/ 

Differen t  sets of thermal boundary conditions w i l l  d i s t inguish  

the  thermal boundary l aye r  prbblems a t  the  d i sk  and housing as 

described by equation (71). 

P r  3 > e'(1) 

then is the  exis tence of s t eep  temperature grad ien ts  near the  d isk  

and housing and s lopes of much lesser magnitude i n  t h e  r o t a t i n g  

core where the re  is no d i s s ipa t ion .  

conditions f o r  each problem w i l l  be t h a t  

l a rge  5 . It should be kept i n  mind t h a t  t he  s lopes of the  

temperatuqe p r o f i l e s  as 5 approaches i n f i n i t y  are not  r e a l l y  zero 

It has already been shown t h a t  f o r  

thermal boundary l a y e r s - w i l l  e x i s t .  The physical  p i c tu re  

The asymptotic boundary 

t becomes constant at 

but are, much smaller than s lopes within the  boundary layers .  For 

boundary conditions:  

Disk: 

t = ' b  5 = 0 :  t ' = 0;: 5 -+ m: 

Housing : 

One should a l s o  remember t h a t  KD 
There being no heat  t r a n s f e r  at  the  disk,  the  heat  generated 

does not  have t o  equal 

% . 
in t he  d i sk  boundary l aye r  must somehow be brought t o  t h e  housing 

w a l l ,  To t h i s  end, conduction is assumed across t he  ro t a t ing  core. 
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The proper difference, 

the thermal boundary layers in an overall integral balance. 

% - % will later be reconciled with 

A,, Solution To The Disk Thermal Problem 

The solution to equation (71) with boundary conditions 

(72a, b) should not be difficult owing to the linearity of the 

energy equation. The solution may be constructed according to 

the following theorem: 

Given a linear, ordinary, second order differential 

equation of the type (711, (i.e- it may have non-constant coeffi- 

cients, be non-honi@geneous, and of the two-point boundary value 

type), the solution is given by 

t = Cltl + cpt2 + t 
P (74) 

where ti and t2 are any two linearly independent solutions to 

the homogeneous form of equation (71), t is any particular 

(non-homogeneous) solution, and cl and cp are chosen to satisfy 

the boundary conditions equations (72ap b), The functions t , 
tl , t p  and their first two derivatives have been computed for 

Pr = 10 and 50 . Tables k through 9 list those functions. For 

each Pr recall that it is required that the functions tl and 

tg are linearly independent. Linear independence of the functioas 

may be observed by a casual inspecaion of the functions, 

rigorously, linear independence is proven in Appendix D. 

P 

P 

More 

Returning now to the determination of cl and c2 through 

satisfaction of the boundary conditions, we require the values of 
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derivatives at 5 = 0 and the functions themselves as 5 -t - 

tp(m) 15.679, = 21.753, t q ( m )  = 5.941 

(76) 

For Pr = 50: 

Invoking the boundary conditions (72a, b) and substituting 

the above values into equation (74) gives the following values for 

cl and c2 . 
For Pr = 10: 

% + 6.074 
5.941 Cl = - 1.0 c2 = 

For Pr = 50: 

% + 26.867 
e2 = 13.290 Cl = - 1.0 

(79) 

Remaining is the task of constructing a thermal solution 

to the housing boundary layer for 

disk therma1,solution is now known. 

Pr = 10 and SO for which the 
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Be Solution To The Housing Thermal Problem 

It had been expected that the relative ease with which the 

disk the+€ solution had been obtained would be indicative of the 

effort required to obtain the housing thermal solution, Unfortun- 

ately, all attempts to date have failed to converge for any value 

of Pr . The.various numerical methods employed are discussed in 
Appendix E. 

5. En&rgy-&tchinp, Conditions 

The solution of the housing thermal boundary layer equation 

, in a way will depend on the housing asymptotic temperature, 

similar to that fn which the disk solution depends on K,, through 
the constants ca and cp e The problem now faced is analogous 

to the determihation of Ge in the velocity solutions, only now 

there are two asymptotic constants to be calculated, K,, and . 
Two matching conditions are required. They are derived in Appendix 

F and are conservation of energy applied to two control volumes, 

one having the same surface as the volume used in the angular 

momentum matching condition and the other being similar in shape 

but whose bounding constant 

% 

5 planes are the disk and a plane 

sufficiently far from the disk to include only the disk velocity 

and thermal boundary layers. 

The two energy conditions are 
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F-W 00 

W 00 

W 

For a given Pr , .f 'tdt will be a linear function of 

% Or 5-I 
the disk or 

' 0  

depending whetier the integration is perf omed over 

housing boundary layer. Equations (81) and (82) then 

represent two linear algebraic equations for the unknowns J$, and 

% . 
they depend on Re/S2 and Pr 

These matching conditions are not universal in the sense that 



6. Energy Solution f o r  Pr = 1 

A par t i cu la r ly  simple method of s o l a i o n  t o  the  temperature 

problem, the Reynolds analogy, exists f o r  the spec ia l  case of 

P r  = 1 . Consider t he  momentum equations (23) and (24) mult ipl ied 

by u0, and vo , respect ively,  resu l t ing  i n  

0 
a 2~ - Euo 2 + - u  r2) - R e  o a 2 2  

and 

The f l u i d  i s  now t rea ted  as i f  i t  were a compressible, 

per fec t  gas with constant propert ies  and where the  spec i f i c  hea t  

a t  constant pressure,  c , is approximated by t he  spec i f i c  heat 

of t he  f l u i d ,  c . The following modified form of the  energy 
P 

equation ( 5 )  r e su l t s .  

aTO aTO u -+w1,, = - 
o a r  
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Adding equations (83) - (85) and setting Pr = 1 gives the 

following differential equation. 

s2 a210 
s -- 0 .  

a1 
a10 u --+Wl-a'iZe Re a22 o a r  

whete 

= -T 1 + -  1 2  
IO Ec o 2 (uo + v ~ 2 )  

Equation (86) may be transformed into an ordinary differential 

equat3.cn by defining 

I - r21(z) + const. 
0 

Because only derivatives appear in equation (86), const. 

may assume any value. It is assigned 
1 
Ec w temperature, - T Recalling the 

the value of the housing wall 

similarity transformations 

for u and wl , equation (86) becomes 
0 

(89) 
S2 - I" - 2FI' + 2F'I = 0 Re 

Equation (89) for T(z) is identical to,equation (32) for G(z) , 

To compare boundary conditions between I(z) and G(z) proceed 

as follows: 

m 

Substituting equation (87) into equation (90)  and noting that 
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T (1) - Tw and uo(r,l) = vo(r,l) = 0 , we have 
0 

I 

Substituting eqtiation (87) into equation (92) and noting that ~ 

To'(0) = 0, uo(r.O) = 0, and vovo' * G(0)G'(O)/r2 = G'(0)/r2 , 
we have 

Having shown that I(z) and G ( z )  satisfy the $&me differential 

equation and boundary conditions, they are identically the same 

function 1 >  

I(4 = G(z) , for Pr = 1 (94) 

An easy check can be carried out for the limiting case of 

Re/S2 -t 0 From equation ( 5 8 ) ,  

To(r,z) = (r20(z) + Tw)Ec 

Theref ore, 

1 e = (1 - 22) 
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which checks with equation (67) when Pr  = 1 and 8 = Bo I. 

For l a rge  values of Re/S2 (and Pr  = l), equation (89) 

remains a va l id  equation. The so lu t ion  I(z) therefore  depends 

only ou t he  a v a i l a b i l i t y  of GCz) which is known only up to  - 
Re/S2 = 5.70. Equation (48b)a, however, gives  G ( z )  = g(S) , so 

that i n  boundary l aye r  co-ordinates 

7. Asymptotic Solutions 

D i f f i c u l t i e s  i n  obtaining a so lu t ion  t o  the  housing thermal 

boundary layer  problem prompted an inves t iga t ion  of the asymptotic 

behavior of t he  boundary layer  functions.  Rogers and Lance [9] 

have derived the  asymptotic so lu t ion  f o r  the  v e l o c i t i e s ,  Appendix 

G extends the ana lys i s  t o  the  energy asymptotic solut ion.  

(612) gives the  form of g(S) f o r  l a rge  5 . The other  boundary 

l aye r  function has t h i s  same s t ruc tu re ,  

the  housing and d isk  boundary layer  problep lies i n  the  s ign  of 

For the  disk,  the  axial ve loc i ty  is toward the  disk,  i n  the  d i r ec t ion  

of decreasing 5 , hence K is negative. Conversely, f o r  the  

houqing, K is pos i t ive .  The e f f e c t  then is t h a t ,  while the  

so lu t ions  axe of a damped osc i l l a to ry  nature  f o r  both d isk  and 

housing, t h e  d isk ' s  o s c i l l a t i o n s  have a longer period and are more 

heavily damped. 

so lu t ions  presented i n  Figures 7 and 8, 

Equation 

The d i s t i n c t i o n  between 

K. 

This comparative behavior is ver i f i ed  by the  

Notice t h a t  f o r  t he  Kaman 
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problem (Ge = 0) the asymptotic forms reduce to exponential 

decay and the oscillations are lost. 



W T E R  V 

DESIGN CONSIDERATIONS 

Design considerat ions f o r  t h e  s l i nge r  seal are of both a dy- 

namic and a thermal nature.  Four items have been iden t i f i ed  as 

being of bas ic  importance t o  t h e  design, and whose dependence may 

be quant4tat ively spec i f ied  as funct iqns of t he  two parameters 
I 

2 Re/S and Pr. 

ence of f l u i d  

the  foregoing 

Design evaluat ions must take i n t o  account t h e  pres- 

on both s ides  of t h e  disk.  

ana lys i s  appl ies  t o  t h e  f l u i d  aa;"either s ide .  

Thig is  possible  s ince  

The 

Prandt l  number P r ,  depending only on f l u i d  proper t ies ,  is t h e  

same throughout, while Re/S , depending on geometry as w e l l ,  may 

i n  general  be d i f f e r e n t  f o r  t h e  two s ides .  

2 

1. Torque Requirements 

The torque a c t b g  on one s i d e  of t he  d i s k  is given by: 

R 
torque = u 2r i2 d r  

r 
0 

where 5o is t h e  r a d i a l  d i s tance  fram t h e  axis of ro t a t ion  of t h e  

i n t e r f a c e  and R is t h e  d i s k  radius.  In non-dimensional var iables:  

4 -4 
2a 0 

torque = G* ( 0 )  (R Ar 

- 42 - 
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where 

(99)  
z 2  Re 

G ' ( 0 )  = - 1 - O.O042(Re/S ) , f o r  O< - < 5.7 
S2 

Re/S2 (100) 

Equation (99) is obtained from the  series so lu t ion  of G ( z )  

2 and equation (100) is  the  boundary layer  l i m i t  f o r  la rge  Re/S . 
For moderate values  of Re/S 2 exact so lu t ions  are not  known, however, 

da t a  from the  analog computer so lu t ion  (see Table 10) has been 

used t o  f i l l  i n  t h i s  range. The analog da ta  s e e m s  t o  f i t  i n  w e l l  

with the  series and boundary l aye r  so lu t ions  (see Figure ll), and 

G ' ( 0 )  vs. Re/S 2 appears t o  be monotonically increasing. 

2. Pressure Capabi l i t i es  
t i  

The r a d i a l  pressure gradient  w i l l  determine the  pressure 

'difgerexrce t h a t  t he  seal can maintain. It has been shown t h a t  t he  

r a d i a l  p ressure  gradient  i s  t he  dominating one f o r  both boundary 

l aye r  and viscous l imi t ing  flows and varies with r2 according t o  

equation (33).  

In tegra t ing  equation (33) from any r a d i a l  point  t o  t h e  

outer  edge of t h e  d i s k  y ie lds ,  i n  dimensional form, 
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A similar formula is  obtained from e i t h e r  s i d e  of t he  disk.  Evalua- 

t i n g  each of them-at t h e i r  respect ive in te r faces  and subt rac t ing  

one froq the  o ther  t o  eliminate &, gives 

2 2 
- pa - - pb = - ~ ~ B a  (;: - R ) - Bb(Fb - R~ (102) 

Subscripts a and b denote opposite s ides  of the  disk.  

t h a t  3, being a funct ion of Re/S2, may d i f f e r  on e i t h e r  s i d e  of the  

d i sk  as Re/S 

Notice 

2 may d i f f e r ,  which has already been shown. 

I n  prac t ice ,  when la rge  pressure d i f fe rences  occur, it would 

be an a t t r a c t i v e  f ea tu re  t o  be ab le  t o  cont ro l  t he  in t e r f ace  

r a d i a l  dis tance d i f fe rence  fa  - rb without having t o  ad jus t  t he  

r o t a t i o n a l  speed of the  disk.  

i s  desired t o  keep = rb. From equation (102) then, 

- 

Assume t h a t  f o r  a given pa - ib i t  
- 

2 For l a rge  Re/S the  in t e r f ace  pos i t ion  cont ro l  is l o s t  

because both B and B a b 

layer  asymptote where B = Ge2 = 0.098. 

i n t e r f ace  posit ioning, Re/S 

very c lose  t o  zero because there  the  slope of B vs.  Re/S 

go t o  the  same values,  namely the  boundary 

From t h e  point of view of 

2 should be small, but i t  should not be 

2 .i 

(see 

. Figure 12) is  s m a l l  and the  cont ro l l ing  of B is  not s e n s i t i v e  t o  

2 changes i n  Re/S . 
2 I n  Figure 1 2  the  intermediate ranges of Re/S have been 

provided by the  analog solut ions.  B is a monotonically decreasing 
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2 2 function of Re/S . For greater pressure capabilities small Re/S 
is recommended which will give the largest B ,  

Torque and pressure considerations are consistent in that 
2 both recommend operating at as low a Re/S as possible. 

face position control is desired, low to moderate ranges of Re/S 

are suggested. 

If inter- 
2 

3. Disk Temperature 

The disk temperature is T(r,o) which in non-dimensional tlqri- 

ables is given by 

2 
Txr,~) - Tw * - ;;2 e(o) 

C 

2 For small Re/S the series solution is valid and is 

2 For large Re/S equation (70) is 

Unfortunately, the thermal boundary layer is not determinabqlk 

because of,failure to get a solution at the housing wall. For the 

cases of Pr = 10,50, however, for which families of solutions at 

the disk were obtained depending on the value of 5, a range of 5 
may be established. % must be positive which places a lower limit 
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on it ,  An 

than the  d 

upper l i m i t  is derived by s t i p u l a t i n g  t h a t  % be less 

sk temperature, Consider the  case of P r  = 10. From 

equations (74) and (79) 

K, + 6.074 
t2(0)  + t (01, P r  = 10 (106) 

u tD(0) = - t,(O) + 
5.941 P 

where tl(0) = 1 t2(0)  = 1 tp(0) = 1 

For the  upper l i m i t  of KD< tD(0),  e q u a t i o n . U S )  may be solved for 

0 <KD ~ 1 . 2 3  P r  = 10 

A similar ca lcu la t ion  f o r  Pr = 50 y ie lds  

s u b s t i t u t i n g  #D <tD(0) r e s u l t s  i n  

For the  ranges of 5 establ ished in equations (107) and (109) 

t h e  corresponding ranges of tD(0) may be e a s i l y  calculated,  

2 1.02<tD(0)  61.23 P r  = 10, l a r g e  Re/S 

2 2.02 <tD(0)  <2.18 Pr  = 50, l a r g e  Re/S 
I 
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The trencj@ere is of rising disk temperature with an increase in Pr. 
5 

0 

4. Heat Transfer at Housing Wall 

Heat transfer at the housing wall is given by 

R 
heat transfer = k 2n 

a; - 
r 

0 
. o  

, A  

which in &on-dimensional variables assumes the form 

2 
nk ' (R4 - '2.:)6'(1) heat transfer = 2ac 

2 For small values of Rp/S the series solution for 6'(l) is 

valid: 

2 When Re/S = a, heat transfer varies with the first power 

of Or, as is the case in Couette flow, 

Practical considerations would suggest limiting the disk 

temperature and heat transfer demands, both of whlgh may be accom- 

plished by selecting a fluid with small Pr. 

For the case of Pr = 1 the heat transfer is also known. 

Begininning with equation (go), substituting backward, differen- 

tiating with respect to z and evaluating at z = 1 where u = v = 0 ,  

we have 

6'(l) = I'(1) (114) 
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From the  r e su l t  of the  Reynold$' analogy, equation (94): 

e'(1) = G' (1 )  (115) 

2 For small Re/S , t he  series so lu t ion  f o r  G ( z )  gives 

2 
e'(1) = G ' ( 1 )  = - 1 + (Re/S2) (2/1575) 

2 and f o r  l a rge  Re/S the  boundary layer  ve loc i ty  

e ' (1)  G ' ( 1 )  = -gqH(0) 

(116) 

transformation gives 

Subs t i tu t ion  of equation (116) o r  (117) i n t o  equation (112) 

gives  the  complete hea t  t r ans fe r  p i c tu re  f o r  P r  = 1. 

5. Remarks 

Although thermal considerations are unanlrmous i n  specifying 

a f l u i d  with small Pr ,  and dynamically a s m a l l  o r  moderately small 

Re/S2 

of ten 

which 

is  recommended, f l u i d s  with small P r ,  such as l iqu id  metals, 

have an extremely small v iscos i ty .  

pregents d i f f i c u l t y  i n  maintaining a low value of Re/S 

It is t h i s  property 

2 

even though the  gap width, a, may be small. A t  t h i s  point ,  t h e  

p r a c t i c a l  importance of dynamic and thermal e f f e c t s  must be 

weighed against  each other .  
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APPENDIX A 

NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS 

This appendix discusses the methods of numerical solutions 

to the 2 -point boundary value problem, equations (31), (32) and 

associated boundary conditions, and the method of solution to 

equations (51) and (52) where the associated boundary conditions 

are asymptotically specified, 

cussed first, as the asymptotic method is an extension of the 2- 

The 2 -point method will be dis- 

point 

using 

begun 

technique. 

The 2 -point problem was solved by forward integration 

the Runge-Kutta formula. 

by specifying additional conditions at z = 0 equal to the 

Propagation of the solution is 

number of boundary conditions at z = 1. 

to the given initial conditions 

and are known t o  be correct when the solut,rions obtained satisfy 

the proper boundary conditions at z = 1, 

difficult to guess the proper initial condition and extremely 

difficult if several initial conditions are required. Fox [lo] 

discusses a scheme for correcting the guessed initial conditions 

by the Newton-Raphson method, which is briefly reviewed here, 

These are in addition 

at z = 0. They must be guessed 

In general, it will be 

The values of the solutions at z = 1 obtained by the numer- 
6 

ical integration formulas are envisioned as being functions of the 

required guessed initial conditions, Ip terms of equations (31) 

and (32) and their boundary conditions: 
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F'(1) = fCn.(F"(O), G ' ( O ) ,  B) 

G(l) = fcn.(F"(O), G'(O), B) 

F(1) = fcn.(Ff'(0), G ' ( O ) ,  B) 

Deviation of F"(O), G'(O), and B from their correct values will re- 

sult, when uging the Runge-Kutta formula, in deviations of F'(l), 

G(1), F(1)  from their correct values, Neglecting higher order 

terms : 

(c'(0) - G'(0)) aF' (1) aF' (1) 
aF'"0) aG' ( 0 )  

(p"(0) - F"(0)) + - F'(1)  - F'(1) = 

- G(1) - G(l) = 

- F(1) - F(1) 

ac_(ll (F"(0) - F"(0)) + . e 

aF"(0) 

(p"(0) - P"(0)) + . 
aF"(0) 

The underscored variables represent incorrect quantities. 

If values for the partials can be 

linear, algebraic equations give recommended changes for the 

guessed initial values, F"(O), G'(O), and B. 

tained by differentiating the differential equations with respect 

to each initial condition, solving by forward integration, and 

ned, solutions t o  the above 
C f -  

The partials are ob- 



evaluating at z = 1. 

differential equations for the partials as there are ini 

tions to be adjusted. 

There will be as many additional sets of 

The numerical solution to the boundary layer equations (51) 

and (52) was applied according to the method of Nachtsheim and 

Swiigert [ll]. 

totic boundary conditions to a two-point boundary value problem. 

This method teqds to reduce the problem withlaeymp- 

In addition to satisfying the end-point conditions (the end point 

selected at first at random) the condition that the slopes of 

the function@ vanish at the end point is also imposed. 

dition on the slopes presents more equations for adjusting initial 

guesses than there are initial guesses. A least square satisfaction 

of all the conditions (slopes and endpoints) is thus required. 

When initial values have changed an arbitrarily set amount from 

the starting guesses, assuming convergence, the end-point is moved 

The con- 

outward. 

at the furthest calculated end-point agree with the specified 

asymptotic boundary conditions to within an arbitrarily set error 

of acceptance 

The process is repeated until the boundary conditions 

. 

Neglecting higher order terms in the correction scheme 

equations is essentially a linearization. 

mation only if the first guessed initial values are sufficiently 

close to their correct values. 
2 problem, this requirement became exceedingly stringent as Re/S 

increased, until for Re/S2 = 5.7, convergence required starting 

This is a good approxi- 

For the 2 -point bo 
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guesses correct to six significant. figures. Considering that the 

digital computer on which calculations were performed provided 

only for six significant places, the initial value correction 

scheme became useless for larger Re/S . 2 



APPENDIX 3 

ANGULAR MOMENTUM I N T E G U  CONDITION 

Consider the  toro ida l  cont ro l  volume as described in the  

text of t he  report .  

and inner  r a d i i  of the  cy l ind r i ca l  surfaces  of t he  cont ro l  volume 

L e t  R and R2 be, respect ively,  t he  outer  1 

Apply the  angular momentum theorem to  the  cont ro l  volume; 

namely, the  sum of torques on the  cont ro l  surfaces  equals the t i m e  

rate of change of angular momentum throughout the  cont ro l  volume 

Surface torques w i l l  be considered first. The shear forces  

on the surfaces  = R1 and = R2 are neglected i n  comparison t o  

the shear forces  on the  d i sk  and housing forces .  

The t o t a l  angular torque on the  housing face  is given by 

- 
r = R1 

% -f 21111 5jij dF , evaluated a t  the  housing. 
- 
r = R2 

Successive a lgebra ic  subs t i t u t ions  g ive  

= (R: - R2 4 ) (B-1) 
2a 3 4 

% =  a r d r  2 n p R  wG'(1) 

R2 /R 

Similarly,  f o r  t he  d i sk  surface: 
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There can be no momentum f l u x  across  the  cont ro l  sur faces  

adjacent t o  the  d isk  o r  housing. 
Fit 

The problem I s  steady s ta tesand  the  rate of change of momen- 

tum throughout t he  cont ro l  volume is  given by t h e  momentum f l u x  

across  the  surfaces  of constant radius.  Caution should be exercised 

t o  account f o r  a l l  angular momentum transported across  these  sur- 

faces.  For a l l  housing and d isk  boundary l aye r  so lu t ions  with a 

common value of Ge ,  i t  has  been observed t h a t  t h e  values of fD(=) 

and f (-) general ly  do not match. From a cont inui ty  viewpoint, H 
t h i s  means t h a t  there  must be some r a d i a l  flow i n  the  core. This 

presents  a question of t h e  v a l i d i t y  of t h e  boundary condition i n  

the  housing and d i s k  boundary layer  problems, v iz . ,  as 5 4'- 

f ' (&) = 0, whereas it has j u s t  been shown t h a t  t he re  may be a non- 

zero core r a d i a l  ve loc i ty .  

t o  t h e  core  r a d i a l  ve loc i ty  are of t he  order of magnitude of S /Re. 

The r e su l t i ng  core r a d i a l  ve loc i ty  is  then j u s t i f i a b l y  neglected 

i n  comparison t o  the  r a d i a l  ve loc i ty  i n  the  boundary l aye r  which 

is nominally of u n i t  order. 

The axial v e l o c i t i e s  which g ive  rise 
2 

When considering momentum f lux,  however, t h e  in tegra ted  

value of t h e  core r a d i a l  ve loc i ty  across  t h e  core width (approxi- 

mately t h e  gap width, a )  may cont r ibu te  s ign i f i can t ly  and must be 

retained i n  the  momentum match. 

Momentum f l u x  across the  surface r = R is given by 2 
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a 
2 "Rz = \ p i; 2n R 2 5 & 

0 

1 

Similarly, for the surface r = R1: 

1 
5 = pw2 2 sa R: P'(z)  G(z)dz 

0 
1 

03-41 

Substitution of these quantities into the angular momentum 
4 2 law, cancelling R1 - R24 e and recalling that ReiS2 f pwa /u: 

1 

G' (1 )  - G ' ( 0 )  = - 4 F'(z) G(z)dz 03-51 

Change nota to boundary layer co-ordinates by means of equations 

(47-48 a,b), The change of co-ordinates changes the integration 

bY 

1 OD 0 

J d z = / d ~  + J dS + J  d5 
OD 0 0 

disk housing core 
width 

where 

f'gd5 = Ge / f'df = ( fH(m)  - fD(w)) Ge 
core 
width core 

width 
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g'D(0) - = 4 

Equation (C-5) in boundary layer co-ordinates is: 

f'g dS - f'gd2 + (fH(-) - f,(-)) Ge I 
H 

I 
D 

(B-6) - L 

The.physica1 significance of each term in equation (C-6) will be 

utilized as a check against sign errors, $(O) and &(O) represent 

tarques acting on the control volumes two parallel, flat, 

ends e Since the senses of these tarques are opposite one 

another, the left hand side of (B-6) should be the difference of 

these two terms if the absolute value for each is assumed. 

In the integration terms, fg represents the radial velocity 

component, which is directly proportional to r (see equation ( 2 9 ) .  

Near the disk, the radial velocity is entirely upwards while near 

the housing, the bulk of the radial velocity is downward. The 

two terms represent opposite effects of transferring momentum 

out and into the control volume, respectively. Thus, on the right 

hand side of equation (C-6) should appear the difference of these 

terms if the absolute value of each is assumed. 

Since the core radial velocity represents a net outflow of 

angular momentum if IfH(-) I is greater than IfD(-) 1 , and a net 
gain if the inequality is reversed, the right hand side of equation 

(B-6) will consistently represent a momentum loss if equation (B-6) 

is written 
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APPENDIX c 

CA&CULATION OF THE AXIAL VELOCITY MATCH 

AND MOMENTUM INTEGRAL CONDITZON 

A. Axial Velocity Match 

0.29 .39210 .37157 

0.31 ,38213 .38419 

0.33 .37174 .39641 

B. Momentum Integral Condition 

0.29 0.31 0.33 . .  Ge 
g p  .53529 .52591 .51612 

g’Hw) ,12070 .13341 ,14653 

Q) 6 f ’  g d 5  .19112 

D 
.19120 .19089 

W 

f’g dS .08524 .09422 .lo430 
BO 

fD(4 .39210 .38213 .37174 

f g ( m ) ,  * .37157 .3 8419 .39641 

cf,(-) - f,(-+e -.00595 . OMS4 ,00814 

equation (57) 4.1488 4.0201 3.8680 



APPENDIX D 

LINEAR INDEPENDENCE OF THE BOMOGENEOUS 

TEMPERATURE FUNCTIONS 

From the theory of linear differential equations, it is a 

well known condition that two homogeneous solutions of a second 

order equation are linearly independent if the following deter- 

minant (known as the Wronskian) is non-zero. 

# Q  

For the d:-k thermal boundary layer solutions for both 

Pr = 10 and 50, the initial conditions chosen for the homogeneous 

solutions were 

t1(O) = 1.0 t2(0) = 1.0 

t,'(O) = 4.0 t2'(0) ea 0.0 

The conation on the Wronskian is obviously fulfilled and 

the homogeneous solutions are therefore linearly independent. 



APPENDIX E 

UNSUCCESSm ATTEMPTS AT SOLVING THE HOUSING 

BOUNDARY LAYER ENERGY EQUATION 

A review is given here of the numerical procedures (all of 

which have failed to converge) employed in the solution of the 

energy equation at the housing. The five methods attempted may 

be classified into one of two groups: forward integration methods 

and finite difference methods. 

Characteristic of the forward integration methods is that 

the solution is propagated from the beginning of the interval. 

Using the superposition of homogeneous and particular solutions 

because the energy equation is linear, it is unnecessary to use 

any correction technique on the initial, slopes as described in 

Appendix A. Runge-Mutta and Milne (Predictor-Corrector) schemes 

produced diverging solutions in spite of the asymptotic solutions 

(Appendix G )  which indicate damped oscillations about a constant 

for Iaxge 5. Imposing the requirement that t'(=)+ 0 ,  and correcting 

initial values accordingly was not sufficient to cause convergence. 

The effect,was to indicate virtually no change in initial slopes 

even though the condition t'(m) = 0 was far from being satisfied. 

The f inits dif f erenci formulation of the problem represents I 

'derivatives by central difference formulas. 

tion error of 'd2, wheke d is the step length of the divisions 

of the rang= of 5, equation (71) becomes 

To within a trunca- 
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b2 + pi tn-l + \ L2 + 2 f..> tn + (+ + >) tn-l = 
Prd Prd Prd 

2 
n 

where the  index n represents  any subdivision i n  the  i n t e r v a l ,  

Two a l t e r n a t i v e  procedures may be applied t o  equation 

(E-1) , 

1) I t e r a t i o n  of t he  funct ion t (S) :  A reasonable form f o r  

t ( 6 )  is  assumed. t i n  equaeion (E-1) is solved f o r  using the  

last  known values of tn - 
ca r r i ed  out over the  range of C u n t i l  it is clear t h a t  t(C> con- 

n t  
and tn+l, This procedure is  repeatedly 

. verges t o  some function. I n  practice, t h i s  i t e r a t i v e  procedure 

did not converge. 

2) Linear System of equatigns: Equation (E-1) is applied t o  

Resulting is a l i n e a r ,  every i n t e r n a l  s t e p  point  of t he  in t e rva l .  

a lgebra ic  set of equations f o r  the  unknown vector  t 

constant vector  is t h e  d i s s ipa t ion  term arid the  matrix of coeffic- 

The known n o  

i e n t s  evolves from the  coe f f i c i en t s  of t i  - 1, tn, and mn+l. 

t h i s  system of equations may be of f a i r l y  l a r g e  order,  an exact 

so lu t ion  is ava i lab le  (Varka [12)) due t o  t h e  tr i-diagonal na ture  

of t h e  matrix of coef f ic ien ts .  This methods converges i f  t he  

matrix is diagonally dominant. For f i n i t e  values of d, (which 

Although 

must be) t h e  matrix is not diagonally dominant. 

r u l e  out t h e  p o s s i b i l i t y  of t h e  solut ion,  however, t he  method 

This f a c t  does n o t '  
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d&d not converge. 



APPENDIX. F 

STEADY STATE ENERGY INTEGRAL CONDITIONS 

FOR COBSTANT DENSITY FLUID 

Theftwo thermal matching conditions are derived herein.  

Consider f i r a t .  t he  to ro ida l  cont ro l  volume defined f o r  

t he  angular momentum i n t e g r a l  condi t ion  der iva t ion .  I n  steady state, 

t h e  conservation of energy theorem states t h a t  t he  work rate done 

on the  f lu id lbounds r i e s  by environmental, fo rces  equals t he  sum of 

i n t e r n a l  and kJne t ic  energy t ransported out of the  cont ro l  volume 

by f l u i d  motion and t h e  thermal energy conducted out of t h e  cont fo l  

volume 
I 

No-normal forces  cont r ibu te  pQwer as no boundary d e f l e c t s  

normal t o  I t s e l f .  

t r i b u t e s  and is given by 

Only the  shear  a t  the  moving disk boundary con- 
& 

Work rate = J u ;(0)2n?ddT - 
r=R2 

where v(0) is the  d isk  ve loc i ty .  

Successive subs t i t u t ions  i n t o  the  dirpensionless form r e s u l t  

in 

n 
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Coqsider now internal evergy transported across control 

surfaces. 

as there are no normal velocity components at the solid boundaries. 

This occurs only at the surface of constant radius 

u’ T dit- p-‘ r = R2 
Internal energy transport = 2 r p  c 

z=o 

A 

Successive substitutions into dimensionless form result in 

4 4 Internal energy transport = 2rpaw F’O dz(R1 - R2 ) 
z=o 

The dimea fonal form of the kinetic en rgy transport is 
f ;=a 

K.E. transport = - 1 p 2 s  (G2+ v2 + 5’); d i {  

R2 
2 

- 

(F-5) 

z=a - R1 I (G2 + v -2 + w -2 )u - dzl 
P O  

Successive substitution into dimensionless variables, and 

neglecting the axial velocity componertt i fer large S, yields 
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1 ~ 

K.E. transpors = pw 3 II a(R: - R:)/ ( F g 2  + G2)F' dz 

0 

Thermal conduction at the disk is zero. Temperature gradients 

at the cylindrical gurfaces of constant radius are neglected in com- 

pariacbn to gradients in the thermal boundary layer. The only con- 

duction, therefore, is at the housing wall. 

- 
Conduction = rr k aT(r,lZ 2 r 3 d: - a i  r=Rz 

(F-7) 

which, when put into dimensionless form becomes 

(F-8) 2rk 4 4 Conduction = 0'(l) (R1 - R2 ) 

Subskitution of the work rate, energy transport, kinetle 

energy transport and conduction expressions into the conservation 

of energy theorem gives 

G(O)G'(O) + 4 7 Re F ' 9  d z + 4 2  Re 1 &. (Fq2-k G2)F' dz 

0 
S 

0 '  

e -  l 9 ' ( l )  = o 
Pr 

Changing t& Boundary layer co-ordinates and recalling that 



the  energy balance is: 

L Do H0 

W 

H0 

7 

1 - - Pr l t 'H(o)l  = 0 ( F- 10) 

where i n  the  core the temperature has assumed an average value 

based on 

ence of the  a x i a l v e l o c i t i e s .  

and % and a mean r a d i a l  ve loc i ty  based on the  d i f f e r -  

Absolute value s igns  have been inser ted  so t h a t  the  alge- 

b r a i c  s i g n  preceding each term, can d i r e c t l y  be associated with 

the  tern's physical  s ign i f icance ,  

energies  contr ibut ing t o  the  cont ro l  volume are pos i t ive .  

The convention adopted is  t h a t  
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The second thermal matching condition is derived by COR- 

sidering a control volume whose "z" width includes only the disk's 

velocity and thermal boundary 1ayer.thicknesses. 

The shear work input at thg,disk boundary is the same as in 

the previous energy balance. Similarly, the internal and kinetic 

energy transported across the constant radius surfaces is the 

same as previously except the range of integration includes only 

the disk boundary layer thicknesses. 

Energy conducted out of the constant z surface may be in- 

ferred from the constant conduction model of the core. 

In  boundary layer co-ordinates the second thermal matching 

00 00 

1 
e -  

(F-ll) 



APPENDIX G 

ASYMPTOTIC SOLUTIONS OF THE BOUNDARY LAYER EQUATIONS 

The difficulty in obtaining a solation to equation (71) 

prompted an investigation of the asymptotic solutions (large 5) 

of the momentum and energy equations, 

two sets of equations allows a solution of the momentum equations 

independent of the energy relation. Pequired is the solution t o '  

The uncoupling of these 

2 2 2 f"'- 2f"f + f' - (g - Ge ) = 0 

g" - 2g'f + 2gf' = 0 

for large 5; 

Let 

'L 

K and Ge are the asymptotic values of f'and g respectively. 

is required that as E+ 00,  f and vanish. 

It 
- 

Substitution of equations (G-2) into equations (G-1) and 

neglecting higher order terms results in the linear equations 
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i;" - 2KK' - 2 Ge = 0 

3' - 2Kg' + 2 Ge 6 = 0 
(6-3) 

where f' has been replaced by because only derivatives of f appear. 

*The approach to the solution of equations (6-3) is facilitated 

by decomposing the system into four first order equations. 

additional variables i' = k and K t  = j. 

hereafter dropped, and equations (6-3) are written as 

Define 
- - 

The barred notation is 

&'  = k 

j '  = 2Geg +2K j 

k' = -2Geh +2Kk 

Solutions are sought in the form o f c  

" k = Cke AS g = C e'' h = Che " 3 = c.e g J 

Where the C's and A's are constants. Substitution of these assumed 

forms of the solution into equations (6-41, and cancelling the 

exponentials, results in a linear set of homogeneous equations 

for the constants C Ch, Cj, Ck. g' 
In order for the solutions of the C's to be non-trivial, 

the determinant of the matrix of coefficdents Bust vanish. This 

condition results in an algebraic, fourth degree equation for A .  
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The foun possibi lOties  f o r  h ind jca tes  t h a t  f o r  g, h, j, and k, 

there  qre four  so lu t ions  f o r  ea&. 

allows t h a t  the  sum of these four ' so lu t ions  is  a l s o  a solut ion.  

The four th  ord 

The l i n e a r i t y  of the  equatious . 

2 [h(2K - h)I2  = - 4Ge (6-5) 

The form of equation (G-5) must admit complex roots  f o r  A. 

of t h e  four  A's w i l l  involve the  pos i t ive  square root of a complex 

Each 

number, e i t h e r  

where i = d -  1 e 

Since the re  ar9 two pos i t ive  square roots  of a complex 

number, t he re  w i l l  r e s u l t  eighth's;  but only four  of them are 

d i s t i n c t .  The four  values may be compactly represented by 

= K ?  - 1 

'l,2,3,4 162 

The funct ion g is the  sum of t he  four  functions 
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It is required that as g-t 0. This can only be satisfied if 

the A’s in the exponentials real parts are negative, 

moment, the negative restriction will be imposed on both the real 

For the 

and imaginary parts of A. 

Of the four A’s, the only one satisfying this condition is 

If this is designated A,, then C C and C must be chosen 

to be zero. In the homogeneous set of linear equations for the 

constants, C may be solved for in terms of C . 
g2’ 83’ 84 

h g 

- -2Ge 
‘h .- (2K-A)X g 

Correspondingly; Ch2, Ch3,.and Ch4 are zero. 

into equation (G-9), the result is 

If A1 is substituted 

(G-10) 

(G-11) 

Because of the factor i, the imaginary part of g is the real part 

of h, 

be negative, the requirement that h+O as S-)m 

Since the imaginary part of Al has already been shown to 

is already satisfied. 

Taking C 

the real parts of g and h as found above are taken as the solutions 

to be the complex number a + ib, a and b are constants, 
gl 
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to equations (6-3). (Recall that these equations are linear, so 

that the real part alone is a solution.) 

(6-12) 

and similarly 

3 E = [exp I....]: {b cos [ . , . . I  - a sin [ . . , . I  (6-13) 

where the barred notation has been.re-adopted, The asymptotic 

solution to the energy equation is to be investigated now. 

For large 5, allow 

t6-14) 

Substituting equations (6-14) and (6-2) into equation (71), 
- dropping higher order terns, define = S. 
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which is a first order, non-homogeneous, linear, equation. The 

solution is the sum of the particular and a complementary solution. 

Referring to equation (6-13) for ii, substitution will verify that 

a particular solution to equation (G-15) is 

3 - 
'par = k p  [...If[ alb cos [ . . . I  + a 2 a sin [. . . I  

where a and a are real constants, and the square brackets 

are identified with those in equation (6.12). 
1 2 

The complementary, 

(homogeneous), solution satisfies 

- 2K 
':om Pr 

- -  

Integrating once: 

corn = a3 S 

- = o  'corn (G-17) 

(6-18) 

where %is an integration constant. 

(6-15) is the sum of Scorn and S par 

The solution to equation 

(6-19) 
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Since both K and Pr are positive, in order to satisfy S -+ 0 

as 5 -+ Q) , a must be chosen to be zero. Another way to see 

that a3 = 0 is to consider the special case of Pr = 1 and 

Under these conditions, equation (6-15) written in terms of E is 

3 

= Ge. 

- 
t" - 2KZ' + 2K$ 0 (6-20) 

which is identical to equation (6-3) for i .  Both equations also 
require that as 5 -+ Q) , 5 ,  5 0. Under these special circumstances, 

the solutions for and should be identical to within the con- 

stants multiplying them. This can only be if a3 = 0, 
- 

Therefore: S = = p p  [...I\ talb cos I...] + a 2 a sin [.. .I 

The conclusion of this Appendix is that for the housing boundary 

layer problem, the asymptotic behavior of the velocities and 

temperature distribution isthatddamped oscillations. 
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2 Re/S 

0,Ol 

0.10 

1.00 

1,25 

2.00 

2.50 

3.33 

3.64 

4.00 

4.44 

5.00 

5.70 

Comparison of 

wing second order 

G' (0) 
numer . 
-1 9 0000 

-1 e 0000 

-1.0042 

-1.0066 

-1.0170 

-1 e 0265 

-1.0465 

-1.0555 

-1.0662 

-1.0818 

-1 e 0999 

-1.1266 

-1.00000 

-1.00003 

-1.00428 

-1.00667 

-1.01712 

-1.02675 

-1.0476 

-1.0567 

-1.0685 

-1.0844 

-1.1070 

-1.1391 

Table 1 

2 Seties Solutions for Small Re/S , 

t e r n ,  w i t h  the numerical solutions 

G'(1) 
numer 

-0.99999 

-0 e 99998 

-0.99872 

-0 e 99801 

-0.99497 

-0 99223 

-0.98624 

-0.98395 

-0.98036 

-0.97631 

-0.96769 

-0 e 95805 

G' (1) 
series 

-0.99999 

-0.99998 

-0.99873 

-0 e 99808 

-0.99492 

-0.99206 

-0 98589 

-0.98317 

-0.97968 

-0 e 97497 

-0.96825 

-0 -95860 

B 
numer 

-0.30000 

-0 30000 

-0.29923 

-0 e 29881 

-0.29697 

-0.29529 

-0.29178 

-0.29020 

-0 i 28836 

-0 28567 

-0.28326 

-0.27909 

B 
series 

-0.30000 

-0.29993 

-0.29930 

-0.29891 

-0.29722 

-0.29566 

-0.29228 

-0.29079 

-0.28888 

-0.28630 

-0 28262 

-0.27741 





c 
M 









Table 4 

A particular soXution to the disk thermal. 
. boundary layer equation for Pr = 10 

g t t' t '* 



Table 4 (continued) 

g t t' 



Table 4 (continued) 
r: t t l  t 'I 



A homogeneous solution t o  the disk thermal 
boundary layer equation for P r  = 10 

P t t‘ t (1 



Table 5 (continued) 

t tt t ‘t 





Table 6 

A second homogeneousmlution t o  t h e  disk 
thermal boundary layer equation for P r d O  

s t t' t" 



Table 6 (continued) 

s t t' 



Table 6 (continued) 

I t t' t " 



Table 7 

A part icular  solution t o  the  d isk  thermal 
boundary layer equation for Pr - 50 

I: f t' t 



Table 7 (continued) 



Table 7 (continued) 



Table 8 

A homogeneous solution t u  the disk  thermal 
boundary layer equation for Pr  = 50 

5 t t’ t w  



Table 8 (continued) 

t tt t '? 



Table 8 (continued) 



Table 9 

A second homogeneous solution t o  the disk thermal 
boundary layer equation for Pr  = 50 

f t t' t a  



Table 9 (continued) 

t t' 



Table 9 (continued) 
c t t' t n  



TABLE 10 

Initial Values to the Two-Point Boundary Value Pzoblem 
the Analog Solurian 

10.0 .2674 -1.347 -. 096 
12.5 2469 -1.520 *. 119 
16.6 .2337 -1 770 - .. 152 
25.0 .1813 -2.420 -.314 
50.0 e 1138 -4 e 040 - .3&l 


