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ABSTRACT

The flow and temperature fields are considered in the region
between a rotating and stationary disk. The governing equations
are changed by a radial transformation into ordinary differential
equations. Distinctions between regimes of large and small Reynolds
numbers are clarified and the equations are solved'accordipgly.

The trend toward boundary layer formation is confirmed by these

solutions.

The thermal problem is treated in a similar manner with

Prandtl number also being of importance in this case.

Finally, quantities which are of design importance are dis-

cussed based on the dynamic and thermal solutions.
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CHAPTER I

INTRODUCTION

1. Description of Device

.With the development of space power systems has arisen the
need for a seal demanding little power for operation and possessing
- very high sealing abilities across pressure differences of
approximately one atmosphere. The slinger seal has been proposed
to meet these requirements.

The slinger seal is a fluid, shaft sealing device. The
configuration is presented in Figure 1. Fastened to, and spinning
with, the shaft is a thin disk. This assembly is enclosed in a
cylindrical, statiomary housing. Liquid occupies the marrow gap
between the disk and housing faces. Through the action of viscosity,
the angular motion of the disk is imparted to the liquid slinging
it outward to the housing periphery. The liquid acts as the sealing
medium, and the pressure difference that can be supported is
related to the gap distance and the difference of radial distances,
from the axis of rétation, of the two interfaces.

Important secondary flows arise, There is a radially.out—
ward secondary flow along the rotating disk and a radially inward
flow along the housing wall. In order to prevent leakage of the
fluid, the integrity of the interface must be maintained. This
requires adequate surface tension at the interface to arrest the

radial inflow and redirect it axially so that it may flow outward

-1 -



along the rotating disk. This report does not investigate the
ihﬁérface dynamics, bﬁt it is recognized that such an analysis
would strongly depend on the dynamics in the main body of the fluid
away from the neighborhood of the interface.

lThe flow can be either laminar or turbulent. The subject
of this report is the analysis of the fluid field for laminar flow.
Specifically, thg region of interest is that which comprises the
bulk of the fluid exclusive of the end effects of the interface

and the radial end wall.

2, Previous Investigations of Related Problems

The qualitative aspects of a fluid between two infinite,
rotating disks were discussed by Batchelor [1]. For the special
case of one of the disks held stationary, Batchelor's problem
becomes the model adopted for this analysis.

Within the laminar flow regime, two limiting cases can be
identified: 1) fully viscous behavior, and 2) boundary layer
behavior. In the fully viscous limit, the effects of viscosity
dominate everywhere across the gap. This is analogous to a fully
developed Couette flow. By contrast, in the boundary layer limit,
the effects of viscosity are contained in thin layers adjacent to
the disk and housing wall.

Core rotation is assumed between the two boundary layers
when solving for that limiting case. Each boundary layer is
treated separaﬁely with afi appropriate matching condition invoked

to determine the angular velocity of the core. Karman [7]
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considered the problem of a rotating disk in an infinite extent of
fluid at rest; and Bodewadt [8] a stationary disk in an infinite
extent of rotating fluid. A study of both fluid and disk rotation
was made by Rogers and Lance [9], [15].

This report calculates the core rate of rotation by two
methods. The firgt embodies continuity and the second is based on
an integral momentum balance. Results of these two methods disagree
slightly, and reasons are given for accepting the momentum result.
Schultz-Grunow [5] examined the two disk problem and invoked an
integral momentum balance, assuming parabolic velocity profiles,
to determine the rate of core rotation.

A clear and complete picture of the transition from the
viscous limit to the boundary layer limit is difficult to achieve.
As Re/Sz, Reynolds number based on gap width, increases, the present
numerical solutions become divergent as do series expanded in terms
of Re/52° However, numerical solutions have been carried far enough
by Grohne [2], [16] and by Lance and Rogers [15] to establish the
type of departure from fully viscous behavior. The present paper
also determines the core angular velocity in the boundary layer
limit.

The associated heat transfer problem may also be identified
with two types of limiting behavior which, as in the dynamic problem,
determine the method of analysis. Depending on the absolute and
relative magnitudes of Re/S2 and Pr, the temperature distribution

will range from the parabolic conduction type to a thermal boundary



layer at each disk.

There has been very little previous work done in connection
with the thermal aspects of the problem. Millsaps and Pohlhausen
[6] have solved the case of heat transfer for the Karman problem, and

the compressibility aspects are discussed by Ostrach and Thornton

[17] .

3. Objectives of Analysis

The objectives of this laminar flow analysis are:
1) For finite Re/S2, to resolve the discrepancies
in the mode of departure from the viscous limit.
2) To review matching criteria in the boundary layer
limit and provide appropriate solutions.
3) To solve the related heat transfer problem.
4) To formulate design criteria for the use of

slinger seals,



CHAPTER II

GOVERNING EQUATIONS

‘1. Assumptions

- The fluid model chosen is an incompressible, constant
property, Newtonian fluid. Body forces and effects of radiation
are neglected. The bounding walls of the fluid are impermeable,
and the fluid on the surface of those walls moves with the velocity
of fhe walls. The flow is steady and symmetric about the axis of
rotation of the disk.

The assumptions and the geometrical confines of the fluid
are similar to those of the fluid in a vortex magnetohydrodynamic
generator analyzed by Loper [14]. Much of the development of the

basic equations parallels Loper's development.

i. Non-Dimensionalization of Equations

The problem is most easily treated in cylindrical cor
ordinates. Steady flow and.iotational symmetry allow time and
azimuthal derivatives to be neglected.

The continuity, Navier-Stokes, and energy equations, under

the assumptions specified, are as follows:

Ltawn) W )
r 3 9z



(8Tl LB, ,08, 10
or T 9z or ar? T or
- 9=
- %_.+ 8_u) 2)
r2 9z% .
- 9v aps v 23 > = 2
p(EE+ T4 o (BT 28T 2y
or r 9z or r 9r r? 3z

~ % 5 v v . 3%
p(3 245 i) o B2, 108, 00
or 3z 9z ar? 1 3r 9z2
- o= - -
oo ez dly L, 10, 8,
or 9z or r 9r 5&2
S am 2 =2 =.2 =
w237 4 2(B) + 2(2) 4 (27 4
N ar r 29z 0z
= -2 .- =02
(2o 27 4 (XY (5)
oz or or r

In an effort to simplif§ these equations by comparing the
orderg-of-magnitude of the various terms, the variables will be

non-dimensionalized as follows.

T z D. u,v,w T
r""'ﬁ’ z‘;: P=_‘%s usvtwa—‘;{;”—a T="f (6)
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Substitution of equations (6) into equations (1)-(5) yields the

following dimensionless set of equations:

L3 g _ )
r odr 3z
du _ Vv Su _ 8% 1 3%u 1 3u
ar r s"’a Ear+Re(r2+r T
u zazu
Tzt st ) @
v, w8y 1 3% 13y v . 2 3%
“a:*:*s"’az - Re(8r2+r r " Z*+Ss az)
9
W B 3 1 (3w 13w oo 3%
u3r+swaz SE82+Re(r2+r r+s 22)
(10)

2 2 2 2
+52(2)" 4 g5 0 20, (39)T, (&) -2%9—‘1+-‘1%



n2
Where: Re = Reynolds No., = 2uR.

E = Euler No, = ;;%{2-

S = Geometry Factor = '%

R%y2
cl?ﬁ-

Ec = Eckert No. =

Pr = Prandtl No., = %f

3. Boundary Conditions

A, Velocity Boundary Conditions

Let z = 0 be the face of the rotating disk. The non-slip
and impermeability conditions on the disk and on the face of the

stationary housing (z = a) are:

u(r,0) =0 u(r,a) = 0
v(r,0) = wr v(r,a) = 0 (12)
w(r,0) = 0 w(r,a) =0
which in non-dimensional form are:
at z = 0: u=0, v=r, w=0 (13)
at z=1l: u=0, v=0, " w=0 (14) -

An additional, integral, condition on the radial velocity,

u , is obtained by noting that there can be no net radial flow



across the gap. This condition is expressed by:

1
I udz = 0 (15)
o .

B. Thermal Boundary Conditions

If the disk is not cooled, then maintenance of steady state
conditions requires that all heat generated by viscous dissipation
be removed at the housing wall; therefore, heat transfer at the

disk is zero

at z =0, —,}’f=o (16)

The ability to cool the housing wall suggests that at z = 1,
the temperature could be maintained at any arbitrary level Tw R

where T_ is usually constant.

at z =1, T=T a7n

The disk temperature is left unspecified and will result

from the solution of the energy equationm.

4, Series Expansion of Dependent Variables

The non-dimensionalization has served to consolidate the
many quantities of the problem into a few familiar, dimensionless,
parameters such as Re, Pr, etc.

Each term in the differential equations consists of a
variable portion of nominally unit order modified by a dimensionles§

coefficiént. The salient features of the problem can be isolated
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by solving equations consisting of the largest terms of the
complete equations based on their indicated magnitudes. This
problem leads also to mathematical simplification as well.

To this end, the dependent variables will be expanded in
power series of some dimensibnless.parameter. Three such parameters,
or their recfprocals are available; S, E, and Re . Of these
three, S 1is the only one which is consistently large, as the
geometry will always embody a large aspect ratio.

" The expansions of the independent variables will be done in
powers of 1/S .
1

1 ;
u=u, + T u; + 52 U2 F oo o6 e s e e e s

S

(18)

The functions u_, u], U2, + « « V. , V], « s« « €tc., are nominally
of unit order of magnitude.

In the geometrically limiting case of infinite disks, for
which equations. (18) must remain valid, the zeroth order terms will
be the'énly term in each series. It is these terms, therefore,

that must satisfy the boundary conditions. For finite 1/S , the
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higher order terms must then assume zero values at the boundaries.

Equations (7) to (11) are to be expanded with the series
(18) and the ordering is accomplished by collecting the terms
nultiplied by a given power of S and setting each collection
equal to zero.

To leading order, the continuity equation yields

ow

o
3 = 0 (19)

Boundary conditions on w determine that

v, = 0 20)

Ordering the "z" momentum equation (10) and taking into account

that v o= 0 , yields

3p
o 4
5% 0 (21)
ow ‘ _
Since 3;3 = 0 , the next order terms of the continuity equation
are:
o(ru ) ow)
1 o
r or + 0z 0 (22)

The leading significant terms of the "r" and "¢" momentum

equations (8) and (9) are:

2 2
_3\10 +w ————auo - —-—vo = -E -—-—apo + sz -Ta o (23)
Yo or 1 3z r - % 9r Re 9z
'avo v avo uv, g2 azvo
e t Y. %z T % Re 322 (24)



To leading significant order, the energy éguation is:

a2
" 3? +w aTo s2 ‘? To + Ecs? avo 2 + (Bud)z
o dr Y RePr 3z2 Re 2z 9z
(25) .
3?0
z = Q, 3;— = (26)
z = 1, TO = Tw 27)

Equations (22) - (25) constitute a mathematical statement
of the hydrodynamic flow in and thermal behavior of the fluid.
The incompressibility assumption results in the uncoupling of the
momentum equation from the energy equation allowing the temperature
distribution to be calculated after the flow field has been
determined. The solution of the flow field is described in the
next chapter and the solution of the energy equation is treated

separately in Chapter 1V.



CHAPTER III

SOLUTION OF THE FLOW FIELD

The distributions of radial, azimuthal and axial velocity
result from simultaneous solution of the continuity and three

momentum equations.

l. Karman Similarity

The equations (9) and (10) are idengtically the equations
governing the flow over a disk rotating in an infinite extent of
fluid. The difference between that problem and the slinger seal
lies in tﬁe boundary conditions.

Karman [7] noted that these p;rfialldifferential equatiéns
may be reduced to ordinary equatioﬁs in z by the following

transformations:
Let:
w; = 2F(2) (28)
In order that continuity, equation‘(7), be satisfied, ug
must have the following form:
u = - rF'(2) (29)
Also, let :
v, = rG(2) (30)
F(z) and G(z) are fnnctiéns of 2z only. Primes denote
differentiation with respect to if.lvTﬁe'éfguﬁént,‘ i:‘; 6f( F(z)

- 13 -
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and G(z) will no longer be carried along as it is understood.

The use of this transformation in the present problem de-
pends on its compatibility with the boundary conditions (13)-(15),
It can be shown in fact that the use of this transformation auto-
matica}ly requires that there be no net ;adial flow in this problem
(equation 15). If there were to be a net radial through-flow then
one could not have Karman similarity.,

Substitution of the transformation, equations (28), (29),

and (30) into the "r" and "¢" momentum equations (8) and (9),

yields
dp

,§3 1R} " '2 2 = _}_3___9_

Re © 2+ P -6 - T r.odr (31)
52

Te G" - 2G'F + 2gf' = 0 - (32)

ap
Recalling- that 3;2 = 0, the right-hand side of equation

(31) is a function of r, only, while the left-hand side is a function
of z, only. Therefore, each side of that equation can at most be

equal to a mutual constant, defined as B.
B
= -3T (33)

One integration of equation (33) reveals that P, varies

with r2, The strength of this variation depends on B,
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The boundary conditions in terms of F and G are:

z = 0: F'=0, G=1, F=0 (34)

N
fl

1: F' =0, G=0, F=0 (35)

Equations (31), (32) and (34), (35) are the transformed
governing equations and boundary conditions on the velocities.

Note that the equations are ordinary, non-linear, and coupled
in the two unknowns, F and G. Also note that there are two deriva-
tives on G, three derivatives on F , two boundary conditions on
G, but four boundary conditions on F. The extra condition to be
met is associated with the proper determination of B. The correct

B will be that for which all the boundary conditions are satisfied.

2. Range of Re/SZ and Types of Flow

Equations (31) and (32) are seen to depend on the one
parametgr-Re/S? . The magnitude of this parameter will determine\
the types of flow and the approach to solving the equationms.

For small values of Re/S? , the viscous forces dominate.

For the limiting viscous case of Re/S$2 —»0, there will be no axial
nor radial velocities and the azimuthal velocity decreases linearly.

Large values of Re/S will result in boundary layer flow;
presumably separate boundary layers at the disk and at the hoﬁsing.
The boundary conditions for this type of flow are determined from
the assumption that there exists a potential core of fluid rotating
as a solid body in the central region between the two boundary

layers.
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Intermediate values of Re/S? represent transitional behavior
between the two extremes just discussed. Investigation of this
range of Re/S? will shed light on the nature of the trend toward

core rotation as Re/S? increases.

3. Viécous Limit and Its Environs

The methods of solution for small Re/S2 will now be

discussed in detail.

A. Series Solution
For small Re/S?, the functions F(z) , G(z) , and the

constant B have been expanded in the series:

.A 2 |
F-—-%% F +‘(-§£.) F + (%%) Fo + . . . (36)
2 _ o
G='Go+%§c1+(§%)cz+...... (37)
2
B=Bo+§§Bl+_(§)Bz+...... (38)

where Fo and G0 satisfy the boundéry conditions equations (34) and
(35), and the higher order functions F , F' , and G satisfy

homogeneous. boundary conditions at z = 0 and z‘=‘1.

for i = 1,2,3, . . .

(3éa,b)
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Substitution of the series into equations (31) and (32)
and coiiecting coefficients of like powers of Re/S? gives the fol-

lowing sequence of equations.

F"' -G2= B

(40a,b)
¢G" = 0
(o]
"e - =
F 2G°G1 B
(41a,b)
G," = 0
wy n 12 _ - 2 -
F, 2F F " 4 F_ 26,62 - 61 B,
Go" +2F'G - 2FC ' =0 (42a,b)
o 0 0o 0
ny o _ n " LR =
F3 - Z(FOFI + F Fo ) + ZFO F 2(G0G3 + G1G2) Bj
(43a,b)
" 1 4 ) t 1] -
G3" + ?.(}3’o Gy + F GO) Z(FoGl + FIGO ) 0
Fq"' _ 2(F°F2" + FlFl" + FOUFZ) + 2F0’F2' + F172
- (26 Gy + 261G3 + Gp2) = By
(44a,b)

Gy" + Z(FO'GZ + F1'6; + F2'Go) - 2(F0G2' + F16;'

1 -
+F2G°) =0
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Inspection of these equations and the associated boundary
conditions reveals that the odd-subscripted functions Fi’

G Bi are identically zero. This fact somewhat simplifies the

i?
remaining equations when solving for the even-subscripted Fi’ Gi’
and Bif

Equations (40a,b) may be solved by twice integrating
Go" = 0, substituting into equation (40a) and performing three
integrations on Fo"' . The five integration constants and B
are determined to satisfy the six appropriate boundary conditioms.
The resulting Fo and Go are substituted into equations (42a,b)
to obtain G, and the Fo . This sequence is carried out for each
successive even-subscripted set of equationms.

In this procedure, each F. and G, evolves as a polynomial
and, although the principle is simple, the polynomials become
lengthy and the process is very tedious. Furthermore, convergence
ofvthe series (36) to (38) cannot be guaranteed particularly for
Re/S2 > 1.

The series solutions, as far as they were carried out, are

Go =1-2 (45a)

e 2,7 3_1 4w, 1 |5 -

Fo = 50 2 + §0 z 15 2 + 0 2 (45b)
B =- 3 (45¢)
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12 7 26, 11 y 9
G2 = 35 (21 z’ - 326 + 10 z° - 2z" + 23 --?arz) (46a)

F, = 0.00011586z3 - 0.000357z* + 0.000143z5 + .
0.000361z% - 0.0005198z7 + 0.00032728 -
0.000111z° + 0.0000243z1% + 0,00000261z!! +

0.0000294212 ” (46b)

B, = 0.00069516 (46c)

The zeroth terms Fo’ Fo', and G0 are presented in
Figure 2. Deviation of G(z) from the linear G, will indicate if

and how core rotation will form for larger Re/SZ.

B. Numerical Integration.

Numerically integrating the two point boundary value problem
(equations (31), (32) and boundary conditions (34), (34)) could be
done only up to Re/S%? = 5,70, Details of the numerical procedure
and its limitation up to Re/S2 = 5.70 are discussed in Appendix A.

The series solutions using only the zeroth and second terms
are compared to the numericél solutions by looking at G' at
z =0 and z = 1 and the constant B for'Qarioug_Re/SZ'up to 5.70
(See Table 1).

Good agreement ap?ears between the two methods for values of
Re/S? less than 1, as might be expected, while discrepancies

are held to be about 1% anywhere in the. range 0 < Re/S? < 5,70.
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Grohne [2] and Soo [3] have also looked at this problem for
small but finite Re/S . Grohne had his higher ordgr Gi satisfy
the same boundary condition as G, so that the overall series for
G = G0 + (%E]ZGZ + . . . could not satisfy the proper boundary
condition G(0) = 1 except for the case Re/S%2 = 0 .

Soo?s zeroth order solution is in agreement with equations
(45a, b, c). Rather than taking higher order corrections to be the
higher order terms in series such as equation (36)-(38), Soo
preferred to calculate the corrections by two separate series
expansions; one from 2z = 0 forward to z = %-, and another from
z = 1 backward to z = %‘ , under the conditions that the two
also that G'(0) = G'(1). This last condition was argued from the
fact that across any constant radius surface, the flux of angular
momentum is small, therefore the torques on the disk and housing
must be equal. The numerical results show this to be not quite
true. For example, for Re/S2 = 1.0, calculations show (Refer
to Table 1) that G'(0) = - 1.0042 while G'(1) = 0 0.99872.

Although the difference is small, important qualitative differences
arise between Soo's method and the numerical solution for small
but finite Re/S? .

Referring to Figure 3, Soo's solution of G(z) deviates
from Go(z) in an "S" shape indicating that for finite Re/S? ,
boundary layers are beginning to form at both walls. The numerical

solution deviates from Go(z) by falling below Go(z) , indicating

a trend toward boundary layer formation adjacent to the disk only,
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Before concluding on the finality of this trend, it was decided
that if at all possible, the solutions should be taken to larger

Re/S2 .

C. Analog Solution

The equations (31) and (32) were programmed on an analog
computer. Solutions to the two point boundary value problem were
obtained up to Re/S% = 50. Figure 4 presents the analog solutions

of G(z) for Re/s?

0, 10, 25, 50, Although boundary layer
formation is more pronounced at the disk side, it is clearly evident
that at Re/S? - 25 an inflection point appears indicating boundary
layer behavior at the housing side. The deviation from the linear
case is still totally on omne side of Go . However, as the boundary
layer thickness decreases, it is reasonable to suggest that G(z)
near the housing will cross over to the top side of Gé. Notice
that G(z) for Re/S? = 50 has already crossed to the top side

of G(z) for Re/S% = 25. The analog solutions have been the
strongest evidence yet of a trend toward the formation of a rotating

core at large values of Re/S? .

4, Boundary Laver Limit

A. Boundary Layer Equations

Having established the likelihood of boundary layer formation
at both walls and core rotation between them, we are now in a

position to look at each boundary layer individually.
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For large Re/S?, define the boundary layer transformations

1/2z

g = (Re/S?) (47)

£6) = (Re/sHY%m(z)  g(&) = 6(2) (48a,b)

‘The radial pressure gradient existing in the core will be the
gradient within both boundary layers. Viscous effects are absent
in the core; 1ts angular velocity is constant but there is also

axial flow through the core. The Bernoulli equation for the core is:

dr T (49)

where Ve is the azimuthal velocity, linear in r . Substituting

into equation (30) yields

dp

-9 . 2
Ir Ge 4(50)

|t

Ge is an unknown constant whose physical importance is that
the pressure gradient at large Re/S? is related to it. Determina-
tion of Ge will be by one of several "matching conditions" which
will be discussed later.

Substitution of equations (47), (48a,b) and (50) into

equations (31) and (32) give the following

£ - 2¢"§ + f'z - (gz - Gez) = 0 (51)

g' - 2g'"f + 2gf' = O (52)
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B. Boundary Conditions for Disk Problem and for Housing

Problem

Equations (51) and (52) are valid for either the disk or
housing boundary layer problem. ﬁowever, the two problems are
distinguiéhed by their boundary conditioms.

For the disk, § = 0 on the disk surface and increases
positively into the fluid. For the housing & =0 on the housing
surface and increases positively into the fluid,.

Disk problem:

€=O: f=0’ g=1’ f'' =0 .
(53)
g > o £' >0, g~ Ge
Housing problem:
£ = 0: £=0, g=0, £ =0
(54)
g » = £' >0, g~ Ge

Notice that for the special case of Ge'= 0 , the disk
problem reduces to that of a spinning disk in an infinite body of
fluid at rest, Karmn [7] has solved this problem. Unfértunately,
no scaling exists such that f and g for Ge # 0 may be obtained
using Karman's solution for Ge = 0 .

For the special case of Ge = 1 , the housing ﬁroblem
reduces to that of a stationary disk in a infinite fluid rotating
with non-dimensional velocity of 1. This problem has been analyzed
by Bodew?dt [8]. It is possible to scale Bodewadt's solution to

arbitrary Ge by the transformation:
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1
f = EGe f; g= GegB; £ = Ge EB : (55a,b,c)

where fB(EB) and gB(gB) are solutions to Bodewadt's problem.

C. Matching Conditions

It should be noted that’for both the disk and housing prob-
lems, a family of an infiniteﬁnumber of solutions may be generated
by allowing Ge t; vary between O and 1 . Batchelor [1]
and Stewartson [4] propoée that the correct Ge , and hence the
correct solutions in the two boundary layers, be determined by
matching f() for the disk and housing problems. This is basically
a statement of continuity that the axial outflow from the housing
must equal the axial inflow towards the disk.

Schultz-Grunow [5] attacked the problem in the following way.
Assuming core rotation, he integrated the equations of motion over
both boundary layer thicknesses assuming parabolic profiles for the
radial and azimuthal velocities within the boundary layers and
neglecting the axial component. Then, matching the frictional
shears at the disk and housing walls, the value of Ge = 0.54
resulted. It has been pointed out previously in this report that
for finite Re/S the shears at the two bounding walls are not
equal, This suggests another condition for the determination of
Ge, viz. an angular momentum balance on a toroidal control volume
with a rectangular cross—section whose control surfaces are composed

of the disk, the housing, and two cylindrical surfaces each of a
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different constant radius. This angular momentum integral condition
is derived in Appendix B and takes into account the tramsport of
angular momentum across the surfaces of constant radius,

For several solutions to the disk and housing problem that
have been computed for a common value of Ge , it has been observed
that the axial velocities of the two boundary layers are not
necessarily equal. If the momentum integral condition is satisfied
by a value of Ge for which the axial velocities do not match,
then the continuity condition must be reckoned with by altering
the picture of the core.velocities to include radial flow. This is
discussed in detail, aiong with the derivation of the momentum
integral condition, in Appendix B.

The axial velocity match is:

£ (2> = £,(=) (56)

The angular momentum matching condition is:

g'p() - 'z
=4
[T ew] - ] ] « s - oo
p° H°
(57)

The boundary layer equations (51) and (52) have been solved
numerically (see Appendix A) for the cases of Ge = 0.29, 0.31,

and 0.33. Refer to Appendix C and Figures 5 and 6 for the calcula-
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tion of the matching conditions.
Graphicéily, the axial velocity match determines Ge to

be 0,308 while the momentum integral condition determines Ge
to be 0.313 .

. For Ge = 0.313 the difference in the axial velocities is
0.005, This means that the core radial flow (outward, because
fH(w) > fD(w) ) is about 0.006/0.380 = 1.5% of the radial flow
in the disk boundary. The disk and housing boundary layer functions

appear in Tables 2 and 3 and Figures 7 and 8,



CHAPTER IV

SOLUTION OF ENERGY EQUATION

1. Radial Transformation and Boundary Conditions

.Having obtained solutions for the velocities, the energy

equation may now be solved. The energy equation (25) is

s? aaTo aTo l?TO' EcSz“avo 2 Buo 2|
RePr 3z2 vi 3z uo'8r = T TRe (az ) + (az )

(25)
and has the boundary conditions
aTo
z = 0 rrme 0 z = 1s To = Tw(r) (2§,27)

Recalling equations (28) ~ (30),
wy = 2F(z), u = - rF'(2), v, = rG(z)

a similarity transformation exists for the temperature To of

the form:
To = Ec(r26(z) + const.) (58)

where const. may assume any value because only derivatives of To
appear in equation (25).

Substitution of the velocity and temperature similarity
transformations into equation (26) yields:

SZ
RePr

2_
8" - 2F8' + 2F'6 = - 1sz—e|G'2 + F"EJ (59)

-27- .
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The boundary conditions are:
z = 03 6'(0) =0 (60a)

If a constant housing wall temperature is assumed,

Tw(r) = Tw , then const. in equation (58) is:
const, = Tw/Ec
So that
at z=1, 06(1) =0 (60b)

Equation (59) with boundary conditions (60a, b) is sufficient
to describe the temperature distribution in the fluid field.

Equatioﬁ (59) is an ordinary, second order, non-homogeneous,
linear, differential equation for the variable 6(z) with non-
constant coefficients. There are two physical parameters in this
problem, Re/S? and Pr , as opposed to only one parametér, Re/Sé,

in the momentum equations.

2. Range of Parameters and Types of Temperature Distribution

The general types of temperature profiles may be deduced
from the relative and absolute magnitudes of the dimensionless

parameters Re/S2 and Pr .

I. Limiting case of Re/S%? » 0 .
The solution of 6 for Re/S? » 0 is rather easily
obtained and will be solved for, summarily. For any finite Pr ,
no matter how small or large, the coefficient of 6" tends to

infinity. A conduction profile may be expected throughout
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the region. Since the viscous limiting case considers dissi-

pation, one might expect © . to have a parabolic variation.

II. Finite Re/S2 .
For finite Re/S? and Pr , the thermal behavior ranges
from fully viscous, as in Case I, to the development of thermal

boundary layers as the number - S2/(RePr) ranges from large to. small.

III. Re/S? very large.

For Pr << 1 , the intermediate type behavior as discussed
in Case II will often prevail. Therefore, to focus on the limiting
regimes, the thermal conditions will be studied for Pr ~0(1)
and Pr >> 1 so that both Re/S2 and RePr/S? are very large.
One immediate qualitative comparison can be drawn. The order of
the thermal boundary layer thickness is less than or equal to the
order of the velocity boundary layer thickness depending oﬁ,
respectively, whether Pr is greater than or equal to unit order
of magnitude.

Solutions will be investigated in detail only for the
limiting cases:

1) Re/S? very small

2) Re/S? and RePr/S? very large (Pr > 0(1))

1

3. Series Solutions

For small values of Re/S? , a series expansion for 6 in

powers of Re/S2 is assumed.
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R Re)?
6 = o +g3e1+(55) 2+ . . . (61)

The boundary conditions being
/
91(0) = ei(l) = 0, for all i (62)

Substitution of equation (61) and the series expansions of
the velocities,-equations (36), (37), into the energy equation (59)
and collecting terms of like powers of Re/S? results in the

following sequence of differential equations.

= L1 12

Pr eo Go (63)
> 0" 26 '6," 64
Pr 01 = -~ 267G (64)

"o g ! ' — th # Y Y
L 0"-2F, 8" +2F 6 (2G° Gyt + 6" F ) (63)
Pr 2
A " o_ ' ' . ' =
e 03 2(F°el + Fleo ) + 2(9°F1 + Fo 91)‘ =

- 2(G,'63" + 61'Gy' + F "F1") (66)

Recalling that odd-subscripted Fi and G, vanish identically,

i
and taking into account the boundary conditions equation (62),
inspection reveals that odd-subscripted Gi vénish, also. The

. solutions to the equatiomns for Gi are obtained in a manner similar

to the'ééries solutions for the velocities. Tediousness increases

:rapidly with higher order terms. The solutions to eo and 85 are
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o, = ;22(1 - 22) 67)

where equation (67) also represents the temperature distribution

for the limiting case of Re/$2 -~ 0 , and

82 = Pr(-0.00278z% + 0.02222z7 - 0.067782% +

0.10000z°5 - 0.07417z% + 0.02333z3 -

0.00071z% - 0,00012) + Pr2(0.00089z8 -

0.00397z7 + 0.00111z% + 0.0166725 -

0.02917z"% + 0.01667z3 - 0.00220) (68)

4. Thermal Boundary Layer Limit and Boundary Conditions

For large values of Re/S? , the velocity coefficients of
the temperature terms and the viscous dissipation terms are given
as the velocity boundary layer functions, f£(£) and g(§) , and
the boundary layer co-ordinate, £ . The temperature, therefore,
will also be solved forin the £ co-ordinate system.

Allow
0(z) = t(£) (70)

‘Substituting equation (70) and equations (47) and (48a,b)

for the co-ordinate and velocities into the energy equation (59),

““the result is

L

Bt -2t +26't = - [g'2 + £"2] (71)

Equation (71) is the thermal boundary layer equation valid

at both the disk and housing. For each of these two separate
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applications, the co-ordinate £ is considered to increase positive-
1y igto the fluid. Since this was the case for the velocity boundary
layér problems, the functions f and g can be taken from the
séiﬁﬁion for the dynamic boundary léyers.

Different sets Qf thermal bcundaryiconditions will distinguish
the thermal boundary layer prbblems at the disk and housing as
described by equation (71). It has already been shown that for
Pr 3_0?1) thermal boundary layers:will exist. The physical picture
then is the existence of steep temperature gradients near the disk
and housing and slopes of much lesser magnitude in the rotating
core where there is no dissipation. The asymptotic boundary
conditions for each problem will be that t becomes constant at
large & . It should be kept in mind that the slopes of the
temperature profiles as § approaéhes infinity are not really zero

but are much smaller than slopes within the boundary layers. For

boundarﬁ conditions:
Disk:
£=0: t'=0; g »m t= KD (72a,b)
Housing: f

£E=0: t=20; E>e® t=Ky -(73a,b)

One should also remember that K_ does not have to equal

D
KH . There being no heat transfer at the disk, the heat generated
in the disk boundary layer must somehow be brought to the housing

wall., To this end, conduction is assumed across the rotating core.
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The proper difference, KD - KH s will later be reconcilled with

the thermal boundary layers in an overall integral balance. .
As Solution To The Disk Thermal Problem

The solution to equation (71) with boundary conditions
(72a, b) should not be difficult owing to the linearity of the
-energy equation. The solution méywbe constructed according to
the following theorem:
Given a linear, ordinary, second order differential
equation of the type (71), (i.e. it may have non-constant coeffi-
cients, be non-hombgeneous, and of the two-point boundary value

type), the solution is given by
t = cit; + coty + tp (74)

where t; and t are any two linearly indqéenden; solutions to
the homogeneous form of equation (71), tp is any particular
(non-homogeneous) solution, and c; and cs are chosen to satisfy
the boundary conditions equations (72a, b)o‘ The functions tp ,
t; , tz and their first two derivatives have been computed for
Pr = 10 and 50 . Tables 4 through-9 list those functions. For
each Pr , recall that it is required that the functions t; and
t, are linearly independent. Linear independence of the functions
may be observed by a casual imspection of the functions. More
rigorously, linear independence is proven in Appendix D.

Returning now to the determination of c¢; and c3 through

satisfaction of the boundary conditions, we require the values of



derivatives at & = 0 and the functions themselves as

For Pr = 10:

tp'(O) = 4,0000,

tp(w) = 15.679,

For Pr = 50:
tp'(O) = 4,0000,

tp(w) = 6.760,
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E >,

t1'(0) = 4.0000, t5'(0) =0

(75)

t1(=) = 21.753,  to(=) = 5.941

(76)

£1'(0) = 4.0000, t5'(0) =0

(77)

t1(=) = 33.627,  ta(=) = 13,290

(78)

Invoking the boundary conditions (72a, b) and substituting

the above values into equation (74) gives the following values for

cy and co .

For Pr = 10:

¢cg = =-1.0
For Pr = 50:
cg = -1.0

K, + 6.074

€2 = T 5.941 (79)
K, + 26.867

c2 = 13.290 (80)

Remaining is the task of comstructing a thermal solution

to the houéing boundary layer for Pr =

10 and 50 for which the

disk thermal solution is now known.
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B. Solution To The Housing Thermal Problem

It had been expected that the relative ease with which the
disk thertal solution had been obtained would be indiéative of the
effort required to obtain the housing thermal solution. Unfortun-
ately, all attempts to date have failed to converge for any value
of Pr . The»varibus-numerical methods emﬁloyed are discu;sed in

Appendix E.

5, Enérgy Matching Conditions

The sclution of the hoﬁsing"thermal boundary layer equation
will depend on the housing asymptotic temperature, KH , in a way
similar to that &n which the disk solution depends on K, through
the constants  ¢; gnﬂA ¢, » The problem now faced is analogous
to the determination of _Ge 1in the velocity solutions, only now
there are two asymptotic constants to be calculated, KD and KH .
Two matching conditions are required. They are derived in Appendix
F and are conservation of energy applied to two control volumes,
one having the same surface as the volume used in the angular
momentum matching condition and the other being similar in shape
but whose bounding constant £ planes are the disk and a plane
sufficiently far from the disk to include only thg disk velocity
and thermal boundéry layers.

The two energy conditions are
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lg(0)g' (@] - 4] J £'tdg| - | J £redg| + (J£,(=)] -
.D o O
D H
+ et
'%“”)ﬁ%;i ‘4'J FE'2 + g2)f'ag| -
DO
[ deerz + evear] + Hcle,@ | - lgy@D” + ce?) -
o 2 g AR D
H .

(leg@| = [5y@ )| - 55 P’ @] = 0 (8D

18(0e" 0] - 4] j £1ede - 4 j
D ‘ n°

DO

-1 1
(B2 L g -x) = 0 (82)

where 'g(o)g'(0)£ = 0.52423,

For a given Pr , J;f'tdi will be a linear function of
KD or KH depending whetR:r the integration is performed over
the disk or housing boundary layer. Equations (81) and (82) then
represent two linear algebraic equations for the unknowns KD and
KH . These matching conditions are not universal in the sense that

they depend on Re/S2 and Pr .



6. Energy Solution for Pr =1

A particularly simple method of solution to the temperature
problem, the Reynolds analogy, exists for the special case of
Pr = 1 . Consider the momentum equations (23) and (24) multiplied

by u and v, o respectively, resulting in

1 2 1l .2 2
u‘ffz u, ) . 05 u ) ) uv, )
o or 1 9z r
ap 2 3%u
0 S o
- Euo or +(§e)uo 0z2 (83)
and
1.2 1.2 2 2
. 8(2 v, ? e 8(2 v, ) . uv, ] §E'v A
o dr 1 9z Re/ o 292z2

(84)

The fluid is now treated as if it were a compressible,
perfect gas with ;bnstant properties and where the specific heat
at constant pressufe, cp , 1is apprqxigated by the specific heat
of the fluid, ¢ . The following modified form of the energy

equation (5) results.

2 .
e, M 52 Mo Ees? (a"o)z .
o ar 132 RePr 3z2 Re |\3z

ou_ 3 p
——9-)] + Eu_—2 (85)
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Adding equations (83) - (85) and setting Pr = 1 gives the

following differential equation.

298 Ch 98 52 3210
Ys ot + W 3z  Re 23z2 (86)
where
- 1 2 2
Io Ec To + 2 (uo + vo ) (87)

Equation (86) may be transformed into an ordinary differential

equation by defining
I, = r2I(z) + const. (88)

Because only derivatives appear in equation (86), const.
may assume any value. It is assigned the value of the housing wall
temperature, %Z Tw . Recalling the similarity transformations

for L and w; , equation (86) becomes

2
-g-é- I" - 2FI' + 2F'T = 0 (89)

Equation (89) for 1I(z) is identical to equation (32) for G(z) .
To compare boundary conditions between I(z) and G(z) proceed

as follows:

T .
at z=1: I = H(1m-g) (90)

Substituting equation (87) into equation (90) and noting that
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To(l) =T, and uo(r,l) = vo(r,l) = 0 , we have

I(1) = 0 = 6Q) = (91)
at z = 0: 1'(0) = 'i% £ M(0) v (92)

Substituting equation (87) into equation (92) and noting that
To'(O) = 0, uo(r,O) = 0, and vovo'-é G(O?G'(O)/r2 = G'(0)/x?% ,

we have
I'(0) = G'(0): (93)

Having shown that I(z) and G(z) satisfy the same differential
equation and boundary conditionms, they”a;eiidentically the same

function.
I(z) = 6(z) , Cfor Pr=1 (94)

An éasy check can be carried out for the limiting case of

Re/S? + 0 . From equation (58),

To(r,z) = (r2e(z) + Tw)Ec

Therefore,
6 _ 62
8 = I - 2 = G - 2 (95)

For Re/S2 =0, G=(1~2), and

o = % (1 - z2) (96)
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which checks with equation (67) when Pr =1 and 6 = 60 .

For large values of Re/S? (and Pr = 1), equation (89)
remains a valid equation. The solution I(z) therefore depends
only on the availability of G(z) which is known only up to —
Re/S? = 5.70. Equation (48b), however, gives G(z) = g(§) , so

that in boundary layer co-ordinates

I(g) = g(&), Re/S2>> 1, Pr =1 (97)

7. Asymptotic Solutions

Difficulties in obtaining a solution to the housing thermal

. boundary la&er ér;blem prompted an investigation of the asymptotic
behavior of the boundary layer functions. Rogers and Lance [9]
have derived the asymptotic solution for the velocities. Appendix
G extends the amalysis to the energy asymptotic solution. 4quation
(G12) gives the form of g(f) for large & . The other boundary
layer function has this same structure. The distinction between
the housing and disk boundary layer problem lies in the sign of K.
For the disk, the axial velocity is toward the disk, in the directiomn
of decreasing & , hence K 1is negative. Conversely, for the
housing, K'lis positive. The effect then is that, while the
solutions are of a damped oscillatory nature for both disk and
housing, the—disk's oscillations have a longer period and are more
heavily damped. This comparative behavior is verified by the

solutions presented in Figures 7 and 8. Notice that for the Karman
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problem (Ge = 0) the asymptotic forms reduce to exponential

decay and the oscillations are lost.



CHAPTER V

DESIGN CONSIDERATIONS

Design considerations for the slinger seal are of both a dy—
namic and a thermal nature. Four items have been identified as
being of basic importance to thebdesign, and whose dependence may
be quantitatively specified as functions 6f the two parameters
Re/S2 and Pr. Design evaluations must take into account the pres-
ence of fluid on both sides of the disk. .This. is possible since
the foregoing analysis applies to the fluid.onieither side. The
Prandtl number Pr, depending only on fluid properties, is the

same throughout, while Re/Sz, depending on geometry as well, may

in gemetral be different for the two sides.

1. Torgde Requirements
The torque acting on one side of the disk is given by:

P

R

-2 -

torque = { L 2n ¥~ dr
T

o

where ;o is the radial distance from the axis of rotation of the

interface and R is the disk radius. In non-dimensional variables:

torque = !%ﬁl Gi(O)(RA*Ez) (98)

- 42 -
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whére
2 2 Re
G'(0) = -1 - 0.0042(Re/S") , for O< = < 5,7 (99)
S .
and
, , 172 ) , 1/2
G'(0) = g;(O) (Re/S™) = - 0,52423 (Re/s”) , for large

Re/s? (100)

Equation (99) is obtained from the series solution of G(z)
and equation (100) is the boundary layer limit for large Re/Sz.
For moderate values of R.e/S2 exact solutions are not known, however,
data from the analog computer éo;ution (see Table 10) has been
used to fill in this range. The analog data seems to fit in well
with the series and boundary layer solutions (see Figure 11), and

G'(0) wvs. Re/S2 appears to be momotonically increasing.

2, Preésure Capabilities

i

The radial pressure gradient will determine the pressure
‘difference that the seal can maintain. It has been shown that the
h radial pressure gradient is the dominating one for both Qoundary
layer and viscous limiting flows and varies with r2 according to
equation (33).

Integrating equation (33) from any radial péint'to the

outer edge of the disk yields, in dimensional fbrm,

: 2 )
”4 = L. B(;z - RZ) (101)
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A similar formula is obtained from either side of the disk. Evalua-
‘ting each of them at their respective interfaces and subtracting
’ oné from;fhe other to eliminate ER,'gives
2
B~y = - M-l F-r)-BG -8 102

Subscripts a and b denote opposite sides of the disk. Notice
that B, being a function of Re/SZ, may differ on either side of the
disk as Re/S2 may differ, which has already been shown. ,

In practice, when large pressure diffefences occur, it would
be an attractive feature to be able to control the interface

radial distance difference ;a - ;B without having to adjust the

rotational speed of the disk. Assume that for a given Ea - p it
is desired to keep ;a = ;b' From equation (102) then,
P, - P
B - B a__ b (103)
P S
2 (R = ra)

For large Re/S2 the interface position control is lost
because both Ba and Bb go to the same values, namely the boundary
layer asymptote where B = Ge2 = 0.098. From the point of view of
interface positioning, Re/S2 should be small, but it should not be
very close to zero because there the slope of B vs. Re/S2 (Seé

. Figure 12) is small and the controlling of B is not sensitive to

changes in Re/s2.

In Figure 12 the intermediate ranges of Re/S2 have been

provided by the analog solutions. B is a monotonicallyrdecreasing
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function of Re/Sz. For greater pressu;eAcapabilities small Re/S2
is recommended which will give the largest B.

Torque and pressure considerations are comnsistent in that
botﬁ recommend operating at as low a Re/SzAas possible., If inter-
face pqsition control is desired, low to moderate ranges of Re/S2

are suggested.

3. Disk Temperature

The disk temperature is T{r,o0) which in non-dimensional vﬁrie

‘ables is given by

T(T,0) - T = 1)) (104)

For small Re/S2 the series solution is valid and is

—

2

' 2
8(0) = Pr '% - (Eg) (0.00012 + 0.00220 Pr)
‘ S

For large Re/S2 equation (70) is
8(0) = tD(O)

Unfortunately, the thermal boundary layer is not determinable
because of failure to get a solution at the housing wall. For the
cases of Pr = 10,50, however, for which families of.solutions at
the disk were obtained depending on the value of KD’ a range of KD

may be established. KD must be positive which places a lower limit
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on it, An upper limit is derived by stipulating that KD be less
than the disk temperature. Consider the case of Pr = 10. From

equations (74) and (79)

K, + 6.074
£ (0) = - £,(0) + —2—— ¢ (0) + £ (0), Pr = 10 (106)
D 1 5.941 2 P

where £(0) =1 £(0) =1  t(0) =1

For the upper limit of KD< tD(O), equation. (106) may be solved for

KD giving

0 <KD <1.23 Pr = 10 (107)

A similar calculation for Pr = 50 yields

K, + 26.867
t . (0) = - t.(0) + : t, (0) + t_(0) (108)
D™= 175 130200 2 P

substituting KD <tD(0) results in
0 <K, <2,18 Pr = 50 (109)

For the%ranges of K, established in equations (107) and (109)

the corresponding ranges of tD(O) may be easily calculated.

1.62 < £ (0) <1.23 Pr = 10, large Re/S> (110)

2,02 <t (0) <2.18 Pr = 50, large Re/s’ (111)
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The trend Hlere is of rising disk temperature with an increase in Pr.
* &

4, Heat Transfer at Housing Wall

Heat tramsfer at the housing wall is given by

"heat transfer = [ k -*LE*—l 2 rdr
f

which in fon-dimensional variables assumes the form

mk ‘wz

b by,
heat transfer = 2ac ®R" - ro)e (1) (112)

For small values of Rg/S2 the series solution for 6'(l) is
~ valid:

ke 2 ‘
6'(1) = - Pr |1 - (—é) (- 0.00148 + 0.00267 Pr)

S

When Re/S2 = 0, heat transfer varies with the first power
of Pr, as is the case in Couette flow.

Practical considerations woﬁlé{sﬁggést limiting the disk
temperature and heat transfer demands, both of whigh may be accom-
plished by selecting a fluid with small Pr.

For the case of Pr = 1 the heat transfer is also known.,
Begininning with equation (90), substituting backward, differen—‘
tiating with respect to z and evaluating at z = 1 where u = v = 0,

we have
6'(1) =1'(1) (114)
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From the result of the Reynolds! analogy, equation (94):

8'(1) = ¢'(1) (115)

For small Re/Sz, the series solution for G(z) gives

2
0'(1) = G'(L) = - 1 + (Re/S%) (2/1575)

(116)

and for large R.e/S2 the boundary layer velocity transformation gives

8'(1) = 6'(1) = -g';(0) = - 0.13567
(117
Substitution of equation (116) or (117) into equation (112)

gives the complete heat transfer picture for Pr = 1,

5. Remarks

Although thermal considerations are unanimous in specifying
a fluid with small Pr, and dynamically a small or moderately small
Re/S2 is recommendéd, fluids with small Pr, such as liquid metals,
often have an extremely small viscosity. It is this property
which presents difficulty in maintaining a low value of R.e/S2
even though the gap width, a, may be small. At this point, the
préctical importéﬁce of dynamic and therméi effects must be

'weighed against each other.
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APPENDIX A

NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

This appendix discusses the methods of numerical solutions
to the 2 -point boundary value problem, equations (31), (32) aﬁd
associated boundary conditions, and the method of solution to
equations (51) and (52) where the associated boundary conditions
are asymptotically specified. The 2 -point method will be dis-
cussed'first, as the asymptotic method is an extenéion of'thérz—
point technique.

The 2 -point problem was solved by forward integration
using the Runge-Kutta formula., Propagation of the solution is

begun by specifying additional cqn&itions at z = 0 equal to thé

number of bouhdary conditions atlz 1. These are in addition
to the given initial conditions. at z = 0., They must be guessed
and are known to be correct when the solutions obtained satisfy.
the proper boundary conditions at z = 1. In general, it will be
difficult to guess the proper initial condition and extremely
difficult if several initial conditions are required. Fox [10]
discusses a scheme for correcting the guessed initial conditions
by the Newton-Raphson method, which is briefly reviewed here. :
The values of the solufions at z = 1 obtained ?y the numer-
ical integration formﬁlas are envisioned as béing functions of the

required guessed initial conditions. In terms of equations (31)

and (32) and their boundary conditions:



F'(1) = fen. (F"(0), G'(0), B)
G(1) = fen.(F"(0), G6'(0), B)

F(1) = fen.(F"(0), G'(0), B)

Deviation of F"(0), G'(0), and B from their correct values will re-
sult, when using the Runge-Kutta formula, in deviations of F'(1),
G(1), F(1) from their correct values. Neglecting higher order

terms:

B - 7' = EA o) - pr(0)) + EL 610y - 6 (o))
aF" (0). 3G' (0)

]
+2—F—-L].:2a(§ - B)
oB

G(1) - 6(1) = €L gy - FO)) + . ..
3F" (0)

D - FO = ZEL o) - o) 4. .
aF" (0)

The underscored variables represent incorrect quantities.
If values for the partials can be g§ﬁ§%n§da solutions to the above
linear, algebraic equations give recommended changes for the
guessed initial values, F"(0), G'(0), and B. The partials are ob-
tained by diffgrentiating the differential equations with respect

to each initial condition, solving:by forward integration, and



- 43 -

evaluating at z = 1. There will be as many additional sets of

differential equations for the partials as there are initial Cpnﬂi—,‘ j 14

tions to be adjusted.

The numerical solution to the boundary layer equations (51)
and (52) was applied according to the method of Nachtshéim and
: Séigert [11]. This method tends to reduce the problem ;ith‘ésymp; 
totic boundary conditions to a two-point boundary value problem.
In addition to satisfying the end-point conditions (the énd point
selected at first at random) the condition that the slopes of
the functions vanish at the end point is also imposed. The con-
dition on the slopes presents more equations for adjusting initial
guesses than there are initial guesses. A least square satisfaction
of all the conditions (slopes and endpoints) is thus required.
When initial values have changed an arbitrarily set amount from
the starting guesses, assuming convergence, the end-point is moved
outward. The process is repeated until the boundary conditions
“at the furthest calculated end-point agree with the specified
asymptotic boundary conditions to within an arbitrarily set error
of acceptance.

Neglecting higher order‘terms in the correction scheme
‘equations is essentially a linearization. This is a good approxi-

mation only if the first guessed initial values are sufficiently

~-close to their correct values. For the 2 -point boundary value;* ;wﬁ f}!;j,5~

problem, this requirement became exceedingly stringent as Re/S2

increased, until for R.e/S2 = 5.7, convergence required starting
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guesses correct to six significant figures. Considering that the
digital computer on which calculations were performed provided
only for six significant places, the initial value correction

scheme became useless for larger Re/Sz.



_ APPENDIX B
ANGULAR MOMENTUM INTEGRAL CONDITION

Consider the toroidal control volume as described in the
text of the report. Let Rl and RZ be, respectively, the outer
and inner radii of the cylindrical surfaces of the control volume

Apply the angular momentum theorem to the control volume;
namely, the sum of torques on the control surfaces equals the time
rate of change of angular momentum throughout the control volume

Surface torques will be considered first. The shear forces
on the surfaces r = Rl and T = R2 are neglected in comparison to
the shear forces on the disk and housing forces.

The total angular torque on the housing face is given by

r =R
T 3 -2 -

MH = f 2Ty g T dr , evaluated at the housing.
r=R,

Successive algebraic substitutions give

R

1/
R
4 TG’ (1) . 4 4
— v = - - (B~
w o 2 wERa wG' (1) 3 ar - (" - R, (-1
R

Similarly, for the disk surface:

uy = TS0 ¢ 4 gt (3-2)
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There can be no momentum flux across the control surfaces
adjacent to the disk or housing.

The problém is steady state, and the rate of change of momen-
tum throughout the control volume is given by the momentum flux
across the surfaces of conmstant radius. - Caution should be exercised
to acéount for all angular momentum transported across these sur-
faces., For all housing and disk boundary layer solutions with a

~common value of Ge, it has been observed that the values of £ (w)
and fH(w) generally do not match. From a continuity viewpoint,
this means that there must be some radial flow in the core. Tﬁis
presents a question of the validity of the‘boundary condition i;
the housing and disk boundary layer problems, viz., as & + @

f'(») = 0, whereas it has just been shown that there may be a ﬁcn—
zero core radial velocity. The axial velocities which give rlse‘
to the core. radial velocity are of -the order of magnitude of § /Re.

The resultlng core radial veloc1tyf1smthen’Justlfiably neglected
in comparison to the radial veloci;y in the boundary layer whicﬁl
is nominally of uﬁit order. ”

Wﬁéﬁ éonéi&ering momentum flux; however, the integrated
value of the core radial velocity across the core width (approxi-
mately the gap width, a) may contribute significantly and must be

iretained in the momentum match.

Momentum flux across the surface r = R2 is given by
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2 - -
v 4z
2 2"

a
Mk = J [} g 2% R
; o

1
2 4 '
=p w 2 7a R2 F'(z) G(z)dz (B-3)
° :

R,

Similarly, for the surface r 1

M, = pu 2 ma R | F'(2) c(z)dz (B-4)

1

Ot

Substitution of these quantities into the angular momentum

law, cancelling'Rl4 - R24 , and recalling that R.e/S2 = pwazlu:
1
G'(l) -G'(0) = - 4 B%-I F'(z) G(z)dz (B-5)
g- .
o

Change now to boundary layer co-ordinates by means of equations

. (47-48 a,b). The change of co-ordinates changes the integration

by
1 © o ‘
[ dz = I dg + [ dg + [ dg
o o o
disk housing core
width
where

f £'gd = Ge J £1de = (£,(=) = £ (=) Ge'
core

width core

width
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Equation (C-5) in boundary layer co-ordinates is:

yﬂ%—z}&)=4Jf%da—ffwe+&ﬂﬂ-fﬁﬂ)%
D H

, (-6)
The .physical significance of each term in equation (C~6) will be
utilized as a check against sign errors. gﬁ(O) and gé(o) represent
t&rques acting on the control volumes two parallel, flat,
ends. - Since - the senses of these torques are opposite one
‘another, the left hand side of (B-6) should be the difference of
these two terms if the absolute value for each is assumed.

In the integration terms, f' represents the radial velocity
- component, which is directly proportional to r (see equation (29).
ﬁeaf the disk, the radial velocity is entifely upwards Whiie near
T'tfua housing, the bu;k of the radial velocity is downward. The
two:terms represent opposite effects of transferring momentum
out and into the control volume, respectively. Thus, on the right
hand side of equation (C~6) should appear the difference of these
terms if the absolute value of each is assumed.

Since the core radial velocity represents a net outflow of
angular momentum if ]fH(m)I is greater than !fD(w)l » and a net
‘gain if the inequality is reversed, the right hand side of equation
(B-6) will consistently represent a momentum loss if equation (B-6)

is written
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8@ - 1651 = 4|1 [ £gacl - |f 15 ac]
p° B

+ Qfg<m)l - 1 £ ) ce (5-7)



APPENDIX C

CALCULATION OF THE AXIAL VELOCITY MATCH

AND MOMENTUM INTEGRAL CONDITION

A, Axial Velocity Match

Ge £5(=) £4(=)
0.29 .39210 .37157
0.31 .38213 38419

0.33 37174 .39641

B. Momentum Integral Condition

ce 0.2 0.31 0.33

g',(0) .53529 .52591 .51612

g, () .12070 .13341 .14653

l £' g dE .19112 19120 .19089
p°

I f'g d& .08524 .09422 .10430
H®

£(=) .39210 .38213 . .37174
£ (=) .37157 .38419 .39641
[fu(“) - fD(m%Ge -.00595 .00064 .00814

equation (57) 4,1488 4.0201 | 3.8680



APPENDIX D
LINEAR INDEPENDENCE OF THE HOMOGENEOUS

TEMPERATURE FUNCTIONS

From the theory of linear differential equatioms, it is a
well known condition that two homogeneous solutions of a second
order equation are linearly independent if the following deter-

. minant (known as the Wronskian) is non-zero.

| tltO) t,(0)
# 0 (p-1)

tl'(O) t2'(0)

For the disk thermal boundary layer solutions for both
Pr = 10 and 50, the initial conditions chosen for the homogeneous

solutions were

tl(O) = 1.0 t2(0) a 1,0
' - ' -
tl €0) 4,0 t2 0) 0.0

The condition on the Wronskian is obviously fulfilled and

the homogeneous solutions are therefore linearly independent.



APPENDIX E
UNSUCCESSFUL ATTEMPTS AT SOLVING THE HOUSING

BOUNDARY LAYER ENERGY EQUATION

A review is given here of the numerical procedures (all of
which havé failed to converge) employed in the solution of the
energy equation at the housing. The five methods attempted may
be classified into one of two groups: forward integration methods
and finite difference methods.

Characteristic of the forward integration methods is that
the solution is propagated from the beginning of the interval.
Using the superposition of homogeneous and particular solutions
because the energy equation is linear, it is unnecessary to use
any correction technique on the initial slopes as described in
Appendix A. Runge-Kutta and Milne (Predictor-Corrector) schemes
produced diverging solutions in spite of the asymptotic solutions
(Appendix G) which indicate damped oscillations about a constant
for large £&. Imposing the requirement that t'(«)+> 0, and correcting
initial values accordingly was not sufficient to cause convergence.
The effect was to indicate virtually no change in initial slopes
even though the condition t'(=) = 0 was far from being satisfied.

The finite difference formulation of the problem represenﬁs v
‘derivatives by central difference formulas. To within a trunca~ °
tion error of‘dz, where d is the séep leﬁgth of the division;

of the range of &, equation (71) becomes
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v 2

o - funz (E_l)

where the index n represents any subdivision in the interval,.

Two alternafive procedures may be applied to equation
(E-1)..

1) Iteratipn of the function t({): A reasonable form for
t(g) is assumed. tn ip eguwtion (Ee;) is solved for using the
last known valges of t 1 and toh1® This procedure is repeatedly
carried out over the range of Euntil it is clear that t(£) con-

- verges to some function. In practice, this;iterative procedure
did not converge.

2) Linear System of equatiqnsﬁﬂEquation (E-1) is applied)to
every infernal step—boint of the interval. Resulting is a linéar,
algebraic set of equations for the unknown vector tn. The known
constant vector is the dissipation term and the matrix of coeffic-

ients evolves -from the coefficients of tﬁ41’ tn’ and t Although

n+l’
this system of equations may be of fairly: large order, an exact‘
solution is available (Varga le]} due to the tri-diagonal nature
of the matrix of coefficients.  This methods converges if the. |
matrix is diagonally dominant. For finite values of d, (which.

must be) the matrix is not diagonally dominant. This fact does not '

rule out the possibility of the solution, however, the method"



did not converge,
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APPENDIX F
STEADY STATE ENERGY INTEGRAL CONDITIONS

FOR CONSTANT DENSITY FLUID

The  two thermal matching ¢oﬁ41tions'are derived herein.

Consider first. the toroidal control volume defined for
the angular momentum integral condition derivation. In steady state,
the conservation of energy theorem states that the work rate done
on the fluid.boundaries by environmental forces equals the sum of
internal and kinetic. energy transported .out of the control volume
by fluid motion and the thermal energy conducted out of the ;ontfsl
volume. | |

No-normal forces gontribute power as no boundary deflects
normal to itself. Only the shear at the moving disk boundary con-
tributes and is given by ' ’

T=R;

Work rate = I'ﬁ %Eégl v(0) 2nrdr (F-1)

E=R2
where v(0) is the disk velocity.

Successive substitutions into the dimensionless form result

in

o ul
Work rate = 2L G0)6' () ®* - R (F-2)
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Consider now internal energy transported across control
surfaces. This occurs only at the surface of constant radius

as there are no normal velocity components at the solid boundaries.

—

Z%a
‘Internal energy tramsport = 2wpc |R, J uT d;I*
-.=0 r = R2
zZ=a |
- R f u T dz|; =R (F-3)
- 1
z=0

Successive substitutions into dimensionless form result in

z=1
Internal energy transport = 2np3103[ F'e dz(Rl4 - R24)
z=0
(F-4)

The dimensional form of the kinetic energy tranmsport is

z=a

K.E. tramsport ='% 2m |R, J (§2+ 3+ @Ha dz|
2=0 Ry
zZ=a
- B { @2 + 3% + D3 dz| (F-5)
R
z=0 1

Successive substitution into dimensionless variables, and

neglecting the axial velocity component for large S, yields
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1
K.E, transport = pw3w a(R24 - Rla)J (F'2 + GZ)F' dz
)
(F-6)
Thermal conduction at the disk is zero. Temperature gradients
at the cylindrical surfaces of constant yadius are neglected in com~

paridén to gradients in the thermal boundary layer. The only éone

duction, therefore, is at the housing wall.

r=R
1 - -
Conduction = I k 2%&5;&1 27 r dr (F=7)
-‘ESR 9z
2

which, when put into dimensionless form becomes

- 21k o, 4 _
Conduction %ac 8'(1) (R1 R

4

Substitution of the work rate, energy transport, kinetie
energy tramsport and conduction expressions into the conservation

of energy theorem gives

1 1 :
c(0)6'(0) + 42 [ 5o az+ 42 | L @4 a2
&2 2 )2

N o
L . -
- = =0

Changing fb boundary layer co-ordinates and recalling that
@ o
f dz = f dg + I dg + dg
o po H& &tn
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the energy balance is:

I'z;w)z;'(ﬂ)lD -4 ] ] £'edg| - | J £tde |
(o] (s}

D H

Sl i

(¢]

+ gy - £y | 2+ ghera

D

- | I%—(f"" +ghe a

HO

2 » ‘
+% {Qfﬂ(“)l - |fD(°°)|> + Gez}?Qfﬁ(mH - lfD(w)D :

1 ' -
- \-1;-; |t H(o)l =0 (F-10)

where in the core the temperature has assumed an average value
based on KH and KD and a mean radial velocity based on the differ-
ence of the axial velocities.

Absolute value signs have been inserted so that the alge=-
braic sign preceding each term, can directly be associated with
the termfs physical significance. The convention adopted is that

energies contributing to the control volume are positive.
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The second thermal matching condition is derived by con~
sidering a control volume whose "z" width includes only the disk's
velocity and thermal boundary layer thicknesses.

The shear work input at the disk boundary is the same as in
the previous energy balance. Similarly, the intermal and kinetic
energy transported across the constant radius surfaces is the
same as previously except the range of integration includes onl&
the disk boundary layer thicknesses.

Energy conducted out of the constant z surface may be in-
ferred from the constant conduction model of the core.

In boundary layer co-ordinates the second thermal matching
condition is |

|8(@g" (@) | - 4] f £'edg| - 4] J 2 &% ghra
o] DO

D

- (%) “-%,; (Ky - Ky =0 (F-11)



APPENDIX G

ASYMPTOTIC SOLUTIONS OF THE BOUNDARY LAYER EQUATIONS

The difficulty in obtaining a solution to equation (71)
prompted an investigation of the asymptotic solutions (large £)
of the momentum and energy equations. The uncoupling of fhese
two sets of equations allows a sglution of the momentum equations

independent of the energy relation. Required is the solution to

grrv-2evp+ 62 - (g2 - ge?) =0
(G-1)
g" - 2g'f + 2gf' = 0
for large £ .
Let
f=K+ ¥
(G-2)
g=Ge+g
Whége k>>f and Ge >>§

)

K and Ge are the asymptotic values of f*and g respectively. It
is required that as &+ =, f and g vanish.
Substitution of equations (G-2) into equations (G-1) and

neglecting higher order terms results in the linear equations
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A" - 2kh' - 2Geg = O
(6-3)
g' - 2kg'+2Geh = 0

where f' has been replaced by h because only derivatives of f appear.
,Thé apﬁrqach to the solution of eéuations (G-3) is facilitated

by decomposing the‘system into four first order equations. Define

additional variables g' = k and h' = j. The barred notation is

hereafter dropped, and equations (G-3) are written as

g' = k
h' = i
j' = 2Geg +2Kj
k' = -2Geh +2Kk

Solutions are sought in the form of

g = égegg h=cC eA&

Where the C's and A's are constants. Substitution of these assumed
forms of tﬁe solution into equations (G-4), and cancelling the
exponentials, results in a linear set of homogeneous equations
Cc

for the constants Cg, C C

h? 73* k°
In order for the solutions of the C's to be non-trivial,
the determinant of the matrix of coefficients must vanish. This

condition results in an algebraic, fourth degree equation for A.
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The four possibilities for A indicates that for g, h, j, and k,
there gre four solutions for each. The linearity of the equations .
allows that the sum of these four solutions is also a solution.

The. fourth order equation is

[A2K - )]% = - 4ce? (G-5)

The form of equation (G-5) must admit complex roots for A. Each
of the four A's will involve the positive square root of a complex

number, either

-\+/4K - i8Ge or +-\(. lsK + i8Ge
where i = 1)— 1 .

Since there aré two positive square roots of a complex
number, there will result eight X's; but only four of them are

distinct. The four values may be compactly represented by

172 1/2
A =x% L ’\/Kl' +4ce?)  +x* ¥ 1\/ ®* + 4ce?)  &°
1,2,3,4 N

(G~6)

The function g‘is the sum of the four functions

(6-7)
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It is required that as &> %, g> 0. This can only be satisfied if
the A's in the exponentials real parts are negative, For the
moment, the negative restriction will be imposed on both the real
and imaginary parts of A.

Of the four )'s, the only one satisfying this condition is

172 . 12
A =K - - [j/;4 + 4Ge) + K2+ i'v4K4 + 4Ge?) - K%
= A

(G-85

If this is desigﬁa?ed Al’ then ng, Cg3’ and 934 must be chosen

to be zero. In the homogeneous set of linear equations for the

constants, Ch may be solved for in terms of Cg'
_ _=2Ge
% = Tzm-ox (6-9)

Correspondingly, Ch2’ Ch3,.and Ch4 are zero. If Al is subsﬁltuted

into equation (G-9), the result is

(2]
]
i

iC (6-10)

hl gl

Then
h = «ig = - ngle_' (G-11)

Because of the factor i, the imaginary part of g is the real part
of h. Since the imaginary part of Al has already been shown to

be negative, the requirement that h+0 as £+~ 1is already satisfied.
Taking Cgl to be the complex number a + ib, a and b are constants,

the real parts of g and h as found above are taken as the solutions
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to equations (G-3). (Recall that these equations are linear, so

that the real part alone is a solution.)

| - 1/2 : 1/2
g = Jexp \i - ;—‘\/(Ka + 4Ge2) + K2 a cos( -E'—‘J(Kl‘*- 4Gez) -K:ﬂ
Z 2

) 1/2
+ b sin £ I( 4—!— 4Ge2) -K2
V2

(G-12)

——t

and similarly

h = gexp [...a]} {b cos [s000)] - a sin [.M.]Z (G-13)

where the barred notation has been. re-adopted. The asymptotic

solution to the emergy equation is to be iﬁvestigated now.

%; £ -2 ft' 42 £t .= - (g'2 + £"9) (71)

For large &, allow
t = K+t E, Et<<ky lG-14)

Substituting equations (G-14) and (G-2) into equation (71),

dropping higher order terms, define t' = §,
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il

§' - 2% = - 7K, (6-15)

which is a first order, non—homogeneouvs,‘ linear, equation. The
solution is the sum of the particular and a complementary solution.
Referring to equation (G-13) for h, substitution will verify that

a particular solution to equation (G-15) is

-

Spar = {exp []i{ alb cos [...] + a,a sin [...]}
(6-16)
where ay and a, are real constants, and the square brackets

are identified with those in equation (G-12). The complementary,

(homogeneous), solution satisfies

- 2K = .
1 - — = -
Scom Pr Scom 0 (6-17)

Integrating once:
2K
Seom = a3 exp (Pr €> (G-18)

where o is an integration constant. The solution to equation

(G-15) is the sum of Scom and Spar’

'S = oy exp (—%—E— £>+ gexp [...]i %all?%foi;['”] + a,a sin [.,.]}

(6-19)
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Since both K and Pr are positive, in order to satisfy S - 0
as £ » o, aq must be chosen to be zero. Another way to see
_that a3 = 0 is to consider thé special case of Pr = 1 and KH = Ge,

Under these conditions, equation (G-15) written in terms of t is

T" - 2Kt' + 21<HE = 0 (G-20)

whiéh is identical to equation (G-3) for g. Both equations also
require tlyrx;t'asv E + o, t, g+ 0. Under these special circumstaﬁces,
the solutions for t and g should be identical to within the con-
stants ;nultiplying them. This can only be if ay = 0.

Therefore: S = t' = {exp [...]g Ealb cos [eoe] + a,a sin [...]g
The conclusion of this Appendix is that for the housing boundary

layer problem, the asymptotic behavior of the velocities and

temperature distribution is that of damped oscillations.
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Re/S2

0.01
0.10
1.00
1.25
2,00
2.50
3.33
3.64
4,00
4.44
5.00

5.70

Table 1

- Comparison of Seties Solutions for Small Re/Sz,

using second order terms, with the numerical solutions

G'(0)
numer,
~1,0000
~1,0000
~1.0042
-1.0066
-1.0170
-1.0265
~1.0465
-1.0555
~1.0662
-1.0818
-1.0999

-1.1266

G'(0)
series
-1,00000
-1.00003
-1.00428
~1.00667
-1.01712
~1.02675
~1.0476
~1,0567
~1.0685
-1.0844
-1,1070

-1.1391

G'(1)
numer.,
-0.99999
-0.99998
~-0.99872
-0.99801
~-0.99497
-0.99223
~0.98624
~0.98395
-0.98036
-0.97631
-0.96769

-0.95805

G'(1)
series
-0.99999
~-0.99998
~0.99873
-0,99808
-0.99492
~-0.99206
-0.,98589
-0,98317
~0.97968
-0.97497
-0.96825

-0.95860

B

numer.
—0;30000
~0.30000
-0.29923
-0.29881
-0.29697
-0.29529
-0.29178
~0.29020
-0.:28836
-0.28567
-0.28326

-0,27909

B

series
-0.30000
-0.29993
-0.29930
-0.29891
~-0.29722
~0.29566

-0.29228

-0.28888
~0,28630
-0.28262

-0.27741
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A particular solution to the disk thermal
_boundary layer equation for Pr = 10
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Table 5

A homogeneous solution to the disk thermal
boundary layer equation for Pr = 10
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Table 6

A second homogeneous solution to the disk
thermal boundary layer equation for Pr=10
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A particular solution to the disk thermal
boundary layer equation for Pr = 50
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Table 8
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A homogeneous solution to the disk thermal
boundary layer equation for Pr = 50
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0,937 3a30U0+301 U.6li984=-01 =3,4278 4400
5.”00(} J.3UAL V40 Ue22TRBe~01 "3.2032!"‘00
g Né2g 3.3URT7 4401 2.234U¢=01 ~2:9513,4+00
5,180 3e38NnT74401 BJL6TSe=01 «2,791% ¢4+00
5.1878 J35254401 21266001 =2 E0US s +00
5.25040 Ja3801 0401 D iET7a=NY —2:“2?70+ﬂﬂ



Table 8 (continued)

g t b g0
TR S IEESTYUT BT Z8y~01 —Ze2BOTIF00
5,37=0 3e35684401 242373401 -241103,+00
5.43?5. 303S7g'+01 109808!'01 *1.96680+00
5.%00n 335094401 1e7U20 =01 ~1483324+00
5.5625 3.35074401 1.5197+=01 =1.7061 +00
5. 62a( 3e36NU+01 121261+=~01 -1e5930,400
‘5 BT 3036110401 141195 ¢=01 ~1e487U ++00
58,7500 303€6160+01 CeGET =02 -1.388¢,+00
5.4125 336904401 Te7187¢=-02 =1e2952¢++00
5.,87eqn 3436234401 6ellli3y=02 12147400
5,.937% 336224401 HegT7524=02 =1,1380,4400
&.000n0 3436264401 2,26%9N =02 =1e2BLE +00
6. NE2S 3.3627¢+01 1e768169=02 -6,7765 =01
6.125“ 3.3627:401 Get213e~03 «3,6898 y=01
6.!&75 303627!+01 5.1958!—03 ‘1097620“01
£.2500 2036274401 2.0056¢=03 =-1.06724~01
6.31258 3436274401 1e581839=03 «54T6364~02
3 T7=q 2436274 4+01 81831904 =3,11258,-02
g u37s 3.3627¢+01 Ueti 191 0=0l ~1,6808 =02
&6.500n0 3436274401 22565104 w5, 0772403
6,5625 3436270+01 12687 ¢=04 o GNAN 4y =03
6.5280 363627440} £G5S G N5 ~deCHT724~U3
6. 6878 3236270401 2.78864~05 -1l H2G6,=-03
6.750n0 3436274401 2.NgGT794=NG ~T 720U =04
&.%125 336274401 1eNGEL s=05 ~li g 1663 o=l
£, 8780 3.3627:¢401 £ .01964=N6 -2 e2515y~04
6.9375 3436274401 3.16674-N6 -1,215C,=-0U
7.0C0@ 336274401 17263 4=06 —045664,4=05
7.N€28 3036274401 QeB22689=07 ~3484604+-0%
7.128n 3.3627 0401 Een3L7 =07 =1.91504~05
7.1E87% 3436274401 27186407 ~=14034149=05
7.2808 243627 401 120683 4=07 =5 SBUE ¢ =06
7.%125 3036274401 T Q2G4 =NE «3.0160,~06
7.378¢: 3436274401 UeDE211=06 -1.62874=06
7. 82378 303627401 24312849 ~08 B g TIER 4 =07
7.500n0 3¢3627 4401 1e2LB88 =08 -l o 7500407
7.5€28% Je36270401 S R ~2sS5681v=07
7. 6280 2436274401 TeehiZ2Ne=NG -1.38852,~-07
?.0E78 336271401 1.0668+v=0N3 =7 +4810,-08
7.75n0 343627 4+01 1eN621¢~0% -l o BUN0 =08
7.%12¢ 3436274401 Ee73604~-10 -241817 =08
7.87en 3362740401 T NGTEs=1 N ~141782 =08
7.9374 343627401 1:6728Bs=1N -5 e 627 ¢ =09

g, nCnn

-

3436274401

QQP-BBQ'-I].

3,361 4~05



Table 9

A second homogeneous solution to the disk thermal
boundary layer equation for Pr = 50

t

1t

tn

L0UNG
JNE25
Jl1esg
JYETS
L2500
. 3125
.37§0
L3758
LE0ng
.5€25
.625“
JEEDS
LTEN
L2128
BTRG
L8375
1.0000
1.N€25
1. 12=(
1.167s
1.75np
. 2125
1.2780
1,375
1.5C0n
1.5€25
1.0&%4
1.0875
1.7800
1.7125
1.87=0
1.9375
2.0000
2.M€25
2.1€8(
2.1€7s
2.28ng
2.%12%
2.3750
Sz

2.ﬁ0n(‘

1400004200
1,000,400
100844400
1eN2644+400
len7169400
1 1L7S 4400
1e2€601 4400
leti1NB44+00
L6001 4+00
1682614400
2eNERES v+ G0
2437334400
2eHRPLS 40N
S3a011T894+00
3035630+00
270794400
GeN&UT o400
Geu2UT 4400
47274400
Se1l100v4+00
SeLOLEW40D
SerlUZ1 400
Be1P5304+00
GeB2N39400
EesliTZa400
Te1€ER64+0N
Tu7LE9+00
T+ 770U +00
BeEU2 e400
5.3”39!+00
Beb124,»4+00
B.87264++00
Se12154+400
F+FEN2 0400
F.B5BRB4+00
ek N7U 4400
leNN164401
1ei215494+018
leilinl 4401
105854401
117860401

n4OUUn’+00
NePi0Ny+0OD
107372!-01
U885 e=01
90u6630—01
L4522 9v+0NN
2:067794+00
2759400
T.237844+00
2e80GET7¢4+00
Ui(1E20+0D
UeezST7 0400
216030400
€eli135¢400
SWE5C38 9400
?.7103'+0n
5.77“u'+0ﬂ
‘.79“91+ﬂﬂ
EaT73E1 940N
5.6660'+00
5.5768'*00
S, u7080v+00
2,.3808 40D
C.2197¢+00
E.0N792¢4+0N
HaeZ1Uy+00
U 7T7ED 400
Letezl8 e+ 00
Hate024400
ﬁ.2§910+00
Bai13%Ue+00
35726 e +N0
Tef113 40N
BeS1Le+0D
TLGS6e+00
3.3538604+00
Z.18664+00
3.“:81!40”
2ef£G23 0400
2.752L 0400

«( 400004400
278224400
542065 ,+00
Te217U 400
Ca 7318 ¢ +00
J.EHUE W+ 00
549617 +00
Fe6208 4+00
5.707“!+00
7.3475!*00
570587 ++00
3.95030+00
26225744060
643287 9=01

-7.75351-01

~1e9B&82 400

=5,0062 400

-Za8T71€ 4400

-4 o5991 4+00

~542152 400

-5 47398 4 +00

-5 o LEBQ 4 +00

=5 e SEEE «+00

~6,8870 400

7215694400

-7« 380C ¢+00

=7 e5637 4400

=7 7T0GE 4400

=7:8216,+00

=7 +90L2 4400

=7 9562 ,4+00

-7.98g69+ﬂ0

=7 45976 +00

-7« G881 ,+00

=7 F5LY1 400

=7.%061 ¢+00

‘7.5&2?'+00

=7s7651 4400

=T aGTLE 4400

-Ta5T19 4400
«T7 s HEEE 4400



Table 9 (continued)

g % £ tn
2.5€28 1.0819,44+01 2:61571+00 =~Te3350 4400
2.2 1010734401 2.48330940n0 =T 2024 4400
2.,6€75 11219401} 2:355244+00 ~T+0614 400 -
2.7800 113574401 2.23164400 =-5,9127 4400
2.81ms 1,1UR84401 2411259400 67572 0400
2.87=q 11611440} 1.967G94+00 -645954 4,+00
2.9275 1017284401 Le&BT7 0400 -6 ,U281 4400
2,.n0o0 1.1838,401 1768200400 -642559,+00
2.NE28 1,10H14+401 1e68080+0D =5,075U 4400
3,180 1e2N38,401 1.8538¢+N0 -5 EGGT 4400
2, 1875 le21X04401 1ol 124400 ~3,7162.4+00
21,2500 1422154401 127 v4+00 ~5453084+00
3.3125 162266 ¢+01 121834400 ~5.343%,+00
3,372 1423714401 12378400 541581400
3,837% Lezlilt2 4401 116126400 -4 ,9661,+00
2,500 1428084401 1.08E3¢+00 -t o 7771 o400
3,5€25 1625700+ 01 10198 o400 -4 ¢ BBEBE 400
3,628(; 1e2628 4401 GeE38U=N1 =L 4012 ,4+00
3.6&75 lez6R24401 fR,016%9=01 "‘4021539"‘00
3.7En0 1427324401 Q,2:78¢=01 -t g 13164400
3.2128 1627790401 77701 0-01 ~3,880U 4+00
2.0780 1028224401 Te2LZ21=01 =5467214+00
3,927% Le2EA34401 6e7L5U =01 «3,4872 4400
4, N0no 1,20004401 Ee2T7ET7e=N1 ~34,3262 400
y,nezs 1e2925,+401 BLRE28 =01 ~3,15892,.,+00
g leng 1o2G€7 2401 E.L15€9=01 “Z e 5966 400
4,187% 12907401 CeNp2Ge=N] —l g 8366 +4+00
4,250 130254401 Heg53541-0N1 -2 +6888 4,400
4,312 Lea3080N 4401 Le(i€liemD] =2e537%,+00
4.2750 L1e307444014 3e08Cee=01 -Z e BGLT o+ U0
4 6378 1e3N06Es 4011 B THA =N =24 2573 9400
4,560 1e311604+01 2386201 ~£e12563 3400
4. 52y 1e31%U 441 22,1197 e=-01 —~1.9568 4400
L. fesg 1e3181 4401 2.8683 101 «1 487784400
4, eE"s 1e3166¢401 2e63220-01 -1s76234+00
4,7E00 1e3121 0401 2aL1380=-01 =1,6523,+00
0. Plog 131924401 P2.20GEZ =01 =1 5HT78,+00
4,87=0 1e320n24401 2.N1€89=01 =1ll,4486,4+00
B 0275 1e32164401 18577 e=01 -1e3547++00
5 000 Le32264401 16705 e=01 =-1e265C 4yl
GPRRAL B3 1323846401 1e51%Ls=01 ~141822++00
5,128 1622424401 12706 =N} ~1.103L,4+00

J1E7g 1432L90401 142357 4=01 =1.0282,400

1432564401

11100 9=}

=5 45968 ¢=01



Table 9 (continued)

g % LA 0
5.3125 1632614401 969311 ¢=~02 -8,9483,~01
5,37=0 1e3266¢4+01 B.8L23¢=02 -8,3U03,=01
5,437s 163271440} 7.8287¢=02 «7e77334=01
5.5000 1632754401 686851 4¢=02 =7 245U 4=01
5,5625 1432784401 6.00639-02 ~6o75UB =01
5.6250 1432914401 5.1877¢=~02 64,2968 4=01
5,6875 1632834401 Beli2H8y=02 ~5,8786€¢-01
5.7500 1432854401 3.7132¢=02 ~5,U895,~01
5.8125 1432874401 3.04500=02 -5,13084=01
5.8750 1032284401 2.4283,4=02 =4 ,8008¢=01
55,9375 1432894401 1.8477¢~02 -l 497G =01
6.00600 1e3220+401 1.3038¢~02 -4,9593,~01
6.N625 1032004401 7e0L134=03 -2.6782¢=01
6.1280 132904401 3.8025¢=03 =1 UUER v ~01
&.1875 1432904401 2.0535¢~03 ~7e8107¢=02
6.25n0 1432004401 1.1089¢=03 ~l,2180,=02
£.3125 143290¢+01 £.9887 =04 -2,27784=02
6.3780 1432904401 3.23419=04 -1e2301 =02
6.48375 1e3290¢+0} 1e7L6E8 =04 wbo6U31 403
&£.5000 1432604401 9.4316 =05 «3,587%5¢~03
6.5625 1+32904401 5.0935¢=05 -1,9374,4=03
6.6250 1432004401 247507 ¢=05 =1,0462¢=03
6.6875 1432904401 1.465U =05 -5,6501 =04
€.750n0 1632004401 BeN2219=0N6 «3,0512¢=04
&.8125 1632900401 U.3322¢=06 ~1,6478 =04
6.8750 132904,4+01 2+32395¢4=06 =-8,8986¢~05
6.Q375 1032900+01 1.263“'-06 ‘“.80550‘05
2.0000 1432604401 £.8226¢=07 -2¢5951¢=05
7.0€25 163290401 2,68U60=07 -1,4014,4~05
7.1280 1¢3290,401 1.96898¢=-07 ~7 5685 4=06
7.1875 143200¢+01 1.0N7U8 =07 -4,0872¢~06
7.2500 132604401 5.8030¢=N8& -2,2072+=06
7.3125 163220404 X.1338¢=08 ~1.1919.~06
7.3780 1329040401 1.6923:=-08 wB 371407
7.4378 132904401 941395¢=N9 ~3,4763,=07
7.%5000 1e3200¢+01 4+53564¢=09 -1,87734=07
7.5625 1¢3260¢401 2:665Ur=-08 -1,01384=07
7.6250 1.3290¢+01 1.43%U¢=09 =5,4T74G6,4~08
7.6875 132004401 7e77330=10 =~2,956€6 =08
7.75n0 1432904401 4.1678s=10 ~145967+~08
7.8125 1.3290,+01 242668410 -8,6227+-09
7.875¢ 1432004401 1e2282¢=10 -4 ,65654~09
7.9275 1032904401 Geb1139=11 «2.51U7,4=09
2.00ng 13200401 3.5703¢=11 ~1,3580¢=09



TABLE 10

Initial Values to the Two-Point Bouhdéty Value Problem
- from the Analog Solution

_Re/82 B. G'(0) F"(0)
© 10.0 .2674 -1.347 -.096
£ 12.5 .2469 -1.520 w119
16.6 .2337 ~1.770 -.152
25.0 .1813 ~2.420 -.314
© 50.0 .1138 4,040 ~.361



