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A DESCRIBING FUNCTION ANALYSIS IN CLOSED LOOP SYSTEMS '
| WITH’ PULSE FREQUENCY MODULATORS*
R. V. Monopoll - J. F, Fitzgerald
: Unlver51ty of Massachusetts N 68 3 4 5 948&311 Telephone Laboratories, Iﬁc.

Amherst,~Massachusetts Whippany, New Jersey

Abstract - Equivalent circuits are preSented for integfal and sigma pulse
frequency modulators (IPFM and £PFM). Both contain linear elements and a
nonlinearity with step discontinuities and hysteresis. A describing function
is developed for this nonlinearity, and applied in the usual manner to the
stability analysis of a unity feedback closed loop system with the modulator
in the forward path. The transfer function for the linear part of the system
js assumed to have a single pole at the origin. Analog computer results
indicate that this analysis gives better predicted values for limit cycle

periods than the quasi-describing function analysis previously reported.

I. INTRODUCTION

The application of pulse frequency modulation in feedback systems is
of interesf in present day technology [1-5]. In this paper, an equivalent
circuit and a describing function analysis based on fhis equivalent is
presented for a certain class of these systems.

Pulse frequency modulation (PFM) is the coding of information into the
interval between pulses. A common scheme for impiementing the coding process
~ is to integrate the input signal and decide on the emission of a pulse whenever
the infegral reaches a certain level. This is known as integral pulse
frequency modulation (IPFM) and has been the subject of considerable study [3-5].

A more general PFM scheme was introduced in [1] and is known as sigma pulse
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’frequency modulation (IZPFM). IPFM feédback systems have twé basic advantages’
over IPFM feedback systems, improved stébility and ease of physical imple-
mentation. | |

A frequency dependent sinusoidal describing function was proposed by
Li[3] for IPFM. However, it cannot be applied to IPFM feedback systemé [5].
Pavlidis and Jury presented a quasi-descfibing function, based on a square
wave input, for IPFM and the subclass of IPFM known as Neural pulse frequency
modulation (NPFM). In this paper an IPFM equivalent circuit proposed by
Meyer [4] is used as the basis to develop an equivalent circuit for NPFM.

This equivalent contains linear elements and a nonlinearity with step discon-
tinuities and hysteresis. Use of this equivalent makes conventional sinusoidal
describing function techniques convenient to apply to both IPFM and NPFM
feedback systems. The transfer function for fhe linear part of the system is
assumed to have one pole at the origin.

Analog computer results indicate that the approach presented here gives
bettef predicfed values for limit cycle periéds than does the qﬁasi—describing

function.

II. DEFINITIONS AND EQUIVALENT MODELS FOR IPFM AND EIPFM
If the on-time of a pulse is very short compared with the response time
of the system, the pulses can be assumed to be impulses, and IPFM can be

described by the following equations [1]

%%= X -1y | 1)
y = sgn(p) 6(|p| - (2)

" where x denotes the input, y the output, p the value of the integrator output,

and r the pulse triggering and integrator reset level. Note that if an impulse
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occurs at t = to, then p(té—) = v and p(to+)_= 0.

| If a continuous function of p,.gtp) that is odd and monotonically
incréasing is added to the left hand side of (1) it leads to the equations

describing IPFM [1], i.e.

L sgp) = x -1y (3)
y = sgn (p)8(|p| - 1) (4)

If g(p) = cp where ¢ is a positive constant equations (3) and (4) define NPFM,
An alternate way of describing these two PFM processes is developed in
[6]. Based onwthe equivalent circuit for IPFM proposed by Myer [4] it is
shown that the input output relationshiﬁ of equations (1) and (2) can be
represented in block diagram form as shown in Fig. 1(a) with N as shown in
Fig. 1(b). Furthermore the block diagram in Fig. 1(a) may be manipulated to
prdduce the IPFM cquivalent and the NPFM equivalent shown in Figs. 2(a) and
2(b) respectively [6]. These equivalents are significant for two reasons.
First, for large q(t), N may be reasonably approximated as a linear element
with unity gain. This large signal linear approximation lead to good predicted
results for the transient response to large step inputs [6]. Furthermore, the
nonlinear element N admits a sinusoidal describing function which can be readily
derived as opposed to a describing function which assumes that x(t)iis

sinusoidal [3].

III. DERIVATION OF THE DESCRIBING FUNCTION
In the describing function mefhod the sinusoidal input to the nonlinear
element is usualiy assumed to have zero average value. This assumption is not
very useful for NPFM systems, however; since the output of the nonlinear element

can exhibit only an even number of pulses per half cycle if driven by such an
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input. This eliminates from consideration the very impbrtant case of one pulse
per half cycle and all other cases where the observed limit cycle contains an
odd number of pulses per half cycle. For this reason the.describing‘function

is developed with q(t) assumed to be of the form

q(t) =Asinw t + b ' (5)

where A > 0 and 0 < b < 1/2. For this choice of q(t), the follbwing properties

of £(q) are evident by inspection of figure 1(b):
f(q + M) = £f(q) + M; for M an integer (6)
-£(-q) = f(q) - (7)

Because of these properties, all useful first harmonics of f{q) may be computed
with A and b restricted as in (5).
For b = 0 only an even number of pulses per half cycle can occur, and for
b = 1/2, only an odd number can occur. In the former case 2n pulses are produced
if n <A<n +.1 (forn =0, 1, 2;,.,) and in the latter 2n + 1 pulses are
produced for n + 1/2 < A <mn + 3/2 (forn =0, 1, 2, 3,...). The number of
pulses per half cycle which occur for various cbmbinations of A and b may be odd
’or even. If n<A+b<n+1 (forn-=1, 2 3,...) then 2n - lipulses occurs for
A - b < n and Zn pulses occur for A - b > n., These results are indicated
graphically in Fig. 4 which shows the A-b plane separated into triangular regions
by straight lines. For a given pair (A,b), the number of pulses per half cycie
is uniquely speéified. The boundaries for these triangular regions will prove
ﬁseful in the graphical repreSentation of the negative inverse describing function.
In computing the describing function, let wt = 0. Since £ (A sin © + b)
changes only when A sin (@ +) + b =m and A sin (0 -) + b # m for m = 0, ! 1, I 2,

cee, it may be represented by the following series of unit step functions:
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. n .
f(Asin@ +b) = I [u(o - sin~t ((m-b)/AY - u(®@ - I + sin—l((m-l-b)/AD]
mn=1 .
I -1 - A - |
- 2u(@ - 1 - sin™" ((m+b)/A)) - u(e - 21 + sin” " ((m-1+b)/A))] (8)

m=1
where j equals the greatest integer in A - b

The first harmonic of f (A sin 0 + b) will be denoted by f1 (A sin © + b) and

in phasor form by Yy =% + jBl where

21
@ = %— J/ f£(A sin 0 + b) cos 0do (9)
o ‘
1 21
61 = ﬁ-'f f(A sin © + b) sin 0d0O (10)
o ,

Performing the integration on (9) and (10) yields

0, =4%-((2n—1)/A_ . {%&) | (11)

The bracketed term, { }, does not appear if j = n-1.

n-1 2
By = [%: z q/l~(m—b)/A)2A](1 -84 * %ﬂ/{“ ((n~b)/A)2

m=-n+2

Py - = R
- RN (CR TSV VA R TR TS 7N N PR (S V/S Rl S ¢ )
where 8§ . = 1lifn=1and§ . =0if n>1
nl - nl

In order to obtain the describing function, one need only normalize Y1

with respect to A; thus,
N = v /A (13)

IV. APPLICATION OF THE DESCRIBING FUNCTION TO NPEFM FEEDBACK SYSTEMS
An NPFM feedback system is shown in Fig. 3(a). A modified form of this
system's block diagram shown in Fig. 3(b) is seen to be suitable for describing

function analysis. The loop transfer function, H(s), is
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(1/rc)sP(s) -1
H(s) = - (14)
s/c + 1

where P(s), the plant transfer function, is assumed to have one pole at the
origin. Limit cycle amplitudes and frequencies are determined by solving
the equation

H(jw) = - 1/N (15)

graphically using either a polar plot or a magnitude-phase plot. The
negative inverse describing function, -1/N, is plotted in Fig. 5 forn =1
and 2, i.e. for one and two pulses per half cycle. Since no stable limit
cycies with more than two pulses per half cycle were observed experimentally,
no other characteristics are shown.

It is to be noted that the -1/N plot is not a single curve. Instead,
each triangular region in Fig. 4 leads to a unique bounded region in Fig. 5.
Thus, for n = 1 and n = 2, -1/N may be anywhere in the regions indicated in
Fig. 5. Thus, a range of predic¢ted values of limit cycle frequencies is
determined by the two intersections where the H (jw) plot enters and leaves

each region. This is indicated in the results included in Tables I and II

below.
Fitzgerald Pavlidis
Example n T T T T
P e p €
1 1 6.2 -7.8 |. 6.4 5.4 3.5
2 1 4.2 - 5.1 4.4 5.4 3.6
2 2 3.7 - 3.9 3.9 3.5 2.0

Tp = predicted period, Te = experimental period

Table I



Example n T T A A'
: P e ) P} ...k
3 |1 235-2.8 26 | 1.0 | 1.1
3 2 2.1 -2.3 2.2 1.4 1.6
1 3.15 - 3.5 3.1 0.6 1.0
p—

Ap = predicted amplitude, Ae experimental amplitude

Table II
In Fig. 5, (15) is solved graphically for four examples. The curves
labeled I, II, III, and IV are those of H(jw) for examples 1, 2, 3, and 4
respectively. Examples 1 and 2 are virtually the same examples used in
[1] with the exCeptioﬁ that K énd r have been scaled to suit a TR-10 analog

computer.,

Relevant data for these examples is as follows:

K 3-s
Example 1: p(S) = ;‘(‘s—_l_-l); H(S) = m+l)
K=2,r=1, ¢=0.5 (K =10, r = 5, ¢ = 0.5 in [1])
Example 2: Same as Example 1 except K = 4
7- s
(K =20 in [1]). H(s) = ———
© (2s+1)(s + 1)
2
K(5s +1) -5 4+ 9s + 1
Example: 3: P(s) = v ;s H{s) =
s(s + s + 1) 2
(s +1) (s + s+ 1)
K=2,r-c¢ - 1.
"2
K(5s+1) zss ¥ 14 s + 1
Example 4: P(s) = ———————; H[s) = (1/3) 3
s{s+1) (s + 1)
K=4/3, r =c =1
As

seen from Tables I and II, experimental periods fall within the



range of predicted periods for all examples except 4. Predicted and
experimental amplitudes were in better or worse agreement as q(t) was
more or less sinusoidal. Examples l‘and>2 show that predicted periods
are better than those obtaiﬁed using thé quaSi describing function. No
comparison of predicted amplitude is made with results in:[l] since
different signals are involved. No explanation is offered for dis-
crepancies in experimental periods presented here and in [1] since none

is known to the authors.

V Conclusions

An equivalent circuit has been developed for IPFM and NPFM.which
allows convenient application of conventional describing function techniques
to a class of closed loop systems containing these types of modulators.
Predicted results for limit cycle characteristics are in quite good agree-
ment with experimental for the examples presented. If adequate low pass
filtering is not provided by H(s), then predicted and experimental results
are not always in such good agreement. A comparison of this techﬁique
with the quasi describing function method shows this approach better for

the two examples considered.
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