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Abstract 

A complete, written set of the conservation equations of a viscous, heat-

conducting fluid is given in curvilinear orthogonal coordinates. Scale factors for 

a number of coordinate systems are tabulated for convenience in expressing the 

equations in various coordinates. 
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Conservation Equations of a Viscous, Heat-Conducting 

Fluid in Curvilinear Orthogonal Coordinates 

I. Introduction 

Although formulation of the conservation equations of 

a viscous, heat-conducting fluid in curvilinear orthogonal 

coordinates is well known through vector and tensor 

analysis (Refs. 1 and 2), a complete, written-out set of 

equations, including the energy equation, is not readily 

available in any given source. The momentum equation 

was given by Goldstein (Ref. 3) in curvilinear orthogonal 

coordinates for an incompressible, constant-property fluid, 

and by Tsien (Ref. 4) for a compressible, variable-property 

fluid. Only the commonly used special cases of the set of 

equations in rectangular, cylindrical, and spherical co-

ordinates appear in the literature (e.g., Ref. 5). The pur-

pose of this paper is to briefly present the complete 

set of equations in stationary, curvilinear orthogonal co-

ordinates. For convenience in expressing the equations in 

various coordinates, scale factors for eleven coordinate 

systems are tabulated. 

II. Conservation Equations 

Three forms of the energy equation are considered, one 

form of which may be best suited for a particular appli-

cation. These relations involve the total enthalpy H,

p+p(VV)'Ht =	 - Vq+ V(TV) 
at	 at

+ FV + W 

the internal energy E, 

aE 
p+p(VV)E+pVV —Vq+r:(VV)±W 

and the enthalpy H, 

-; +p(V . V)H—[ +(V.V)p] 

— V q+ i-: (VV) + W 

To tomplete the set of conservation equations, the con-

tinuity and momentum equations are, respectively, 

ap + V-(PV) =0 
at 

V I	 1	 Fl 

at	 P	 p	 p 

The quantities that appear in these equations are identi-

fied in the nomenclature. 
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By use of the same notation as used by Goldstein 

(Ref. 3), the orthogonal coordinates are taken as a, /3, and 

y such that the elements of length at a, /3, and y in the 

directions of increasing a, 6, and y are h1da, h.df3, and 
h3d-y, respectively. The differential are length ds is, then, 

- h (da)2 + h (d/3) 2 + hl (dy)2 

If u, v, and w are components of the velocity vector V in 

direction of increasing a, /3, and y, the continuity equa-

tion is 

ap+ 1 

at	 h1h2h3 

	

>< [- (h2h3pu) +	 (hh3pv) + - (h1h2pw) ] =
ay 

The momentum equation written in the a, /3, and y direc-
tions is 

au	 u 
all

v a	 w au	 uv all,	 uw 

	

v 2 h2	 w2 h3	 1 1 ap Fa	 1 
-	 -	 - -	 + - + - (V r)a hill ., va 	 va	 p n1 va	 p	 p 

av	 av V av w av	 vu 

U2 all,	 w2 h3 - -	
+	 + ( V - h

ill,- -- - •i	 -	 h2 ap	 p	 p 

aw	 a	 , a	 a	 wu h,	 ak 

	

U2 h1	 v2 h2 - -	 + + (V -	 _;- - •i;;:i -;:;;- -	 , h3 ay	 p	 p 

The components of the divergence of the symmetric 

viscous stress tensor r in the x, /3, and y direction (Ref. 6)1 

'The h,, h, and h, used by Love are the reciprocals of those used 
herein.

are: 

(Vr)a 

	

h1hh3 [ (hh
3 Tra) +	 (hih3 ran) +	 (h. It, ra)] a7 

1h1	 I 
+	 + Ty 

•h,h3 a 

1 all,	 1 all, 
— T-- —

a-

( 17- r) = 

	

1 [(h2h3 rae) +	 (h 1 h 1	 h +	 (h ru)] h1 h 2h3 ac,

1 h.	 1	 h. +	 + Tfi h1h. aa	 h2h3 a7 

1 all,	 1 all, 
— Taa7	

Th0h/3 

(Vr)y= 

	

h1h.,h.1 [- (h
2 h3 r Ya) +	 (h 1 h3	 ) +	 (h1h2 

1	 h3	 1 h. 
+ WT, —a + 

1 all,	 1 a ll, 
— Taa	 — Tf3	 , 

1	 a7 	 (7), 

The components of the viscous stress tensor for a Stokes' 

fluid are related to the components of the rate of strain 

tensor by

Taa AVV+eaa 
Too = xV V + 

Tyy AVV+e 

	

Ty	 Ta 

Tay = 

Tj'3'f = Typ = 

where the divergence of the velocity vector is 

V V 
= h1h2h3 [- (h

2h3u) +	 (h1 h3v) + -i-- (hih2w)] 
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and the components of the rate of strain tensor are 

(Ref. 3):

The rate at which work is done by body forces is, simply, 

1	 1 au	 V ah1 	 w 
-- e, = - - + 

hja 

1	 1 av	 W ah	 ah2 

1	 law	 u ah,	 ah3 

h., a	 h1 
eai=(r)+——) 

h 1 a	 h3a 

h3 a (w) 

+ h

2 	 fv )
e(7 =  

The second viscosity coefficient A is related to the shear 

viscosity A (first viscosity coefficient) by A = — 2/3 [t if the 

bulk viscosity coefficient defined by K = A + 2/3 is zero. 
Otherwise, A is given by

2 
A = K - 

In the various forms of the energy equations, the oper-

ator (V . V) applied to a scalar f, such as H, E, p, or H, 
gives the convection of that quantity by the flow, 

1 af	 1 af	 laf
(V V)f =u j —— +v+Wr a) 

The divergence of the heat flux vector q is 

V q = h1h2h. [- (h
2 h3qa) +	 (h 1 h3q) + -- (hih2q)] 

In particular, if the heat flux vector is given by Fourier's 

heat-conduction law, q = — k V T, then the components 

are

1 aT	 1 aT 
qa= — k - ---,	 q=—k-j---, 

q-1 = —
k 1 T 

-;

F V = Fc,u + Fv + F7w 

The rate at which work is done by the viscous stresses is 

given by

í a 
V (r V)	

1 
h1h2h3 - [h

2h3 (raaU + TV + T7aW)] 

+	 [h1h3 (raU + rflV ± T-)q3W)] 
ap 

+	 [hh2 (rayu + r-yV + 
ay	 f 

Lastly, the rate of dissipation of energy takes the form 

1 a v

--+ 

+ T$$ (- 

l	 ay u	 h.,	 w 
±	 + hh 

/ 1 aw 
+r + +i 

ah,,	 v 

/l au lay	 v ah 2 	 u 
+Ta + 

'
+	

(h, 
1 au 1 aiv	 w 

--- --
u

--
y h,	 a	 h 1 h.

---
h aa	 h1 ay 

/ 1 av 1 aw	 w vh3. 

This rate of dissipation of energy term usually appears in 

the literature as D. 

Table 1 presents descriptive information on a number 

of orthogonal coordinate systems for which the conserva-

tion equations can be readily written by use of the fore-

going relations. The last two entries in Table 1, in which 

the coordinates are taken along and normal to the surface, 

are useful in analyzing internal and external boundary-

layer flows. For many flow problems in these coordinates, 

the dominant viscous stress is the shear stress that lies in 

the plane of f3 = const (TIP for a two-dimensional flow and 

rae, T.0 for a three-dimensional flow), and the important 

heat-flux component is normal to the surface, q. 
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Nomenclature 

e1 , = components of rate of strain tensor T = temperature 

E = internal energy per unit mass u = velocity component in a direction 

f = scalar
v = velocity component in p direction 

F = body force per unit volume
V = velocity vector 

h1 h2h3 = scale factors
w = velocity component in	 direction 

H = static enthalpy per unit mass
W	 heat generation per unit volume 

total enthalpy, H = H + V2/2 

k = thermal conductivity
a,	 y = orthogonal coordinates 

p	 static pressure
K = bulk viscosity 

q = heat-flux vector
A = second viscosity coefficient 

qp = heat-flux component normal to
pt= shear viscosity

 

the surface p = density 

t = time = viscous stress tensor

6
	

JPL TECHNICAL REPORT 32-1332 



References 

1. Lagerstrom, P. A., "Laminar Flow Theory," Theory of Laminar Flows, Vol. IV, 
High-Speed Aerodynamics and Jet Propulsion, ed. by F. K. Moore. Princeton 
University Press, 1964. 

2. Morse, P. M., and Feshbach, H., Methods of Theoretical Physics, Part I. 
McGraw-Hill Book Co., Inc., New York, 1953. 

3. Goldstein, S., Modern Developments in Fluid Dynamics, Vol. I, Oxford Uni-
versity Press, 1938. 

4. Tsien, H. S., "The Equations of Gas Dynamics," in Fundamentals of Gas Dy-
namics, Vol. III, High-Speed Aerodynamics and Jet Propulsion, ed. by H. W. 
Emmons. Princeton University Press, 1958. 

5. Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena. J. Wiley 
& Sons, Inc., New York, 1960. 

6. Love, A. E. H., Treatise on the Mathematical Theory of Elasticity, p. 90. Dover 
Publications, New York, 1st American Printing, 1944. 

JPL TECHNICAL REPORT 32-1332	 7


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13



