## Technical Report 32-1332

## Conservation Equations of a Viscous, Heat-Conducting Fluid in <br> Curvilinear Orthogonal <br> Coordinates

L. H. Back


> JET PROPULSION LABORATORY
> CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA
September 15, 1968

## Technical Report 32-1332

# Conservation Equations of a Viscous, Heat-Conducting Fluid in Curvilinear Orthogonal Coordinates 

L. H. Back

## Approved by:



```
JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
    PASADENA, CALIFORNIA
```


# TECHNICAL REPORT 32-1332 

Copyright (c) 1968<br>Jet Propulsion Laboratory<br>California Institute of Technology

Prepared Under Contract No. NAS 7-100
National Aeronautics \& Space Administration

## Contents

I. Introduction ..... 1
II. Conservation Equations ..... 1
Nomenclature ..... 6
References ..... 7
Table

1. Coordinate systems and scale factors ..... 4


#### Abstract

A complete, written set of the conservation equations of a viscous, heatconducting fluid is given in curvilinear orthogonal coordinates. Scale factors for a number of coordinate systems are tabulated for convenience in expressing the equations in various coordinates.


# Conservation Equations of a Viscous, Heat-Conducting Fluid in Curvilinear Orthogonal Coordinates 

## I. Introduction

Although formulation of the conservation equations of a viscous, heat-conducting fluid in curvilinear orthogonal coordinates is well known through vector and tensor analysis (Refs. 1 and 2), a complete, written-out set of equations, including the energy equation, is not readily available in any given source. The momentum equation was given by Goldstein (Ref. 3) in curvilinear orthogonal coordinates for an incompressible, constant-property fluid, and by Tsien (Ref. 4) for a compressible, variable-property fluid. Only the commonly used special cases of the set of equations in rectangular, cylindrical, and spherical coordinates appear in the literature (e.g., Ref. 5). The purpose of this paper is to briefly present the complete set of equations in stationary, curvilinear orthogonal coordinates. For convenience in expressing the equations in various coordinates, scale factors for eleven coordinate systems are tabulated.

## II. Conservation Equations

Three forms of the energy equation are considered, one form of which may be best suited for a particular application. These relations involve the total enthalpy $H_{t}$,

$$
\begin{aligned}
& \rho \frac{\partial H_{t}}{\partial t}+\rho(\mathbf{V} \cdot \nabla) \cdot \boldsymbol{H}_{t}=\frac{\partial \boldsymbol{p}}{\partial t}-\nabla \cdot \mathbf{q}+\nabla \cdot(\tau \cdot \mathbf{V}) \\
&+\mathbf{F} \cdot \mathbf{V}+W
\end{aligned}
$$

the internal energy $E$,
$\rho \frac{\partial E}{\partial t}+\rho(\mathbf{V} \cdot \nabla) E+p \nabla \cdot \mathbf{V}=-\nabla \cdot \mathbf{q}+\tau:(\nabla \mathbf{V})+W$
and the enthalpy $H$,

$$
\begin{aligned}
\rho \frac{\partial H}{\partial t}+\rho(\mathbf{V} \cdot \nabla) H-\left[\frac{\partial p}{\partial t}+(\mathbf{V} \cdot \nabla) p\right] & = \\
& -\nabla \cdot \mathbf{q}+\tau:(\nabla \mathbf{V})+W
\end{aligned}
$$

To complete the set of conservation equations, the continuity and momentum equations are, respectively,

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{V})=\mathbf{0} \\
& \frac{\partial \mathbf{V}}{\partial t}+(\mathbf{V} \cdot \nabla) \mathbf{V}=-\frac{\mathbf{1}}{\boldsymbol{\rho}} \nabla \boldsymbol{p}+\frac{\mathbf{F}}{\rho}+\frac{1}{\rho} \nabla \cdot \tau
\end{aligned}
$$

The quantities that appear in these equations are identified in the nomenclature.

By use of the same notation as used by Goldstein (Ref. 3), the orthogonal coordinates are taken as $\alpha, \beta$, and $\gamma$ such that the elements of length at $\alpha, \beta$, and $\gamma$ in the directions of increasing $\alpha, \beta$, and $\gamma$ are $h_{1} d \alpha, h_{2} d \beta$, and $h_{3} d_{\gamma}$, respectively. The differential arc length $d s$ is, then,

$$
(d s)^{2}=h_{1}^{2}(d \alpha)^{2}+h_{2}^{2}(d \beta)^{2}+h_{3}^{2}(d \gamma)^{2}
$$

If $u, v$, and $w$ are components of the velocity vector V in direction of increasing $\alpha, \beta$, and $\gamma$, the continuity equation is
$\frac{\partial \rho}{\partial t}+\frac{1}{h_{1} h_{2} h_{3}}$

$$
\times\left[\frac{\partial}{\partial \alpha}\left(h_{z} h_{3} \rho u\right)+\frac{\partial}{\partial \beta}\left(h_{1} h_{z} \rho v\right)+\frac{\partial}{\partial \gamma}\left(h_{1} h_{2} \rho w\right)\right]=0
$$

The momentum equation written in the $\alpha, \beta$, and $\gamma$ directions is
$\alpha: \frac{\partial u}{\partial t}+\frac{u}{h_{1}} \frac{\partial u}{\partial \alpha}+\frac{v}{h_{2}} \frac{\partial u}{\partial \beta}+\frac{w}{h_{3}} \frac{\partial u}{\partial \gamma}+\frac{u v}{h_{1} h_{3}} \frac{\partial h_{1}}{\partial \beta}+\frac{u w}{h_{1} h_{3}} \frac{\partial h_{1}}{\partial \gamma}$
$-\frac{v^{2}}{h_{1} h_{2}} \frac{\partial h_{2}}{\partial \alpha}-\frac{w^{2}}{h_{1} h_{3}} \frac{\partial h_{3}}{\partial \alpha} \cdot=-\frac{1}{\rho} \frac{1}{h_{1}} \frac{\partial p}{\partial \alpha}+\frac{F_{\alpha}}{\rho}+\frac{1}{\rho}\left(\nabla \cdot \tau_{)_{\alpha}}\right.$
$\beta: \frac{\partial v}{\partial t}+\frac{u}{h_{1}} \frac{\partial v}{\partial \alpha}+\frac{v}{h_{2}} \frac{\partial v}{\partial \beta}+\frac{w}{h_{3}} \frac{\partial v}{\partial \gamma}+\frac{v u}{h_{1} h_{2}} \frac{\partial h_{2}}{\partial \alpha}+\frac{v w}{h_{2} h_{3}} \frac{\partial h_{2}}{\partial \gamma}$
$-\frac{u^{2}}{h_{1} h_{2}} \frac{\partial h_{1}}{\partial \beta}-\frac{w^{2}}{h_{2} h_{3}} \frac{\partial h_{3}}{\partial \beta}=-\frac{1}{\rho} \frac{1}{h_{2}} \frac{\partial p}{\partial \beta}+\frac{F_{\beta}}{\rho}+\frac{1}{\rho}(\nabla \cdot \tau)_{\beta}$
$\gamma: \frac{\partial w}{\partial t}+\frac{u}{h_{1}} \frac{\partial w}{\partial \alpha}+\frac{v}{h_{2}} \frac{\partial w}{\partial \beta}+\frac{w}{h_{3}} \frac{\partial w}{\partial \gamma}+\frac{w u}{h_{1} h_{3}} \frac{\partial h_{3}}{\partial \alpha}+\frac{w v}{h_{2} h_{3}} \frac{\partial h_{3}}{\partial \beta}$
$-\frac{u^{2}}{h_{1} h_{3}} \frac{\partial h_{1}}{\partial \gamma}-\frac{v^{2}}{h_{2} h_{3}} \frac{\partial h_{2}}{\partial \gamma}=-\frac{1}{\rho} \frac{1}{h_{3}} \frac{\partial p}{\partial \gamma}+\frac{F_{\gamma}}{\rho}+\frac{1}{\rho}(\nabla \cdot \tau)_{\gamma}$

The components of the divergence of the symmetric viscous stress tensor $\tau$ in the $\alpha, \beta$, and $\gamma$ direction (Ref. 6) ${ }^{1}$
${ }^{1}$ The $h_{1}, h_{2}$, and $h_{3}$ used by Love are the reciprocals of those used herein.
are:

$$
\begin{aligned}
&(\nabla \cdot \tau)_{\alpha}= \\
& \frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial \alpha}\left(h_{2} h_{3} \tau_{\alpha \alpha}\right)+\frac{\partial}{\partial \beta}\left(h_{1} h_{3} \tau_{\alpha \beta}\right)+\frac{\partial}{\partial \gamma}\left(h_{1} h_{2} \tau_{\gamma \alpha}\right)\right] \\
&+\tau_{\alpha \beta} \frac{1}{h_{1} h_{2}} \frac{\partial h_{1}}{\partial \beta}+\tau_{\gamma c} \frac{1}{h_{1} h_{3}} \frac{\partial h_{1}}{\partial \gamma} \\
& \quad-\tau_{\beta \beta} \frac{1}{h_{1} h_{2}} \frac{\partial h_{2}}{\partial \alpha}-\tau_{\gamma \gamma} \frac{1}{h_{3} h_{3}} \frac{\partial h_{3}}{\partial \alpha}
\end{aligned}
$$

$$
(\nabla \cdot \tau)_{\beta}=
$$

$$
\begin{gathered}
\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial \alpha}\left(h_{2} h_{3} \tau_{\alpha \beta}\right)+\frac{\partial}{\partial \beta}\left(h_{1} h_{3} \tau_{\beta \beta}\right)+\frac{\partial}{\partial \gamma}\left(h_{1} h_{2} \tau_{\beta \gamma}\right)\right] \\
+\tau_{\alpha \beta} \frac{1}{h_{1} h_{3}} \frac{\partial h_{2}}{\partial \alpha}+\tau_{\beta \gamma} \frac{1}{h_{2} h_{3}} \frac{\partial h_{2}}{\partial \gamma} \\
-\tau_{\alpha \alpha} \frac{1}{h_{1} h_{2}} \frac{\partial h_{1}}{\partial \beta}-\tau_{\gamma \gamma} \frac{1}{h_{2} h_{3}} \frac{\partial h_{3}}{\partial \beta}
\end{gathered}
$$

$(\nabla \cdot \tau)_{\gamma}=$

$$
\begin{gathered}
\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial \alpha}\left(h_{2} h_{3} \tau_{\gamma \alpha}\right)+\frac{\partial}{\partial \beta}\left(h_{1} h_{3} \tau_{\beta \gamma}\right)+\frac{\partial}{\partial \gamma}\left(h_{1} h_{2} \tau_{\gamma \gamma}\right)\right] \\
+\tau_{\gamma \alpha} \frac{1}{h_{1} h_{3}} \frac{\partial h_{3}}{\partial \alpha}+\tau_{\beta \gamma} \frac{1}{h_{2} h_{3}} \frac{\partial h_{3}}{\partial \beta} \\
\quad-\tau_{\alpha \alpha} \frac{1}{h_{1} h_{3}} \frac{\partial h_{1}}{\partial \gamma}-\tau_{\beta \beta} \frac{1}{h_{2} h_{3}} \frac{\partial h_{2}}{\partial \gamma}
\end{gathered}
$$

The components of the viscous stress tensor for a Stokes' fluid are related to the components of the rate of strain tensor by

$$
\begin{gathered}
\tau_{\alpha \alpha}=\lambda \nabla \cdot \mathbf{V}+\mu e_{\alpha \alpha} \\
\tau_{\beta \beta}=\lambda \nabla \cdot \mathbf{V}+\mu e_{\beta \beta} \\
\tau_{\gamma \gamma}=\lambda \nabla \cdot \mathbf{V}+\mu e_{\gamma \gamma} \\
\tau_{\alpha \beta}=\tau_{\beta \alpha}=\mu e_{\alpha \beta} \\
\tau_{\alpha \gamma}=\tau_{\gamma \alpha}=\mu e_{\alpha \gamma} \\
\tau_{\beta \gamma}=\tau_{\gamma \beta}=\mu e_{\beta \gamma}
\end{gathered}
$$

where the divergence of the velocity vector is
$\nabla \cdot \mathbf{V}=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial \alpha}\left(h_{2} h_{3} u\right)!+\frac{\partial}{\partial \beta}\left(h_{1} h_{3} v\right)+\frac{\partial}{\partial \gamma}\left(h_{1} h_{2} w\right)\right]$
and the components of the rate of strain tensor are (Ref. 3):

$$
\begin{aligned}
\frac{1}{2} e_{\alpha \alpha} & =\frac{1}{h_{1}} \frac{\partial u}{\partial \alpha}+\frac{v}{h_{1} h_{2}} \frac{\partial h_{1}}{\partial \beta}+\frac{w}{h_{3} h_{1}} \frac{\partial h_{1}}{\partial \gamma} \\
\frac{1}{2} e_{\beta \beta} & =\frac{1}{h_{2}} \frac{\partial v}{\partial \beta}+\frac{w}{h_{2} h_{3}} \frac{\partial h_{2}}{\partial \gamma}+\frac{u}{h_{1} h_{2}} \frac{\partial h_{2}}{\partial \alpha} \\
\frac{1}{2} e_{\gamma \gamma} & =\frac{1}{h_{3}} \frac{\partial w}{\partial \gamma}+\frac{u}{h_{1} h_{3}} \frac{\partial h_{3}}{\partial \alpha}+\frac{v}{h_{2} h_{3}} \frac{\partial h_{3}}{\partial \beta} \\
e_{\alpha \beta} & =\frac{h_{2}}{h_{1}} \frac{\partial}{\partial \alpha}\left(\frac{v}{h_{2}}\right)+\frac{h_{1}}{h_{2}} \frac{\partial}{\partial \beta}\left(\frac{u}{h_{1}}\right) \\
e_{\alpha \gamma} & =\frac{h_{1}}{h_{3}} \frac{\partial}{\partial \gamma}\left(\frac{u}{h_{1}}\right)+\frac{h_{3}}{h_{1}} \frac{\partial}{\partial \alpha}\left(\frac{w}{h_{3}}\right) \\
e_{\beta \gamma} & =\frac{h_{3}}{h_{2}} \frac{\partial}{\partial \beta}\left(\frac{w}{h_{3}}\right)+\frac{h_{2}}{h_{3}} \frac{\partial}{\partial \gamma}\left(\frac{v}{h_{2}}\right)
\end{aligned}
$$

The second viscosity coefficient $\lambda$ is related to the shear viscosity $\mu$ (first viscosity coefficient) by $\lambda=-2 / 3 \mu$ if the bulk viscosity coefficient defined by $\kappa=\lambda+2 / 3 \mu$ is zero. Otherwise, $\lambda$ is given by

$$
\lambda=\kappa-\frac{2}{3} \mu
$$

In the various forms of the energy equations, the operator $(\mathrm{V} \cdot \nabla)$ applied to a scalar $f$, such as $H_{t}, E$, $p$, or $H$, gives the convection of that quantity by the flow,

$$
(\mathrm{V} \cdot \nabla) f=u \frac{1}{h_{1}} \frac{\partial \dot{f}}{\partial \alpha}+v \frac{1}{h_{2}} \frac{\partial f}{\partial \beta}+w \frac{1}{h_{3}} \frac{\partial f}{\partial \gamma}
$$

The divergence of the heat flux vector $q$ is

$$
\nabla \cdot \mathbf{q}=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial \alpha}\left(h_{2} h_{3} q_{\alpha}\right)+\frac{\partial}{\partial \beta}\left(h_{1} h_{3} q_{\beta}\right)+\frac{\partial}{\partial \gamma}\left(h_{1} h_{2} q_{\gamma}\right)\right]
$$

In particular, if the heat Alux vector is given by Fourier's heat-conduction law, $\mathrm{q}=-k \nabla T$, then the components are

$$
\begin{aligned}
& q_{\alpha}=-k \frac{1}{h_{1}} \frac{\partial T}{\partial \alpha}, \quad q_{\beta}=-k \frac{1}{h_{2}} \frac{\partial T}{\partial \beta} \\
& q_{\gamma}=-k \frac{1}{h_{3}} \frac{\partial T}{\partial \gamma}
\end{aligned}
$$

The rate at which work is done by body forces is, simply,

$$
\mathbf{F} \cdot \mathbf{V}=F_{\alpha} \boldsymbol{u}+F_{\beta} v+F_{\gamma} w
$$

The rate at which work is done by the viscous stresses is given by

$$
\begin{aligned}
& \nabla \cdot(\tau \cdot \mathbf{V})=\frac{1}{h_{1} h_{2} h_{3}}\left\{\frac{\partial}{\partial \alpha}\left[h_{2} h_{3}\left(\tau_{\alpha \alpha} u+\tau_{\beta \alpha} v+\tau_{\gamma \alpha} w\right)\right]\right. \\
&+\frac{\partial}{\partial \beta}\left[h_{1} h_{3}\left(\tau_{\alpha \beta} u+\tau_{\beta \beta} v+\tau_{\gamma \beta} w\right)\right] \\
&\left.+\frac{\partial}{\partial \gamma}\left[h_{1} h_{2}\left(\tau_{\alpha \gamma} u+\tau_{\beta \gamma} v+\tau_{\gamma \gamma} w\right)\right]\right\}
\end{aligned}
$$

Lastly, the rate of dissipation of energy takes the form

$$
\begin{aligned}
\tau:(\nabla \mathbf{V})= & \tau_{\alpha \alpha}\left(\frac{1}{h_{1}} \frac{\partial u}{\partial \alpha}+\frac{v}{h_{1} h_{2}} \frac{\partial h_{3}}{\partial \beta}+\frac{w}{h_{1} h_{3}} \frac{\partial h_{1}}{\partial \gamma}\right) \\
& +\tau_{\beta \beta}\left(\frac{1}{h_{2}} \frac{\partial v}{\partial \beta}+\frac{u}{h_{1} h_{2}} \frac{\partial h_{2}}{\partial \alpha}+\frac{w}{h_{2} h_{3}} \frac{\partial h_{2}}{\partial \gamma}\right) \\
& +\tau_{\gamma \gamma}\left(\frac{1}{h_{3}} \frac{\partial w}{\partial \gamma}+\frac{u}{h_{1} h_{3}} \frac{\partial h_{3}}{\partial \alpha}+\frac{v}{h_{2} h_{3}} \frac{\partial h_{3}}{\partial \beta}\right) \\
& +\tau_{\alpha \beta}\left(\frac{1}{h_{2}} \frac{\partial u}{\partial \beta}+\frac{1}{h_{1}} \frac{\partial v}{\partial \alpha}-\frac{v}{h_{1} h_{2}} \frac{\partial h_{2}}{\partial \alpha}-\frac{u}{h_{1} h_{2}} \frac{\partial h_{1}}{\partial \beta}\right) \\
& +\tau_{\alpha \gamma}\left(\frac{1}{h_{3}} \frac{\partial u}{\partial \gamma}+\frac{1}{h_{1}} \frac{\partial w}{\partial \alpha}-\frac{w}{h_{1} h_{3}} \frac{\partial h_{3}}{\partial \alpha}-\frac{u}{h_{1} h_{3}} \frac{\partial h_{1}}{\partial \gamma}\right) \\
& +\tau_{\beta \gamma}\left(\frac{1}{h_{3}} \frac{\partial v}{\partial \gamma}+\frac{1}{h_{2}} \frac{\partial w}{\partial \beta}-\frac{w}{h_{2} h_{3}} \frac{\partial h_{3}}{\partial \beta}-\frac{v}{h_{2} h_{3}} \frac{\partial h_{2}}{\partial \gamma}\right)
\end{aligned}
$$

This rate of dissipation of energy term usually appears in the literature as $\boldsymbol{\Phi}$.

Table 1 presents descriptive information on a number of orthogonal coordinate systems for which the conservation equations can be readily written by use of the foregoing relations. The last two entries in Table 1, in which the coordinates are taken along and normal to the surface, are useful in analyzing internal and external boundarylayer flows. For many flow problems in these coordinates, the dominant viscous stress is the shear stress that lies in the plane of $\beta=$ const ( $\tau_{\alpha \beta}$ for a two-dimensional flow and $\tau_{\alpha \beta}, \tau_{\gamma \beta}$ for a three-dimensional flow), and the important heat-flux component is normal to the surface, $q_{\beta}$.

Table 1. Coordinate systems and scale factors

| 1. Orthogonal coordinate | Rectangular coordinates |  |  | Scale factors $h_{1} h_{1} h_{3}$ |  |  | Coordinate configuration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| coordinates $\alpha, \beta, \gamma$ | * | $y$ | $z$ | $h_{1}$ | $h_{2}$ | $h_{3}$ |  |
| Cylindrical r, $\boldsymbol{\theta}, \mathbf{z}$ | $r \cos \theta$ | $r \sin \theta$ | I | 1 | r | 1 |  |
| Spherical $r, \phi, \theta$ | $r \cos \theta \sin \phi$ | $r \sin \theta \sin \phi$ | $r \cos \phi$ | 1 | $r$ | $r \sin \phi$ |  |
| Parabolic cylindrical $\boldsymbol{\xi}, \boldsymbol{\eta}, \boldsymbol{z}$ | $\frac{1}{2}\left(\xi^{2}-\eta^{2}\right)$ | $\xi \eta$ | $z$ | $\sqrt{\xi^{2}+\eta^{2}}$ | $\sqrt{\xi^{2}+\eta^{2}}$ | 1 |  |
| Paraboloidal $\xi, \eta, \phi$ | $\xi \eta \cos \phi$ | $\xi \eta \sin \phi$ | $\frac{1}{2}\left(\xi^{2}-\eta^{2}\right)$ | $\sqrt{\xi^{2}+\eta^{2}}$ | $\sqrt{\xi^{2}+\eta^{2}}$ | $\xi \eta$ |  |
| Elliptic cylindrical $\boldsymbol{\xi}, \boldsymbol{\eta}, \boldsymbol{z}$ | $a \cosh \xi \cos \eta$ $\mathbf{a}=\text { const }$ | $\cdots \sinh \xi \sin \eta$ | $z$ | a $\sqrt{\sinh ^{2} \xi+\sin ^{2} \eta}$ | a $\sqrt{\sinh ^{2} \xi+\sin ^{2} \eta}$ | 1 |  |


| Prolate spheroidal §. $\eta$. $\phi$ | $\left\|\begin{array}{l} a \sinh \xi \sin \eta \cos \phi \\ a=\text { const } \end{array}\right\|$ | $a \sinh \xi \sin \eta \sin \phi$ | $0 \cosh \xi \cos \eta$ | - $\sqrt{\sinh ^{2} \xi+\sin ^{2} \eta}$ | a $\sqrt{\sinh ^{2} \xi+\sin ^{2} \eta}$ | $a \sinh \boldsymbol{\xi} \sin \eta$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oblate spheroidal $\xi, \eta, \phi$ | $\left\|\begin{array}{l} a \cosh \xi \cos \eta \cos \phi \\ a=\text { const } \end{array}\right\|$ | $0 \cosh \xi \cos \eta \sin \phi$ | $0 \sinh \xi \sin \eta$ | a $\sqrt{\sinh ^{2} \xi+\sin ^{2} \eta}$ | a $\sqrt{\sinh ^{2} \xi+\sin ^{2} \eta}$ | $0 \cosh \xi \cos \eta$ |  |
| Bipolar $\xi, \eta, z$ | $\begin{aligned} & \frac{a \sinh \eta}{\cosh \eta-\cos \xi} \\ & a=\text { const } \end{aligned}$ | $\frac{a \sin \xi}{\cosh \eta-\cos \xi}$ | z | $\frac{0}{\cosh \eta-\cos \xi}$ | $\frac{0}{\cosh \eta-\cos \xi}$ | 1 |  |
| Toroidal $\xi, \eta, \phi$ | $\begin{aligned} & \frac{a \sinh \eta \cos \phi}{\cosh \eta-\cos \xi} \\ & a=\text { const } \end{aligned}$ | $\frac{a \sinh \eta \sin \phi}{\cosh \eta-\cos \xi}$ | $\frac{a \sin \xi}{\cosh \eta-\cos \xi}$ | $\frac{\sigma}{\cosh \eta-\cos \xi}$ | $\frac{a}{\cosh \eta-\cos \xi}$ | $\frac{a \sinh \eta}{\cosh \eta-\cos \xi}$ |  |
| Local coordinates along surface (Ref. 3) $x, y, z$ | - | - | - | $1+\kappa \gamma$ | 1 | 1 |  |
| Local coordinates along surface (Ref. 3) Symmetric about axis $x, y, \phi$ | - | - | - | $1+\kappa \gamma$ | 1 | $r$ |  |

## Nomenclature

$$
\begin{aligned}
e_{i j} & =\text { components of rate of strain tensor } \\
E & =\text { internal energy per unit mass } \\
f & =\text { scalar } \\
\mathbf{F} & =\text { body force per unit volume } \\
h_{1} h_{2} h_{3} & =\text { scale factors } \\
H & =\text { static enthalpy per unit mass } \\
H_{t} & =\text { total enthalpy } H_{t}=H+V^{2} / 2 \\
k & =\text { thermal conductivity } \\
p= & \text { static pressure } \\
\mathbf{q} & =\text { heat-flux vector } \\
q_{\beta} & =\text { heat-flux component normal to } \\
& \text { the surface } \\
t & =\text { time }
\end{aligned}
$$

$T=$ temperature
$u=$ velocity component in $\alpha$ direction
$v=$ velocity component in $\beta$ direction
$\mathbf{V}=$ velocity vector
$w=$ velocity component in $\gamma$ direction
$W=$ heat generation per unit volume
$\alpha, \beta, \gamma=$ orthogonal coordinates
$\kappa=$ bulk viscosity
$\lambda=$ second viscosity coefficient
$\mu=$ shear viscosity
$\rho=$ density
$\tau=$ viscous stress tensor

## References

1. Lagerstrom, P. A., "Laminar Flow Theory," Theory of Laminar Flows, Vol. IV, High-Speed Aerodynamics and Jet Propulsion, ed. by F. K. Moore. Princeton University Press, 1964.
2. Morse, P. M., and Feshbach, H., Methods of Theoretical Physics, Part I. McGraw-Hill Book Co., Inc., New York, 1953.
3. Goldstein, S., Modern Developments in Fluid Dynamics, Vol. I, Oxford University Press, 1938.
4. Tsien, H. S., "The Equations of Gas Dynamics," in Fundamentals of Gas Dynamics, Vol. III, High-Speed Aerodynamics and Jet Propulsion, ed. by H. W. Emmons. Princeton University Press, 1958.
5. Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena. J. Wiley \& Sons, Inc., New York, 1960.
6. Love, A. E. H., Treatise on the Mathematical Theory of Elasticity, p. 90. Dover Publications, New York, 1st American Printing, 1944.
