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ABSTRACT

Recursive form of results on smoothing for linear dynamic
systems were first given by Bryson and Frazier (1962). Alternate
formulations of the problem were given by Rauch et al (1965),
Mayne (1966), Fraser (1967) and Kailath (1968). The present
report shows that the results of Mayne [10] and Fraser [5] can be
derived in a more general setting using the Orthogonality Principle
of Linear Estimation [7]. The form of the results is particularly
useful for the sensitivity analysis of the optimal smoother. Explicit
equations are derived for the actual covariance of a suboptimal
smoother which uses wrong information about the mean square
values of noise inputs. Conditions are established under which the
calculated values of the covariances provide upper bounds on the

actual covariances of the smoothed estimates.



1 INTRODUCTION

Optimal smoothing of data using the Bryson-Frazier [1] or the
Rauch-Tung-Striebel [2] approach requires that the system and noise param-
eters be known exactly. In many practical situations, these parameters are
either unknown or only approximately known. It is then importtmt to know how
the performance of the optimal smoother is affected by using incorrect values
for these parameters. This report presents the equations for the actual co-
variance of the smoother which is no longer optimal under these conditions
and compares them with the calculated values using optimal smoother covari-

ance equations. This leads to convenient error bounds for the suboptimal

smoother.

To start with, a relationship between filtering and smoothing due to
Fraser [5]is derived from basic principles in a more general setting. It is
then applied to Gauss-Markov ﬁrocesses and the results of Bryson-Frazier (1]
and Rauch-Tung-Striebel [2] are derived from it. The effect of errors in the
system and noise parameters on forward and backward filtering is studied along
the lines of Nishimura 3] and Fitzgerald 4]. These results are then applied to
smoothing. ‘



2 A GENERAL RELATIONSHIP BETWEEN LINEAR
FILTERING AND SMOOTHING
_/
In this section, a relationship betw.een filterihg and smoething esti-
mates due to Fraser [5]‘wi_11 be derived for a wider class of problems.

'Fraser 5] derives this relationship using Rauch-Tung-Striebel form [2] of
equations. However, it can be derived easily using basic principles in a more
general setting. The method of proof presented here is simple and rests on the
orthogonality principle of Optimal Linear Estimation [7].

2.1. Statement of the Problem

Let {x(f) t sts T} be a multidimensional random process and let
- {z@), t, < t < T} be another multidimensional random process related to x(t:)
Denote by |
X () = Filtering estimate of x(t) based on {z(r), t, s T t)
fcb(t) = Estimate of x(t) based on {z(r), t< s T}
x{t/T) = Smoothing estimate of x(t) based on {z(1), t,= 1< T}
All estimates are assumed to be linear minimum variance estimates. For

example, x(t) which is to be obtained by a linear operation on {z(7), t, s r<t}

minimizes the expected value of the norm of the error, viz., E{x - x) x - x)}

*To be more precise, the random processes should be denoted as
x, ), t <t<T}and {zt, £), t <t<T}where ¢ isan elementary event.
We shall omit ¢ from the notation here.

~ *#x(t) is actually optimal for a more general loss function. See Kalman [8).



i“ollowing the notation of Fraser [5], X(t) may be called a forward
filter estimate and ib(t) may be called a backward filter estimate. Both are
estimates of x(t), one based on the past and the present history of z and the
" other based on the future histoﬂry of z. Note that they have no points of z in
| common. Let e(t) denote the error in the forward filter estimate of x(t) and
eb(t) denote the error in the backward filter estimate of x(t). Then

xt) =x@) - elt) | (1)
fcb(t) =x() - eb(t) | (2)

Let P(t) and Pb (t) denote the covariance of errors e(t) and ey (t)
respectively.

P) = Efelt) e’ ()] | (3)
P () =Efe ) el ©)3 (4)
b b % !
Also let
PE/T) = E{x) - X¢/T)x0) - X¢/T)1" ) (5)

Then P ¢/T) is the covariance of the error in the smoothed estimate, x(¢/T).

. . X
It would be desirable to obtain the smoothing estimate x(/T) by
linearly combining the forward filtering estimate x(t) and the backward filter-

ing estimate f(b(t). The following theorem states necessary and sufficient con-
ditions under which this can be done.



2.2, Theorem

The necessary and sufficient condition for the smoothing estimate
X(t/T) to be a linear combination of the forward filtering estimate X (t) and the
backward filtering estimate ib(t) is that the error e(t) = x() - ;c(t) in the for-
ward filter estimate be uncorrelated to the error e, t) = x(t) - ib(t) in the
backward filter estimate of x (), i.e., '

E{e() eg =0

Proof

The theorem can be proved using Orthogonality Principle of Opti-

mum Linear Estimation. The principle states that if x is a vector lying in a
space M and X is a vector lying in space M1 where M1 € M, then the minimum
of norm |[x - i[[ exists and is attained if and only if X is the projection of x on
Ml The error vector e = X - X is orthogonal to x and lies in a subspace M2
such that M1 U M2 = M and Ml_i_Mz. (M1 is the orthogonal complement of

M2 in space M.) For a proof of the theorem, see Deutsch (7.

Notice that for the forward filter, M1 is the subspace spanned by the
vectors {z(1), t0 <srsth M2 is the orthogonal complement of Ml' For the
backward filter, let M 3 be the subspace spanned by the vectors {z(7), t < 7 & T}
and M 4’ be the orthogonal complement of M 3¢
M,UM

3 =M, M,-LM

4 3 4

Similarly for the smoother, let M5 be the subspace spanned by {z(r), tys 7= T}
and M6 be the orthogonal complement of M5.

M5 U M6 =M and M5_'1..M6

By construction, M; U M3 = M5.‘



To prove the sufficiency part of the theorem , assume that e(t) and
ey (t) are uncorrelated. Therefore the vectors e(t) and eb(t) are orthogonal
to each other. But since e() and ey (t) can be any vectors in the subspaces

‘M, and M, it follows that

M, LM,

From the Orthogonality Principle,
M2_.LM1 and M4..L. M3
Therefore

Ml..l_.M3

We have already shown that M1 UM 3= M5. Thus, M5 is the direct sum of

two orthogonal subspaces M1 and M3. The projection operator from M to M5
‘can, therefore, be expressed as a linear combination of projection operators
from M to M1 and from M to M3. Hence the smoothing estimate %(t/T) can be

expx_*es&ied as a linear combination of filtering estimates x(t) and ib(t).
To prove the necessity of the condition, we reverse the argument.

Suppose that x(/T) is expressed as a linear combination of X({t) and
f{b(t). It follows thé.t the projection operator from M to M5 can also be ex-
pressed as a linear combination of projection operators from M to M1 and
from M to M. This, in turn implies that Ml_LM3. But since Ml__L M, and
: M3_L M,, it follows thathz_LM‘i. Hence the vectors e(t) and e, t) are
- orthogonal.
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2.3 Relationship' Between Filtering and Snioothing

‘The linear relationship between X(t/T), x(¢t) and ib(t) can be derived
in a number of ways. The Orthogonality Principle can be used once again or a
~ suitable loss function J can be minimized with respect to x({).

Jegie-0T P e -0 -k )T Pl -k

The results are well known (see Deutsch [7]) and can be expressed in
- & number of forms. One form of results is:

xe/m-Pe/mET OO BORO]

| P'l(t/T) = P‘l(t) + Pt;l(t)

Notit:e that both P () and Pb ) are positive definite matrices. Therefore, from
Eq. (7)), |

(7)

PE/T) < P{)

P¢/T) < Pb (t)

In other words, the smoothing estimate is always better than the filter-
- ing estimates. '

- The generality of the results proved above lies in the fact that no

. specific form has been assumed for the forward and the backward filters. In
other words, no assumptions have been made about the systems generating

| raridom processes x¢), to < t < T}and {z(), t0 <ts T}. The systéms can be
-differential or nondifferential. In Section 4, it will be shown that similar

" results hold for sequences of random variables. The Gaussian aésumption for



random variables has not been explicitly made, but the linear estimates are

strict sense optimum only for the Gaussian case. We shall apply these results
to a number of cases in the next few sections.

3 FILTERING AND SMOOTHING FOR GAUSS-MARKOV
RANDOM PROCESSES

A Gaussian raridom process whose future is dependent only on its past
and its present is called a Gauss-Markov process. The output of a linear sys-
tem excited by white noise is a Guass-Markov process. Kalman and Bucy [6]
derived equations of an optimal filter for a Guass-Markov process. Bryson
and Frazier [1]and Rauch, Tung and Striebel [2]derived corresponding equa-
tions for an optimal smoother. In this sectibn , we shall rederive the results

of (1]and [2] using the general relationship derived in Section 2. Thé approac.h
.in Section 3.1 follows closely that of Fraser [57.

3.1  White Noise in the Measurements

_ Consider a linear dynamic system (or the linearized equations of a
‘nonlinear system) of the following form:

X = Fx + Gu t,stsT (8)

where

x =n x 1 state vector of the system
F'=n x n matrix of time varying functions

u = qx 1 vector of random forcing functions (white noise
process)

G = n x q matrix of time varying functions
v . T
Efu()}=0; Eut)u” (N}=QE) 8¢ - 7)



E{ }denotes expected value of the quantity within the brackets. Continuous

- measurements z({t) are made on the system over the time interval {td sts T}
" and are of the type, |

e
’

z¢) =Hx +v - , “(9)
where
z =r x 1 vector of measurements
H = r x n matrix of time varying functions
v =1 x 1 vector of random measurement errors
(white noise process).
and

Efv®)}=0; EvE) v (N}=RE)&¢ - 7)
We assume that the white noise processes u and v are uncorrelated ’
E{uwv'}=0

The initial conditions for the system, x(to), are also random and
" normally distributed with ‘

Efx(,)l = 0; Ext) x €)= P)

Kalman and Bucy [6] Filter for the above system is given by the following set

- of equations:
d sy oo P R
a-fx(t) = .Fx +K(z - H.x), x(to) =0 ' (10)

K =PH! R o (11)



a‘% P()=FP+PF' +GQG' - PH' R HP; P ) given (12)

. The backward filter for this system can be derived using 7 = (T +t 0 t)
as the variable of integration.

d
Usmg il T

| Eqs. (8) and (9) can be written as follows to
derive the backward filter: | ‘ '

d
a—_‘_x=-Fx-Gu (13)

z(r) =Hx +v | (14)

for tosrs.T

, Using the forward filter equations (10), (11) and (12), the
backward filter equatlon can be wr1tten by changing F to -F, Gto -G and t to 7.

d - L a . ,
-a-;xb(r)=-Fxb+Kb(z-be) . (15)

Kb P HIR™! T (16)
3 P, (1) =~ FP_ - PbFT + GQGT - PbHTR'lHPb (17)

Changing the variable of integration back to t,

Sk, 0 = F, - K, @ - B e

_ T -1 ‘
Klo’PloH R (19)
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dp ()=FP +P F' -GQG +PH R HP

— 2
at T b b b (20)

The appropriate boundary conditions for the backward filter will be derived
shortly. , v

The error ef() and e, (t) in the forward and backward filtering esti-
mates obey the following equatmns.

—gfe(t)=(F-KH)e+Gu-Kv (21)
Se,@ = -(F + K Hey - Gu+Ky) - (@22)

Notice that e(t) depends on.{u(r), v{r), tysTs t}, but eb(t) depends on
fu(r), v(r), t < r=< T}, Since both u(t) and v {) are white noises, it follows that

- eft) and eb(t) are uncorrelated to each other. Using the theorem of Section
2.2 , the smoothing estimate X(t/T) can, therefore, be expressed as a linear
combination of the forward and backward filtering estimates. From Eq. (6)
and (7)

x¢/T) = Pe/T) P70 %) + P10 X, 0)) (23
ple/m =270 +2000) o (2

The smoother estimate must be the same as the forward filter
estimateatt =T, i.e.,

X(T/T) = X(T), P(T/T) = P(T)

So, the boundary conditions for the backward filter must be P_I(T) = 0. The
boundary condition on xb(T) is unknown. This makes it necessary to transform -

Eq. (18) by defmmg a new vanable yt) = P (t) xb(t) To obtain an equation
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for —c% y, we must get Hqt_ (Pt_)l). Equation (20) can be written in terms of Pb
* by using the matrix differentiation lemma,

d -1 -1/d -1 ' )
——— - ——— 25
dt Pb ) Pb (dt P) Pb (25)

The resulting equation is

d -1, -1, _T.-1 -1 T -1 _T_-1. = -
5P, ©)=-PF-F P +P GQG P -H R H (26)
Using Eq. (26) and (18), we obtain
d oo T -1,T T -1
Gyt =-F-GQG'P") y-HR 'z yI)=0 (27)

The Rauch-Tung-Striebel form of smoothing equations can be obtained
- directly by differentiating Eq. (23) and (24) and using Eq. (26) along with
the following equation derived from Eq. (12).

d

Et_P

1 1 T -1

©)=-P F-F 1, gTg!

p ! o plegeTet + vTRH

Differentiating Eq. (23)

d -1 d -1, d -1
TP U/T =P O P 0

- (P‘-1 + P"I)F -FT¥ ~(P'1 + P‘l) - P'IGQGTP-I + P-lGQGTP_l
b b b b

-pleymr - FIp e - P e cqaTr )

+ @ty - P reeeeT @ e/ - )

T

ey pley/m

-p /) @+ caTr i) - F « cate”

w1 6aaet prleT)
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or
. o
S PE/M = FreeeTe ) Pl e/m) + PN F + GoeTRTMY) - GaaT
(28) |

Similarly by differentiating Eq. (23) and expressing results only in terms of |
the forward filter estimates, it can be shown that .

%i(t/T) = F x(t/T) + GQG?P'I(t) (;c(t/T) - i(g)) (@9

Equation (28) and (29) are the same as derived by Rauch, Tung
and Striebel (2] using a variational approach.

Bryson-Frazier L1] results can be derived by defining

Ao -Ploren Blo GO R o
where A () are the adjbint variables used by Bryson-Frazier [1].
Substituting for X _in Eq. | (23) using Eq. (30), we get
X¢/T) =x¢) -POAE) - (31)
Differentiating Eq. (30), the following equation for A (t) can be obtained.
T T

420 - - F - POETR ) A+ HTR (2 - HRQ) (32)

A(T) = 0.
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It is also easy to show using Eq. (31) ,ahd (30) .that

PE/T) = P() - PO AC) PO)
where |
a0 -0 70
and .

T i ‘
RH) A- AF - PHTRH) - HT

T 1

d -
4t At) =~ (F - PH R‘ ,H

A(T) =0 e e e e

: ’ -1
PG/T) = (@7 €)+ P, ()

 =PE) -PO PG + P, 0T PO
Comparing the above equation with Eq (31)

3.2 Correlated Noise in the Measurements

(33)

(34)

This is the case tréated in Ref [ 12 ]uS1ng a variational approach,

To derive it using the theorem of Section” 2.2 , the state of the system is aug-

ménted with correlated noise components. This leads to the case of perfect
measurements for which Bryson and Johansen (9] derived the optimum filter.

Their results were derived in Ref. [ 12 ]as part of the smoothing results. It
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wis found necessary to differentiate the perfect measurements till they contained
white noise in them. The results of theorem 2.2 apply once the filtering estimates

are known. - The extension is straightforward once an equwalent system w1th white
noise in the measurement is derived.

4 FILTERING AND SMOOTHING FOR SEQﬁENCES
OF RANDOM VARIABLES

Let Ryre o+ Xy be an unknown sequence of N random variables and
let Zyy e oo Iy be a known sequence of N random variables.

Define,

;{i = Forward filter estimate of X, based on Zys - .. 2,

1

xp = Backward filter estimate of X, based on z. « o o Z
i i i+1? N

xi/N = Estimate of X based on Zys e o - Zy

Notice that the backward filter estimate 3}? does not use Z,.« The important point
is that the forward and the backward filters should not use any data point in com-

mon. If the forward filter estimate uses z;, then the backward filter estimate
should not use z, and vice versa. |

The errors € and e;) can be defined as in the continuous case. It is
easy to prove the following theorem which is the discrete analog of theorem 2.2,

Theorem

The necessary and sufficient condition for the smoothing estimate

;‘i /N to be a linear combination of the forward filtering estimate ;{i and the
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. backward filtering estimate xb is that the error e, = x, ~ X in the forward filter

oS Dl S |
estimate be uncorrelated to the error e:’ =X b in the backward filter estimate
-of xi , il.e., . ‘

i i
E{ei e, }J=0

5 EFFECT OF ERRORS IN P( ), Q¢) AND R() MATRICES
ON OPTIMAL FILTERING AND SMOOTHING ERROR
' COVARIANCE MATRICES

To illustrate the general procedure, we shall conS1der the spec1f1c

| system of Sectlon 3.1, Nishimura [3] cons1dered the effect of errors in P(t )s
- Q) and R () ma.trmes on the forward filter error covariance matrix. Slm11ar
results would be derived here for the inverses of the error covariances both

for the forward {filter and the backward filter. These results will then be applied
to an optimal snioother., o

'5. 1A Forward Filter : | o ‘

Let Pc (to), Qc t) and Rc () be the best known values of P(to) , Q)

and R{). In the absence of any further knowledge about these parameters, one
may construct a filter assuming these to be exact values. Such a filter would be
necessarily suboptimal and the orthogonality principle (of Section 2.2 ) would
not hold for it. Consider, for example, Eq. (10}, (11) and (12) with P(t )
replaced by P (t ), Q) replaced by Q ) and R () replaced by R (t) The value
of the gain matmg; K () would be dlfferent from its optimal value due to errors

~ in the assumed values of P¢ ), Q and R. Further, Eq. (12) would no longer

- . give the actual covariance of the suboptimal filter. We shall derive equations

for the actual covariance of the suboptimai filter. As the purpose here is to
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derive equations for smoothing, it would be more convenient to work with the
‘inverses of the filter covariance matrices. It will be assumed that the inverses
of these matrices exist. ' |

Let
| "
D, () =P, ¢) |

;wher»e Pc (t) is the calculated value of the error covariance matrix obtained from
. (12) by replacing P(t )by P (t ), Q) by Q ) and R() by R t). We would
wnte down the equatmn in terms of D (t) Using the matrix 1emma stated in

. (25) .
d PR, A, I,
3t Pcl) = -DF - F'D_ -DGQG D, +H R H
or .
d o T T -1, .
a—EDc(t)-—DC(F+N)-_(F+N) Dc-t_-DcGQG Dc+H Rc H }(‘35)v
~where
_co oT
N =GQ,G D,

Also
D ¢)=p1l¢)
. C O - C [¢]

The form of smoothing Eq. (23 ) 1nd1cates that it would be more convenient to
write the filtering equatwn for D (t) x(t) instead of x(t). |
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‘ Let

7@ =D ) k)

d .. d. - d
dt,n(t)" at Pe x+Dc-d—f®

T T

’ T iy I T . x
(-DcF -F DC-DCGQCG Dc+H Rc H)x}+Dc (FXfIKz-KHx)

where

T

K=P H 1
c

.
c
Simplifying the above equation,

1

TR; zZ (36)

—C%:-n(t) =- (F +N)Tn+H
- Define € the error in n as follows:
en(t) =D_t) x(t) - n®)
=D_) () - X))
and
D) = Bfe, 0 e;I" ©)}

Notice that D) = Dc(t) P(¢) D () where P() is actual covariance of xt). An
equation for en (t) can be written down using Eq. (35) and (36)

d

_ T T
a-t-en(t)- F + N) en+DcGu -H

R'1 v
c
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Then
d _ T .T
3 D) = E{é,1 en * en en}
Substituting for e, and én and simplifying,

d

' T -1
SDE) =-DF+N) - F + N)TD + DcGQGTDc " HTRC RR_H (37
D(to') = Dc (to)P(to)Dc(to)
Subtracting Eq.‘ (37) from Eq. (35),
L0 ©-DY)=-0,-D)F+N) -F+N" O -b)
dt “"c c ' _ ' c
T T,-1 -1 )

+ DcG-(Qc - Q)G Dc +H Rc (Rc - R)Rc H - (38)

Boundary conditions are
D ) -Dt) =D, &) -Pt)D )]
=D, ) (P ¢,) - P(to)_] Dc,(to)

Equation (38) is a linear differential equation. Its solution can be written
down in terms of a transition matrix & {, to-) defined as follows:

EC‘IE“” t,t) =~ F+N) 26, t) - (39)

@ g to) =1
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D) -DE) =26, t ) ID,¢,) - DEJI®T €, t)

t
+ f @€, DDGR, - Q)GTDC " HTR;I ®, - R)R;IH_’!T oL, 1)d1

tO

(40)
Positive Semidefiniteness Lemma I:

A set of sufficient conditions for Dc t) = D(t)' and Pc(t) 2 P({) over
{to stsT}are:

6 Pt )=Pt)
(i) Qc(t) 2 Q) over {to st<T}

@ii) Rc(t) =2 R¢) over {t oStsT)

Proof:

The above lemma is easily proved by noting that each term on the
right hand side of Eq. (40) is positive semidefinite under conditions (), (i)
and (iii). Therefore the sum of these terms, viz., EDC ) - D{t)], is also positive
semidefinite. To show that Pc t) = P), write (Dc - D) as follows: '

D -D=D -DPD =D (P_-P)D
C' B ¢ C C c ¢ C

So if (D, - D) is positive semidefinite, so is (P .- P
H .
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5. 2 Backward Filter

Equations for the backward filter are obtained from Eq. (26) and
(27) by changing Q to Qc and R to Rc'

T

d T -1 T -1 ‘
Yt =-F-GQG'P ) y-HR =z (41)
y(T) =0
d -1, -1 T -1 _-1 T.-1 _TA
—dTPbc(t) = - Pch -F Pbc + PchQCG Pbc -H RCH (42)
P'I(T) =0
bec

P-,;(lz(t) denotes the calculated value- of the error covaxjiance of estimate
yt). For further manipulations, it would be convenient to write Eq. (41) and
(42) slightly differently by using the following notation:

Let

1

Bc(t) = :Pk‘)c {t)

s T -1
M() = GQG P ()

-Eqgs. {41) and (42) can be written as

-1
yt) =~ (F - M)T y - HTRC zZ (43)
y(T) =0
or ' ,
d _ T T T ¢
B =-F-M'B -B (F-M-BGQG B -HEH (44)
B (T)=0
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Let B () denote the error covariance of y(), i.e.,
T
B() =E
¢ {ey ey}
where ey = Bc X -Y.
Bt) = BcP

bBc

where Pb is the actual covariance of %b

- or

Then

d T T T :

-a—fey— (- BcF -F Bc+BcGQcG Bc -H RcH)x+Bc(Fx+Gu)

+(F-M)Ty+HTR;1 z

d T  _T.-1 -
a-gey—-(F-M) ey+H R, v+B Gu | (45)
e =0
y(T)

'An expression for B(t) similar to Eq. ( 44) can be derived using Eq. (45) . A

" change of variable to 7= (T + t, - t) would make the derivation easier.

T,-1 1

d ) T T -
“d_“rB(T)— (F -M) B+ B(F -M)+BCGQG B, +H'R, RRc H  (46)

B('r=to) =0
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Equation (44) may also be written in terms of 7as follows:
d
d1' c

M= - M)B +B_(F - M)+BGQGB +HTR1H 47

7

Bc('r=t0)=0

Subtractirg Eq. (46) from (47), we obtain

d _ T T
4B, -B)=(F-M) B _-B)+ (B -B) (F-M+BGQ,-QG B,
‘ T -1 " -1 ‘
+H Rc (Rc - R)Rc H _ (48) .
with the boundary condition
(Bc - B)1-=t =0

The solution to linear differential Eq. (48) can be written in terms
of a transition matrix 2 (r, to) defined as follows:

d

- T '
"a—;_'@b(‘r: tO) - (F - M) ¢b(T’ tO) (49)

@ s ty) =1

‘Then

T,-1 -1 T
Rc (Rc - R) Rc H]S ‘Pb (s, to) ds

r

B () - B(r) = f ¢, (5, t )IB.GQ, - QG B_+H
t0

(50

Notice that to obtain B c(t) where t denotes time from t,, weput 7= (T + t, - t)
in Eq. (50). '
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Positive Semidefiniteness Lemma II:

A set of sufficient conditions for Bcc;) 2B¢) and P c(t) 2 P, ¢) over
(to <t <T}are

e

6 Q0 2Q0 over f st<T)
(ii) Rc(t) 2 R() over [to stsT}

Proof:

Under conditions (i) and (i), each term on the right hand side of
Eq. (50) is positive semidefinite. Hence the sum is also positive semidefinite.

Moreover

o el

=B Ppe - Pp)Be
Therefore CPbc - Pb) is ’pOSitive semidefinite.

5.3 Smoother

The smoothed estirriate is obtained using Eq. (23.) and (24). In
terms of the new notation of Sections 5.1 and 5.2 , smoother equations can
be written as follows: ‘ "'

| 'P;'l’(t/T) =Dc(t)+Bc(t) | - (51)
and

P/ XE/T) =00 +y6) )
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sI‘h.e actual covariance of the smoother dehoted as P(t‘/'T) can be obtained by
subtracting P;lf(t/‘l‘) x () from both sides of Eq. (52).

P;1¢/T) X0 - XE/T)1= e, 0 + e O

Taking expectations,
P;l(t/T) P{/T) P;I(t/T) =D{) + Bt) - (53)

since en(t) and éy(t) are uncorrelated.

Subtracting Eq. (53) from (51)

P ¢/T) [P, ¢/T) - P&/, ¢/T) = D 0O - DOI+ [B, ) - BE)]

or

P ¢/T) - PE/T) = o ¢/T)D ) - DO (/T) + P (/T) B, () - BOP ¢/T)

*

(54)

Equation (54) is an analytical expression for the error in the calcu-
‘lated smoother covariance. It can be used to study the sensitivity of the smoother
to errors in Q and R matrices.

Positive Semidefinitenn Lemma III:
A set of sufficient conditions for P, t/T) 2 P¢/T) over {to' sts<T}are
, (1) Pc(to.) 2 P(to)
) Q) 2QE) over f{t <tsT)

(@ii) R, ) 2 R¢) over t,st=T)
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Proof:

It has already been shown in Lemmas I and II that under conditions
@), Gi) and (iii),'Dc(t) 2 E() and Bc(t) zB(). Hence from Eq. (54), it follows
that Pc(t/T) z2P¢/T). ’

5.4 Implications of Lemmas I , IT and III

Let the state vector x be one dimensional (@ scalar). The Lemmas
proved above state that if the estimated values Pc(to), Qc t), Rc () are greater
than or equal to the actual values P(to), Q(t), Rt) respectively, then the cal-

culated error variances are greater than or equal to the actual variances, i.e., .

P, t) = Pg)
P .0 =P ¢

Pc t/T) = P{/T)

for all t in the interval {to <t < T}. Thus the computed values provide uppér
bounds on the actual values. For an n-dimensional system, the above remarks
would apply to all the diagonal elements of the error covariance matrices. The
diagonal elements of these matrices represent the mean square error terms for
the estimates of the state variables of the system, In a number of practical
situétions, though the actual values of P(to), Q() and R(t) are unknown, one can
" specify suitable upper bounds on these quantities. Then the above Lemmas
state that the diagonal elements of the computed covariance matrices Pc(t)@and
P c (t/T) will provide upper bounds on the diagonal elements of matrices P () and
P¢/T). One advantage of Kalman filtering and recursive optimal smoothing
techniques is that one can perform the error analysis without the use of actual
data. In this way very useful feasibility studies can be carried out before col-

lecting actual data. If one can estimate a state with satisfactory accuracy using |
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upper bounds for P(t 0), Q and R then it is assured that the state would be
estimated to at least that much accuracy when the actual tests are performed.
~ If some aflaptive scheme is used to improve es/stimates of P(to), Q and R, then
the signal would, of course, be estimated to a greater accuracy.

5.5 . Error Compensation Effect In a Smoother

Equation (54) reveals another interesting fact about Smoothing dis~
tinct'ﬁ;om filtering, viz., it is possible to compensate partially for the errors
in the smoother by making errors in the forward and the backward filters of
opposite signs. This is done by choosing Qc and Rc differently for the forward
and the backward filter. The compensation, however, will not be uniformly
good over the whole time interval unless Qc and Rc are made time varying.

6 EFFECT OF ERRORS IN F, G AND H MATRICES
ON OPTIMUM SMOOTHING

. The detailed equations for this case are rather messy and will not be
presented here. The method of approach is the same as in Section 5 . The A
.de\Arelopment is parallel to that of Fitzgerald (4] who studies the effect of errors :
in F, G and H on a Kalman filter. Fitzgerald shows that under certain condi-
tions, the actual covariance matrix may diverge from the calculated covariance
. matrix. Same thing can happen to both the forward and the backward filters.
,Hov}ever , the divergence f.or the smoother may not be so bad because the errors

in the fprward and the backward filters may try to compensate each other.
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7 SUMMARY AND CONCLUSIONS

-The results of Fraser [5]on "Smoother As A Combination of Two
Kalman Filters' have been generalized and derived from basic principles.
Necessary and sufficient conditions are obtained under which an optimal smoother
rhay be expressed as a linear combination of two optimal filters, one operating
forward on the data (forward filter) and the other operating backward on the data
(backward filter). The smoothing results of Bryson-Frazier [1]and Rauch-
Tung-Striebel [2] are derived using the general relationship between filtering -
and smoothing estimates. The effect of errors in system and noise parameters
on optimum smoothing has been studied using the TwolKalman filter approach.
An analytical expression for the error in the calculated smoother covariance
- matrix has been presented. This expression is then used to estabhsh upper

bounds on the actual smoother covariance matrix.
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