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AB ST RAC T 

Recursive form of resu l t s  on smoothing fo r  l inear dynamic 

sys tems were  first given by Bryson and F r a z i e r  (1962) .  

formulations of the problem were  given by Rauch e t  a1 (1965), 

Mayne (1966), F r a s e r  (1967) and Kailath (1968). The present  

repor t  shows that the resu l t s  of Mayne [ l o ]  and F r a s e r  [5] can  be 

derived i n  a m o r e  general  setting using the Orthogonality Pr inciple  

of Linear  Estimation [7]. 

useful for the sensit ivity analysis of the optimal smoother.  

equations a r e  derived for the actual  covariance of a suboptimal 

smoother which uses  wrong information about the mean square 

values of noise inputs. 

calculated values of the covariances provide upper bounds on the 

actual covariances of the smoothed estimates. 

Alternate 

The form of the resu l t s  is par t icular ly  

Explicit 

Conditions are established under which the 



1 INTRODUCTION 

Optimal smoothing of data using the Bryson-Frazier [l] or  the 
much-Tung St r iebe l  [ Z ]  approach requires that the system and noise param- 
eters be known exactly. ‘ In many practical situations, these parameters are 
either unknown or  only approximately known. It is then important to know how 
the performance of the optimal smoother is affected by using incorrect values 
fo r  these parameters. This repor t  presents the equations for the actual co- 
variance of the smoother which is no longer optimal under these conditions 
and compares them with the calculated values using optimal smoother covari - 
ance equations. This leads to convenient e r ro r  bounds fo r  the suboptimal 
smoother. 

To start with, a relationship between filtering and smoothing due to 
Fraser [5] is derived from basic principles in a more general setting. It is 

then applied to Gauss-Markov processes and the results of Bryson-Frazier [l] 
and much-Tung-Striebel [Z] are derived from it. The effect of e r ro r s  in  the 
system and noise parameters on forward and backward filtering is studied along 
the lines of Nishimura’r31 and Fitzgerald f-41. These results are then applied to 
smoothing. 
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2 A GENERAL RELATIONSHIP BETWEEN LINEAR 
FILTEFUNG AND SMOOTHING 

/ 

In this section, a relationship between filtering and smoothing esti- 
mates due to Fraser E53 will  be derived for a wider class of problems. 
Fraser r5-j derives this relationship using Rauch-Tung-Striebel form [ Z ]  of 
equations. However, it can be derived easily using basic principles in a more 
general setting. The method of proof presented here is simple and rests on the 
orthogonality principle of Optimal Linear Estimation E T ] .  

2.1. Statement of the Problem 

Let [x (t) , to s t s T] be a multidimensional random process and let 
{z(t), to s t 5 T’) be another multidimensional random process related to x(t). 
Denote by 

* 

k(t) = Filtering estimate of x(t) based on [ z (T ) ,  to s T 5 t] 

%(t) = Estimate of x(t) based on [ z ( ~ ) ,  t < 7 5 T) 

G(t/T) = Smoothing estimate of x(t) based on [z(~),  to s i; T )  

All  estimates are assumed to be linear minimum variance estimates. For  

example, k(t) which is to be obtained by a linear operation on [z(T), t s 7 s t] 
minimizes the expected value of the norm of the e r ror ,  viz., E[(x - 2) (x - x)). 

OT A ** 
. .  

*To be more precise, the random processes should be denoted as w, E ) ,  to s t s T’) and [z(t, E ) ,  t s t i; T’) where 6 is an elementary event. 
We shall omit 5 from the notationxere. 

**:e) is actually optimal for a more general loss function. See Kalman [83. 
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1 
Following the notation of Fraser [5], %(t) may be called a forward 

filter estimate and &(t) may be called a backward filter estimate. Both are 
estimates of x(t), one based on the past and the present history of z and the 

other based on the future history of z. Note that they have no points of z in 
common. Let e(t) denote the e r r o r  in the forward filter estimate of x(t) and 
%(t) denote the e r ro r  in the backward filter estimate of x(t). Then 

2(t) = x(t) - e(t) (1) 

Let P(t) and Pb(t) denote the covariance of e r ro r s  e(t) and eb(t) 
respectively. 

P (t) = E{e (t) eT (t) ] (3)  

Also let 

. P (t/T) = E[[x (t) - 2 (t/T)]{x (t) - 2(t/T)IT 1 (5) 

Then P(t/T) is the covariance of the e r ro r  in the smoothed estimate, ;(t/T). 

/---- 

It would be desirable to obtain the smoothing estimate i(t/T) by 

linearly combining the forward filtering estimate k (t) and the backward filter - 
ing estimate $e). The following theorem states necessary and sufficient con- 
ditions under which this can be done. 
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2.2. Theorem 

The necessary and sufficient condition for the smoothing estimate 
i(t/T) to be a linear combination of the forward filtering estimate ?(t) and the 
backward filtering estimate ;b(t) is that the error e(t) = x(t) - ;(t) in the for -  
ward filter estimate be uncorrelated to the error e,(t) = x(t) - \(t) in the 
backward filter estimate of x(t), i. e .  , 

E {e (t) e; (t)} = 0 

Proof 

The theorem can be proved using Orthogonality Principle of Opti- 
mum Linear Estimation. The principle states that i f  x is a vector lying in a 
space M and k is a vector lying in space M1 where M1 C M, then the minimum 
of norm 1Ix - exists and is attained if and only if 2 is the projection of x on 
M1. The e r ro r  vector e = 2 - x is orthogonal to 2 and lies in a subspace M2 

such that M1 UM2 = M and M1LM2. (Ml is the orthogonal complement of 
M2 in space M.) For  a proof of the theorem, see Deutsch [?I. 

Notice that for the forward filter, M1 is the subspace spanned by the 
5. t}. M2 is the orthogonal complement of M1. For the 

T} 

vectors {z(T), to 5 
backward filter, let M3 be the subspace spanned by the vectors {Z(T), t < T 

and M4 be the orthogonal complement of M3. 

M3 U M 4  = M ,  M 3 L M 4  

Similarly for  the smoother, let M5 be the subspace spanned by {z (T) ,  to 5 7 2 T} 
and M6 be the orthogonal complement of M5* 

M5 U M6 = M and M 5 A M 6  

By construction, M1 u M3 = M5.a 
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To prove the sufficiency part of the theorem, assume that e(t) and 
e (t) a r e  uncorrelated. Therefore the vectors e(t) and e,@) are orthogonal 
to each other. But since e (t) and e (t) can be any vectors in the subspaces 
M2 and M4, it follows that 

b 

b 

M2LM4 

From the Orthogonality Principle, 

M21M1 and M 4 L M 3  

The r ef o r  e 

M11-M3 

We have already shown that MI U M 3  = M5. Thus, M5 is the direct sum of 

5 two orthogonal subspaces MI and Mg. The projection operator from M to M 

can, therefore, be expressed as a linear combination of projection operators 
from M to MI and from M to M3. Hence the smoothing estimate g(t/T) can be 
expressed as a linear combination of filtering estimates k(t) and ;rb (t). 

To prove the necessity of the condition, we reverse the argument. 

Suppose that ;(t/T) is expressed as a linear combination of g{t) and 
k(t). It follows that the projection operator from M to M can also be ex- 
pressed as a linear combination of projection operators from M to M1 and 
from M to M3. This, in turn implies that M1LM3. But since M I l M 2  and 

orthogonal. 

5 

. M&M4, it follows that M 2 1 M 4 .  Hence the vectors e(t) and e,(t) a r e  



2: 3 Relationship Between Filtering and Smoothing 

.The linear relationship between G(t/'T), G(t) and \(t) can be derived 
in a number of ways. The Orthogonality Principle can be used once again or a 
suitable loss function J can be minimized with respect to x(t), 

The results are well known (see Deutsch [?I) and can be expressed in 
a number of forms. One form of results is: 

p-l(t /T) = P-ft) + Pi1&) (7) 

Notice that both P (t) and Pb (t) are positive definite matrices, Therefore , f rom 

Eq. ( 7 1 ,  

In other words, the smoothing estimate is always better than the filter- 
ing estimates. 

The generality of the results proved above lies in the fact that no 
specific form has been assumed for the forward and the backward filters. In 
other words , no assumptions have been made about the systems generating 
random processes {x(t), to s t I; T j  and {z(t), to c t 5 T). The systems can be 

differential or nondifferential. Xn Section 4, it will be shown that similar 
results hold for sequences of random variables. The Gaussian assumption for 



- 7- 

random variables has not been explicitly made, but the linear estimates are 
Strict sense optimum only for the Gaussian case. We shall apply these results 
to a number of cases in the next few sections. 

3 FILTERIENG AND SMOOTHING FOR GAUSS-MARKOV 
RANDOM PROCESSES 

A Gaussian random process whose future is dependent only on its past 
and its present is called a Gauss-Markov process. The output of a linear sys- 
tem excited by white noise is a Guass-Markov process. Kalman and Bucy[6] 
derived equations of an optimal filter for a Guass-Markov process. Bryson 
and Frazier [l] and Rauch, Tung and Striebel [ a ]  derived corresponding equa- 
tions for an optimal smoother. In this section, we shall rederive the results 
of [l] and [2] using the general relationship derived in Section 2 .  The approach 
in Secti.on 3.1 follows closely that of Fraser [5]. 

3 . 1  White Noise in the Measurements 

Consider a linear dynamic system (or the linearized equations of a 
nonlinear system) of the following form : 

t s t s T  (8 1 
0 

x = Fx + Gu 

where 

x = n x 1 state vector of the system 
F’= n x n matrix of time varying functions 
u = q x 1 vector of random forcing functions (white noise 

G = n x q matrix of time varying functions 
process) 

E{u(t)] = 0; E[u(t) uT(r)] = Q(t) 6 (t - T )  



.E[ } denotes expected value of the quantity within the brackets. Continuous 
measurements z(t) are made on the system over the time interval [to 5 t 5; T] 
and are of the type, 

where 

/ 

z(tj = & + V  : (9) 

z = r x 1 vector of measurements 
K = r x n matrix of time varying functions 
v = r .x 1 vector of random measurement e r ro r s  

(white noise process). 

and 

We assume that the white noise processes u and v are uncorrelated, 

T ECuv ] =  0 

The initial conditions for the system, x(to), are also random and 
normally distributed with 

KaIman and Bucy [6] Filter for the above system is given by the following set  
of equations : 
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d T T -1 -p(t) = FP + PF + G Q G ~  - PH R HP; P(to) given dt 

. The backward filter for this system can be derived using T = @ +to - t) 
as the variable of integration, 

Eqs. ( 8 ) and ( 9 ) can be written as follows to d d Using- = -- d7 d t '  
derive the backward filter: 

z(7) = H x + v  

for t 5 7 5  T 
0 

Using the forward filter equations ( 10 ) , ( 11 ) and ( 12)  , the 

backward filter equation can be written by changing F to -F, C to -G and t to 7. 

T -1 \ = P b H  R 

d -PbF T +GQG T - P b H  T R -1 HPb xTpb(r) = - FPb 

Changing the variable of integration back to t, 

%b (t) = F;6 - \(z - H$) 

T -1 yD=PbH R 



-10- 

-P d (t) = FPb + PbFT 9 GQG T + PbH T R -1 HPb dt b 

The appropriate boundary conditions for the backward filter will be derived 
shortly. b' 

The error e(t) and eb(t) in the forward and backward filtering esti- 
mates obey the following equations. 

d -e(t) = (F -KH)e +Gu -Kv dt 

Notice that e (t) depends on { u ( ~ )  , v (7) , to s T 5 t], but eb(t) depends on 

{u(~) ,  v(T), t < s TI. Since both u(t) and v(t) are white noises, it follows that 
e(t) and %(t) are uncorrelated to each other. Using the theorem of Section 
2.2 , the smoothing estimate ? ( t P )  can therefore be expressed as a linear 
combination of the forward and backward filtering estimates. From Eq. ( 6 ) 

and (7) 

;(t/T) = P(t/T) [P-'(t) ;(t) + Pil(t) ;6(t)J (23) 

P--l(t/*r) = P-l(t) + Pil(t) (24) 

The smoother estimate must be the same as the forward filter 
estimate at t = T, Le., 

So, the boundary conditions for the backward filter must be Pi1@) = 0. The 
boundary condition on ;6@) is unknown. This makes it necessary to transform 
Eq. ( 18 ) by defining a.new variable y(t) = Pi1 (t) $(t). To obtain an equation 

, 

. .  
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d d -1 -1 
b for dt y, we must get - (P 

by using the matrix differentiation lemma, 
). Equation ( 2 0 )  can be written in  te rms  of P 

dt b 

Z P b  d -1 6) = - Pb -l (&Pb) Pi' 

The resulting equation is 

T -1 d -1 T -1 -1 dt pb (t) = - P;'F - F pb + pb GQG~P;' - H R H (26)  

Using Eq. ( 2 6 )  and ( 18 1 , we obtain 

T -1 T d T -1 , Y ( t ) =  - (F - GQG Pb ) y - H  R Z,  y(T)=O 

The much-Tung-Striebel form of smoothing equations can be obtained 
directly by differentiating Eq. ( 2 3  ) and ( 2 4  ) and using Eq. ( 26 ) along with 
the following equation derived from Eq. ( 12  ) . 

d -1 T -1 T -1 Z P  (t) = - P-lF - FTP" - P-lGQG P + H R H 

Differentiating Eq. ( 23 1 

= - (p-1 + pi1)i - F~ (P-' + pi1) - P - ~ G Q G  T P -1 + P;'GQG T pb -1 

T -1 T -1 = - P-l(t/T)F - F P (t/T) - P-'(t) GQG P (t) 

'+ (P-'(t/T) - P" (t))GQGT (P-'(t/T) - P-'(t)) 

I T -1 T -1 = - P-'(t/T) (F + GQG P (t)) - (F + GQG P (t)) P-l(t/T) 

+ P-l(t/T) GQGT P-l(t/T) 
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or 

T -1 T d T -1 - P(t/T) = (F + GQG P (t)) P-'(t/T) + P-l(t/T) (I? + GQG P (t)) - GQGT 
. dt 

Similarly by differentiating Eq. ( 2 3  ) and expressing results only in te rms  of 
the forward filter estimates, it can be shown that 

- d -  x(t/T) = F &(t/T) + GQG T P -1 (t) &(t/T) - ;E@)) 
dt c 

Equation ( 28 ) and ( 29 ) are the same as derived by Rauch, Tung 
and Striebel C2l using a variational approach. 

Bryson-Frazier 111 results can be derived by defining 

h (t) = P" (t) P (t/T) Pi' (t) &(t) $(t)) 

where h (t) are the adjoint variables used by Bryson-Frazier El] .  

Substituting for ;6 in Eq. ( 2 3  ) using Eq. ( 30 ) , we get 

%(t/T) = k(t) - P (t) h (t) (31) 

Differentiating Eq. ( 30 ), the following equation for X (t) can be obtained. 

T -1 T d T -1 xX(t)  = - (F - P(t)H R H) h + H R (Z - H%(t)) 
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It is also easy to show using Eq. ( 31 ) and ( 30 ), that 
_ -  

P(t/T) = P(t) - P(t) A(t) P(t) (33) 

where 

and 

T -1 d T -1 T T -1 
dt A(t)= - @' - PH R H) 14 - A@' - P H  R H) - H  R H (34) 

A@) = 0 " 

. .  

A (t) can be related to P(t) and Pb(t) by inverting Eq. ( 24 ) 

4 
-1 

P(t/T) = (I?-'(t), + Pil(t)) 

= P(t) - P(t) CP(t) 4- Pb(t)T1 P(t) 

Comparing the above equation with Eq. ( 31 ) 

3 . 2  Correlated Noise in the Measurements 

This is the case treated in Ref.  [ 12 ]using a variational approach. 
To derive it using the theorem of 
mented with correlated noise components. This leads to the case of perfect 

tion 2 . 2  , the s of the system is aug- 

measurements for which Bryson and Johansen [9] derived the optimum filter. 
Their results were derived in Ref. [ 12 3 as part of the smoothing results. It 
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wrfs found necessary to differentiate the perfect measurements till they contained 
white noise in them. The results of theorem 2 . 2  apply once the filtering estimates 
are known. The extension is straightforward once an equivalent system with white 
'noise in the measurement is derived. 

. .  

4 FILTEFUNG AND SMOOTHING FOR SEQUENCES 
OF RANDOM VAFUABLES 

Let xl,. . . % be an unknown sequence of N random variables and 
let zl, . . e % be a known sequence of N random variables. 

Define, 
A 

x. = Forward filter estimate of xi based on zl, . . . 8. 

*b = Backward filter estimate of xi based on z ~ + ~ ,  . . . zN 1 1 

A 

"N ='Estimate of x. based on zl, . . . xi/N 1 

Notice that the backward filter estimate Gb does not use z. . The important point 
i s  that the forward and the backward filters should not use any data point in com- 
mon. If the forward filter estimate uses zi, then the backward filter estimate 
should not use z. and vice versa. 

1 1 

1 

b The e r r o r s  ei and ei can be defined as in the continuous case. It is 
easy to prove the following theorem which is the discrete analog of theorem 2.2. 

Theorem 

The necessary and sufficient condition for the smoothing estimate 
'n . xifi to be a linear combination of the forward filtering estimate ki and the 
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. .. 

backward filtering estimate k: is that the error ei = xi - Zi in the forward filter 
Ab in the backward filter estimate b estimate be uncorrelated to the e r ro r  ei = xi - xi 

of x., i. e. , 
1 

5 I EFFECT OF ERRORS IN P(t ), Q(t)AND R(t) MATHCES 
ON OPTIMAL FILTERING AND SMOOTHING ERROR 
COVAFUANCE MATRICES 

0 

To illustrate the general procedure, we shall consider the specific 
system of Section 
Q(t) and R(t) matrices on the forward filter e r r o r  covariance matrix. Similar 
results would be derived here for the inverses of the e r ro r  covariances both 
for the forward filter and the backward filter. These results will then be applied 
to an optimal smoother. 

3.1, Nishimura [3] considered the effect of e r ro r s  in  P(to), 

5 . 1  Forward Filter > 

Let P (t ), Q (t) and Rc(t) be the best known values of P(to), Q(t) 
and Re). In the absence of any further knowledge about these parameters, one 
may construct a filter assuming these to be exact values. Such a filter would be 

necessarily suboptimal and the orthogonality principle (of Section 2 .2  ) would 
not hold for it-. Consider, for example, Eq. ( 10 ) , ( 11 ) and ( 12 ) with P(to) 
replaced by Pc(to), Q(t) replaced by Q (t) and R(t) replaced by Rc(t). The value 
of the gain matrix K(t) would be different from its optimal value due to e r ro r s  
in the assumed values of P(to), Q and R. Further, Eq. ( 1 2 )  would no longer 
g$ve the actual covariance of the suboptimal filter. We shall derive equations 
fo r  the actual covariance of the suboptimal filter, As the purpose here is to 

c o  C 

C 
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derive equations for smoothing, it would be more convenient to work with the 
inverses of the filter covariance matrices. It will be assumed that the inverses 

n 

' of these matrices exist. 

Let 

Dc(t) = Pi' (t) 

where P (t) is the calculated value of the error covariance matrix obtained from 
Eq. ( 12  1 by replacing P (to) by Pc (to), Q (t) by Q (t) and R(t) by R (t) . We would 
write down the equation in te rms  of D,(t). Using the matrix lemma, stated in . 

Eq.' ( 2 5 )  

C 

C C 

or. 

where 

Also 

- D ( t ) = - D F - F  d T I) - D G Q G  T D , + H  T R c H  -1 dt, c C C c c  

d T T T -1 -D ( t ) = - D  dt c C C C C 
@'+I?) - @"+N) D + D  GQG D + H  Re H (35)  

C 
N = GQ G ~ D  

C 

The form of smoothing Eq. ( 2 3  1 indicates that it would be more convenient to 
write the filtering equation for Dc(t) ;(t) instead of G(t). 
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= (-D F -F*D -D GQ G ~ D  + H  'T R -1 H ) X + I +  A p G + ~ z - f c ~ ; c )  
C C c c  C C 

where 

T -1 
C 

K = P H  R 
r, 

Simplifying the above equation, 

x q ( t ) = - ( F + N )  d T q + H  T Rc -1 z 

Define e the error in q as follows: v' 

and 

Notice that D (t) = Dc(t) P (t) D (t) where P (t) is actual covariance of g(t). An 
equation for e (t) can be written down using Eq. ( 3 5  f and ( 36 ) 

C 

v 
d T T -1 --e e ) = - @ + N )  e + D c G u - H  Rc v 
dt rl 
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Then 

d T T - D ( t ) = E @  e + e  6 ] 
dt r l r l  r l r l  

Substituting for e and and simplifying, 
rl r) 

d x D ( t )  = - D@' + N) - (F + N) T D + D GQG T D~ + H~R;' R R - ~ H  (37)  C C 

D(t ) = D  (t )P(t )D (t ) 
0 c o  0 c o  

Subtracting Eq. ( 3 7 ) from Eq. ( 3 5 ) , 

d T - @  (t) -D(t)) = .. (Dc -D). (F+N) - @+N) dt c P c o D )  

+ D G-(Q - Q ) G ~ D ,  + H T R~ -1 ~1,  - ~ 1 ~ t - l ~  
c c  C 

Boundary conditions are 

Equation ( 38 ) is a linear differential equation. Its solution can be written 
down in terms of a transition matrix @ (t, to) defined as follows: 
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Positive Semidefiniteness Lemma I: 

A set of sufficient conditions for Dc(t) 2 D(tjand P,(t) 2 P(t) over 
ito t 6 Tf are: 

6) PC(tO) Wt0) 

(ii) Qc(t) 2 Q(t) over [to 5 t Tj 

(iii) R (t) R(t) over {to 5 t Tf 
C 

Proof: 

The above lemma is easily proved by noting that each term on the 
right hand side of Eq. ( 40 1 
and, (iii). Therefore the' sum of these terms, viz. , Ip (t) - De)], is also positive 
semidefinite. To show that P,(t) 2 P(t), write (Dc - D) as follows: 

is positive semidefinite under conditions (i), (ii) 

C 

D - D = D  - D P D  = D  (J? -P)Dc C C C C  c c  

So if @, - D) is positive semidefinite, so is (Pc - P). 
t# 
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5 . 2  Backward Filter 

Equations for the backward filter are obtained from Eq. ( 26 ) and 
( 2 7  ) by changing Q to Qc and R to Rc. 

m 

d -1 T -1 -1 T -1 
dt  bc be be c C 
-P (t) = - P - ~ F  - F pbC + P GQ G ~ P ; ~  - H R H 

-1 
bc P (t) denotes the calculated value of the e r ro r  covariance of estimate 

y(t). Fo r  further manipulations, it would be convenient to write Eq. ( 4 1  

( 42 1 slightly differently by using the following notation: 
and 

Let 

Eqs. ( 4 1  ) and (42) can be written as 

T T -1 
y(t) = - (F - M )  y - H Rc z (43) 

o r  

(44) 
d T T -1 
dt c c c  C C 

. -B (t) = - (F - M I  B~ - B ~ ( F  - M I  - B  GQ G ~ B  - H  R H 
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. Let B (t) denote the e r r o r  covariance of y(t), i. e. 

T 
Y Y  

B(t) = E[e e } 

where e = B x - y. 
Y C  

B(t) = BcPbBc 

where Pb is the actual covariance of ;b. 
Then 

d T T T -e = ( - B  F - F  B + B  GQ G Bc - H  R H)x '+B (Fx+Gu)  dt Y C C c c  C C 

T T -1 +(F-M) y + H  Rc z 

or 

*e = - (F - M)T e + HTR-' v + BcGu dt Y Y C (4 5) 

e @ ) = O  
Y 

7 

An expression for B(t) similar to Eq. ( 44 ) can be derived using Eq. ( 45 ) . A 
. change of variable to T = (I' .t to - t) would make the derivation easier. 

d T T 
d T  C C 
-B(T) = (F - M) B + B(F - M) + B GQG B~ + H'R;~ R R - ~ H  (46) 
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'. , Equation ( 44 ) may also be written in terms of T as follows: - 

(47) ' - B  d ( T ) = ( F - M )  T B c + B c E ' - M ) + B G Q G  T B + H  T R -1 H dr C c c  C C 

Bc(r = to) = 0 

Subtracthg Eq. ( 46 ) from ( 4 7  ) , we obtain 

-(I3 d - B ) = ( F - M ) T @ c - B ) + @ c - B )  (F-M)+BcG(Qc-Q)G T BC dr  c 

T -1 + H R~ mC - R ) R E ~ H  

with the boundary condition 

. .  cBC-B)7,t = o  
0 

The solution to linear differential Eq. (48 ) can be written in terms 
of a transition matrix  ab(^, to) defined as follows: 

Then 
7 

Notice that to obtain Bc(t) where t denotes time from to, we put T = @ + to - t) 
in Eq. ( 5 0 )  
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Positive Semidefiniteness Lemma I1 : 

A set of sufficient conditions for B e) B&) and Pbc$) 2 Pbat, Over C. 
(to s t 5 TI are ./ 

0)  Q,@) rQ@) over Eto c t 5T) 

(ii) R (t) 2 R(t) over [to t 5 TI 
C 

Proof: - 
Under conditions (i) and (ii), each term on the right hand side of 

Eq. ( 50 ) is positive semidefinite. Hence the sum is also positive semidefinite. 

Moreover 

B - B = B  ( e ” - P ) B  
C c c  b c  

Therefore (P,, - P ) is positive semidefinite. b 

5.3 Smoother 

The smooth& estimate is obtained using Eq. ( 23 ) and ( 2 4 ) .  In 
te rms  of the new notation of Sections 5, t and 5 . 2  1, smoother equations can 

be written as follows: 

and 
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%'he actual covariance of the smoother denoted as P(t/T) can be obtained by 
subtracting P -1 (t/T) x(t) from both sides of Eq. [ 52 ) , 

C 

Taking expectations, 

Pi'(t/T) P (t/T) Pi' (t/T) = D (t) + B (t) ( 5 3 )  

since e (t) and e (t) are uncorrelated. 
rl Y 

Subtracting Eq. ( 5 3  ) from ( 51 ) 

o r  

Equation ( 54) is an analytical expression for the e r r o r  in the calcu- 
lated smoother covariance, It can be used to qtudy the sensitivity of the smoother 
to errors in Q and R matrices. 

Positive Semidefinitenn Lemma 111: 

A set  of sufficient conditions for Pc(t/T) 2 P(t/T) over [ti 5 t 5 T]  are 
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Proof: 

It has already been shown in Lemmas I and I1 that under conditions 
(i), (ii) and (iii) , D (t) 2 E (t) and B (t) 2 B (t). Hence from Eq. ( 54 ) it follaWS * e  C 
that P (t/T) 2 P (t/T). 

C 

5 . 4  Implications of Lemmas I, I1 and 111 

.Let the state vector x be one dimensional (a scalar). The Lemmas 
proved above state that if  the estimated values Pc(to), Qc(t), Rc(t) are greater 
than o r  equal to  the actual values P(to), Q(t), R(t) respectively, then the cal- 
culated e r r o r  variances are greater than o r  equal to the actual variances, Le., . . *  

for  all t in the interval {to 
bounds on the actual values. Fo r  an n-dimensional system, the above remarks 
would apply to all the diagonal elements of the e r r o r  covariance matrices. The 

diagonal elements of these matrices represent the mean square e r r o r  te rms  for 
the estimates of the state variables of the system, In a number of practical 
situations, though the actual values of P (to) , Q (t) and R(t) are unknown, one can 
specify suitable upper bounds on these quantities. Then the above Lemmas 
state that the diagonal elements of the computed covariance matrices Pc(t 
Pc(t/T) will provide upper bounds on the diagonal elements of matrices P(t) and 

P (t/T), One advantage of Kalman filtering and recursive optimal smoothing 
techniques is that one can perform the e r ro r  analysis without the use of actual 
data. In this way very useful feasibility studies can be carried out before col- 
lecting actual data. If one can estimate a state with satisfactory accuracy using 

t TI. Thus the computed values provide upper 
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upper bounds for P(to), Q and R then it is assured that the state would be 

estimated to at least that much accuracy when the actual tests are performed. 
If some adaptive scheme is used to improve estimates of P(to), Q and R, then 
the signal would, of course, be estimated to a g r e a t e r  accuracy. 

.5. 5 Erro r  Compensation Effect In a Smoother 

Equation ( 54 1 reveals another interesting fact about smoothing dis- 
tinct from filtering, viz., it is possible to compensate partially for the e r r o r s  
in the smoother by making e r ro r s  in the forward and the backward filters of 
opposite signs. This is done by choosing Qc and Rc differently for the forward 
and the backward filter. The compensation, however, wil l  not be uniformly 
good over the whole time interval unless Qc and Rc are made time varying. 

6 EFFECT OF ERRORS IN F,  G AND H MATFUCES 
ON OPTIMUM SMOOTHING 

. The detailed equations for this case are rather messy and will not be 

presented here. The method of approach is the same as in Section 5 . The . 

development is parallel to that of Fitzgerald [4] who studies the effect of e r r o r s  
in  F, G and H on a Kalman filter. Fitzgerald shows that under certain condi- 
tions, the actual covariance matrix may diverge from the calculated covariance 
matrix. Same thing can happen to both the forward and the backward filters. 

, However, the divergence for the smoother may not be so bad because the e r r o r s  
in  the forward and the backward fi l ters may t r y  to compensate each other. 

e 
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7 SUMMARY AND CONCLUSIONS 

-The results of Frase r  [5] on "Smoother As A Combination of TWO 

Kalman Filters" have been generalized and derived from basic principles. 
Necessary and sufficient conditions are obtained under which an optimal smoother 
may be expressed as a linear combination of two optimal filters, one operating 
forward on the data (forward filter) and the other operating backward on the data 
(backward filter). The smoothing results of Bryson-Frazier [I] and Rauch- 
TungStriebel [2 J are derived using the general relationship between filtering 
and smoothing estimates. The effect of e r ro r s  in system and noise parameters 
on optimum smoothing has been studied using the Two Kalman filter approach. 
An analytical expression for the e r ro r  in the calculated smoother covariance 
matrix has been presented. This expression is then used to e ablish upper 
bounds on the actual smoother covariance matrix. 
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