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ABSTRACT

Previous analyses of the error prcbability for feedback decoding
of convolutional codes have focused almost exclusively upon the syndrome
Eortion of the decoder, the contents of which are statistically dependent
ubon the infinite past due to the feedback of previous decoding estimates.

This viewpoint makes exact error probability calculations intractable,

In this paper, however, the entire decoder is modeled as an autonomous

stochastic sequential machine and finite Markov chain theory applied in
order to obtain a precise expression for P (u), the probability of error
associated with the feedback decoding of the uth subblock of information
digits, thus circumventing the problems imposed by the dependencies on the
infinite past. The analysis technique developed here applies tc any syn-
drome feedback decoder for a systematic, rate R =§§- convolutional code

of memory order m over GF(2), used for transmission over a binary sym-
metric channel.

The limit of Ppp(u) as u tends to infinity, when the limit exists,
is termed Ppp, the steady-state probability of error of feedback decoding.
Sufficient conditions on decoders are given in order for Ppp to exist, and
two classes of minimum distance decoders exhibited which meet these suf-
ficient conditions.

Ppp is calculated for a particular simple example and found to sat-
isfy Ppp< Ppps Okp<%3where Ppp is the probability ofﬁérror associated with
definite (i.e., feedback free) decoding of the same code, and p is the tran-
sition probability of the binary symmetric channel.

The stochastic sequential machine approach is alsc used in order to

calculate the probability of error associated with semi-definite decoding,




a decoding technique intermediate to feedback and definite decoding. Suffi-
cient conditions are given for Pggplk), the probability or error of a k
stage semi-definite decoder, to tend to Ppp as k tends to infinity. Also,
examples are exhibited for which there exists a particular value of k,
ka,such that PSSD(ka) is strictly less than both Ppp and Ppp » indicating

that semi-definite decoding may be of some practical value.



ANALYSIS OF DECODERS FOR CONVOLUTIONAL CODES

BY STOCHASTIC SEQUENTIAL MACHINE METHODS®*

by

Thomas N. Morrissey, Juo

13 Introduction

A diagram of a general, binary, systematic, rate R = %—convolut;omal
coding and decoding scheme at time u + wn 1s shown in Figure L

The digits i(t), p(t), ei;}iagt), and s(t) represent the information,
parity, information error, paglty error, and syndrome input daglts respec-
tively at time t, t = 0, 1, 2,...,0(t) ¢ (0 ()50, Cepmmmyo (1)) ds the
m dimensional column vector representing the state of the syndrome regis-
ter at time t, and e*(u) = f(g(utm), s(utm)) is the estimate of e(u) formed
at time utm, where the decoding function f is designed to provide & '"reascn-
able" estimate of e(u) based upon g(utm) and s(utm).

In the sequel column vectors will be denoted by parentheses {} and
row vectors by brackets [].

All digits are elements of GF(2), the finite field of two elements,
and all operations are assumed to be carried out in this field. The plus

and minus signs in Flg. 1 represent identical opevations in GF(2), and

ave distinguished here to emphasize the operation of the decoding process.

% This work was supported by the National Aeronautics and Space Adminig-
tration (NASA Grant NGR 15-004-026) in liaison with the Flight Data
Systems Branch of the Goddard Space Flight Center, and forms part of
a dissertation to be submitted in partial fulfillment of the require-
ments for the doctor's degree in electrical engineering at the Univer-
sity of Notre Dame, Notre Dame, Indiana.




The noise digits are assumed to be statistically independent, eac:
having probability p of being a "1" and probability l-p of being a "0",
This noise source model is equivalent, with respect to the transmission
of the information and parity digits, to a memoryless binary symmetric
channel (BSC) with crossover probability p. Given that a "0" or "1'" is
transmitted over the BSC, the digit is received incorrectly with probabil-
ity p, the probability that a noise source in Fig. 1 will generate a '"1"
and complement the corresponding transmitted binary digit.

Since the information sequence appears unaltered among the trans-
mitted sequences, the code is said to be in systematic form. The remain-
ing transmitted sequence is called the parity sequence.

The syndrome input digits are formed by passing the received in-
formation sequence through a replica of the discrete linear filter used
to form the parity sequence at the encoder, and subtracting from the re-
sult the received parity sequence. Since the system is linear with re-
spect to the formation of the syndrome input digits, this sequence is
equal to the sum of the components at the inpﬁt of the syndrome register
resulting from the information and noise sources. However, the component
due to the information source stream is formed by paésing the information
sequence through two identical discrete linear filters in parallel and sub-
tracting the output of one from the other. Hence this component is zero,
and the syndrome st;te and input are independent of the information stream
and depend only on the noise digits.

Since the code is in systematic forr e¥(u) is subtracted from the
output of the encoder replica in the decoder in order to form i*(u) =
= i(u) + (e(u) - e%(u)), the estimate at time ut+m of thevinformation dig-~

it at time u. Thus the associated probability



of epror Pr(i®(u) # i(u)) is equal to Pr(efi(u) # e(u)), and is inde-
pendent of the information sequence since the syndrome state and input uscd
to form e®(u) ave functions only of the channel errors,

Three modes of decoder operation, depicted by the position of the
switch, ave shown in Fig. 1.

The position labeled DD, in which the syndrome register is not mod-

ified, corresponds to the decoding scheme known as definite decoding [1].

For definite decoding,

oo(u+m) = s(u) = & e(u-m) +~~-+gle(u—l) +goe(u) ~E(u)
Ol(u+m) = s(utl) = gme(u~m+l)+ ————— +gle(u) + goe(u+l) ~Sﬁu+l)
l .
t | (1
l |
{ |
om_l(u+m) = s(utm-1) = gme(u—l) + gm_le(u)+——-+goe(u+m~l) ~E(utm-1)
s(utm) = gme(u)+ ————— +goe(u+m) ~E(utm)

and thus a total of 3mt+2 statistically independent noise bits affect the
estimate e®(u).

The definite decoding probability of error is defined to be
Ppplw 2 pr(e®(u) # e(u)/py 4.)e For wsm the probability distribution
for (e(u-m),---,e(u),---,e(utm), &(u),---&(utm ,and therefore PDD(u),
is independent of u. Hence the steady~state decoding probability of error
for definite decoding, Pppe is simply equal to Pyp(m).

Since in definite decoding e(u-m),---,e(u-1) affect the estimate
e®(u) but have already been estimated by the decoder, presumably with low
probability of an incorrect decision, it would seem reasonab.¢ to use
e*(u-m),---,e®(u-1) in an attempt to cancel the effect of e(u-m),---,e(u-1)

in (o(utm),s(utm)). It is useful to assume that the true values of e(u*m),---e(u-



have been estimated, in vhich case the svndrome state and input arc “une-
tions only of 2m+2 statisticallv independent noise digits, a situation
which intuitively is superior to definite decoding. This is done in the

deceding position labeled GD, or "genie decoding” after Wozencraft anc

Jacobs [2], in which use is made of a genie whe corrects the estimated
error bits, if necessary,and feeds them back in order to form the modi~-

fied syndrome equations
4

oo(u+m) = goe(u) ~E(u)

1l(u+m) = gle(u) + gce(u+l) ~%(u+l)

| {

l l (2)

l .

I N TS Y . - - _

o _l(u+m) = gm_le(u)+ tg e(utm-1) £(utm-1)

s(utm) = gme(u)¥ —————————— +gle(u+m-l)+goe(u+m) - ECu+m),
S8ince genies are rumored to be quite scarce, the genie decoding mode is
used merely as a handy conceptual tool for calculating an upper bound on
system performance. The probability of error associated with genie de-

L3 L 3 ,'v‘, A G‘n"a .
coding, PGD(u), is defined to be Pr(e®(u) # c(u)/GD mode)' 8ince this
probability is independent of u for u>0, the steady-state error probebil-
ity for genie decoding, PGD’ is simple PGD(O)'

In the mode of operation labeled FD for feedback decoding, error
estimates aré fed back to modify the syndrome without the services of a
genie. The resulting equations are

oo(u+m) = gm(e(u~m)—e*(u—m))+--—+g1(e(u-l)-e*(u-l))+goe{u) -E(u)

ol(u+m) = gm(e(u—m+l)~e*(u-m+1))+———+gie(u)+goe(u+l) ~€fu+l)

l ¢ Y

} |

| |

[ "

% |

g _,{utm) = g, le(u-1)-e#(u-1))+g _je(u)t---tg_e(utm-1) -E(utm-1)
s(utm) = g e(u)twm—m- +goe(u+m) -&(utm),

ooy
\

4



As long as no decoding mistakes have been made, feedback decoding coincides
with genie decoding; however, deceding errors in feedback decoding affect
the syndrome as would a pattern of channel errors, and could result in fur-
ther decoding mistakes even in the absence of additional channel noise [3].

The probability of evror associated with feedback decoding, PFD(u), is
the quantity Pr(e(u) # e(u) p, mode’* The quantity lim P ,(u), when

it exists, is denoted as P D? the steady-state probability of error of

F
feedback decoding.
[e*(u)]FD, [e*(u)]DD, and [e*(u)JGD will be used to denote the esti-
mates made by the feedback, derinite, and genie decoding operations res-
pectively when it is necessary to distinguish which decoding method is
being used.
For both definite and genie decoding the syndrome state and input
are functions only of statistically independent channel error digits over
a finite span, and Pr(e®(u) # e(u)) may be easily calculated in principle
by summing the probabilities of those error patterns fur which e*(u) # e(u),
However, for feedback decoding, the estimated digits e®*(u-m),---,e®(u-1)
affecting o(utm) are dependent among themselves and upon e(u-m),---,e{u),---
--—,e(utm-1), E(u),--~E(utm-1), the channel noise digits affecting the syn-
drome state. Alternatively, the syndrome state and input are dependent on the
entire past history of the error sequences, i.e., upon g(utm), E(utm-1),---
-—,E(0), e(utm), e(utm-1),~-~-,e(0). Thus if attention is focused exclusively
upon the syndrome equations for the purpose of calculating the probability
of errovr, the complexity of the calculation necessary in order to calculate
PPD(u) exactly grows exponentially with increasing time u.
In this paper the decoder is modeled as an autonomous stochastic se-
quential machine [4,5] and finite Markov chain theory applied in order to
calculate the feedback decoding probability of error exactly. This approach

can best be illustrated by an example.




II EXAMPLE

Consider the special case (m=l, 8,71 gl=l, f(do(u),s(u))=Oo(u)‘8(U))
illustrated in Fig, 2 of the general systematic rate R = %3 binary convolu-
tional coding and decoding scheme in Fig. 1.

Since withvsyndrome decoding the probability of error is independent
of the information stream, as was stated in the previous section, the all-
zero information sequence may be assumed without loss of generality. Thus
for the purpose of calculating Pr(if(u) # i(v)) = Pr(e®(u) # e(u)), the en-
coder portion of Fig. 2 may be ignored and the system modeled as in Fig. 8.

When the switch is in the DD position

Ces(wly) = s(url) o (utl) = s(url)-s(u)
= (e(u)+e(u+l)-E(u+l)) «(elu-1)+e(u)-E(u))
= e{w)+e(u)[e(u-1)-E(u)+e(utl)~E(utl) ]
+e(u+l)e(u~l)—e(u+l)E(u)-E(u+l)e(u-l)+€(u+})E(u)
and thus P = Pr(Let(uw)] ) # e(w)

= Prle(u){e (wtl)-ECurl) Melut )e(u—l)-e(u+1)E(u)~€(ﬁfl)QCU-l)

7~

u-1)-ECu)+

1]
j

. +E(utl)E(u)=1],

Since the error digits in this expression are statistically indenendent,

each having probability p of being a "l", ?DP may be easily calculated to be
P = 8°(1-p)° + 1p%(1-p)? 4 upta-p), (1)

When the switch i’s in the GD position

Ee*(u)JGD ,s(u+l)°oo(u+l)

~

(e(u)+e(utl)-E(utl)) *(elu)-E(u))

e(u)re(u)le(url)-ECutl)-E(u) J~e(utl) ECu)+E(utl) 0 E(u)

and P Pr(Ee*(u)JGD 7 e(u))

GD

1

Prie(u) {e(url)-E(utl)-ECu) }-e(ut+l) ECu)+ECutl) *E(u) = 11,

6



he ervor digits nere alse are statistieally independent, and Ppn may Le
cemputed to be
2 2 3 2!
PGD = 5p“(l-p)” + 2p"(1-p) + p . (5)

However, for feedback decoding

i

Ce*(u)]FD s(u+l)'oo(u+l)

1

(e(u)+e(u+l)—g(u+l))-(e(u-l)~Ee*(u-l)]FD+e(u)-€(u))

1t

e(u)+[e(u~l)-[e*(u~l)]FDJ[e(u)+e(u+l)-€(u+l)]

+e(u)e(u+rl) )-e(u) E(utl) )~el(u) E(u)-e(utl) E(W)+E(w) §(uwtl),

H

and P__(u)

£D Pr([e*(u)]FD # e(ul)

Pr[{e(u—l)~[e*(u-l)]PD}{e(u)+e(u+l)w€(u+l)}+e(u)e(u+l)—e(u)€(u+l)
—e(u) £(u)-e(url) E(u)+E(u) E(utl)=1].

But [e*(u-l)]FD depends upon e(u), &(u) and the previous error digits
e(u-1) y,~~~,e(0) and &(u-1),---£(0). Therefore the procedure for calculat-
ing Pr([e*(u)]FD # ¢(u)) by means of summing the probabilities of the de-
coding-error-causing error patterns as was done for definite and genie de-
coding is extremely unwieldy and, for all practical purposes, impossible
for large u,

However this problem of infinite past history dependence is circum-
vented by the representation of the (feedback) decoder of Fig. 3 as a four
stete sequential machine with two dimensional random input vector (e(utl),é&(utl))
and single onutput e®*(u) at time utl. The four states are denoted as
qo=00, ql=01, q2=10, and q3=ll, where the first digit represents the con-
tent of the buffer and the second the content of the syndrome register.

The decoder then may be modelled as a four-state autonomous stochastic
machine in which the states are the same as the original sequential machine,
and the transition probabilities between pairs of states are the sums o.

the probabilities of those input r»ise vectors that take the machine From



the #ivady state vwo 14 ceecond.

autonomous stochastic

transition matrix: _
Foo Fo1r Foa Fos

P10 P11 P1o0 Pig

m = |Pog Foy Fop Pog

30 Fa1 Fao quﬁ

n

(1-p)? p(l-p)  p?

1-p 0 P
p(1l-p) (l--p)2 p(1l-p)
1-p 0 p

The state-behavior of the four-state

machine is thus describ~d by the {fellowing Marlov

p(1-p)]

0

2
)%

0 >

where Pij is the conditional probability that the system will be in state

a; at time utl given that it is in state q; at time u.

As an example of how the Pij's were calculated for this decoder,

assume that the system is in state q,;=01 at time u. Now if e(u)=0 and

E(u)=0, or e{u)=0 and &(u)=1l, the state at time ut+l will be qo=00;,and’if

e(u)=1 and &(u)=0, or e(u)=1l and &(u)=1l, the state at time utl will be q,=10.

Therefore,

ana

=0, P

P11 13702

Py

,=Prle(u)=0, §w=01+Prle(u)=0, &w)=11=(1-p)*+p(1-p)=1-p,

P12=P1[e(u)=l,E(u)=0]+Pr[e(u)=l,E(u)=l]=p(l—p)+p2=p.

The fact that e(u) and &(u) are statistically independent of one another

and of the assumed state at time u makes the calculation 6f the Pij's

straightforward

The actual state at time u accounts for all the past

history of the error sequences that is relevant to future operation of the

decoden.

The probabilistic transition diagram for this decoder is shown in

Fig. .

1>

Let ﬂﬁu)

e

tor at time u}

Qs at time u.

Now ﬂﬂu)

by definition in

[Wo(u),wl(u),wz(u),Wa(u)] be the state probability vec-

«¢., W.(u) is the probability that the system is in state

.
&

A LJ
ﬂﬁo)"u, with W(0) = [1000] since a feedback decoder is

the all-zero state at the beginning of the decoding process.



With each state as is asceciated a probapility of error Pqi eaual
to the sum of the probabiiities of those neise inputs (e(utm), &(uim)) =
= (e(u+l), E(utl)) that cause e%(u) # e(u), piven that the system is in

state q, at time utm=u+l, For the example of Fig. 3, these quantities

are readily found to be

qu =0
qu = 2p(1-p)
Pq2 =1
Pq, = 2p(1-p).

As an example of the above calculations, if the system is in state
q4=11 at time utl, and e(ut+l)=0 and & u+l)=0, or e(ut+l)=1l and E(u+l)=l,
then e®*(u)=e(u)=1l. On the other hand, if e(uwtl)=0 and &(utl)=1l, or e(ut+l)=l
and &(utl)=0,then O=e®(u) # e(u) = 1, and an incorrect decision is made,
Thus Pq, = Prle(ut+l)=0, &u+l)=1] + Prle(utl)=1l, &u+l)=0] = 2p(l-p).

PFD(u) may thus be written as

3
PPD(u) = I Wi(u+1)Pqi. (6)
1=9
. . - v o (] [ L A
A sufficient condition for PFD to exist 1s that lim Eﬁu)=ﬂ;[WO,W1,W2,W3],

yr®

the steady-state decoder state probability vector, with Wi equal to the

‘ A
steady~state probability of state q,. If this is the case then P_ =limP_ (u)=
3 3 1 FD - FD
=1im , 2. ,(u+l)Pq,= I W,Pq,. W does in fact exist for this example (see
U o 1=U 1 1 1=0 1 "1 -
Theorem 1 in the next section) and may be calculated by solving Wr = W for
3
W with the added constraint I W, = 1. The desired solution is
i=0
2 3 2 3
1+3p~=2p 1+3p -2p ¢7)
! .
. Dp-3p+2p" . b-op’+sp-2p”
My = T3 3 Wy = 2,3
1+8p =-2p 1+3p~-2p

[{e]



7p2-12p°+10p - tip>

. (8)
l+3p2--2p3

and thus PFD =

3
; ﬂqui

i=0

PGD’ PDD’ and P p for this example are sketched in Pig. 5 as a func-

F
2
tion of p., Note that for small p, the asymptotic values 5p2, 7p~, and 8p2

are approached by PGD’ P D and P__ respectively.

F DD

l » d
P —
It can be shown that PGﬁ<‘Fﬁ<PDD for 0<p<2, which illustrates the

global (i.e.,all p<%) superiority of feedback decoding over definite de-

coding for this example. This is the first instance known that PFD has

been calculated exactly and compared with P D’ although intuitively one

D

suspects that in general PFD<PDD for sufficiently small p.

10



ITI, GENERAL LLGCHADLDY V0 U Tl Aud DAL

More generally, consider the arli*z pv svndrere feedhback Gecor €3

¢

shown in Fig. 6 at time utm for an P = W Linary svsteritic cnnve 'etisnal
o)

code with memory order m. For full detai’s of the peneral syndrome feoudl-
back decoder, see the literature [6]. .

The deccder is desceriled as Follour: glutm) = C2(4r ), o

Py

I‘v - [ - o [ «
('“):u+m)) e 4he syydrere ipso. o i

A
(1) @1y ,mmm, MOy,

¥
o

slusm) & (58T

W) ===, 8
NI A N
utm. And L(utm) = (e(u):--:e(utm)), where
the No dimensicnal random input colur ceeter ot Riwme oulahooorreo e
which are statistically independent and have probability p of being
1 1 s . : v -
i, 0 <p <z The superscripts above the error and syndrome diviiy re Ter

to the particular input sequence and syidirome repisiver respootive Ly

of these digits. The matrix G' is given bv

A
toE roo. @t e O
G (G 6 : : O r_\]

m=1

where G', 4 [Gi : I 1, i=o0

(Kqtl) (K +1):
and | Bi(1) TRk, ©
G, 4 } | i =0, 1, == ,m, ()
by ' (hg)
(1) "1(Ky) .

is the (Ng-Kg) X (Ng-K,) identity matrix, O is the (Ny-Kg) X (1 -K.)

INGKO O
(k)

all zero matrix, and gi(j)

th . . . . A
k™" output line of the encoder at time i due to an excitation (a'1")

is the component of the response on the

on the jth input line at time 0, j= 1, 2, ===, Ko’ k = Ko+l, Ko+2,—-~,¥0.

Now the operation of the syndrome register is described by

olutl) = A g(u) + BS(u) + G

-

- gﬁl(u—m). (10)

Ll = O, l’ 2,""", 9_(0) é 9_’

1l



where ofu) g (g (W) & g(u) t---t g (W),

(Ng)
1

A (ci(K°+l)('u),c i(K°+2)(u)’""’° ()

with g (u) =

is the m(No-Ko) dimensional column vector representing the syndrome

state at time u, and
. 0 INO"KO O;—*—-Oi ) s
A “~ ~ \ L3
0 0~ ~I ~0
T
‘ T~ U Ng-K
l ~ ~ o o
0 ——m————— = s
0
B & )
|
l
|10
TioKeo ’
Gl
A G
Cra .2
I
N
G
—m—'

(11)

(12)

(13);

e*;(u), the estimate at time utm of the first K components (i.e., the

information components) of e(u), is given by gﬁI(u) = ;QL(u+m) : S(utm)),

where f is aboolean function specified by the decoding algorithm.

may also be written as

o(u) = A%(0) + %7

i . . .
Z A"[BS(u-1-1) + GFnggﬂu-l—l).§ﬁu—l—1)ﬂ,

A v
us=1l, 2, -, gﬁ0> = 9_.

The _estimates E?I(—m), E?I(-m+l), -— E?I(—l) above, although

responding to no actual error digits since the first such digit is

12

gfu)

i

(1u)

cor-

received



at time u = 0, nevertheless must be considered in the syndrome state
equations since the feedback loop of the decoder is assumed to be closed
for all time; i.e., the feedback decoder is insensitive to the starting

time,

(e(l)(u), e<2)(u),-—-,e(x°)(u)) denote the error

Let g{(u)
pattern at time u in the information positions.Thus the vector (gg(u)
gl(u+l) te—mt gi(u+m-l) : g(utm)) represents a possible state of the
decoder; and since there are 2mN° distinct vectors of this form there
are QmNO possible decoder states. However, since the registers in a
feedback decoder are initially filled with zeroes, only the set of states
QRO reachable from the all-zero state need be considered. Thus the sys-
tem may be represented as an r state Markov chain (r= #QRO 5_2mN°) with
transition probabilities from a given state determined by that state
and the probability distribution of the noise input vector.

Associated with each state qﬁTaQRO is a probability of error,

Pq., which is the probability that e(utm) is such that e¥ (u) # e;(w),
gigen that the system is in state qj at time ﬁ+m.

If Wj(u+m) is the probability that the decoder is in state a; at

time uwtm, i = 0, 1,---, r-1, then PFD(u) & Pr(g?l(u) # E{(“)) is given by
-1 (15)
P _(u)= < W,(utm) P , 15
FD . . .
520 qs

where
[Wo(u+m), Wl(u+m),--~,wr_l(u+m)] £ W(utm) = W(0) 'n&fﬁkfk . (18)
m'is the rxr Markov transition matrix associated with the decodey, and

A , .
(0) = [WO(O), Wl(O),-——,Wr_l(O)] = [100---00], with q_ taken as the

all-zero decoder state, is the initial probability distribution of the

feedback decoder.
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TSI, ¥

- for calculating P

If steady-state probabilities exist for the Markov chain, then

. _ Y . .
&lﬂm Wlu) = W = EWO, Wl,--,wr_l], where wj is the steady-state prob

ability that the system is in state qj. For this case,

(W = Byl (17)
P = lim P u) = z ] P . 17
FD u o ® FD 30 13

the steady-state probability of error of feedback decoding.

Note that for large memory m and/or block length No this approach
D is impractical because the number of states which
must be considered grows exponentially with mN . Thé'Markov’chains,
however, are '"loosely connected" since, there being only 2N° possible
input vectors, each state can make a transition-into at‘'most 2N° other
states.

The conditien for existence of steady-state probabilities for a
Markov chain is given by the following theorem [71].

Theorem 1. Let T be an r by r transition matrix sssociated with a fin-

ite Markov chain. Then steady-state probabilities exist if and only
' 2
<2(r )

d Kl [ N [
if there exists an integer N,1 <N such that T has a posi-

tive column, that is, a column all of whose elements are > 0.

The above condition is equivalent to the existence of & state

| qj and a positive integer N such that starting from any initial state,

qﬁ'éag be reached (with nonzero probability) is exactly N steps. This

[

condition when applied to feedback decoders results immediately in the

following corollary.

Corollary l.1 For a syndrome feedback decoder for an R = %9- systematic
« . o

convolutional code with memory order m, a sufficient condition for steady-
state state occupancy probabilities to exist is that there exists some

positive integer N_ such that the all-zero state dq is reachable from

%

any initial state qj EQ o in exactly NCb steps.

R
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Yew assume p = 0 and that the decoder is in the all-zere stalc
Qg at time utm. Now p =0=>8(utm) = 0 and E(utm) = 03 W(uwtm) = (L0---0)=00 (urnj=_:
and 1if correct estimates are made by a decoder for this noiseless case
(all decoders in this paper are assumed to have this property), gﬁl(u) =
= f(g(utm) : S(utm)) = £(0) = 0, and thus a transition from the all-zero
state into itself results from the all-zerd noise input vector, Thus if

I is the maximum number of transitions, over all ¢

90 3

£ qu , required in

erder to reach q.» and if state q), can Le driven to ., in B! < hq steps,
(S - fie - O
then q, can be driven to q, in exactly NP steps by first taking q, te
S ; £c> s
3, in N'  steps and then driving q. into itself Nq - N'q times., Hence
' i§is] ) (o] i

+*he following corollary is obtained,

Ko
Ng

matic convolutional code with memory order m, which decodes correctly in

<orocllary 1.2 For a syndrome feedback decoder for a rate R = syste~

the absence of channel errors, a sufficient condition for steady-state state
occupancy probabilities to exist is that the all-zero state q, be reach-
able from any initial state qj € QRO'

Since the binary symmetric channel is assumed for this develop-
ment, the random input vector e(u) assumes each of its 2N°‘56§Sible'Values
with nonzero probability at each time unit u. ‘%hus if a sequence of in-
puts is found to drive the decoder from 4 to q,, that sequence of inputs
has nonzero probability.

By inspection, the KO buffer registers which form the encoder re-
rlica may be driven to the all-zero state from any other buffer state
Ly tie shifting of m successive zeroes into each. And the inputs to the
Ao~Kg syndrome regist.rs wmay be controlled, independently of the states
and inputs of the buffer registers, by proper choice of the N -K, parity

error sequences. The following theorem may thus be stated:

15



) K .
Theorem 2, Tor a syndrome feedback deceoder for an | = wﬁ.systemat;c con=
0

volutional code with memory order m, which decodes corrcétly in the absence
of channel errors, steady-state state occupancy probabilities exist if
the nonlinear feedback shift register composed of the No-—Ko syndrome yeg-
isters can be driven from any syndrome state 0. reachable from g = 0 back
to the 9 state by means of a suitable choice of syndrome inputs.

A shift register is said to be '"driven stable' [8] if any state
reachable from g, = 0 can be driven autonomously bgck into the 9, state.
With this definition the following corollary to Theorem 2 is immediate:

Corollarv 2.1 If the syndrome register portion of a syndrome feedback

decoder for an R = %% , systematic convolutional code with memory order m,
which decodes correctly in the absence of c¢hannel errors, is 'driven stable",
then steady-state state occupancy probabilities exist for the decoder.

The converse to this corollary is no* necessarily true.

/

It might be noted that if a transition from any state to any\other
state is possible due to a malfunction in circuitry, no matter how small
the probability of such a malfunction, then steady-state probabilities ex-
ist for the decoder.

The sufficient condition that the syndrome portion of the decoder be
capable of being driven from any reachable state back to 0 _ = 0 is not nec-

essary in order for W and P__ to exist, as is shown by the following example.

FD

Consider the R = %gsystematic convolutional decoder shown in Fig. 7,
with f(os(u+l), S(u+l)) = S(u+l). oo(u+l). With q, = 00, q; = 10, q, =01,

Qg = 11, QRO= {qoqlqzqs} ?_EPe associated Markov matrix is

(1-p)? - P p(1-p)  p(1l-p)
p(1l-p) p(1-p) (l-p)2 p2
"E 0 0 l-p P
0 0 1-p P ,

16



Since column 3 of » is nonzero, steady-state state oceupancy prob-
abilities exist from Theorem 1 with N = 1, and § and Ppp may be easily
calculated to be ¥ = [0 0 1-p p] and Ppp = p2 + (1-p)?. However, states
q2 and g reachable from qg s cannot be driven back to gb = 0, and
thus the sufficient condition given in Theorem 2 for W and thus Ppp to
exist does not hold,

The state a is here a "transient state" in that it has zero
steady-state probability (Wo = 0). In general, if steady-state prob-
abilities exist for the decoder states and yet q, £ 0 is not reachable
from a5 € Qro> it follows that q, has zero steady-state probability and
hence. %ig Pep 2 % since at least one decoding error must be made each
m time units or else the syndrome register would clear itself.

As an example of a decoder for which neither steady-state state
occupancy probabilities nor Ppp exists, consider the R = % sysvematic
decoder with £(g(u+2), S(u+2))= S(u+2)* o, (ut2) v s(u¥2) -0 _(u+2), where
y" denotes "inclusive or!", shown in Fig. 8.

The state diagram of the syndrsme register portion of the decoder
is shown in Fig. 9, with the first digit of the 2-tuple state represen-
tatlon representing oi( ) and the second oo( ). S refers to the syndrome
input which causes the syndrome state transition,

For this example there exists no syndrome state g, for which there

exists an N such that every syndrome state reachable from J, = 0 (includ-

ing gi) can be driven to o, in exactly N steps. (It is assumed that

17



p * 0, in which case g, 9, and 9, are all reachable from gﬁ). Clearly,
therefore, there exists no decoder state inQRo to which every state
BQRO can be driven in exactly N steps, and thus no power of the associated
Markov matrix T has a nonzero colurn. Thus from Theovem 1 the conelusion
is made that steady-state state occupancy probabilities do not exist for
this decoder.

The existence of PFD for this exanple must still be investigated,

since the existence of W is merely a sufficient condition for the existence

of PFDn

The eyelic operation of the syndrome register is begun at time u¥,
where u® is the time instant such that S(i) = 0, i = 0,1,.,.,u*1, and
sCut) = 1,

Now the quantity Pr(uﬁ:ﬁ) is conservatively bounded as Pr(u#zg)jﬂl—p)a
o = O,l,2,--—,0<p¢%, which implies that lig+gr(u*:g) = 0, and u® may be
assumed to be finite.

For u>u* + 3 and o(ut+2) = % é (10), e®*(u) = S(ut2) = e(u) + e(uwt2) +

+E(ut+2) and PFD(u) = 2p(1-p). However, if o(ut2) = o 4 (01) for u>u®+3,

-2

then e®#(u) = S(utl) = l+e(u) + e(ut2) + E(u+2), and PFD(u) = p2+(l—p)2°

Therefore for u>u+3, PFD(u) Pr(u® is even) 2p(l-p) + Pr(u® is odd)

CP2+(1‘P)2]: u even and PFD(u) = Pr(u® is even) [p2+(l—p)2] + Pr(u® is odd)°

2p(1-p), u odd., Thus ll@%gFD(u) = Pppy if and only if Pr(u® is even) =

Pr(u* is odd), which intuitively does not seem true for all p.

More specifically, for p ® 0.4, Po(u¥=0) = 2p(l-p) = .48 and
Pr(u®=2) = 2p(l-p)6 + C-Sps(ll.—-p)Ll + 2p5(l-p)2 + p7 = ,0712., Thus Pr(u® is even)
> Pr(u®=0) + Pr(u®=2) = .5512, Pr(u® is even) # Pr(u® is odd), and PFD does
not exist for this example for p = 0.k,

However, in the limit as p*0, terms of order p2 may be neglected

18
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oy

i
B

s

and thus Pr(utzq) = 2p(l—2p)a. Therefore Prl{uis nven) =

2 - 2p _ 2
1-(1-2p)Z 1-1l+lp-lps = bp

FD

Thus in the limit as p » 0, P

P = 5 [2p(1-p)] + 2 [p% + (1-p)°1 =

8

u ™

i

=.% = Pr(uitis odd), and

0

o]

exists even though lim W(u) does

not.(For p = 0,'however, lim W(uw) = W = [100---0] and PFD = 0 since the

u =

decoder never leaves the all-zero state).

19
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IV EXISTENCE OF STEADY-STATE STATE OCCUPANCY

PROBABILITILS FOR CERTAIN CLASSES OF DECODERS

Definition L. A "Quasi-Maximum Likelihood Decoder" (QMLD) is a feedback

decoder for a binary, rate R = §§, systematic convolutional c::» with
nemory order m which operates in the following manner:

Conceptually, the QMLD first determines (one of) the most likely
error pattern é¥u+m) consistent with‘the syndrome state and input at
time utm, assuming past decisions have been correctly made, and estimates
E?I(u) as the first K components of the first subblock of Eﬂu+m). Ties
among the most probable error patterns are resolved on the basis of the
fewest number of errors in the leading positiors of gﬂd%m).

More precisely, let Y(utm) 8 (o(utm) : S(utm)) be the (NO-KO)(m+l)
dimensional column vector representing the syndrome state and input at
time utm. Also define E[Y] as the set of error vectors consistent with
i.e., E[Y(utm)] is the set of error patterns Ei(u+m) which give
£ (g(u+m) : S(u+m)) given that E?I(jb = Sl(j)’ J = u-l, u=2,==-,

u-m. In other words,gi(u+m) e E[Y(utm) Je=>¥(utm) = Hgi(u+m), where

.—E-:; non NOM e em not
o) |
1 t
H = G%'\ ° é\ |
. NG S . (18)
G$_1 N N\ |
S \\\ not
' ' SN g '
_G_m Gm—l""“ _Gl GO___ ’

the G'i's are defined as in the previous section, "O" is the K X N_
all zero watrix, and E,(utm) g (g;(u) + e (utl) 2 --- : e (utm)), with
Ei(j) é(egl)(j), e§2)(j),~--, é(§°>(j)), is any (m+1)N_ dimennisnal
error vector,

20



Since H is an (m+l)(No-Ko) X (m+l)No matrix with rank equal to
(m+l)(No~Ko), it has a null space of dimension Ko(m+l), and hence
#ECY(utm)] = (MK, o every Y(utm). Note though that E(utm), the
actual noise vector at time utm, may not be an element of E[Y(utm)] if
the previous m error estimates E#I(u-l),—u—,gﬁl(u-m) have not all been

made correctly.)

- b (2 . A e tat A .y 4
Now let E(utm) 2 (e +m(u) : 8 &m (u+l): 18, o (u+m)) with ey (1)

(e(l)(l), A(Q)(l),~—-,e(§m)(1)) be the minimum weight error pattern
which is an element of E[Y(utm)]. In the event more than one such mini-
mum weight error patterns exist,éﬂu+m) is determined as follows., Given
gA(u+m) and E (u+m), _A(u+m) # E (u+m), as two minimum weight error pat-
terns consistent with Y(utm), let j be the smallest integer for which

(u+j) £ e (u+j), je{0,1,---,m},and q the smallest integer for which
eA(q)(u+j) # eB(q)(u+ﬁ), q €{1,2,---,N,}. Describe the case eA(q)(u+j) = 1,
and e (qy(u+j) = 0 by E,(utm) > E_(utm), and the case e (q2u+j) = 0 and

Za =B A

(q)(u+3) 1 by Eg E,(utm)> E, (u+m) Thus if E, (u+m), i=1, 2,--—.p are
all minimum weight error patterns consistent with Y(utm), E(u+m) Eﬂ(u+m),
~ where Eﬂ(u+m) > §ﬁ(u+m), J = 1,2,===3Ps § F R
Therefore, given Y(utm), éﬂu+m) as defined above is determined by

the decoder; and the desired estimate e* (u) chosen as e” (u) (e (l)(u),

A {Ko)
wkm

A QMLD correctly decodes in the absence of channel errors, since

;\2)/

© (u)). This completes the description of the QMLD.

u):““'s
f}_(u-f-m) = 0 for Y(utm) =
As an example of a QMLD, consider the decoder of Fig. 3. Here

—y

1 1 0 O
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oo(u+1j BRI éfli‘l)_(u)

s(utl) 1 0 1 1 éfji(u)

8¢ (ur1)

:i;fi(u+l) .

and Y(ui?)

n

For Y(utl) = (00), E[(00)] = {(0000), (1110), (1101), (00ll)} ,
E(url) = (0000), and et(w) = 31w = 03
for ¥Y(utl) = (01), E[(01)] = {(o0l0), (ooo1l), (1100), (1011)} ,

) = 0 ;

n

E(u+l) = (0010), and e®(u)
(Note here that two consistent error patterns are of minimum weight,

‘namely (0010) and (0001). However (0010) > (0001) by the ordering re-

lation ">" defined above, and thus ﬁﬁu+l) = (0010).)
for ¥(utm) = (10), E[(10)] = {(1010), (1001), (0100), (0111)} ,
ﬁﬁu+l) = (0100), and e®(u) = éiii(u) = 0; and for Y(utl) = (11),
EC(11)] = {(1000), (1011), (0110), (0101)} ,
E(wl) = (1000), and e®(u) = &P = 1.

Contrasted to the QMLD, a "Maximum Likelihood Decoder' (MLD) is
a feedback decoder which éperates as follows. Given Y(utm), let
e?j [¥(utm)] be defined as the subset Jf E[Y(utm)] for which the vectors
K

have g?j(u) 8s the first K, components, j = 1,2,---,t < 2,0, Now

Pr(e?j[zﬂu+m)]), the probability of the subset e?j[Xﬁu+m)], is defined

as
" Pr(e?j[zﬂu+m)])= z Pb(Ei(u+m) ' (19)
. B
. E.(utm)e e J [Y(u+m)]
where I is over all , = ey’ [Xlutm and
wherpe P”(Ei(u+m)) ; Pw(Ei(u+m))(l_P No(mtl) - W(E;(utm)) (20)

is the apriori probability of receiving E, (utm), W(Ei(u+m)) is the
(Hamming) weight of Ei(u+m); and p is the transition probability of

the binary symmetric channel. Now S?I(u), the estimate corresponding
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to Y(utm), is chosen to be an g?i(u) for which

Pr(eliy(utm)]) 2 Pr(eld[¥(wm)D), § =1, 2, ==, t
ie {1, 2, cam, t},

" Thus an MLD chooses e¥(u) as (one of) the most likely g?j(u)('s)
corresponding to Y(utm), while g QMLD determines (one of) the most
likely error vector(s) consistent with Y(utm), i.e., éﬂu+m), and
chooses e#(u) as the first K, components of éﬂu+m).

Note that for the case of only one minimum weight error pattern
consistent with Y(utm), g%(uf is the same for both an MLD and a QMLD
for sufficiently small p.

It is also interesting to note that the decoder of Fig. 3 is an
MLD as well as a QMLD for all p < %n

It should be pointed out that the décoding algorithm of an MLD
i~ a true maximum likelihood decoding algorithm for a genie’decodér since
the algorithm is prediéated upon perfect removal of e(u-1),---,e(u-m)
from o(utm). g ) |

That an MLD may not always put out the true maximum likelihood
estimate in the feedback decoding mode because of past decoding errors
is demonstrated by the decoder of ?ig. 8. For this decoder?let p*
be defined as the value of the BSC transition probabilify such that

| Ppp < P ) O<p<p®
Ppp =P > P =¥ : (21
Pep > P . p*<p¢%' '

2-2p3-= 0, satisfies .25¢p¥®<,3.) Now for

(p*, the real root of 1-5p+5p
p<p* it can be shown that the maximum likelihood error estimate condi-

tioned on the syndrome state and input Y(ut+l) is always put out by the

,.MLD of Fig. 8 in steady-state. However for p*<p<%3 again in steadye
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state operation and with f(cé(u+l), s{utl)) = cb(u+l).8(u+l) as before,

u

the most likely estimate is e®(u) = 0 for any Y(utl). However, since

£(11) = 1 the MLD estimates »%(u)

1 whenever Y(utl) = (11), so that

this decoder does not always make the true maximum likelihood decision

'

for this range of p.

To show this more precisely, let Y(u+l) (oo(u+l),8(u+l)) =( 1)),
and assume that the system is in steady-state. Now

Pr{e(u) = 1/ og(u+l) = 1, S(utl) = 1)

i

Pr(e(u)=1, o (utl) = 0/0(utl) = 1, S(utl) = 1) + .

-

Pr(e(u) = 1, o (utl) = 1/05(utl)= 1, S(utl) = 1)

1

0 + Pr(e(u) =1, Go(u+l) = 1/0.,(utl) = 1, S(utl) =.1)

Pr( 0g(utl)=1,S(utl)=1/e(u)=1,00(url)=1) Pr(elu)=1, 05(u+rl) =1)
Pr*(oo(uu) = 1, S(utl) = 1)

[p? + (1-p)?1 Pq, " [p%+(1-p)?1[p-3p2+5p°-2p ]

Pr(o (utl) = 1,5(utl) =1) ) Pr(co(u+l)'=J.,S(u+l)-=l)(.l+3p2-2p°] . (22)

’ ’ 3 L"
And similarly, Pr(e(u) = Q/cb(u+l)=1sg(u+l)=l)=2P~l‘P)[P—3P +2p ']

Pr(co(u+l)=l,8(u+l)=l)Elisp2-2p3], (23

It can be readily shown that

Pr(e(u) = l/oo(u+l)=l,8(u+l)=1J¥Pr(e(u)=0/oo(u+l):l,8(u+l)=l),p<p*

e o et "

3 ,pf;/ff:""

Pr(e(u)= L/ao(u+1)=1,s(u+1)=1) <Pr(e<u)=0/%(u+1)=1,s<u+1)=1)","_fw’5'=‘:.

Pr(e(u)=l/go(u+1)=l,S(u+l)=l)=Pr(e(u)=0/oo(u+l)=l,S(u+l):%%$Eg§§;‘ T (34

The following definition is prompted by :this discussion.

Definition 2: A "True Maximum Likelihood Decoder' (TMLD) for a sys-

» K [ L)
tematic, R = =2 convolutional code of memory order m is a decoder of

No

the general form of Fig. 6 for which the decoding function £(g(u):S(u))

is such that PFD (exists and) is a minimum.

v
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It can be shown (by exhaustion) that for a decoder of the form

of Fig. 3, f(do(u),S(u)) for a TMLD is given by

£lo (u),8(u)) = o_(w).8(u), 0<p<p*
f(OOCU)gs(U)) = oo(u).S(u) or 0, p = p%'t
f(Uo(u)aS(u)) = 0 ) p‘c'?(pf__;':
2 3 y 5
. . _ Tp"-12p +10p =Up "
in which case PFD = Tronl-2pd s 0< p<p’ ,
(2u)
P = p¥ <.!‘_
Fp - P» P57,

For definite decoding or genie decoding, the probability distri-
bution of g(u) does not depend on the decoding function £, and thus the
determination of the £ for which Pr(gﬁ(u) # g{(u)) is a minimum is re-
latively straightforward.

'However, for feedback decoding the probability distribution of
o{u) is a function of £, and thus the determination of f for a TMLD is
more involved. Moreover, even if the maximum likelihood estimate e (u)
for each zﬂu+m) is always put out in !steady-state for a feedback decoder
with a specified £, this 1s not sufficient to insure that the decoder
is a TMLD, as the followmng example shows.

For the decoder of the form of Fig. 3 but with e®(u) = f(0 (utl),S(ut+l) =0,

it can be shown that in steady—state the state distribution is such that

ll

e®(u) = 0 is the most likely error estimate for any syndrome state and
’ineut for ﬁépé%. p, the real root of l—6p+8§2—4p3 = 0, satisfies P < p¥.
* However, as stated earlier,'a feedback decoder of the form of Fig.é~
with f(oo(u),S(u)) = oo(u).S(u) is a T™MLD for p < p¥*, which implies that
ﬁhe,above feedback decoder with f(co(u),S(u)) = 0 for P<p<p* 'is not a
TMLD, even though the maximum likelihood error estimate is put out for

= 1
any Y(utl) in steady-state.

25



Intuitively, decoders such as the one above for which the maximum
likelihood estimate is a function of p are more difficult to analyze
than maximum likelihood decoders for block codes, for which the maxi-

-
o

mum likelihood decoding function is not a Ffunction of p for 0<p<:.

N

Lemma 1. For a syndrome feedback decoder for an R = %93 binary,
- o
systematic convolutional code of memory order m, N>m, where N is the
smallest power of the Markov transition matrix m associated with the

decoder for which there exists a non-zero column.

Proof: Assume Nsm. Then there exists a decoder state 9 € QRO which

is reachable from every state q; € QRO in exactly N<m steps. Let
A

Egl) = [e (l; -5€ (l),e(l)] be the row vector denoting the contents of
=] Jsm 3,273,
the first buffer register when the decoder is in state q,. DBut any

cop g (1) A <1> 1) 5L D (D) (D)
state g . QRO with B,™7 = [e s8] ] = [ej,l’ ?j,l’ ———ue. ],
where eéli “is the binary complement of eg i, cannot be driven to qj

> ,

in fewer than m steps, contradicting the assumption N<m. Hence N>m and
the lemma is proved.

Theorem 3. A QMLD for a systematie, rate R = —, binary convolutional

NO

code has steady-state state occupancy probabilities. Moreover N#m, whera
N is the smallest integer for which nN has a positive column and T is
the Markov transition matrix associated with the decoder.

Proof: From Lemma 1, N>m. Thus from Théorem 2 of the previous section,
since a QMLD correctly decodes in the absence of channel errors, it

is sufficient to demonstrate that any state of the syndrome register

can be driven to the 9, = 0 state in a number of steps Nqo <m. (The
buffer registers can be cleared in at most m steps simultaneously.)

For E(u+m) -u+m(u) : -u+m<u+l) —— “ﬁ+m(u+m))
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associated with Y(utm), let

: 4 (s . & ot 8 :

6E(utm) = (gﬁ+m(u+l) : gu+m(u+2). .g_u+m(u+m) : 0)y (25)
where 0 is the N, dimensional all-Zero column vector., Also let

~ _A R
YECutm) = (& o 4

where §-u+m-l(u> is the first block of _ﬁ(u+m~l), the estimated error pattern

+m(u): 9‘_u+m(u+l) - §_u+m(u+m-l)), (26)

(u) &,
corresponding to Y(utm-1) at time utm-l. Note that

oyECutm) & o(yB(wm)) = (&, (wi---:§ . (um-1) : 0). (27)

Starting with J(utm) at time utm, let the syndrome input vector
S(utm) be chosen such that Y(utm) = H( e_fz(u-fm-l)), i.e., S{utm) = G'e_ﬁ_(mm-l),
and assume that _ﬁ_(um) # G_Ig_(uw*m-l).

From the equations of operation of the syndrome (10), it can be shown
that YE(utm)e ELY(utm-1)1; i.e., Y(uim-1) = H(yE(utm)). Now W(é(ui—m—l) 2
W(y_li(u%'m) since E(utm-1) was the error estimate at time utm-1l. And since
E(utm-1) and yE(utm) have identical first blocks (by definition of the

operator Y),

WE(wm-1)) < W(oY E(uwtm)) < W(E(urm)) < W(eE(utm-1)) (28)
=>W(6E(utm-1)) = W(B8Y E(utm)) = W(E(utm)). (29)
But
W(oy ECutm)) = W(E(uwrm)) => oE(utm) = ECutm), (30)
and

WCOE (utm-1))

Weey ECutm)) => W(E(utm-1)) = WCY E(utm)). (31)

Now W(E(utm-1)) = W( ‘v_'p“:(ui-m))-:“f’ the ordering relation ">" is defined be-
tween the two'vectors, and g(u-!-m-l) >y _ﬁ!_(u-rm) since :ﬁ__(u+m»—l) was the estimate
at time utm-l. (Note that _ﬁ_(u-l-m—-l) =‘.’§_(u+m) would contradict the assump-
tion that E(utm) # 6E(utm-1), since oY E(utm) = E(utm).) But E(utm-1)

>y E(utm) = 6§(u+m-l)>eY E(utm) = E(utm). ' (32)
However, this is impossible since _ﬁ_(u+m) is by definition the estimated

error pattern at time utm. Thus the only possible conclusion is that
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Eutm) = 0 E(utm-1).
By continuing to choose new syndrome input vectors which are ¢on-

sistent with the 6 shift of the previously estimated error pattern

(i.e., S(utmti) = G'( 6i+l_§:_,(u+m»l), i=1, 2,~~=-,m), a Y(ut2m) can be

AlE .
cbtained such that Y(u+2m) = H(Qmuﬁ(um-l)), where0m+l§(u+m-l) =y, &=8 E(utm-1)

But g"H"]'%;Ef.:(u‘lﬂm--l) = 0 = Y(ut2m) = Q=20 (ut2m) = 0, (38)
Thus the syndrome state can be driven to g, = 0 in Nqo £ m steps and the
theorem is proved,

Definition 3. For a syndrome feedback decoder for a rate R = -r%", HYS-

tematic convolutional code with syndrome state and input at time utm

A
given by Y(utm), the ervor pattern E (utm) = (e (u) : e (utl) i---:e (utm))
is said to be a "fully correctable" error pattern if

i) gi?(u) = _g_cx(u), and

» & » A ]
ii) when the subsequént syndrome inputs are chosen as

s(utmki) = G'(8'E (utm))y
then eff(uti) = e (uti), i=1, 2y ===, m. ,

Note that whether E (utm) is fully correctable or not depends
on both the code and the decoding rule. Also note that E (utm) need
not be E(utm), the :a_L::__i_‘._gé_l_ error pattern at time utm. However, if
E(utm) is "fully eorrectable', then éhoosing §_(u+rh+i) = G'( ei_E_‘.:(u-l-m)),
i=1, 2,---,m, is equivalent to choosing e(utm+j) = 0, j = 1, 2,~--, m,
at the decoder input.

For Y(utm) consistent with a correctable error pattern _I;J_d(u-i-m),
the syndrome may be driven to _g(u+2m+l)y : 0 by the choice of S(utmti) =
= G'( eiga§u+m)), i=1, 2,---,mtl, since for this case Z_(u+2m+l) =

+
ern 1

H( f.i_d(u-rm)) = 0. For the QMLD, every Y(utm) is consistent with a

Pia)
"fully correctable" error pattern, namely E(utm), and for this reason
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the syndrome portion of the decoder is capable of being driven to
I(ut2mtl) = 0.

With the above as motivation, the following theorem is stated.
Theorem 4., For a syndrome feedback decoder for an R = g&. systematic
convolutional code, which correctly decodes in the absenZe of channel
errors, steady-state state occupancy probabilities exist if every syn-
drome state g,(utm) reachable from g(0) & 0 can be driven to a state
gﬁ(u+m+éi) for which there exists vectors §ﬁu+m+5i) and Qj(u+m+ai) such
that Ed(u+m+6i) is a "fully correctable' error pattern relative to
Y(utmts, ).

Proof: Given the arbitrary syndrome state gi(u*m), let gi(u+m) be

driven to gj(u+m+di) by means of a suitable choice of inputs. Then let

§ﬂu+m+éi+k) = H(ekgﬁ(u+m+6i)), k=1, 2, ===y mtl, (35)
be chosen as syndrome inputs in order to obtainkgﬂu+2m+l+5i) = 0.
K
Corollary 4.1 A syndrome feedback decoder for a systematic, R = ﬁg
c

convolutional code which correctly decodes any pattern of B or fewer
errors over a (m+;)NO bit constraint length, and which puts out g%(u) =0
as an estimate whenever Y(utm) is consistent with no §i(u+m) with
W(Qi(u+m)),£ B, has steady-state state occupancy probabilities with

m <N < 2m+l,

Proof: From Lemma 1, m < N. Now given g (utm), let S(uwtmtj) = 0,

j =0, 1, ---, i, be chosen as syndrome inputs until a zﬁu+m+i),
ie {0, 1, -~-, m} , is obtained for which there exists an §w§u+m+i)<

such that Eéu-l'mi-i) e E[Y(utm+i)] and W(géuﬁ-mﬁ-i)) < B, or until mtl

such zero syndrome inputs have been fed in. If such a Y(utmti) exists,
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R

then from Theorem 4 the syndrome registers may be driven to
olut2mtd+l) = 0 =since E (utmki) is a "fully correctable" error pattern,

However, if no such Y(utmti) exists, theng (u+2m) = 0 since the syndrome

. reglsters will have been driven autonomously for m consecutive time

units while feeding back the all-zero vector as an estimate.

For B = L?EQQEB:%J y Where dPDmin is the feedback decoding mini-
mum distance andl" .Jdenctes the "greatest integer less than or equal
to", the above corollary gives a class of miunimum distance feedback de-

-

ceders for which steady-state state occupancy probabilities exist.,

30



V, APPLICATION TO SEMI-DEFINITE DECODING

The concept of semi-definite decoding (SDD) was introduced by
Massey and investigated experimentally by Frasco [9] as a decoding
technique intermediate to feedback and definite decoding.

A diagram of a general semi-definite decoder of order k for a
binary R = %- systematic convolutional code with memory oxder m is
shown at time utm in Fig, 10. The first intermediate decision rele-
vant to the estimation of e(u), e®l(u-k+l), is made on the basis of the
unmodified syndrome bits S(u-k+m+l),~--;S(u~k+1l) and is thus equiva-
lent to a definite decoding decision. e®l(u-k+1) is then used ("fed
back'") in order to modify the syndrome bits S(u-k+m+2),---,S5(u-k+2)
and the second intermediate decision e®2{u-k+2) formed on.the bagis of
these modified syndrome digits by means of the same decoding functioen €.
In general, the ith intermediate decision e*i(u—k+i), ieg{l,2,~--=,k} ,
is made on the basis of S(u-k+m+i), ---, S(u-k+i) (with the same f)
after appropriate modification by e*i‘l(u-k+i—l),—~j,e*i‘m(u-k+i—m) if
i >m, or by e*i”l(u-k+i~l),—~—e*l(u—k+l) if i<m. The desired estimate

A
SbD ~

th , . . . . e
k™ intermediate estimate formed at time.ut+m, and is seen to be a func-

~y
f

e®¥(u). Hence [e®(u)l... iﬁféhe

of e(u) is then chosen as [e®(u)] fopgy HH
R W ) -

tion of only a finite number of syndrome bits, namely S(utm), S(u+m-1),
~==,3(u~k+1). At the next instant of time, utm+l, k new intermediate

estimates e®l(u+l-k+l), e®2{ut+l-k+2),---,e*K(u+l) are formed and the

estimate [e*(u+l)]SDD 4 e®K(u+1) of e(utl) thus made From S(utm+l),-—--

--,S(u-k+2) at time utm+l in exactly the same manner as was [e*(u?JSDD
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from S(utm),--~,S(u-k+1l) at time u+m.

More rigorously, in a semi-definite decscder of order k for a bi-

Ko
No

estimate [gﬁl(a)]

nary R = systematic convolutional code with memory order m, the

spp OF er(w) is made at time utm on the basis of S(utm),
§ﬂu+m-l),——-s§fu-k+l) in the following manner. Given the decoding func-

. . . $ . s %0‘ l
tion £, the first intermediate decision e® (u-ktl) .,  __.. ..

et Nu-kr1)

£ (g (utm-k+1) ¢ SCutm-kt+1)), (36)
where

(SCu-k+1) : S(u-k+2) :---: S(u-ktm)). (37)

Hne>

9, (utm-k+1)

The next k-1 intermediate decisiors are then made as

E?Ii(u-k+i) v £(o; (utm-k+i) ¢ Surm-k+i)), (28)

where

gi(u+m-k+i) = Agi_l(u+m-k+i-l) + BS(utm-k+i-1) + G ;—l(dik+i-l),

3
FB=

i=2, 8,---,k, and where A, B, and G__ are defined in equations

FB
(11), (12), and (13) in section III. The desired estimate [9§(u)JSDD
is then chosen as '
Le (Wi & ek (W), _ | (40)
This decoding method is similar to feedback decoding in that it
utilizes some previoﬁs decoding decisions in arriving at an estimate.
However, ‘nfinite error propagation is avoided as in definite decoding
since each estimate is a function of only a finité nﬁmber of syndrome

A

bits, and hence a finite number of channel noise bits.

Let
. 4 fe ' sk
Pgppluwsk)=Pr(le(u) ], stage spprer (wPrief<(u)#e (u)) (41)
and | '
| A SRR
PSDD(k) = PSDD(u,k,/uzktm—l. (42)
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For u > k+m-1, the probability distribution of (e(u-m-k+l) :---: e(utm):

i8(u~kt1):==~:8(utm)), and thus P (u,k), is independent of u and the

SDD

second definition is therefore meaningful as the steady-state error prob-

ability for a k-stage semi-definite decoder; i.e.

Popptk) = liz Popplusk). (43)
u

l'ote that although this latter limit always exists, lim lim Pgp.(u,k)
ke ure

may not exist,
For k = 1, the semi~-definite decoder reduces to a definite decoder

since

e*l

% = = JERETET = [e¥ .
[El(u)]lstage spp = &5 = £(8(w S(utm)) = [ef(u)l, ()

Writing the equations of semi-definite decoding operation in re-

cursion relation form yields
i-1

gi(u+m-k+i) = A gi(u+m-k+l)
N i=2 3
330 A°[BS(utm-k+i-1-3) + GFBifgi_l_j(u+m—k+l—l—j) : S(utm-k+i-1-3))]
1= 2,8k, (45)
Thesn < uations may also be written as
o,(utm-k+i) = Ai"aé'(u+m-k+u)
—i -0,
i"'l'—d o
I AI[BS(utm-k+i-1-3) + G__ (o, . .(utm-k+i-1-%):S(utm-k+i-1-3))]
L - FB=— —i-1-] =
i = a+l, o + 2"""-,]<’ (o 8(192,—--‘,}(-1)0 (46)

(For o = 1, equatiors (46) reduce to equations (45),)

Fc the purpose of analyzing P,..(u,k) it is appropriate to in-

SDD

troduce the following definition,

K

Definition #: For a semi-definite decoder for an R = ﬁg- systematic
o

convelutional code with memory order m, the 'equivalent feedback decoder'

(EFD) is a syndrome feedback decoder for the same code with the
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Rabeaht

same decoding functicen £ as the semi-definite deccder.
With t.1is definiticn, comparing the set of recursion equations
(48) for a semi-definite decoder #ith a similar set for its correspond-

ing "equivalent feedback decoder', namely

. i"‘l" (s 2N
oi) = A¥ " %(a) + £ AI[BS(i-1-9) + Gpy£(O(i-1~3) ¢ 8(i-1-3)]
3=0
i = a+l, a+ 2""""’ (“7)

it can be scen that if

Autm~kta) = 0 (utm-k+o)
(where 0(i) refers to a state f the EID end J,(utm-k+i) an interreiiate
"state" of the semi-definite decoder), and if the same syndrome ilnnut
vectors S(utm-k+o), S(utm-k+ot1),~-~-,8(utm) are input to both the semi-

definite decoder and its "equivalent feedback decoder', then

o(utm-k+Mi) = 0 (dm-proti) (48)
- 01,
and
o . - .,‘a"l'i
Ceflu-ketoridlonn = o (yoktati) (49)
i = O’ l’ D k-a) ;
. . N KA - ‘. é )
which implies that [ef(w 1, = e¥k(u) = [e¥(u)l . - (50)
If a= k-u-m with k>utm for a semi-definite decoder, then
- . a0-1 _
ga(U+m—k+?) = ga(O) = A gl(u+m k+1)
a-2 .
+ AJ[B§ﬁu+m—k+i~l-j) + GFBﬁxgi_l_j(u+m—k+i—l—j):§ﬁu+m—k+i—l-j))] (51)
j=0 .
where
A
o, (utm-k+1) = (S(u-k+1):---:S(u~kim)). (52)

Obviously gﬁ(o) = 0, since ;Kg)ﬁé and S(B)=0 for B<0. Thus from the
discussion in the previous paragraph, if the same syndrome vectors
4

8(0), 8(1),~--,S(utm) are input both to the semi-definite decoder and

34



its "equivalent feedback decoder", and with g(0) = 0 for the EFD,

%". \/ 3 [] s
Leg(u)lppn = Cef(wl ) for kbutm, and for all such u the probability
of error associated with a semi-definite decoder is equal to that of
its "equivalent feedback decoder'! under normal feedback decoding con-

ditons (i,e., 0(0) = 0). This may be stated mathematically as

iim PSDD(u,k) = PFD(u)’ (53)
oo
Note that lim 1lim PSDD(u,k) = lim PFD(u)

U Koo U-boo

exists if and only if PFD exists for the EFD.

Thus semi-definite decoding is seen to provide a spectrum of de-
coding techniques intermediate to definite deocding (k=1) and feedback
decoding (ka« and u< =),

It is of more practical'iﬁ%eggst, howevér, to calculate the

(x) bp (u,k)/wktin-1 = 1lim P, (u,k) which is deter-

SDD .~ SDD U -poo SDD
mined from the probability distribution of the vector (e(u-m-kt+l):---

quantity P

re(utm) :8(u-k+1) :---:S(utm)), usk+m-1. The following lemma gives an

(k).

expression for PSDD

Lemma 2. PSDD(k), the "steady-state" probability of error associated

K
with a semi-definite decoder of order k for a rate R = ﬁ23 binary,
o

systematic convolutional code of memory order-m, is given,by PSDD(k) =

= Pr([gg(u)] # gf(u)), v xim-1, wWhere EEE(UXEFD l% the estimate Fform-

EFD

ed by an "equivalent feedback decoder' at time u+m whose syndrome state
is.gﬂu—k+m+l)‘ék(§ﬁu~k+l):—--:§ﬂu—k+m)) at time u-k+m+l, and which is

fed the syndrome inputs §ﬂu—k+m+l),§ﬂu—k+m+2),——;§§ﬂu+m) at timeSUrk+m+l,—--
~-,utm respectively.

Proof: From the previous discussion in which the operation of a semi-
definite decoder was compared to that of its "equivalent feedback de-

coder" (Egs. (u48), (49), and (50), it is clear that [E§(U)] = £g§(u)]

EFD sSDD?
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and thus
A )
Papptk) = Pr(lef(u) ] stage SDD&I (u)) =Pr([e¥(u) I r#e (u)).

Equivalently, Pg o (k)=Pr([e¥(u) ], #e¥(u)), where [ef(u)]

SDD EFD EFD ~
the estimate at time u+m of an "equivalent feedback decoder' which is
in the docoder state given by (gi(u~3+l):---:gl(u—k+m):§ﬁu-k+l):-——:§ﬂu~k+m))
at time u-k+mt+l, and which is fed the error input vectors gﬂu—k+m+l),--~
--,e(utm) at times u-kt+m+l,-~--,utm respectively.

It should be noted that each of the 2™0 possible values of (e;(u-k+l):--
--:e (u-ktm):S(u-k+1):~--:8(u-ktm)) occurs with non-zero probability,
since each syndrome digit which is a part of the inditial state is an
additive function of a unique parity error digit. Thus all possible
"initial" states must be considered for the "equivalent feedback decoder"
in the calculation, even though all may not be reachable in normal feed-
back decoding operation (i.e., .0) = 0).

The following formulation is helpful in calculating PSDD(k): Let
Q be the set of the 2mN° possible states associated with the "equiva-
lent feedback decoder" of a semi-definite decoder for a binary, R = %%
systematic convolutional code with memory order m, and let Q be written
as . 2 union of its disconnedted submachines. That is, Q = Qo UQl Ummo
""UQn-l’ where Qj = 'hjl’ qj2,———,qu°} and the qiﬁ's represent the
states of the decoder, 1 = 1,2,;——,rj3 iy =0, 1l,~--,n-1. That Qi and Qj
are disconnected, i # j, implies that A5y cannot be driven into qu,
k=1, 2, ===, v, £5 1, 2, -, £y i,9 = 0, 1, ===, n=1, 1 # 3.

Depote ﬂb,'ﬂl, mms M _as as‘the Markov transition mafrices assoc~
iated with Q ) Q - Qn-l respectively. Also denote

Qj(u) Cw QJ(U), Qj(u),-~~,ng(u)] as the state probability

]
vector at time u, conditioned on the event that the '"equivalent feed-

back decoder" began operation at time zero in a stafe quer,'and
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L.

Po(Qj) as the probability of this conditioning event, f£= 1, ?,~-m,rj,

j = O, l, ity n"'ln

With this formulation, P%DD(k> may be written as
n-1 r
P.o(k) = § P (Q) g3 wi(k-1)P (54)
SbD 520 o 7j i1 3 Q4
where
ﬂ?j(k-l) = ﬂ?j(o)wg"l, (55)
Pc is the probability of error associated with state qji’
:ji

PO(Qj) =‘Pr((gI(u—k+l):~—-:g¢(u-k+m):§ﬁu—k+l):———:§ﬂu~k+m))8<Qj), (56)
and ;

ji/(gi(u~k+l):--e:§ﬂuﬂk+n0) €. (57)

ng(o)zPr((g{(u-k+l):-—-:§ﬂu—k+m))=q
J

U_Zk'*‘m".;, i = l, 2,—""",17‘ K j = 09 l,*“'—,n—l.
]
Hote that if steady-state probabilities exist for Tos Ms===sT . 1>
then lim P_. . (k) = 1lim 1lim P

i ren . SDD ¢ o gser SDD
i.e., one can speak of the error probability of "long'" semi-definite

(u,k) exists and will be denoted PSDD(“)S

decodewns.

£s an example of a calculation of P DD(k)'consider the semi-definite

S

decoding scheme for the R = %- systematic binary eonveluticnal code with

- (2) _ 2y _ . . . ‘o Mg
m =1, &(1) © 1, 81(1) ~ 1, for which the decoding function is the "ex-
clusive or" gate; i.e., f(oo(u), S(u)) = co(u) ® S(u). The '"equivalent
feedback decoder' is shown in Fig. 11, where the switch in the feedback

loop is closed at time u-k+2 after S(u-k+1l) enters the syndrome registery

and for which PSDD(k) = PF (w).

D
For this example, Q=QOUQl,Q0=5h01,q02}',Ql='{qll,q12}, n=2,r =2, ,% 25

.

=00 =10 =11, where the first digit represents the con-

U ™YY 900% 729177542955

tent of the buffer register and the second the content of the syndrome.

=01

register., The error probabilities associated with the states are readily
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calculated to be

Pqu = 2p(l-p)
qu2 = 2p(l-p)
2 58
qul = p2+(l—p) (58)
2 2
Pq12 = pT+(1-p)°,
P,(Q) = Pr(S(u-ksl) = 0) = (1-p)% + 3p2(1-p), (59)
Po(Qy) = Pr(S(u-ktl) = 1) = 3p(1~p>2 + pax (60)
1-p p D .
m = mo= . (61)
p Pj, 2l
#3o(k-1) = ¥%(0) 15k~l = [1-p,pd [Tp BT "= [1-p.pl.
(62)
Q Q k-1 P = |
1 - = 1l ™ -D 1 _ =
W (k-1) W (0) '"l [l-p,p] [1-p P - [l“P:P], . (63)
| 1-p P
PSDD(k) = [(l—p)3+3p2(l—p)][(l~p)2p(l-p)+p 2p(1-p)1]

¢ [ap(1-p)2 + p2I0C1p) {p2 4 (1-p)2} 4+ p {p24(1-p)?} ]

5p - 20 p2 + 40 p° - 40 pt + 16 po. (64)

j]

Note that for this example PSDD(k) is not a function of k, and
hence Pg (k) D(l) =

, Where P__ is the probability of error

PDD

of definite decoding. "

oD

On the other hand, when PFD(u) is éalculated for this coding scheme
for normal feedback decoding operation (i.e., the switch is closed for
all time and gﬁO) = 9), only 15 is considered since the decodef is
initially in the all-zero state. (For this example, Qp the set of states

'

connected with the all-zero state, is equal to QRO’ the set of states

reachable from the all-zero state, although this is not true in general)
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The feedback decoding probability of error is then
PFD(u) = (1-p)2p(1l-p) + p2p(l-p) = 2p(l-p). (65)

Here also no transient terms are present, and for all u,PPD(u) = PFD’
the steady-state probability of error for feedback decoding.,

Thus for this example, both lim lim PSDD(u,k) and lim linm PSDD(u,k)
koo e wre koo
exist, and

1

P = 1im 1im P (u,k) = P <0<p<§. (66)

> L3 £
DD SDD(u,k) lim 1im P

ko e ure koo FD’

SDD

[ L] LJ » L A

The question arises as to the conditions under which lim PSDD(k) =
k—)co

A
= 1im 1im P, (u,k) = 1im 1im P._..(u,k) = lim P_ (u) = P
frm uw  SDD' o ke SDD il

FD

for a semi-definite decoder, where PFD(u) refers to the probability of
error of its "equivalent feedback decoder" under normal feedback decoding
conditions (i.e., a(0) = 0), Sufficient conditions for this occurance

are given by the following theorem.

Theorem 5. For a semi-definite decoder and its 'equivalent feedback de-

K
O . L[] L[] (3
aotsy! for an R T binary systematic convolutional code with memory
e)
order m, if steady-state probabilities exist for w, the Markov matrix
associated with Q, then

A
(u,k) = 1im 1im P, (u,k) = lim P_ (u) = P
K am  SDD e D FD

(k) : lim lim P
Jr0 0

lim P

Jereo SDD

SDD

Proof:  Since steady-state probabilities exist for w, Q=Q, and PSDD(k) =

o™o .
N o - » *
i§1 hi (k-1) qui with
wlo(k-1) & [w§°<k-1), w§°(k-1>,---ngo (k-1)1. Now
N imNo
lim E?O(k-l) = 1im y?o(o) wok‘l = H?O & [leo»HJ_; ngN ] (68)
k"‘°° 2 (o)

independently of the choice of ﬂ?o(O), since steady-state probabilities

. Mo g :
exist for m, = 7, and thus lim PSDD(k) = “r  W,*% _+ But since
koo i=1 doi

o i

lim ﬂ?QCG} a %l ﬂ?o independently of the choice of the initial prob-

k- °
ability digtribution HQO(O), if any state q _, has a non~zero steady-state
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k¢

T e &

probability (i.e., WiQO # 0), that state is reachable from every state

ch € QO. In particular, every state with ron-zero steady-state prob-
ability is preachable from the all-zero statej or, conversely,
Q .
9: 9 Qo 2 W3 = 0, (69)
Thus \
(k) ZmNO Qo r QPO
1m P (k) = £ H,0Pq.=L W, P Ay b 4
oo SDD jmp & oi " ., 4 Ui Prp” LimPp(u), (70)

oo
and the theorem is proved.

A code which meets the conditions of Theorem 5 is that of the ex-
ample in Section II, with the decoding function f given by £(o _(u),8(u)) =
= ob(u)-S(u) for both the feedback and semi-definite decoding schemes.

The example in this section with f(ob(u),S(u)) = Ob(u) ® S(u) does not
meet the condition of the theorem since Q # thand for this case

1im Po. (k) # PFD'

K -co SDD
An important point which might be raised is that of the shape of
the PSDD(k) vs. k curve. That is, is there an intermediate value of

( \ P p ‘p . '- L ~7'- s c"
SDDJ<a’ <P and Pan a> < Ppps i.e.; is semi

definite decoding ever strictly superior to definite decoding and feed-

k, say kai for which P D(k
back decoding?

An example which illustrates this eventuality is that of section II,
with f(co(u),S(u)) = Go(u)-S(u) and p = 0.4,

For this case

.36 L2816 L2U| mume

= 1= | 0 I
o "7 l.2u .36 .24  ,16 ,(71)
.6 0 T
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and (o .192 .26 .1 0 4 0 -0
k".l -1’08 -lg? 026 .JJ# 0 '!‘l‘ O "0“’
TN hos 192 .26 .|t o -6 o Lo | SCRLI Y
L408 L1902 .26 L 1b 0 -.6 0 .6
[ wie -,416 -,387 .387 | 176 -.176 126 =109
-.0187 .0187 .0176 -,0176 -,39 .30 ~,278 278
k-1 #e o'
+(.0967) -~.627 +.627  .587 -.587 ' 218 -,218 ,1523 -,1583
-.0187 .87 .0176 -.0176 - .39 .39 ~.278 N8
where
Scv 1 k=1 .
(k-1) = o kx#1 (73)
w(k-1) = wle(o) m Kt (71)
#30(0) = [.312 .288 .192 .208] (75)
and Q Q Q
_ _ Ok ] <O()-
Papp(k) = 480, "0(k-1) + W ~0(k-1) + .48W, "O(k-1) (76)
=> Pgon(k) = 419 + 0107 (-.L+sass)k'l - .00076 ¢.0967)"L.(77)
Note that
Mp Pgpp(k) = .ul9 = P, (78)
PSDD(1> = 429 = P, (79)
and <PFD ‘
i = = 11 . 0
min PSDD(k) PSDD(Z) L <Ppp “(8 )
¥k | -
For normal feedback decoding operation, W(0) = [1000] and
PFD(u) = 48 W2(u+l) + Wa(u+l) + .uawq(u+l) e (81)
I
e
= 419 + (.06 (..n01) + (-.495)Y"* (-.018). iéé;g“ (82)
Note that .
Wp Ppplu) = 418 = P, (83)
PPD(-J_) = 0, (8u)
and
PFD(O) = ,389 = PGD. (85)

4l




e, |

At

PSDD(k) for the came code and ¢ecoder but with p = .01l was also

calculated and found to be

Popp(k) = 1.5 x 1073

For this casec

min., P (k) = P._(5) <¥D (87)
3 DD SDD"°’ <R

although the difference (PFD - PSDD(S)) is negligible for all practical
purpoLes.

The fact that it is possible for P,..(l ) to be less than both T

SDD DY

and PFD indicate that semi-definite decoding might be used to prac-
tical advantage. Moreover, semi-definite decoding has the further psy-
chological advantage that infinite error propagation is impossible.

The results of this paper, although given for codes over GF(2),
can easily be generalized to codes over GF(q) if the binary symmetric
channel is vreplaced by a mewmsryless, time-invaniant, additive GI'(q)
noise soﬁrce. Generalizations can also be made to non—systeﬁatic codes
end non-syndrome-type decoding, but the details shall not be carried

out here,
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