
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19680026440 2020-03-12T06:45:40+00:00Z



i
i
r
t

GPO PRICE	 S

CFSTI PRICE(S) $

Hard copy (HC)

1	 Microfiche (MF)

1
	 M 653 July 6t,

N	 _) a	 JL

$	 (ACCESSION NUMBER)	 (THRU)

O	 C	 CODE)	 f
( L	 )

4'r ^, O1^/----
((NASA	 T^AI^OR AD NUMBER) 	 (CATEGORY)

Drparrmea! of

ELECTRICAL ENGINEERING
UNIVERSITY OF NOTRE DAME, NOTRE DAME, INDIANA



ANALYSIS OF DECODERS FOR CONVOLUTIONAL CODES

BY STOCHASTIC SEQUENTIAL MACHINE METHODS

by

Thomas N. Morrissey, Jr.

May 1, 1368

Technical Report No. EE-682

Department of Electrical Engineering
University pf Notre Dame
Notre Dame, Indiana 4656

This work was supported by the National Aeronautics and Space Administration
(NASA Grant NGR 15-004 -026) in liaison with the Flight Data Systems Branch
of the Goddard Space Flight Center.

i'



ABS TRACT

Previous analyses of the error probability for feedback decoding

of convolutional codes have focused almost exclusively upon the syndrome

orp^^tion of the decoder, the contents of which are statistically dependent

upon the infinite past due to the feedback of previous decoding estimates.
y

This viewpoint makes exact error probability calculations intractable,

In this paper, however, the entire decoder is modeled as an autonomous

stochastic sequential machine and finite Markov chain theory applied in

order to obtain a precise expression for PFD (u), the probability of error

associated with the feedback decoding of the u th subblock of information

digits, thus circumventing the problems imposed by the dependencies on the

infinite past. The analysis technique developed here applies to any syn-

drome feedback decoder for a systematic, rate R = NNoo convolutional code
o	 •

of memory order m over GF(2), used for transmission over a binary sym-

metric channel.

The limit of P FD(u) as u tends to infinity, when the limit exists,

is termed PFD , the steady -state probability of error of feedback decoding.

Sufficient conditions on decoders are given in order for P FD to exist, and

two classes of minimum distance decoders eRhibited which meet these suf- 	 I

ficient conditions.

PFD is calculated for a particular simple example and found to sat-

isfy PFD < PDD' G .t'<2,where PDD is the probability of error associated with

definite (i.e., feedback free) decoding of the same code, and p is the tran-

sition probability of the binary symmetric channel.

The stochastic sequential machine approach is also used in order to

calculate the probability of error associated with semi-definite decoding,

a
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a decoding technique intermediate to feedback and definite decoding. Suffi-

cient conditions are given for PSSD(k), the probability or error of a ki

stage semi-defi4^ite decoder, to tend to P 	 as k tends to infinity. Alsog	 ^	 FD	 y	 ,

examples are exhibited for which there exists a particular value of k,

k a ,such that PSSD(ka) is strictly less than both P FD and PDD , indicating

that semi-definite decoding may be of some practical value.
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ANALYSIS OF DECODERS FOR CONVOLUTIONAL CODES

BY STOCHASTIC SEQUENTIAL MACHINE METHODS*

by

Thomas N. Morrissey, J,

I. Introduction

A diagram of a general, Winary, systematic, rate R w ' convol.utlonal

coding; and decoding; scheme at time u + in is shown xn rigUre L

The digits i(t), p(t), e(t) -0 t), and s(t) represent the ^ nfarme^taon,

parity, information error, parity error, and syndrome input digits respec-

tively at time t, t = 0, 1, 2, . , D a(t)	 (a0(t),al(t - --,um^ y l' t ^) is the

m dimensional column vector representing the state of the syndrome regis-

ter at time t, and e*(u) = f(a(u+m), s(u+m)) is the estimate of e(u) formed

at time u+m, where the decoding function f is designed to provide a "reason-

able" estimate of e(u) based upon a(u+m) and s(u+m) o

In the sequel column vectors will be denoted by parentheses ^) and

row vectors by brackets []

All digits are elements of GF(2), the finite field of two elements,

and all operations are assumed to be carried out in this field- The plus

and minus signs in Figs l represent identical operations in GF(2) 9 and

are distinguished here to emphasize the operation of the decoding processo

This work was supported by the National Aeronautics and Space Adminis-
tration (NASA Grant NGR 15-004-026) in liaison with the Flight Data
Systems Branch of the Goddard Space Flight Center, and forms part of
a dissertation to be submitted in partial fulfillment of the require-
ments for the doctor's degree in electrical engineering at the Univer-
sity of Notre Dame, Notre Dame, Indianao
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The noise digits are assumed to be statistically indenandont, eci^

having probability p of being a "1" and probability I-t) of b-oing a 110"'

This noise source model is equivalent, with respect to the transmission

of the information and parity digits, to a memoryless binary symmetric

channel (BSC) with crossover probability p. Given that a 110" or 11 1 ti is

transmitted over the BSC, the digit is received incorrectly with probabil.-

ity p, the probability that a noise source in Fig. 1 will generate a 111"

and complement the corresponding transmitted binary digit.

Since the information sequence appears unaltered among the trans-

mitted sequences, the code is said to be in systematic form. The remain-

ing transmitted sequence is called the parity sequence.

The syndrome input digits are formed by passing the received in-

formation sequence through a replica of the discrete linear filter used

to form the parity sequence at the encoder, and subtracting from the re-

sult the received parity sequence. Since the system is ,linear with re-

spect to the formation of the syndrome input digits, this sequence is

equal to the sum of the components at the input of the syndrome register

resulting from the information and noise sources. However, the component

due to -the information source stream is formed by passing the information

sequence through two identical discrete linear filters in parallel and sub-

tracting the output of one from the other. Hence this component is zero,

and the syndrome state and input are independent of the information stream

and depend only on the noise digits.

Since the code is in systematic fora e*(u) is subtracted from the

output of the encoder replica in the decoder in order to form 1*(u) -

= i(u) + (e(u) - e a°^(u)), the estimate at time utm of the information dig-

, it at time u. Thus the associated probability

2



of error Pr(i* (u) ^ i(u)) is coual to Pr(o* (u) ^ (',(u)) , am -1,P, irdo-

pendent of the information sequence since the syndrome state and input u5cd

to form e*(u) a,.a functions only of the channel errors.

Three modes of decoder operations, depicted by the position of the

switch, are shown in Fig. 1.

The position labeled DD, in which the syndrome register is not mod-

ified, corresponds to the decoding scheme known as definite decoding Ell.

For definite decoding,

a0 ( u+m) = s(u) = gm e(u-m) +---+g,e(u-1) +goe (u)

aI ( u+m) = s(u+ l) = gme(u-m+1) ------ +gle(u) + goe(u+l)

I
A

am_1(u+m) = s(u+m-a_) = gme(u-1) + gm_le(u)+---+goe(u+m-1)

s(u+m)
	

gme(u) ------- g0e(u+m)

-^(u)

-,(u+l)

1I	 ^ Al : a

II
-9(u+m-1)

- C(u+m)

and thus a total of 3m+2 statistically independent noise bits affect the

estivate e*(.-)

The definite decoding; probability of error is defined to bF

PDD (u) ^ Pr(e*(u) ^ e(u)/
DD mode). For u

pm the probability distribution

for (e(u-m),---,e(u),---,e(u+m), E(u), --- V u+m,",and therefore PDD(u),

is independent of u. Hence the steady-state decoding probability of error

for definite decoding, P DD , is simply equal to PDD(m).

Since in definite decoding e(u-m),---,e(u-1) affect the estimate

e*(u) but have already been estimated by the decoder, presumably with low

probability of an incorrect decision, it would seem reasonab..0 to use

e*(u-m),---,e*(u-1) in an attempt to cancel the effect of e(u-m),---,e(u-1)

in (a(u+m),s(u+m)). It is useful to assume that the true values of e(u=m),---e(u- 1)

3



have been estimatod, in u; ch cnCe tl. ( , Ivndrome state and input are *'unc

-tions only of 2m+2 statistica-1v independent noise digits, a situation

which intuitively is superior to definite decoding*. This is done in the

decoding position labeled CD, or "genie decodan " after Wozencraft ane

Jacobs [23, in which use is made of a genie who corrects the estimated

error bits, if necessary and feeds them Mack in order to Pori the moc.a.-

ied syndrome equations
r

uo(u+m) = goe(u)

'1(u+m) = g1e(u) + g0e(u+l)

1

i

am 11(u+m) - gm-le(u) ---------- goe(u+m-1)

s(u+m) = gme(u)+---------- +gle(u+m -l)+goe(u+m)

-9(u)

^- 1(Lr+l

i
(2)

-9(u+m-1)

- E( u.+m),

Since genies are rumored to be quite scarce:, the genie decoding mode is

used merely as a handy conceptual too], for calculating an upper bound on

system performance, The probability of error associated with genie de-

coding, PGD(u), is defined to be Pr(e *(u) ^ e(u)/GD Triode ). Since this

probability is independent of u for u>0, the steady-state error probabil-

ity for genie decoding, P GD , is simple PGD(0).

In the mode of operation labeled FD for feedback decoding, error

estimates are fed back to modify the syndrome without the services of a

genie. The resulting equations are

ao(u+m) = gm(e(u-m)-e'(u-m))+---+g1(e(u-1)-e'(u-1))+g0e(u)

cr1(u+m) = gm(e(u-m+l)-e' (u-m+^1)) +---+gZP(u)+,?oe(u+l)

m'1(u+m)
	

gm(e(u-1)--e*(u-1))+g,m-1e(u)+---+goe(u+m-1)

.,Vu)

- 
1 
( u+l)

Vf

1

-( u+m-1)

s(u+m) =
	 gme(u)+-----+goe(u+m)

	 - Vu+m).

L^



As long as no decoding mistakes have been made:, feedbG^k decoding coincides

with genie decoding; however, deeding errors in feedback decoding; affect

the syndrome as would a pattern of channel errors, and could result in fur-

r	 gthe decoding mistakes even in the absence of additional channel noise [3].

The probability of error associated with feedback decoding, P FD(u), is

the quantity Pr(e*(u) ^ 
e(u) /FD 

mode)" The quantity "&,wPFD(u), when

it exists, is denoted as P FD ,
 
the steady-state probability of error of

feedback decoding.

Ee*(u)O FD , [e*(u) ]VD , and Ce* (u)JGD will be used to denote the esti-

mates made by the feedback, definite, and genie decoding operations res-

pectively when it is necessary to distinguish which decoding; method is

being used.

For both definite and genie decoding the syndrome state and input

are functions only of statistically a.ndependent channel error digits over

a finite span, and Pr(e*(u) ^ e(u)) may be easily calculated in principle

by summing the probabilities of those error patterns i--,r which a*(u) ^ e(u).

However, for feedback decoding, the estimated digits e*(u-m),---, e*( u-1)

affecting cr(u+m) are dependent among themselves and upon e(u-m),---,e(u) , ---

,e(u+m-1), ^(u),-- -^(u+m-l), the channel noise digits affecting the syn-

drome state. Alternatively, the syndrome state and input are dependent on the

entire past history of the error sequences, i.e., upon 9(u +m), g(u+m-1)9---

---,^(0), e(u+m), e(u+m-1)3-..-,e(0). Thus if attention is focused exclusively

upon the syndrome equations for the purpose of calculating the probability

of error, the complexity of the calculation necessary in order to calculate

PFD(u) exactly grows exponentially with increasing time u.

In this paper the decoder is modeled as an autonomous stochastic se-

quential machine C4,5' and finite Markov chain theory applied in order to

calculate the feedback decoding probability of error exactly. This approach

can best be illustrated by an example.

5
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II EXAMPLE

Consider the special case (m=l, go=1 , g =1, f(co(u),s(u))=co(u)-s(u))

,illustrated in Fig, 2 of the general systematic rate R -, binary convolu-

tional coding and decoding scheme in F.; g. 1.

Since with syndrome decoding the probability of error is independent

of the information stream, sus 'was scat; d in the previous section, the all-

zero information sequence may be assumed without loss of generality. Thus

for the purpose of calculating P%, ( i f: (u)	 Pr(e* (u) $ e(u)) , the en-

coder portion of Fig. 2 may be ignored and the system modeled as in Fig. 3.

When the switch is in the DD position '

[e*(u)I
DD

 = s(u+l) 
6a 

(u+l) = s(u+l) -s(u)

= (e(u)+e(u+l)-C(u+l))•(etu-l)+e(u)-g(u))

e(u)+e(u)Ce(u- 1)-g(u)+e(u+l)-^(u+1) ]

+0(ur l)e(u-I)-e(u+l)t(u)-V u+l )e(u-1)+Vu+l)4(u)

and thus P DD = Pr([e*(u) ]DD ^ e(u) )

Pr^el,r,,) {e(u- l)-^(,u)+e(u+l)-^(u^1))+P( »+1 ) Al,^,.7)-^(t^+l_)E(ti)-E(^+1)^(u-l)

+Vu+l)9(u)=1].

Since the error digits in this expression are statistically independent,

each having probability p of being a 11 1",,	 may be easily calculated to be

PDD = 8p 2 (1-p) 3 + 4p 3 (1-p) 2 + 4p4(1-p).	 (4)

When the switch is in the GD position

[e (u) ]GD = s(u+l) -a0(u+l)	 .

(e(u)+e(u+1)-Vu+1)) -(e(u)-Vu))

= e(u)+e(u)Ce(u+l)-E(u+l)-E(u)],e(u+l)E(u)+E(u+l) OE(u)

and PGD = Pr(;. a*(u) ]GD ^ e (u) )

= Pr[e(u) {e(u+l)- ^(u+l)- ^(u))-e(u+l) &(u) +^( u+l ) -&(u) = 11.

1	 6



`-. error digits  ^3f rp. also are ;tat.p i t i-c ai S/ .t,ndaponel>niAN(, an(! t̀^ ^ y ^ Tie"' _A

computed to be

P. = 5p 
2 (1-p) 2 + 2p 3 ( l-p) + p t4 .

	
(5)

However, for feedback decoding;

Ce=`(u)] FD = s(u+l) •a0(u+l)

= (e(u)+e(u+ 1)- ^(u+ .))•(e(u-l)-C e*(u-1)IFD+e(u)-C(u))

e(u)+Ce(u-l)-Ge*(u-l)1FD1[e(u)+e(u+l)-^(u+1)1

+e(u)e(u+l))-e(u) r,(u+l))-e(u) E(u)-e(u+1) FM+^(u) ^(u+l) ,

and PFD(u) = Pv([e*(u)
]FD # e(u))

= PrC{e(u- 1)-Ce*( u-l)3FD}{e(u)+e(u+l), ­ (u+l)}+e(u)e(u+1)-e(u)F;(u +1)

-e(u) ^(u)-e(u+l) ^(u) +E(u) C(u+l)=11-

But Ce^^(u-1)]FD depends upon e(u), ^(u) and the previous error digits

e(u-1),---,e(0) and &(u-1),---&(0). Therefore the procedure for calculat-

ing Pr ([e^.(u) 3FD 9 u(u)) by means of summing the probabilities of the de-

coding-error-causing error patterns as was done for definite and genie de-

coding is extremely unwieldy arid, for all practical purposes, impossible

for large u.

However this problem of infinite past history dependence is circum-

vented by the representation of the (feedback) decoder of Fig. 3 as a four

state sequential machine with two dimensional random input vector (e(u+l),9(u+l))

and single ou-Cput e *(u) at time u+l. The four states are denoted as

qo=00, q1=01, q2=10, and q 3=11, where the first digit represents the con-

tent of the buffer and the second the content of the syndrome register.

The decoder then may be modelled as a four-state autonomous stochastic

machine in which the states are the same as the original sequential machine,

and the transition probabilIVIns between pairs of states are the sums oa

the probabilities of those input r iiso vectors that take the machine from

7



the art> ; sta g e %o V­ ( , necond. The state-behavior of the four-state

autonomous atoc) ,;- .st!o mi-XI-ine is thus dE'scKjib-d by the follow @ njr Marll:ov

transition matrix;

	

P00 P01 P02 P03	 (,_P)2 P(l-p)	 p2	 P(1-p)

	

P10 P11 P 12 P13	
1-p	

0	 p	 02
Tr	 - 

P20 P21 P22 P23	 = p(1-p) (1-p)
2
 p(1-p)	 P

	

P 30 P 31 P 32 P33	 1-p	 0	 p	 0

Where P i, is the conditional probability that the system will be in state

qj at time u+l given that it is in state qi at time u.

As an example of how the P ij 's were calculated for this decoder,

assume that the system is in state q 1=01 at time u. Now if e(u) =0 and

Q u) =0, or e(u)=0 and V u) =1, the state at time u+l will be qo=00y,,and if

e(u)=1 and 9(u)=0, or e(u)=1 and E(u) =1, the state at time u+l will be q2=10.

Therefore, P11=0, P1.3=0,

P 10 =Pr[e(u)=0, ^(u)=O]+Pr.[e(u)=0, ^(u) =1]=(l-p)2+p(1-p)=1-p,

ana
P12=Pi[e(u) =1, C(n)=0]+Pr[e(u)=1, E(u)=11=p(1-p)+p2=p0

The fact that e(u) and 9(u) are statistically independent of one another

and of the a.bbumed state at time a makes the calculation of the P..'s
ij

strai..gb •tforwarcl 	The actual state at time u accounts for all the past

history of the error sequences that is relevant to ;Future operation of .the

decoder.

The probabilistic transition diagram for this decoder is shown in

Fig. 4.

Let W0.0 
^ [W0 (u) ,Vl 1 (u) 3 srl 2 (u) ,W 3 (u) ] he the state probability vec-

tor at time u; i.e., W i (u) is the probability that the system is in state

qi at time u.

Now W(u) = W(0)Tr. with W(0) 	 [1000] since a feedback decoder is

by definition in the all-zero state at the beginning of the decoding process,

8
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With each state: qi is as. ocia.ted a pa aobaiAlity of error Pnl cou n. 1

to the sum of the probabi.'Utiet of those noise inputs ((:(u+m) , V i.3+rr )

= (e (u+l) , ^(u+l)) that cause e f" (u) ^ e(u) , pivon that the :system is in

state qi at time u+m=u+l. For the example: of Fig. 3, these quantitie s,

are readily found to be

PqO = 0

Pql = 2p(1-p)

Pq2 = 1

Pq 3 = 2p(1-p).

As an example of the above calculations, if the system is in state

q 3=11 at time u+l, and e(u+l)=0 and Vu+l)=0, or e(u+1)=1 and Vu+1)=1,

then e *(u) =e(u)=1. On the other hand, if e(u+l)=0 and 9(uhl)=1, or e(u+1)=1

and ^(u+l)=0,then 0=e*(u) ^ e(u) = 1, and an incorrect deei -;ion is made,

Thi,?s, Pq3 = Pr[e(u+l)=0, t(u+l)=1] + Pr[e(u+l)=l, Vu+l)=0] = 2p(l-p).

P F, D (u) may thus be written as
3

P F,D(u) = E 1.7i (u+l)Pgi .
i=v

Q
A sufficient condition for P F,D to exist is that lima W(u)=W-EWO,Wl,W2,W31,

U4.0

the steady-state decoder state probability vectors with W i equal to the

steady--state probability of state qi .	 If this is the case then PF,D=IimPF,D(u)=
3 u

=limE_,i . (u+l)P qi =	 E	 W.Pgi . W does in fact exist for this example (seei	 ^ O

Theorem 1 in the next section) and may be calculated by	 solving W?r = W for
3

W with the added constraint E W.	 =	 1. The desired solution is
i=0

(0)

i

a

W r 1-2p+3p2-2P 

0	 1+3p2-2p3

p-- 3 + 2p 
+

W1+.,p2-1p3

3 2	 3
W2 

W 
1+3p2_2p3

W	 ^_3p2
+5p3

^224

3	 1+3p2r2p3

("7)

0



1 4

and thus P	 = E W . F)	
7P2-12p3+lop4-4p	 ( 8 )

.j	FD	 i^0 i	
1+3p2-2p3

PGD' PDD and P
FD for this example are sketched in Fig. 5 as a func-

tion of p. Note that for small p, the asymptotic values 5p 2 , 7p2 , and 8p2

are approached by PGD, 
PFD, and PDD respectively.

It can be shown that 
PGD<PFD<PDD 

for 0<p< 2, which illustrates the
global (i.e.,al1 p 2) superiority of feedback decoding over definite de-
coding for this example. This is the first instance known that P FD has

been calculated exactly and compared with PDD , although intuitively one

suspects that in general P FD<PDD for sufficiently small p,

10
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More generally, consider the +^. ^^: ' :^' tr :^ tJX^C^" :°r"c3 ^C'E;^t^r3C:i' 4a^0{  k,' j

shown in Fig. 6 at time u+m for n .^. - - c•

	

c•	 +jincar-i s ysterfi t! c
No

code with memory order m. For full i_',cta i. ° r , of thc; Fencral syndrome fcs^:::-

back decoder, see the literature [6].

	TIic: .,2eccdfr is des criLed as fca.. <, :; c, .	 S( u+m)	 -+r) , r.:...

S(u+rn) ^ (S r.o+l) (t I+rl),--- ,S(t^c).°u+m))

( u+m)	 ( e (u) :- - :e(u+m)i, t:t:.c .X . .(I	
r 

(e (l) (i)	 -	 e (NO ) (i)1u+m An d  L	 r

the N dimensional random input cn' Z r •:+ °c;.C^t'" w, t° J;»„_,.o	 '

which are statistically independent t-:ne hE ve probab a I i •i v p of 1+c4z.-

o<p<2. The superscripts above the error

to the particular input sequence aTid

of these digits, The matrix G' is pilien I: v

G' G
	

CG 'n ' Gym-l.	
- . (','^]

where	 G' i ^ CGi ^N 
K 

3, i - o
o- o

4

G'i - CG i 	0 ]	i -	 ?_,

(Ko+l)	 (Ko+I--
and	 gi(l)	 --gi (KO)

y	 g !	 (too)-----_	 ( tro)
i(1)	 i(KO)

111^K is the ( NO-KO ) X (N.-K.) identity matrix, 0 is the (NO-KO) X (11 0-K 0)
0 0

all zero matrix, and gi (j) (k) is the component of the resnor:se or, the

k th output line of the encoder at time i due to an excitation (a"1")

on the j th input line at time 0, 	 j= 1, 2, ---, K
O	 O
, k = K +1, 

O
K +2,---,A"

U

Now the operation of the syndrome register is described by

a(u+l) = A a(u) + BS(u) + G FB e «T (u-
m)Y 	 (10)

U - o, 1, 2 3 --- 1,	 v(0) G 05

{
ll



1	 ^

1.

where c(u) k  o(u)	 21(u) : -_-: 
f
^	 owith _a. (u) - ( di (K °t1)	 (K+2)	 (110)

(u), a i ° 	(u),---, a i 
	 (u))

is the m(N0- Ko ) dimensional column vector representing the syndrome

state at time u, and

0	 I	 0 ---• 0No-KA \	 \

`` o (11)
No-K0

0	 0

0

B (12)

.,	 0
Silo -K°

G1

G FB
d G

•I2 (13)W

PM	 II.

e* I (u), the estimate at time u+m of the first K o components (i.e., the

information components) of e(u) , is given by e s"I (u) = f(a (u+m) :	 S (u+m)) ,

where f is a boolean function specified by the decoding algorithm. a(u)

may also be written as
r !f

CT (u)	 Aua(0) t E 1 AiEBS(u-1-i) + GFBf(a(u-l-i):S(u-l-i))7,

i= 0

---
	 c(0) L1 0	 (14)

u - 1, 2, ' 	—	 —

he ,. est_imates 2!Y-m), e*, (-m+l) , --, e * Z (-1) above, although cor-

responding to no actual err.jT digits since the first such digit is received

12
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at time u = 0, nevertheless must be considered in the syndrome state

equations since the feedback loop of the decoder is assumed to be closed

for all time; i.e., the feedback decoder is insensitive to the starting

time.

Let a (u) _ (e	 (u), e(2)(u),---,e(K°)(u)) denote the error
I

pattern at time u in the information positions. Thus the vector (ei(u)

e I (u+l) : --- : e I (u+m-1) : a(u+m)) represents a possible state of the

decoder; and since there are 2 MN° distinct vectors of this form there

are 2TVo possible decoder states. However, since the registers in a

feedback decoder are initially filled with zeroes, only the set of states

QRO reachable from the all-zero state need be considered. Thus the sys-

tem may be represented as an r state Markov chain (r= #,`Q RO < 2MN°) with

transition probabilities from a given state determined by that state

and the probability distribution of the noise input vector.

Associated with each state q £'QRO is a probability of error,

Pq ., which is the probability that e(u+m) is such that e* I (u) ^` e I'(u) ,

given that the system is in state q 
7 

at time u+m.

If W.(u+m) is the probability that the decoder is in state q j at

time u+m, i = 0 1 1,---, r-1, then PFD(u) a Pr(e*I (u) ^ e I (u)) is given by

r-1
P FD (u) =	 E W^(u +m) Pq. ,	 (15)

=0	 ]

where

[W0 (u+m), W 1 (u+m), --- ,Wr-l(u+m)] = W(u+m) = W(0) ^u
+rrs	 (16)

Tr'is the rxr Markov transition matrix associated with the decoder, and

W(0)	 [WO(0), W1(0),---,Wr_1(0)] _ [100----00], with q o taken as the

all-zero decoder state, is the initial probability distribution of the

feedback decoder.

S

13



If steady-state probabilities exist for the Markov chain, then

u
im W(U) = W Q [Wo , W1,--,Wr-l], where W^ is the steady-state prob^-
-W ^.
	 _.

ability that the system is in state q j. For this case;
rwl	 (,

PFD _ lim	 W^	
j

PFD(u) _	 E	 ^ ) PMJ I	 (17)

U	 -0

the steady-state probability of error of 'feedback decoding.

Note that for large memory m and/or block length N o this approach

for calculating PFD is impractical because the number of states which

must be considered grows exponentially with mN o . The Markov°chains,

however, are "loosely connected" since, there being only 2 N possible

input vectors, each state can make a transition into at-most 2 N other

states •

The condition for existence of steady-state probabilities for a

Markov chain is given by the following theorem [7].

Theorem 1. Let w be an r by r transition matrix associated with a fin-

ite Markov chain. Then steady-state probabilities exist if and only

.
if thereexists an integer N.1 < N <2 (r

2
2 (r2 ) ; such that Tr N has a posi-

hive column, that is, a column all of whose elements are >• 0.

The above condition is equivalent to the existence of a state

qj and a positive integer N such that starting from any initial state,

q can be reached (with nonzero probability) is exactly N steps. This

condition when applied to feedback decoders results immediately in the

following corollary.

Corollary 1.1 For a syndrome feedback decoder for an R = Koo systematicNo

convolutional code with memory order m, a sufficient condition for steady-

state state occupancy probabilities to exist is that there exists some

positive integer N q such that the all-zero state q o is reachable from
0

-	
any initial state qj e QRC 'in exactly 

NCb 
steps.



#4, r ao uma p = 0 and that the decoder is in the all-zero ¢

q  at time a+m. N ov F =Or>S(u+m) = Q and E	 tI( u+m) - ®; (u+m) 

3	 and if correct estimates are made by a decoder for this noiseless case

( all decoders in this paper are assumed to have this property), e* (u)

f(u(u+m) : S(u+m)) = f(0) = 0, and thus a transition from the all-zero

state into .itself results from the all-zer6 noise input vector. pus if

i3 q®is the maximum number of transitions, over all c ,1': Q^„ ,required in

r,rder to reach q 	 if state a can be driven to a in N I	 <	 stea}s,. -- q 
then q car, Le driven to a in exactly N,	 steps by first taking q, , tc

ao

w, in N	 ;taps and then driving q into itself It 	 - II'	 times. Hence0	 qo	 q0:
:c following corollary is obtained,

or^ollary 1.2 For a syndrome feedback decoder for a rate R = F° syste-
TIo

matic convolutional code with memory order m, which decodes correctly in

the absence of channel errors, a sufficient condition for steady-state state

occupancy probabilities to exist is that the all-zero state q  be reach-

able from any initial state q,
7 e QRO.

Since the binary symmetric channel is assumed for this develop-

ment, the random input vector e(u) assumes each of its 2M.0'-possible values

with nonzero probability at each time unit u. 'hus if a sequence of in-

puts is found to drive the decoder from q j to qo , that sequence of inputs

has nonzero probability.

By inspection, the K buffer registers which form the encoder re-
0

plica may be driven to the all-zero state from any other buffer state

~Aie shifting o-r m successive zeroes into each. And the inputs to the

, , O-Ko syndrome rE. 	I_„ 4y be controlled, independently of the states

and inputs of the buffer registers, by proper choice of the N o-Ko parity

error sequences. The following theorem may thus be stated:

15
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	 -Uor 	 ^	 4'' r ^ • ^ a 1Theorem 2. ror a .syndrome feedback decoder -or an 	 sys CE.natic con—
o

volutioval code with memory order m, which decodes correctly in the absence

of channel errors, steady- .state state occupancy probabilities exist if

the nonlinear feedback shift register composed of the N o-Ko syndrome; rQ -

isters can be driven from any syndrome state a  reachable from a  = 0 back

to the a0 
state by means of a suitable choice of syndrome inputs.

A shift register is, said to be "driven stable" [81 if any s tate:

reachable from a0 can be driven autonomously back into the a 
state.

With this definition the following corollary to Theorem 2 is immediate.

Corollary 2.1 If the syndrome register portion of a syndrome feedback

decoder for an R = KO , systematic convolutional code with memory order m,
0

which decodes correctly in the absence of channel errors, is "driven stable",

then steady-state state occupancy probabilities exist for the decoder.

The converse to this corollary is not necessarily true.

It might be noted that if a transition from any state to any other

state is possible due to a malfunction in circuitry, no matter how small

the probability of such a malfunction, then steady-state probabilities ex-

ist for the decoder.

The sufficient condition that the syndrome portion of the decoder be

capable of being driven from any reachable state back to cr o = 0 is not nec-

essary- in order for W and P FD to exist, as is shown by the following example.

Consider the R = ' .systematic convolutional decoder shown in Fig. 7,

with f(%(u+l) , S(u+1)) = S u+1 . ci o(u+l) . With qo = 00 2 q  = 10 2 q2 = 01,

q 3 = 119 QRO = {goglq2q3} , the associated Markov matrix is
( ,_P)2	 p 2	 p (1-p)	 p (1-p )

p(1-p)	 p(l-p)	 2	 p2

-	 0	 0	 1-p	 p

0	 0	 1-T)	 p i

16
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Since column 3 of ^ is nonzero, steady-state state occupancy prob-

abilities exist from Theorem l with N = 1, and W and P FD may be easS.ly

calculated to be W = CO 0 l-p pa and PFD = P2 + (l-p) 2 . However, states

q2 and q3 , reachable from qo , cannot be driven back to a = 0, and0
thus the sufficient condition given in Theorem 2 for W and thus P FD to

exist does not hold.

ThL state qo is here a "transient state" in that it has zero

steady-state probability (W o 0). In general., if steady-state prob-

abilities exist for the decoder states and yet qo 
A 

0 is not reachable

from qj e QRV it follows that q o has zero steady-state probability and

hence po FFD > m since at Least one decoding error must be made each

m time units or else the syndrome register would clear itself.

As an example of a decoder for which neither steady-state state

occupancy probabilities nor P FD exists, consider the R = 2 Systematic

decoder with f(a(u+2), S(u+2))= S(u+2)'a1(u+2) v S u+2 • ao(u+2),, where

fl u ff denotes Itinclusive or", shown in Fig. 8.

The state diagram of the syndr-,,-me register portion of the decoder

is shown in Fig. 9, with the first digit of the 2-tuple state represen-

tation representing a i ( ) and the second ao( ). S refers to the syndrome

input which causes the syndrome state transition.

For this example there exists no syndrome state Q i for which there

exists an N such that every syndrome state reachable from a = 0 (includ-

ing a,) can be driven to a. in exactly N steps. (It is assumed that

17
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p ­! 0, in which case a, of and Z2 are all reachable from 90 . Clearly,

therefore, there exists no decoder state 
q 

cQRC to which every state

CQRC can be driven in exactly N steps, and thus no power of the associated

Markov matrix It has a nonzero column. Thus from Theorem 1 the conclusion

is made that steady-state state occupancy probabilities do not exist for

this decoder.

The existence of PrD for this example must still be investigated,

since the existence of W is merely a sufficient condition for the existence

of PFD.

The cyclic operation of the syndrome register is begun at time u*,

where u'r is the time instant such that S (i) = 0 2 i = 0,1, . , . u*-1, and

S(U*) = 1.

Now the quantity Pr(u*>a) is conservatively bounded as Pr(u*>a)<(.-p)a

a = 0,1,2,---, 0 <p<2, which implies that lirr(u y'r?a) = 0, and u* may be

assumed to be finite.
A

For u>u* + 3 and a(u+2) =ca l - (10), e' (u) = S(u+2) = e(u) + e(u+2) +

+^(u+2) and P FD (u) = 2p(1-p). However, if cr(u+2) = 2 2	 (01) for u>u*+3,

then e lk (u) = Sou+l) = l+e(u) + e(u+2) + g(u+2) 0 and P FD (u) = p2+(1.-p)2.

Therefore for u>0+3, PFD(u) = Pr(u* is even) 2p(l-p) + Pr(u' is odd)

2+(l-p) 2 ], u even and P FD (u) = Pr(u* is even) Cpl+(1-p) 2Cp	 ] + Pr(u* is odd)

2p(1-p), u odd. Thus liuP FD (u) =P FD if and only if Pr(u* is even)

Pr(u* is odd), which intuitively does no g seem true for all p.

More specifically, for p m 0.4, Pr(u*=0) = 2p(1-p) = .48 and

Pr(u*--2) = 2p(1-p) 6 + 3p 3 (1-0 4 + 2.p 5 (1-p) 2 + P7 = .0712. Thus Pr(u* is even)

> Pr(u* =0) + Pr(u's=2) = .5512, Pr(u* is even) $ Pr(u* is odd), and P FD does

not exist for this example for p = 0.4.

However, in the limit as p->0, terms of order p 2 may be neglected



and thus Pr(u*=a) = 2p(1- 2p) e . Therefore PrWis raven) = E	 2p(1-2p)2i
i=o

=	 =-----2̂ •	 L	 1 = Pr(u*is odd) , and141. 2p) 4  - 1-1+ 4p^ 4p; 	4p	 2

F FD	 2 [2p(l_p)] + 2 Cp2 + (l-p) 2 a = 1—̂ .

Thus in the limit as p + 0, PFD exists even though lim W(u) doesu¢ °°
not.(For p r 0, however, lim W(u) = W = [100---0] and P FD = 0 since the

decoder never ,leaves the all-zero state).

19
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IV EXISTENCE OF STEADY-STATE STATE OCCUPANC!'

PROBABILITIES FOR CERTAIN CLASSES OF DECODERS

Definition ". A "Quasi-Maximum Likelihood Decoder" (QMLD) is a feedback

decoder for a binary, rate R = No, systematic convolutional c , .­*°­ with

memory order m which operates in the following manner:

Conceptually, the QMLD ;First determines (one of) the most likely

error pattern E(u+m) consistent with the syndrome state and .input at

time u+m, assuming past decisions have been correctly made, and estimates

C o.I (u) as the first K  components of the first subblock of E(u +m). Ties

among the most probable error patterns are resolved on the basis of the

fewest number of errors in the leading position s of t(u+m) .

More precisely, let Y(u+m) ^ (a(u+m) : S(u+m)) be the (No-K0)(m+l)

dimensional column vector representing the syndrome state and input at

time u+m. Also define ECY] as the set of error vectors consistent with

ECYW+m )1, is the set of error patterns E i ( u+m) which give
b

Y(u+m) = ( . (Y(u+m) : S(u+m)) given that e% I (j . ) = eI (j), j	 u-1, u-2,---,

u-m. In other words ,E i (u+m) e E CY(u+m) ] <—>Y(u+m) = HE . (u+m) , where

G1	 I1011	 tt0tt___--11011
o	 I

G I	 G".
to

Gm-1	 0it	 it

IN

Gm Gm-1	
_ G1 G0

the G ? i i s are defined as in the previous section, 11 0 1 " is the K  X No

all zero ,itat:pix, and E i (u+m) _^ ( e i (u) : e i (u+l)	 ---	 e . (u+m)) , with

e.(j) 4 (e^1l)(j), e.
3. 	 i 

Q),___,, e ( No) (j)), is any (m+l)N^ dimemrtfonal

error vector.

20
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Since H is an (m+l)(No-Ko) X (m+l)N 0 matrix with rank equal to

(m+l)(No-K0), it has a null space of dimension K o(m+l), and hence

#E[Y(u+m)] = 2(m+1)Ko for every Y(u+m). Note though that E(u+m), the

actual noise vector at time u+m, may not be an element of ECY(u+m)] if

the previous m error estimates a*I(u-1),---,a+4I(u-m) have not all been

made correctly.)

Now let E(u+m) 4 G	 (u)(u+l):-^-M:e	 (u+m)) with e	 (i)-u+m	 --u+m	 2-u+m	 --^x+m

(eu+m(i) ' 
eu+m('')'- 'eu+m)(i)), be the minimum weight error pattern

which is an element of E["(u,+m)]. In the event more than one such mini-

mum weight error patterns exist,E(u+m) is determined as follows. Given

EA (u+m) and EEB (u+m), EA (u+m) $ E$ (u+m), as two minimum weight error pat-

terns consistent with Y(u+m), let j be the smallest integer for which

e,(u+j) $ e,(u+j), je(0,l,---,m),and q the smallest integer for which

eA(q) (u+j) ^ eB(q)(u+j), q £{1,2,---,No}. Describe the case e 11 (q) (u+j) = 1,

and e8(gY (u+j ) = 0 by E ( u+m) > EE (u+m) , and the case eA (q^u+j ) = 0 and

e8 (q) (u+j) = 1 by EB (u+m)> E (u+m). Thus if Ei (u+m), i = 1,2,---hp are

all minimum weight error patterns consistent with Y(u+m), E(u+m) = EZ(u+m),

where E^(u+m) > E.(u+m), j = 1 1 2 9 --- 1 p, j	 ^,•

Therefore, given Y(u+m), E(u+m) as defined above is determined by

the decoder, and the desired estimate a* I (u) chosen as a* I (u) = (eu*m(u),

`	 eA+m(u),, ---,ê
 utm

0 ) (u)'). This completes the description of the QMLD.

A QMLD correctly decodes in the absence of channel errors, since

E(u+m) = 0 for Y(u+m) = 0.

As an example of a QMLD, consider the decoder of Fig. 3. Here
,J

1 1 0	 0

H	 =	
^.

x

1 0	 1 1

i,

21
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and Y(ui 1 ) =	 ao( u+l)	 1 1 0 0	 d(l) (u)
_	 u+

s(u+i)	 1 0 1 1	 ^u+1( u)
eu+iU-(u+l)

eu+l(u+1)

For Y(u+1) = (00), EC(00)1	 {(0000), (1110), (1101), (0011)}

E(u+l) = (0000), and e* (u) = eu+1(u) = 0;

for Y(u+l) = (01) 2 EC(ol)] _ {(0010), (0001), (1100) 2 (loll))

E(u+l) _ (0010) 0 and a '(u) =	
u
+1 (u) = 0

(Note here that two consistent error patterns are of minimum weight,

namely (0010) and (0001). However (0010) > (0001) by the ordering re-

lation ">" defined above, and thus E(u+l) _ (0010).)

for Y(u+m) = (lo), EC(lo)]	 { (1010), (1001) 2 (0100) 3 (0111)} ,

E ( u+l) _ (0100), and e* (u) = e^ (1) 	 = 0; and for Y(u+l) = (11),T

E[(11)] _ {(lOQo ), t101,t):, (0110) 3, (0101)} ,

E(u+l) _ (1000) , and a*(u) = e 	 (u) = 1.—	 ut 1
Contrasted to the QMhD, a "Maxim,Iim Likelihood Decoder" (MLD) is

a feedback decoder which operates as follows. Given Y(u+m) , let

eB ] CY(u+m)] be defamed as the subset df E C Y(u+m)] for which the vectors

haveeB j (u) as the first Ko components, j = 1,2,--- 2 t < 2K o. 	 Now

Pr(eB7[Y(u+m)]), the probability of the subset eBj[Y(u+m)], is defined

as
i,

Pr(eIJCY(u+m)]) _ Z Pr(E i (u+m)	 (19)

E i (u+m) E e  I CY(u+m) ] andwhere E is 'over all

W(

	

where Pr(E i (u+m)) = p^( u+m ) ) (1-p) N o (m+1) - W(E,(u+m))	 (20)

is the apriori probability of receiving E i (u+m), W(E i (u+m)) is the

(.Hamming) weight of E i ( u+m), and p is the transition probability of

the binary symmetric channel. Now e* (u), the estimate corresponding

22
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to Y(u+m), is chosen to be aneB i(u) for which

Pr(eBI[Y(u+m)]) > Pr(eBj[Y(u+m)]), j = 1, 2, ---, t

iE { 1 , 2, __- , 0 .
Thus an MLD chooses e l'-'(u) as (one of) the most likely e,j(u)('s)

corresponding to Y(u+m), while a QMLD determines (one of) the most

likely error vector(s) consistent with Y(u+m), i.e., E(u+m), and

chooses e2(u) as the first Ko components of E(u+m).

Note that for the case of only one minimum weight error pattern

consistent with Y(u+m) , eI (u) ' is the same for both an MLD and a QMLD

for sufficiently small p.

It is also interesting to note that the decoder of Fig. 3 is an

MLD as well as a QMLD for all p < 2'

It should be pointed out that the decoding algorithm'of an MLD

i7 a true maximum likelihood decoding algorithm for a genie decoder since

the algorithm is predicated upon perfect removal of e(u-1),---,e(u-m)

from a(u+m).
r.	 ^^	 Y

That an MLD may not always put out the true maximum likelihood

estimate in the feedback decoding mode because of past decoding errors

is demonstrated by the decoder of Fig. 3. For this decoder let pr

be defined as the value of the BSC transition probability such that

PFD < P	 ,	 0<p <P*

P FD =p 	 p =p^:

PFD > P	 ,	 p"<p<2

(21)

the real root of 1-5p+5p 2-2p 3 • = 0, satisfies .25<p*<.3, ) Now for

p,<p* it can be shown that the maximum likelihood error estimate condi-

tioned • on the syndrome state and input Y(u+l) is always put out by the

MLD of Fig. 3 in steady-state. However for p eC <p<2, again in steady.
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state operation and with f( ao (u+l), Siu+l)) = ao(u+l) .S(u+l) as before,

the most likely estimate is a*(u) = 0 for any Y(u+l). However, since

f(ll) = 1 the MLD estimates n.*(u) = 1 whenever Y(u+1) = (11), so that

this decoder does not always make the true maximum likelihood decision

for this range of p.

To show this more precisely, let Y(u+l) = (ao(u+l),S(u+l)) =( 11),

and assume that the system is in steady-state. Now

Pr(e(u) = l/ ao (u+l) = 1, S(u+l) = 1)

= Pr(e(u)=l, ao (u+l) = 0/ao(u+1) = 1, S(u+1) = l) +

+ Pr(e(u) = 1, ao (u+l) = 1/co(u+l)= 1, S(u+1) = 1)

= 0 + Pr(e(u) = 1, ao(u+l) = 1/ a • o ( u+1) = 1, s(u+1) = .1)

Pr( ao( u+1)=1,S(u+l)=1/e(u)=l,,ao(u+l)=1) Pr(e(u)=1, ao(u+l) =1)
Pr ao (u+1 = 1, S u+l = 1

Cp l + ( l-p) 2
1 Pq3	Cp2+(1-p)23[p-3p2+5p3-2p41

Pr( a  u+1) 1,S(u+l)^	 - Pr Q u+l =^.,5 u+l =1: 1+3p -2p	 o (22)

And similarly,., Pr(.e(u) = 0/a 
0 

( , f+1)= 15iS(1_1+ )=1)=2P 1-p)Cp-3p3+2p4]

Pr( ao (u+l)=1,S(u+l)=l)Clt3p 2 -2p 3 10 (23

It can be readily shown that

Pr(e(u) = 11 a0•( u+1)=1,S(u+l)=1)5,-Pr(e(u)=0/ao(u+1)=1,S(u+1)=1) ,p<p*

Pr(e(u ) =1/ao (u+l)=l,S(u+l)=1)=Pr(e(u)=0 /a (u+l)=1,S(u+l)=1),.,!r7""d`'
°Q	 rte.

Pr(e(u)= L/ao(u+1)=1,S(u+l)=1) 	
7r5p.

The following definition is prompted bv;this discussion.

Definition 2: A "True Maximum Likelihood Decoder s' (TMLD) for a sys-

tematic, R = N
o
convolutional code of memory order m is a decoder of

o

the general form of Fig. 6 for which the decoding function f(a(u):S(u))

is• such that P FD (exists and) is a minimum.
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E

It can be shown (by exhaustion) that for a decoder of the form

of Fig. 3, f(a0(u),S(u)) for a TMLD is given by

f(ao'(u),S(u)) = ao(u) .S(u),	 0<5 <P*

f(a0(u),S(u))	 ao(u) .S(u) or 0,	 p = P*

f(cro(u),S(u)) = 0 ,	 p.r<p

3	 4	 5
in which case	 P = 7p 2 -12p +10^4p5	 , o< p <ps•

FD	 1+3p'2-2p
(2rr)

PFD P	 P*5.:!2.

For definite decoding or genie decoding, the probability distr.,'.-

b ution of a(u) does not depend on the decoding function f, and thus the

determination of the f for which Pr(e^(u) ^ e z (u)) is a minimum is re-

latively straightforward.

However, for feedback decoding the probability distribution of

a(u) is a function of f, and thus the determination of f for a TMLD is

more involved. Moreover, even if the maximum likelihood estimate e"(u)

for each Y(u+m) is always put out in :steady-state for a feedback decoder

with a specified f, this is n .ot sufficient to insure that the decoder

is a TMLD, as the following; example shows.

For the decoder-of the form of Fig. 3 but with e h*(u) = f(co(u+l),S(u+l))=0,
e	 '~

it can be shown that in steady -state the state distribution is such that

e*(u) = 0 is the most likely error estimate for any syndrome state and

input for pXp	 p, the real root of 1-6p+8p 2- 4p 3 = 0, satisfies }^ < p*.

However, as stated earlier, a feedback decoder of the form of Fig.3M

with f(a0(u),S(u)) = ao(u) .S(u) is a TMLD for p < p*, which implies that

the ,above feedback decoder with f(cso(u) ,S(u)) = 0 for f <p <p* ' is not a

TMLD, even though the maximum likelihood error estimate is put out for

any ](u+1) in steady-state.
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Intuitively, decoders such as the one above for which the maximum

likelihood estimate is a function of p are more difficult to analyze

than maximum likelihood decoders for block codes, for which the maxi-

mum likelihood decoding function is not a function of p for 0<p :.

Lemma 1.	 For a syndrome feedback decoder for an R= N , binary,
0

systematic convolutional code of memory order m, N>m, where N is the

smallest power of the Markov transition matrix Tr associated with the

decoder for which there exists a non-zero column.

Proof: Assume N<m. Then there exists a decoder state q j e QRO which

is reachable from every state qi e QRO in exactly N <m steps. Let

E(l)
	
(1)---(1	 (^	 = Ce j 
	

,ej) e( l)l) ] be the row vector denoting the contents of

the first buffer register when the decoder is in state q.. But anyr 

(1)	 (1)	 (1)	 (1)	 (1) (1)
state 4k e QRO with E	 - Cek^m,---,ek^1 	 = Cej o l ' ej.1' -

-- ej, 1

where e 
T71 is the binary complement of e
J	

^l), cannot be driven to q.
u l	^ ,1	 J

in fewer than m steps, contradicting the assumption N<m. Hence N>m and

the lemma is proved. 	 +

Theorem 3. A QMLD for a systematic; rate R = Koo; binary convolutional.
0

code has steady-state state occupancy probabilities. Moreover N"m, where

N is the smallest integer for which W4 has a positive column and Tr is

the Markov transition matrix associated with the decoder.

Proof: From Lemma 1, N >m. Thus

since a QMLD correctly decodes in

is sufficient to demonstrate that

can be driven to the ao = 0 state

buffer registers can be cleared i,

from Theorem 2 of the previous section,

the absence of channel errors, it

any state of the syndrome register

in a number of steps P'qo < m. ( The

n at most m steps simultaneously.)
A

For E(u+m) Q (e^	 (u) eu+m(u+l) :---: eu+m(u+m))
U+m
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i

associated with Y(u+m), let

8E(u+m) = (@u+m(u
+l) : ê 	

(u+2): --- : eu+m ( u+m) : 0);	 (25)

where 0 is the No dimensional all-zero column vector. Also let

YE(u+m) 
Q 

(e	 (u)	 a	 (u): e	 (u+l) :---: 6	 (u+m-1)),	 (26)--u+m-1	 u+m	 ;-u+m	 —u+m

where 
8u+m-l(u) 

is the first block of E(u+m-1), the estimated error pattern

corresponding to Y(u+m-1) at time u+m-1. Note that

ey (u+m) Q e(YE(u+m)) = (^u+m( 
a); --- :eutm(u+m-1) : 0).	 (27)

Starting with o (u+m) at time u+m, let the syndrome input vector

S(u+m) be chosen such that Y(u+m)
	

H(eE(u+m-l)), i.e., S(u+m) = WeE(utm-l),

and assume that E(u+n) / ec(u+m-1).

From the equations of operation of the syndrome (10), it can be shown

that YE(u+m) a ECY(u+m-1)'; i.e., Y(ul•m-1) = H(YE(utm)) . Now W(E(u+m-l)

W( YE(u+m) since E(u+m-1) was the error estimate at time u+m-1. And since

E(u+m-1) and yE (u+m) have identical first blocks (by definition of the

operator Y),

W(6E(u+m -1)) e W(6Y E(u+m)) < W(E(u+m)) < W(eE(u+m-1))	 (28)

=>W(0E(u+m-1)) = W(ey E(u+m)) = W(E{u+m)).	 (29)

But

W(ey E(u+m)) = W(E(u+m)) => KY (u+m) = E(u+m),	 (30)

and

W(8E(u+m-1)) = W(6Y E(u+m)) -> W(E(u+m-1)) = W(Y E(u+m)). (31)

Now W(E(u+m-1)) = W(yE(u+m)) => the ordering relation '}>" is defined be-

tween the two vectors, and $(u+m-l) >Y E(u+m) since E(u+m-1) was the estimate

at time u+m-1.	 (Note that E(u+m-1) =Y E(u+m) would contradict the assump-

tion that E(u+m)	 0E(utm-1), since 6Y E(u+m) = i(u+m).) But E(u+m-1)

>Y E {u+m) => 0"(utm-1)>6Y E(u+m) = E(u+m). (32)

However, this is impossible since E(u+m) is by definition the estimated

error pattern at time u+m. Thus the only possible conclusion is that
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)(u+rrl) - e e(u+m-1 ) .
,J

By continuing to choose new syndrome: input vectors which are c;on-

sa.sterlt with the 8 shift of the previously estimated error pattern

(i.e., S(u+m+i) - G'( k l^(u+M-l), i = 1, 2,---,m), a Y(u+2m) can be-`	 -	 ^.	
e m+l ^

obtained such that Y(u+2m) = IT( J0m+1P'(u+m-1)), where pm+lE" (u+m-l)	 E(u+r -l)

But r+1N u+m-1) = 0 --> Y(u+2m) = 0 =lc (u+2m) = 0.	 (33)

Thus the syndrome state can be driven too
o 

= 0 in r3
qo 

.,S m steps and the--	 --	 —

Thc:oMm is proved.

K
Definition 3. For a syndrome feedback decoder for a rate R = Flo , h -._._r

tematic convolutional code with syndrome state and input at time u+m

given by Y(u+m), the error pattern Ec( u+m) 
Q 

(ea(u) : e a(u+l) :---:ea( u+m))

is said to be a "fully correctable" error pattern if

i) e' (u) = e cc (u), and

ii) when the subsequent syndrome inputs are chosen as

S(u+m+i) = Gt(O'Ec(u+m))f

then e"1 	= e (u+i) ,	 i = 1 5 2, ---, me

Note that whether E a( a+m) is fully correctable or not depends

on both the code and the decoding rule.. Also note that E a(1t+m) need

not be E(u+m), the actual error pattern at time u+m. However, if

E (u+m) is "fully aorrectab le" , then choosing S (u+m+i) = G ( g E (u+m)) ,

i	 1, 2,---,m, is equivalent to choosing e(u+m+j) = 0, j = 1, 2,---, m,

at the decoder input.

For Y(u+m) consistent with a correctable error pattern Ea(u +m),

the syndrome may be driven to cr(u+2m+l) = 0 by the choice of S(u+m+i)

= G I ( e^E,^(utm) ), i = 1, 2 0 ---,m+l	 since for this case Y(u+2m+l)

H( 
em1.1E (u+m)) = 0. For the QMLD, every Y(u+m) is consistent with a

— a 	 —

"fully correctable" error pattern, namely E(u+m), and for this reason
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the syndrome portion of the decoder is capable of being driven to

c(u+2m+l) = 0.

With the above as motivation, the following theorem is stated.

Theorem 4. For a syndrome feedback decoder for an R = N—o systematic
0

convolutional code, which correctly decodes in the absence of channel

error;, steady-state state occupancy probabilities exist if every syn-

drome state Qi ( u+m) reachable from a(0) 4- 0 can be driven to a state

a . (u+m+8 i ) for which there exists vectors 3(u+m+6 i ) and EE. (u+m+d i ) such

that E.(u+m+d i ) is a 'fully correctable" error pattern relative to

Y(u+m+di).

Proof:	 Given the arbitrary syndrome state c i (u-M), let c i (u+m) be

driven to .a j (u+m+d i ) by means of a suitable choice of inputs. Then let

S(u+m+d i+k) = H(ekEj (u+m+a i )), k = 1, 2 1 ---, m+1 5	(35)

be chosen as syndrome inputs in order to obtain cj(u+2m+1+6 i ) = 0.

Corollary 4. A syndrome feedback decoder for a systematic, R = No
0

convolutional code which correctly decodes any pattern of B or fewer

and Which puts outez(u) = 0

with no E i (u+m) with

anfay probabilities with

errors over a (m+l)N o bit constraint length,

as an estimate whenever Y(u+m) is consistent

WE 
i 
(u+m))  < B. has steady-state state occup

m < N < 2m+1.

Proof: From Lemma 1, m < N. Now given v (u+m), let S(u+m+j) = 0,

j = 0, 1 5 ---, il, be chosen as syndrome inputs until a Y(u+m+i),

e {0, 1 2 --, m) , is obtained for which there exists an E (u+m+i)
—a

such that E o(u+m+i) a EGY(u+m+i) ] and W(E a u+ m+i) ) < B, or until m+l

such zero syndrome inputs have been fed in. If such a Y(u+m+i) exists,
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then from Theorem 4 the syndrome registers may be driven to

	

a(u+2m+1+i)	 0 Once L (u+m+i) is a "fully correctable" error pattern.~01

However $ if no such Y(u+m+i) exists, thena (u+2m) = 0 since 1,ho syndrome

registers will have been driven autonomously for m consecutive time

units while feeding back the all-zoro vector as an estimate.
dmin-I	For B	 FD 

2	 where d FD min is the feedback decoding mini-

mum distance and L idenotes the "greatest integer less than or equal

to", the above corollary gives a class of mii,-Amum distance feedback de-

coders for which steady-state state occupancy probabilities exist.
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V, APPLICATIO14 TO SEMI-DEFINITE DECODING,

The concept of senrL-definite decoding; (SDD) was introduced by

Massey and investigated experimentally by Frasco C91 as a decoding

technique intermediate to feedback and definite decoding.

A diagram of a general semi-definite decoder of order k for a

binary R 2 systematic convolutional code with memory order m is

shown at time u+m in Fig. 10. The first intermediate decision rele-

vant to the estimation of e(u), e' l(u-k+l), is made on the basis of the

unmodified syndrome bits S(u-k+m+l),---,S(u-k+1) and is thus equiva-

lent to a definite decoding decision. e* l(u-ktl) is then used ("fed

back") in order to modify the syndrome bits S(u-k+m+2),---,5(u-k+2)

and the second intermediate decision e* 2(u-k+2) formed on the basis ow'

these modified syndrome digits by means of the same decoding functiot ^:.,

In general, the i th intermediate decision eP-i(u-]<+i) , i e { 1, 2, --- ,]<} ,

is made on the basis of S(u-k+m+i), ---, S(u-k+i) (with the same f)

after appropriate modification by e*i-1(u-k+i-1), --- e*i-m(u-k+i-m) if

i > m, or by e*i-1(u-k+i-1),---e*1(u-k+1) if i<m. The desired estimate

of e (u) is then chosen as Ce (u) aSDD	 e*k ( u) . Henke Ce (u) : S^'^: ifg^s ']ie

kth intermediate estimate formed at time.0+m, and is seen to be ' a _:^unc-

tion of only a finite number of syndrome bits, namely S(u+m), S(u+m-1),

---,5(u-k+l). At the next instant of time, u+m+l, k new intermediate

estimates e*1(u+1-k+1), e%2(u+l-k+2),---,e*k (u.+1) are forced and the

estimate Ce*(u+l)]SDD 4 e*k (u+1) of e(u+,l) thus made from S(u+m+l),---

--,S(u-k+2) at time u+m+l in exactly the same manner as was Ce'(u'')JSDD
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prom S(u+m),-- - ,S(iA-k+l) at time u+m.

More rigorously, in a semi-definite decoder of order k for a bi-

nary R = N°s ystematic convolutional code with memory order m, the
0

estimate [e* I (•: ) aSDD of e 2 (u) is made at time u+m on the basis of S(u+m) ,

S(u+m-l), --- ,5(u-k+l) in the following manner. Given the decoding func-

tion f, the first intermediate decision e* (u-kti) is made as

I I ^ u-k+l) = f (Ql(u+m-k+l) : S (u+m-k+1)) ,	 (36)

where

c,(u+m-k+l)	 (S(u-k+1) : S(u-k+2) :---: S(u-k+m)). 	 (37)

The next k-1 intermediate decisions are then made as

e *.- I i (u-k+ i ) " f ( a
i 

(u+m-k+ i ) : S (u+m-k+i)) , 	 ( 3 F3 )

where

cri ( u+m-k+i ) = Acri-1(u+m-k+i-1) + BS(u+rn-k+i-1) + GFBee-I-1 (ti p k+i-1) , (39)

i = 2, 3y---,k, and where A, B, and G FB are defined in equations

(11), (12), and (13) in section III. The desired estimate CeI(u)]SDD

is then chosen as

Ce °I( u)ISDD	 eZk (u).	 (40)

This decoding method is similar to feedback decoding in that it

utilizes some previous decoding decisions in arriving at an estimate.

However, -.nfinite error propagation is avoided as in definite decoding

,P

since each estimate is a function of only a finite number of syndrome

bits, and hence a finite number of channel noise bits.

Let

PSDD(u,kAPr(CeI(u) k stags SDD^e2(u))Pr(e k(u)-e2(u)) 	 (41)

and

PSDD(k) Q PSDD(u,k)/u>ktm-1.	 (42)
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For u > k+m-1, the probability distribution of (e(u-m-k+ l) : --- : e(u+m):

w
	

:S(u-k+l):---:S(u+m)), and thus PSDD(u,k), is independent of u and the

second definition is therefore meaningful as the steady-state error prob-

ability for a k-stage semi=definite decoder; i.e.

PSDD(k) = lim PSDD(u,k).
	 (43)

U400

Note that although this latter limit always exists, lim lim PSDD(u,k)
k-►w u_ m

may not exist.

For k = 1, the ,semi-definite decoder reduces to a definite decoder

since

CeI(u)]lstage sDD = 
eZ1 = f(s(u) :__—: S(u+m)) = Ce yz(u)] DD o	 (44)

Writing she equations of semi-definite decoding operation in re-

cursion relation form yields
0

ai(u+m•::+i) = A
l-1
 l(u+m-k+l)

+	
i-2

3^U A
3 [BS(u+m-k+i- 1-j) + GFB f(a i-1-j (u+m-k+i - 1-j) : S(u+m-k+i -1-j))]

i - 2535---2k.
	 (45)

Thesr, t ,nations may also be written as

ai (u+m-k+i) = Ai-aa'(u+m-k+a)

i-1-a
*	

J 

E	 A i EBS(u+m-k+i-1-j) + GFBf(ai-l-j(u+m-k+i-1--):S(u+m-k+i-1-j))]
=0	 —	 _.

i = a+l, a + 2,---,k, a e(1,2,---,k-1).	 (46)

(For a = 1, equations (46) reduce to equations (45).)

Fc the purpose of analyzing PSDD(u,k) it is appropriate to in-

troduce the following definition.
K

Definition 4: For a semi-definite decoder for an R = oo systematic0

convclutional code with memory order m, the "equivalent feedback decoder"

(E FD) is a syndrome feedback decoder for the same code with the
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same deco>3' : ; function f as the semi-definite decoder.

Wi 1; t'.is definition, comparing the set of recursion equations

(48) forasemi-definite decoder xith a similar set for its correspond-

ing "equivalent feedback decoder", namely

0(i)  = Ai -a	 1a(a) + E	 A 3 CBS(i-1-j) + G FB f( c?(i-1-j)	
S('- '-j))"

j=0

a. _ a+l,	 a+ 2,---,
	 (c;7)

it can be seen that if

a(V.+ -k+a) = Qa(u+m-k+a)

(where a(i) refers to a state cS the EFD and cr (u+m-k+i) an inte;vr­ e;,' , ,a 11.e

"state" of the semi-definite; decoder), and if the same syndrome

vectors S(u+m-k+a), S(u+m-k.+a+!),---,5(,,i+m) are input to both thk .^^^r,a a

definite decoder and its "equivalent feedback decoder", -then

a(u+m-k+ a+ i) _ Ga+i(=a+m-Y't *i)	 (48)

and
,, a+i

Ce I ( u-k+cat-i) ]EFD	 ^I (u-k+a+i)	 (49)

i - 0, 1, ---, k-a ;

whichimplies that CeI (u) ]Erll = eIk (u) 0 
[ez (u) ]SDD	 (50)

If a= k-u-m with k>u+m for a semi-definite decoder, then

as (u+m-k+a) _ a (0) = Aa-1a ( u+m-k+1)
a-2 .
+ E A3 [BS(u+m-k+i-1-j) + GFBf(^i-1-j(u+m-k+i-1-j):S(u+m-k+i-1-j))] (51)
j=0

where

al ( u+m-k+l) ^_ (S(u-k+l):---:S(u-k+m)). 	 (52)

Obviously Ea(0) = 0, since. f(0)=0 and S(B)=0 for BOO. Thus from the_	 ._ ^P

discussion in the previous paragraph, if the same syndrome vectors

S(0), S(1),---,S(u+m) are input both to the semi-definite decoder and
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its "equivalent feedback decoder", and with a(0) = 0 for the EFD,

= [e*(u)] SOD for k yu+m, and for all such u the probability
CeI (u)aE FD 

of error associated with a semi-definite decoder is equal to that of

its "equivalent feedback decoder" under normal feedback decoding con-

ditons (i.e., a(0) = 0). This may be stated mathematically as

(53)lim pSDD(u'k) = PFD(u)k -rw

Note that lim lim PSDD(u,k)	 - lim PFD(u)

u -wo k -^W u -►W

exists if and only if P FD exists for the EFD.

Thus semi-definite decoding is seen to provide a spectrum of de-

coding techniques intermediate to definite deooding (k=1) and feedback

decoding (k -^ .w and u< - ) .

It is of more practical interest, however, to calculate the
.	 te

quantity PSDD(k) k PSDD (u,k) /u> k+►n-1 = lim PSDD(u,k) which is deter-

r'	 u ->.w

maned from the probability distribution of the vector (e(u-m-k+l):---

:e(u+m):S(u-k+1):---:S(u+m)), u*+m-1. The following lemma gives an

expression for PSDD W.
Lemma 2.	 PSDD(k), the "steady-state" probability of Error .associated
with a semi-definite decoder of order k for a rate R = N°, binary,

0

'.	 systematic convolutional code of memory order-m, is given,,by PSDD(k)

= Pr(Ce (u)]EFD X e (u)), u M+m-1, where CeZ(u)l FDi s the estimate form-

ed by an "equivalent feedback decoder" at time u+m whose syndrome state

is .a (u-k+m+l)	 (S(u-k+l) : ---: S(u-k+m)) at time u-k+m+l, and which is

fed the syndrome inputs S (u-k +i;i+l) , S (u-k+m+2) , --=,'S (u+m) at times u-k+m+1, ---

--,u+m respectively.

Proof: From the previous discussion in which the operation of a semi

definite decoder was compared to that of its "equivalent feedback de-

coder" (Eqs. (48), (49), and (50), it is clear that CeI(u)JEFD = Te (u)]SDD'
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..a and thus

PSDD(k) 4
- Pr(Cez(^u)7k stage SAALeI(u))=Pr(Ce^I(u)aEFD^eI(u)).

Equivalently, P SDD(k)=Pr(CeVu)]EFD^2 (u)), where CeVu)3EFD is

the estimate at time u+m of an "equivalent feedback decoder" which is

in the decoder state given by (eI(u-k+l):---:el(u-k+m):S(u-k+l):---:S(u-k+m))

at time u-k+m+l, and which is fed the error input vectors e(u-k+m +l), ---

-- ,e(u+m) at times u-k+m+l,---, u+m respectively.

It should be noted that each of the 2"No possible values of (eI(u-k+l):--

--:el(u-k+m):S(u-k+l)t---:S(u-k+m)) occurs with non-zero probability,

since each syndrome digit which is a part of the initial state is an

additive function of a unique parity error digit. Thus all possible

"initial" states must be considered for the "equivalent feedback decoder"

in the calculation,, even though all may not be reachable in normal feed-

back decoding. operation (i.e,.,  ,d(0 ) = 0).

The following; formulation is helpful in calculating PSAD(k): Let

Q be the set of the 2mNo possible states associated with the "equiva-
K

lent feedback decoder" of a semi-definite decoder for a binary, R = oo
To

systematic convolutional code with memory order m, and let Q be written

as , e union of its disconnected submachines. That is, Q = Q o UQ 1 U---

--UQn-1 , where Q j = {q
jl' q•j22---,qjr,} and the ..'s represent the

states of the decoder, i= 1,2, ' -- r o '	 = 0 1-, 	 , , --- ,n-l. That Qi and Qj

are disconnected, i	 j, implies that q ik cannot be driven into qjf,

k - 1, 2, --- r i D	 f= 1, 2, 	 i , J = 0 2 1 1 ---, n-1, i. ^ j.

Denoteo,^n-1' as the Markov transition matrices assoc-

iated with Q 0 Q1' -'Qn-1 respectively. Also denote

wQj (u) ^ Cw Q ^(u), w Qj(u),---,WQj(u)1 as the state probability
--	 l°	 2	 r .

7
vector at time u, conditioned on the event that the "equivalent feed-

back decoder01 began operation at time zero in a stare q j feQ j , and
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P ®(Q.) as the probability of this conditioning event, f = 1, ,---, ,

j - 0, 1 0 ---, n-l.

With this formulation, 
PSDD(k) 

may be written as

P	 (k) = nEl P (Q.)	 E j	 WQ j (k-1) P	 ,	 (54)
SDD	

j=0	 0 '	 i-1	
1	

qji

where

wQj (k-1) = wQj(0) 7r	 (55)

P^ ji is the probability of error associated with state qji,
C4,

P0 ( Q j ) = Pr((ej(u-k+l): --- :ex(u-k+m):S(u-k+l):---:S(u-k+m))e Q j ),	 (56)

and

WQ?j(0)=Pr((e1(u-k+l): --- :S(u-k+m))=qji/(e (u-k+l):---:S(u-.k+m)1 e Q,1 (57)

u>k+m^,, i - 1, 2 2 ---,r 	j = 0 1 1,---,n-1.

Note that if steady-state probabilities exist for 7r0' 7r1' ---, 7T n-l'
then 11m P SDD (k) = lim lim 

PSDD(u,k) 
exists and will be denoted PSDD(^)

k -kv	 k -x)O u _).M
i.e., one can speak of the error probability of "long" semi-definite

decoders.

As an example of a calculation of PSDD(k)'consider the semi-definite

decoding scheme for the R a 2 systematic binary conv,c Iz ti onal rode with

m = 1, g0(1) = 12 gl(1) = 1, for which the decoding; function is the "ex-

clusive or" gate; i.e., f(ao (u), S(u)) = a0(u) ® S(u). The "equivalent

feedback decoder" is shown in Fig. 11, where the switch in the feedback

loop is closed at time u-k+2 after S(u-k+l) enters the syndrome register,

and for which PSDD (k)	 PFD(u).
For this example, Q=Q 0UQvQ O fgol'g02 } ,Q l= { gll' Q.12 }' n=2,rl= 2, r2 = 22

qO1=00,802=10'gll=012812=11, where the first digit represents the con-

tent of the buffer register and the second the content of the syndrome

register. The error probabilities associated with the states are readily

w
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calculated to be

Pgol = 2p(l p)

Pg02	 = 2p(1-p)

Pg1.1	
= P2+(1-p)2	 (58)

Pg12 	 = P2+(l-p)2,

PO (Q0 ) = Pr(S(u-k+l) = 0)	 _ (1-p) 3 + 3p 2 (1-p),	 (58)

P 0 (Q 1 )	 Pr(S(u-k+l) = 1)	 =	 3p(1-p) 2 + p 3	 (60)

1-P P	 1-P p	 ( 61)
^0	

= 1-p P	 l = 1.^^ P

WQO(k-1) = WQA(0) Tr k-1 = [ j_P2P	 T p —	 = C1-p,pa.

1-P p

k- iW41(k-1) = WQ1(0) Tr,	 = rl-pi^Pa 1-

p IP 

k-1=
Cl-P^P 1	 (63)

1-P 

P S DD ( k ) = U1-p) 3+ 3p 2 (1-p) 1 C (l-p) 2p (l-p)+p 2p (1-p)

+ [3p(l-p) 2 + p 3 ]C(1-p) { P 2 + (1-p) 2 } + p { p 2+(l-p) 2 }

5p - 20 p 2 + '+0 p 3 - 40 p4 + 16 p 5 .	 ( 64)

Note that for this example PSDD(k) is not a function of k, and

hence P
SDD(k) = PSDD(1) PDD , where PDD is the probability of error,

of definite decoding.

On the other hand, when PFD(u) is calculated for this coding scheme

for normal feedback decoding operation (i.e., the switch is closed for

all time and Q(0) = 0), only fro is considered since the decoder is

initially in the all-zero state. (For this example, Q d the set of states

connected with the all-zero state, is equal to Q RO , the set of states

reachable from the all-zero state, although this is not true in general.)
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The feedback decoding probability of error is then

P FD(u) _ (1-p)2p(l-p) + p2x)(1-p) = 2p(l-p).	 (65)

Here also no transient terms are present, and for all u,P FD(u) = PFD'

the steady-state probability of error for feedback decoding.

Thus for this example, both lim lim P SDD (u,;z) and lim ki u PSDD (u, k )k 

exist, and

P DD = lim lim PSDD(u,k)> lim lim PSDD(u,k) = P FD' <0<p 2.	 (66)
k. w u4w	 u4w k-

A
The question arises as to the conditions under which lim PSDD(k) -

= lim lim PSDD(u,k) = lim lim PSDD(u,k) = lim P FD (u) = PFD
k-^ u-►w	 u-^w k-^w 	u4m

for a semi-definite decoder, where P FD(u) refers to the probability of

error of its "equivalent feedback decoder" under normal feedback decoding

conditions (i.e., a(0) = 0). Sufficient conditions for this occurance

are given by the following theorem.

Theorem 5. For a semi-definite decoder and its "equivalent feedback de-

atop:' r",t! for an R =° binary systematic convolutional code with memoryN
K

0
order m, if steady-state probabilities exist for Tr, the i Viarkov matrix

associated with Q, then

lim PSDD(k) ^ lim lim PSDD(u,k) = lim lim PSDD(u,k) = lim P FD(u) = PFD
u-^w k-^w	u4m

Proof:— Since steady-state probabilities exist for I', Q=QO and P SDD(k) -
2mN0

ill W'iQO(k-1) P
qoi 

with

WQO(k- 1) 2'- CWQO (k-1), WQO(k-1),---,,WQO (k-1)]• Now._	 2TrN
IO

lim WQo (k-1) = lim WQo(0) wo -1 = W QO ^ CW1Qo, , ms s WQo 1	 (68)
k-^ `-	 2mNo

independently of the choice of WQo(0), since steady-state probabilities
mNo

exist for 7T = 7, and thus lim P SDD(k) = 2E WiQ°p	 . But since
qoi

lim WQo(b1y 7r4k- 1 = WQo independently of the choice of the initial prob-
k4w
ability	 ion WQo(0), if any state qoi has a non-zero steady-state
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pr^baD ility (i.e., WiQo ^ 0), that state is reachable from every state

te a . c Q . In particular, every state with ron-zero steady-state prob-

ability is reachable from the al

qoi 'V, QRO

Thus	
m1140

lim PSDD(k) =	 E
k - ),m	 i= l

I-zero state; or, conversely,

WiQo = 0.	 (60)

r	 QROP
WiQo Pqoi = E W 
	

qr Q PFDa limP FD(u), (70)i=1	 of	 u-

and the theorem is proved.

A code which meets the conditions of Theorem 5 is that of the ex-

ample in Section II, with

= %( u) -S(u)  for both the

The example In this secti

meet the condition of the

the decoding function f given by f(oo(u),S(u))

feedback and semi-definite decoding schemes.

on with f( 0(u),S(u)) = 0(u) 0 S(u) does not

theorem since Q $ Q d,and for this case

lim PSDD(k) ^ P FD"	 .k -^w
Ap important point which might be raised is that of the shape of

the PSDD(k) vs. k curve. That is, is there an intermediate value of

k, say ka ; for which 
PSDD(ka)
	 P FD and PSDD(ka) < P

DD _, i ,g, ; is semi--

definite decoding ever strictly superior to definite decoding and feed-

back decoding?

An example which illustrates this eventuality is that of section II,

with f(a0(u),S(u)) = a 0(u) • S(u) and p = 0.4.

For this case

40

.36	 .24	 .16	 .24

:6	 0	 .4	 0 ^"_
^o	 -

^

.24	 .36	 .24	 .16 1,(71)

.6	 0	 .4	 0



rid	
61108 .192	 .26 .1 1 1 0 .4 0	 -14

.408 .192	 .2C .111 0 .4 0	 -'I^

Ir	
6408 .192	 .26 .111

+	
0 -.6 0	 16

♦408 .192	 .26 .14 0 -.6 0

416 41C	 -.387 .387 .176 -.176 .126 n V-. J A

-.0187
k-1

.0187	 .0176

'1 (5

-.0176
k-1

-.39 .39 - , 21 7 8

+(.0967)	 -.627 +.627	 .587 - .58 7
1(- m95)

.218 -.218 153 -.103

-.0187 .0187	 .0176 -.0176 -.39 .39 -.278 u "L8]

whom	
6(k-1)	 --

1	 1: = 1 4 (73)
0	 k ^ 1

WQO (k-i)
k

WQO(0) ff (74)
0

WQO (0) = C.312 .288	 .192 .2083 (75)

and	

P SDD(k) = .48W 2 Q o(k-i) + W 3 QO (k-1) + .48W L^Qo (k - l)	 (76)

=> P SDD W = # LElq + .0107 (-.495) k-1	 0007 ,6 (.0967)k-1.(77)

Note that
P PSDD (k)	 4.29	 P	 (78)

P 
SDD 

(1) = .429 = P 
DD "	

(79)

and	

min P	 (k)	 P	 (2)	 414 
< P Up.SDD	 SDD <P 
	 (80 ' )

k

For normal feedback, decoding operation, W(0) = [1000] and

P FD (u) = .48 W 0 (u+l) + W q (u+l)	 .48W
LL (u+l)
	

(81)

.419 + (.0967) U+l (--.401) + (-.495)u+ 1 (-.016).	 (82)

Note that

WT PFD(u)	 .419	 P FD5
	 (83)

P FD (-l)	 0,	 (84)

and
P FD(0) 	 .389	 PAD.
	 (85)
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PSDD W for the same code anf,,li eecoder but with p = .015 was also

calculated and found to be

P 
SDD 

W = 1.54 x 10
-3 

+ 8.95 x 70- 4 (.1121) 
k-I -6.92 x 10- 

4 (-.1271)

For this case

min. P W	 P (5) < TD	 (87)
,vk SDD	 SDD	 x'%D

although the difference (PFD - P SDD (5)) is negligible for all  sac tical

purpoLes.

The fact that it is possible for P SDD ()x ) to be less than both P Dr,

and P FD indicate .that semi-definite decoding might be used to prac-

tical advantage. Moreover, semi-definite decoding has the further psy-

chological. advantage that infinite error propagation is impossible.

The results of this paper, althouft givon for codes over nF(2),

can easily be generalized to codes over GF(q) if the binary symmetric

channel is replaced by a memoryless, time-invaiiant, additive Gr-(q)

noise source. Generalizations can also be made to non-systematic codes

and non-syndrome--type decoding, but the details shall not be carried

out here.
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