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ABSTRACT

We have investigated the origin of cosmic radiation in terms of a
sudden injection of particles in time, momentum and space. The appropriate
boundary conditions for the various regions through which the particles
pass were used. With all of the acceleration within a turbulent region,
we find that the observed spectrum is explained by a continuous deceleration
in which statistical fluctuations dominate. This is contradictory to the
usual assumptions in which fluctuation do not play an important part. We
find that the exponent of the power law spectrum has a weak momentum

dependency as

Y = 0.05% W (/R) + 067

Correction Sheet
Abstract: % = should read vy ~ 1 =

Figure 1: The Intensity Scale should read with a negative sign in
front of each division.

Emuision should read Emulsion

Valcano should read Volcano



I. 1INTRODUCTION

Previously when thé problem of the origin of cosmic radiation was
considered the influence of fluctuations in the acceleration mechanism was
thought to be of small importance [Ginzburg and Syrovatskii, 1964]. Recently,
‘however, it has been shown that when there is continuous deceleration
imposed on general acceleration, fluctuations can be an important factor
in determining the energy spectrum of cosmic rays [Wayland and Bowed, 1968].
This result leads to the concept of a power index that inCreases §ith energy.

In this paper we will investigate the problem in which particles are
injected by an explosion into a turbulently expanding region, in which the
particles diffuse in both space and momentum. We will treat the momentum
process as stochastic. The particle then escapes into interstellar space
‘where they continue to diffuse spatially but are no longer experiencing
momentum—changing proceééeé. Thus we must solve a two-region Fokker-Planck
diffusion equation with appropriate boundary conditions. 1In Section II
we will give a statement of the problem. $Section III contains an outline
of the solution of the problem. We will apply our results to the observed

cosmic ray spectrum in Section IV.



II. THE MODEL

We will consider the source as a sudden outburst of particles that
occurs over such a short period of time that we can write it as a delta
function in time. By this we are assuming that the source is active over
a period of time that is short in comparison té the time required for the
particles to diffuse out of the turbulent region. We will simplify our
problem by assuming that this injection pf particles is a one-time episode.
We will also assume that, in comparison to the momentum range chsidered,
the particles all have the same injection momentum, P,*

_After the particles are injected into the turbulent region, they will
diffuse spatially. We can describe this motion by the standard diffusion
equation. To a first approximation we will suppose that the diffusion
coefficient, D, is independent of the spatial coordinate within a given
region. However, we would expect it to have different values in the two
regions. At the same time that the particles are undergoing spatial
diffusion in the turbulent region, they will undergo diffusion in momentum
space. We will assume that at each momentum "scattering", the particle
is just at the point of forgetting what has happened in the past. Thus the
conditional progability depends only on the value of the momentum at the
previous time; i.e., a Markoff process. This will probably be true if the
spatial extent of the system, L, is related to the correlation time, T, of
the process by T >> L/c. Then momentum diffusion can be described by a
Fokker-Planek Eqn. We will use the standard second-order form so that we
can take fluctuations into account. We will also make the presupposition
that the diffusion coéfficient is independeﬁt of momentum. In the momentum

range in question, this is the same as saying the diffusion mean free path



is independent of momentum.

When the particles diffuse to the boundary of the diffusion region
we will let them freely escape into interstellar space. The particle
density at the boundary and the flux are assumed to be continuous. This
corresponds to a very close coupling of the two regions at the boundary.
Because we are assuming the diffusion condition, we cannot expect to
describe what is happening at the boundary in detail. Only when one is a
few mean free paths from the boundary will our solutions be accurate.

We will take the turbulent region to be generally spherical in shape.
Although this is never exactly true, normally the departures will be small
in comparison to the total extent of the region and we can approximate
the surface with a sphere. We also note that there is no reason for
the distribution to depend upon any spatial coordinate other than the radial
one.

In the interstellar space region we will postulate that the particles
are no longer experiencing an acceleration process. Howevef, we note that
experimentally they are almost completely isotropic. This, of course,
implies that they have aiso diffused spatially in this region. We will not
attempt to give a detailed description of their motion but will assume a
macroscopic averaging by writing this in the form of a diffusion equation.

When the particles have diffused to the boundary of the interstellar
space we will assume that they "radiate" freely into a region of far less
particle density. If the point of observation is far from the boundary
with intergalactic space, we would expect that to a good approximation we
can treat the interstellar region as spherical. As the particle demsity
approaches this boundary, it should be decreasing and at the boundary
assume a small finite value.

We can incorporate all of the above into the following equations:
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for t > t_ in region I (= turbulent region), and
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for t > t_ in region II (= interstellar space). At the boundary of

region I and II, 2 = a_, we have
(3) m' =M, ,
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where € is a small finite number. The initial condition at

t=t is
o
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Note that we have assumed the injection source is at the origin of
coordinates.,

In Eqnse (1) and (2) the first two terms describe the spatial diffusion
of the particles. The third and fourth terms account for the diffusion of
the particles in momentum space. These terms depict the acceleration and
momentum loss in scatterings which produce a continuous change in the cosmic
ray particle momentum. The third term arises from the mean statistical
momentum change of cosmic ray particles. The fourth term characterizes
the statistical fluctuations in the momentum change. The last term
accounts for removal interaction processes in which the particles interact

with the medium to produce particles other than the particles in question.



ITI. SOLUTION OF THE BOUNDARY VALUE PROBLEM

As we show in the Appendix, one can often write

A PO
7 <€a}r = 0-69)
and
<£_<.’:.> = 2bpt
(8) At

The form of Eqn. (1) suggests a power law solution in p. Thus we will

take the Mellin transform w.r.t. p of Eqn. (1), after first inserting the

Eqns. (7) and (8), to find

1
(9) Jii_' ~ D, Vg, -[(s—oa +(s-1)(s 2)67 _f]g, =0,
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a

g, = [oo"‘m,(ﬂ,z#)a‘aﬂ-

[+

If we write gl(s,zg,t) = £(2 ,s,t)h(s,t) we find that we can write

Eqn. (9) in the form
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1f we use the initial condition Eqn. (6)
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where % =t - to we find that
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Before we can apply the boundary conditions (3) and (4) we must solve

Eqﬁ. (2). This leads to the solution
A x*0, ¢ -8r
an 9= gl -CBT L

where we have used the condition (5) and have set
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When we apply the boundary conditions (3) and (4) we obtain
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where
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Then the solution to our problem is obtained by taking the inverse

Mellin trénsform of 89
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We were able to obtain an asymptotic solution to Eqn. (16) by the

*
method of steepest descent. Under the condition of ln(P/Po) >> 1 we have
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.
This requirement can be relaxed to 1n(P/Pol > 1 without a noticegble
increase in error.



We know that the intensity of cosmic radiation appears to be constant
with time. Then we require the steady state solution for our problem.
In the above we have solved for the case of a single source as a function
of time. Let us assume that it is a typical source. Then we wish to sum
over its contribution to the present cosmic ray demnsity of particles. 1In
a later paper we will investigate the requirements placed upon sources by
our solution. For the present we will just find this source's contribution
and assume all others behave in a duplicate manner. Thus the momentum

spectrum should reflect the observed one. Accordingly we must evaluate the

integral

?;(634Q ) = }’ m, (@ 2, )4 2.

(18)

Laplace integration gives the agympotic solution
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Note that we can write (19) in the form



¥

w P 7 (%)

Ergo, ¢7will act as a normalization constant when we attempt to

fit Eqn. (20) to the observed spectrum.

10
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IV. COMPARISON WITH EXPERTMENT

The cosmic ray momentum spectrum has been observed to be basically a
power law in which the power index increases with increasing momentum. We
are interested in the region 10 GeV/c < p < 108 GeV/c. Above 108 GeV/ce
the spectrum power index suddenly decreases. This is probably due to a
secondary source of cosmic radiatiom.

We note that only when there is a steady decrease in the mean
statistical momentum change, <Ap>, can we fit the observed spectrum, This
corresponds to a deceleration. As we show in the Appendix, this could be
due to a radial expansion of the turbulent region. This is not the only
interpretation; it is, however, one that can fit into many astrophysical
phenomena that have been observed. Thus the particles that we see at the
very high energies are the result of a series of favorable accelerations.
This is then a momentum spectrum in which fluctuations in the acceleration
process have a dominating effect. But note that while deceleration prevails,
an acceleration process must also be present.

To obtain the integral spectrum we must integrate Eqn. (20) from
P to ». We will approximate this integral by noting that the result
depends mainly on the integrand near the lower limit of integration,.P.
Thus we may hold X fixed and equal to its correct value at P. This

procedure gives
e 2 (8)
(21) NE) = 2oy \ @

The result of applying Eqn. (21) to the measured integral spectrum is
shown in Figs. 1 and 2. We have used the results'reported by Bradt, 1965
and Bray, 1965 transposed to the momentum variable. [We have assumed that

the composition is mainly protons at low momentum. At the higher momenta
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pc ¥ E, and the true composition is not critical.] We have adopted a =
- .34b and P, = 3.0 GeV/c. This choice of p, was made after noting that

the minimum ionization of protons in hydrogen is approximately at P,
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V. DISCUSSION AND CONCLUSIONS

We have investigated what happens to a source of cosmic rays that is
impulsed with a given momentum at a fixed time and position into a
turbulent region. Within this region the particles ﬁndergo acceleration
and deceleration that can result in statistical fluctuations. After
diffusing both in space and momentum, the particles escape freely into
interstellar space. Here the particles again diffuse spatially until
they become isotropic. When the particles reach the boundary with inter-
galactic space, provided that they do arrive, they escape. Thus we have
solved a two-region second-order Fokker-Planck equation with appropriate
boundary conditionms.

It is shown that the observed spectrum is congruous with the dominance
of statistical fluctuations in the case of continuouskdeceleration. We
were able to obtain remarkably good agreement with the observed integral
momentum spectrum of primary cosmic rays. The usual integral power law
spectrum was found to have an expoment that is weakly dependent upon the

momentums;

(Y-1) = 0.05% ba(P/€) + 067
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FIGURE CAPTIONS

Fig. 1 The integral momentum spectrum of Cosmic Radiation [Bradt, 1965
and Bray, 1965].

Fig. IT  The variation of the power law exponent with momentum.
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APPENDIX

One can easily show that for a Fermi type of scattering of particles

with moving centers, the fractional momentum change is given by

2 %
(A1) AP _ [r“{fe—g +(1+8%) cm)l + Mza(] -1,

where Bc = v = velocity of the particle, Bc = V = velocity of the scattering
center and o is the angle between v and V. If we expand this in terms of

B and- drop anything of order greater than B4 we find

2
o 88 g_§_+18 (,.,331—25)”3/(/- #)- 7?4’(/~;{z)+0(37)

where u = cos o. The collision probability is given in

i SY) AV
60 YAYd = ANy

[{ z £C0)AY du

where

ol

relative velocity in units of the speed of light c,

[oe'ge8e 8] 80

velocity distribution of the scattering centers.

fy)

If the scattering centers are receding from each other as the result
of spherical expansion from a common center, there will be a fractional

momentum decrease [Wayland and Bowen, 1968] of



AQ B, 4
(44) *® - T g

where Bec = Ve = yvelocity of expansion,

R = radius of expansion,

mean free path between scatterings.

>
it

We are interested in computing

(45) (a0)*> = ff(w)"' ‘Vo{l/yy(

By combining the above and expanding where possible in terms of B we

find that in the limit of 8 - 1

—2
- AB
ata ‘%Bz"——p—"zgel ’1'283’/? )
2. 2 =1
B.1 _ +8B.18 % =2
aArb = -753‘ 7 + 3 E; N

where

5% = fsz £y

We note that is possibel to have a < O.
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