@ https://ntrs.nasa.gov/search.jsp?R=19680026871 2020-03-12T06:43:11+00:00Z

D ——

=1

1 E=Z

o=

PE=3

=2

1u.|=——_§

jﬂ__=_“l'l

NASA CONTRACTOR SA CR-1 =T
— T =z

REPORT

LOAN COPY: RETURN TO
AFWL (WLIL-2)
KIRTLAND AFB, N MEX

NASA CR-1169

;‘3
i

¥
i
;
i

ANALYTICAL INVESTIGATION OF
INCOMPRESSIBLE TURBULENT
SWIRLING FLOW IN PIPES

by Avelino P. Rochino and Zalman Lavan LT

Prepared by
ILLINOIS INSTITUTE OF TECHNOLOGY
Chicago, 11l

for Lewis Research Center

e e

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION « WASHINGTON, D. ( . SEPTEMBER 1968

P



TECH LIBRARY KAFB, NM

T

- 0060335
NASA CR-1169

ANALYTICAL INVESTIGATION OF INCOMPRESSIBLE
TURBULENT SWIRLING FLOW IN PIPES

By Avelino P. Rochino and Zalman Lavan

Distribution of this report is provided in the interest of
information exchange. Responsibility for the contents
resides in the author or organization that prepared it.

Prepared under Grant No. NsG 694 by
ILLINOIS INSTITUTE OF TECHNOLOGY
Chicago, I1l.
for
Lewis Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information
Springfield, Virginia 22151 — CFST! price $3.00






FOREWORD

Research related to advanced nuclear rocket propulsion is
described herein. This work was performed under NASA Grant NsG-694
with Mr. Maynard F. Taylor, Nuclear Systems Division, NASA Lewis
Research Center as Technical Manager.
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ABSTRACT

Turbulent swirling flows in ducts were investigated analytically using
mixing length theories, The governing equations for the mean flow were de~
rived using G. I. Taylor's modified vorticity transport theory and the con-
cept of isotropy of the transport coefficients. The similarity theory of
von Karman was extended to swirling flows in a cylindrical geometry consid-
ering a three-dimensional fluctuating velocity field. The resulting simi-~
larity conditions were used to formulate the expregsion for eddy diffusivity
in the entire flow field except a small region near the pipe wall where a
mixing length expression analogous to that assumed by Prandtl for parallel
flow in channels was used. The tangential equation of motion was then
solved numerically to study the decay of angular momentum in a swirling flow
field inside a stationary pipe. It should be pointed out that for pure ro-
tational as well as irrotational flow, some of the similarity conditions
become indeterminate suggesting that the said formulation may not be wvalid

for these situations.

The theoretical results were compared with two sets of experimental
measurements. In the first (taken at IITRI in 1967) the fluid was air and
the swirl was generated by means of radial blades, Axial Reynold's Numbers
ranged from 58,900 to 279,000 and the swirl ratio from 4.7 to 11.8 with data
taken as far as 136 radii downstream. The second set of measurements (taken
by Musolf in 1963) dealt with water where the swirl was generated by tape

inserts inside the pipe. Measurements were taken as far as 100 radii



downstream it an axial Reynold's Number of 48,000 and a swirl ratio of

approximately 0,50,

For both cases the agreement between experimental and predicted values
was, in general, good. As might have been expected, some discrepancies oc-
curred when the flow field was predominantly irrotational or in solid body

rotation.
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ANALYTICAL INVESTIGATION OF INCOMPRESSIBLE TURBULENT SWIRLING FIOW IN PIPES

I. INTRODUCT ION

Turbulent flows are encountered in almost every application where

. . s s . L . . " . s
fluid motion is involved. Hinze defined it as "an irregular condition
of flow in which various quantities related to it show a random variation

with time and space coordinates so that statistically distinct average

values can be discerned." According to this definition, the irregular

behavior of the motion can be described by the law of probability, thus

making it accessible to mathematical treatment.

{

While both Eulerian and Lagrangian mean values can be considered,
the former is more commonly employed,(z) The Fulerian average values
can be taken at a certain point over a long interval of time (temporal
mean values), or over a large region at a particular instant of time
(spatial mean values), or finally over a great number of realizations
represented by identical fields at corresponding points and instants
(statistical mean values).(z)

When we deal with the mean values of the turbulent motion, the common
concept is such that a fictitious "laminar flow" is present.(l)’(z)’(3)’(4)
In analogy to the laminar case. the flow is endowed with properties called
"eddy viscosity" and "eddy conductivity." These properties bear no rela-
tion to the ordinary diffusion properties of the fluid and are intimately
related to the flow itself, Furthermore, their numerical values may be

(2)

hundreds of times larger. Several phenomenological theories substantially



contributed to the present understanding of some important aspects of
turbulence.(S)’(6)’(7) For this reason this approach has been employed

in the present investigation of turbulent swirling flow.

It was generally believed(4) that the different features of turbulent
flow such as mean velocity distribution and frictional effects bear, in
general, little resemblance to those found in laminar flow. This is due
to the fact that the diffusion mechanism in turbulent flow is far stronger
than molecular diffusion. When the effect of both turbulent and molecular
diffusion is considered, it is commonly assumed that the two are additive

in the field of flow.

In addition to phenomenological models, statistical approaches were
also used to study turbulence. This approach is mathematically more ele-
gant and may indeed lead to a more fundamental and detailed understanding
of the nature of turbulent motion. In the present state, however, this
method does not yield complete solutions to turbulent flow problems since
the mathematical formulation lacks closure, i.e., higher order correlation
functions are successively introduced when studying the dynamic behavior
of correlations of a given order. Attempts made to express these functions
in terms of a fourier series resulted either in complete divergence or at
best in extremely slow convergence. While it it possible to pursue this
approach by introducing rather arbitrary assumptions into the analysis,
it was decided to utilize the simpler and more commonly used phenomenologi-

cal approach in the present investigation.



Review of Swirling and Rotating Flow Investigations

The dye experiment of O. Reynolds(a) first noted the irregular motion
of the fluid elements for the case of parallel flow through a pipe of cir-
cular cross~section. The transition from laminar to turbulent motion took
place at a definite value of what is now known as the Reynolds' Number.
The flow between concentric rotating cylinders was first considered ex-

perimentally by Mallock(g)

who found that when the inner cylinder was
fixed, the steady flow was stable so long as the angular velocity of the
outer one did not exceed a certain limit. When it exceeded that limit the
flow was definitely unstable. On the other hand, when the outer cylinder

was fixed he found that the steady motion was unstable for all speeds of

revolution of the inner cylinder that he tried.

The problem caught the attention of G. I. Taylor who studied it both
mathematically and experimentally and obtained definite results. 1In
1922(10) his results showed that when the inner cylinder was at rest, the
steady motion was stable for a wide range of rotational speeds of the outer
cylinder, and when the outer cylinder was fixed the flow was stable for
sufficiently low rotation of the inmner cylinder. He also measured the
tangential velocity distribution in the turbulent region between the cyl-
inders and found out that the flow in a large part of the annular space
was irrotational$7) The same observation was made by Wattendorf(ll) for

turbulent flow in curved channels.

The fictitious "laminar flow!' concept of turbulent motion was used by

past investigators in the analysis of rotating and swirling turbulent flow.



(12)

Kassner and Knoernschild studied friction laws and energy transfer in

rotating flow in an attempt to explain the Hilsch or Ranque effect in a
vortex tube. They showed that in such a flow the shearing stress is pro-
portional to the shear velocity, the proportionality factor being the eddy

viscosity which is in turn a function of the shear velocity and the mixing

(13)

length. Ragsdale used Kassner's formulation of the eddy viscosity to

investigate the correlation of his experimental vortex data with mixing

1(14)

length expressions given by Prandt and von Karman's similarity hypo-

(15)

thesis. He concluded that Karman's mixing length function correlates

the data better than that assumed by Prandtl,

(16)

Einstein and Li, in their treatment of turbulent vortex motion of
incompressible fluids showed analytically that in the tangential component
of the Navier-Stokes equation, turbulent flow has an effect similar to that
of laminar flow if the eddy viscosity (pemP is considered a constant.

(17)

Deissler and Perlmutter extended this statement to compressible fluids

in their study of the Ranque-Hilsch phenomenon. Their theoretical results
agree reasonably well with the experimental data of Hartnett and Eckert.(ls)

Reynolds(lg) and Sibulkin(zo) have studied a number of problems on vortical

flows to explain and analyze the same effect.

Kreith and Sonju(21) made a semi-theoretical analysis of the decay of
a turbulent swirl of an incompressible fluid in pipes. They used an empiri~-
cal expression of the kinematic eddy viscosity (em? in the linearized swirl
equation and obtained good agreement with experimental data as far as the

turbulent swirl decay is concerned. The predicted mean tangential velocity

digtribution, however, deviated from experimental values far downstream.



Studies of the effecc of turbulent swirling flow in heat transfer in

(22) (23)

Smithbern and Landis,
(25) (26) and

tubes were carried out by Kreith and Margolis,
Gambil, Bundy and Wansbrough(24) and others. Ragsdale, Keyes
Karrebrock and Meghreblian(27) have analyzed other types of vortex flows

in an effort to develop a method suitable for the containment of gases in

a nuclear rocket.

(28)

For the laminar case, Lavan and Fejer obtained a numerical solution

for swirling flow in the entrance region of pipes using the complete Navier-

(29) and Talbot(30)

Stokes equation. Collatz and Goertler considered small
swirl components superimposed on a fully developed parallel pipe flow.
They thus linearized the equations of motion thereby reducing them to an

eigenvalue problem.

Recently, R. B. Kinney(3l> extended von Karman's similarity theory

to a cylindrical geometry and established the similarity conditions for
plane turbulent rotating flow. He derived a universal velocity profile

and an eddy viscosity expression from these similarity conditions and
evaluated a universal constant in the eddy viscosity equation from Taylor's

32
velocity and wall stress measurements.( )

While these investigations, as well as others not mentioned here,
contributed to the understanding of turbulent swirling and rotating flow,
considerably more research is required in order to understand these prob-
lems more completely. The present investigation will attempt to study the
problem of turbulent swirling flow in a cylindrical pipe using the phenom-

enological models of the turbulent flow mechanism. The decay of angular



momentum will be studied over a relatively large axial distance from the
point of swirl generation, The swirl equation will be deduced from
Taylor's modified vorticity transport theory using an eddy viscosity
expression derived by extending von Karman's similarity hypo;hesis to a
cylindrical geometry with a fully turbulent swirling flow. 1In order to
include the region near the wall in the analysis, pertinent modification
in the swirl and eddy viscosity expressions will be made. The theoretical
results will be compared with experimental data obtained by other inves-

(33),(34)

tigators.,



II. CONTINUITY AND NAVIER~STOKES EQUATION FOR TURBULENT FLOW

To study the time-dependent properties of turbulent flow it is usually
assumed that the motion can be separated into a mean flow with a fluctuating
flow superimposed on it. The instantaneous value of any dependent variable is

then the sum of the mean and fluctuating wvalues of this variable.

Due to the complexity of the instantaneous turbulent motion an averaging
technique is employed and the investigation concerns itself with the average
motion that includes mean values as well as products of fluctuating components.
Of the Eulerian mean values mentioned previously, the temporal type is commonly
used in methods of measurement and observation (Reference 2, p. 8l)., The

average of any quantity, say F, 1is

where T is large compared to the time scale of the fluctuations. This renders
the mean value of the fluctuating components as zero. The mean value of the
product of two quantities that can be expressed as

A + A" and B + B'

is therefore

AB + A" B'

Hinze(l) and Schlichting(4) give a detailed account of the averaging procedure,



Figure 1 depicts the cylindrical polar coordinate system that will be
‘used where u, v, w, p and p, are the instantaneous velocities, pressure

and density. These variables are in turn given by

u =U+ u'
v =V + v'
W o=W A+ w (L)
p =P +p'
Py =P *+p’

where the bar denotes mean values and the primes the fluctuating components.

/ '/
///,”';::;;;
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Figure 1: Coordinate System and Velocity Notation
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The fluctuating component of physical quantities like viscosity, specific

heat and coefficient of heat conductivity can be neglected (Reference 2,

p. 82).

Inserting the instantaneous values (Equation 1) into the continuity

and Navier~Stokes equations, taking time averages and considering constant

molecular viscosity, we obtain the following equations for compressible

flow.
A. COMPRESSIBLE FLOW
1. Continuity Equation
P CED) o U
ot + or + r +
L AEEH , 136WD
dr r o6
2. Equations of Motion
(a) Radial Component
- lof . - . Tam
Pl T VS Y rde
2= U 2
e (VT -5 -5
T T

oV oW 1 -

% aég ) + aéZAA) + = p'u
+ —(—Ma‘;'w' 0 (2)
R -
Z ro - or 3 H3r
| = | uod =T 3u’ wiou'
’56—”" [ r r o6 T 3¢



(b)

10

Tangential Component

R R R R

PitE (v - S )T

FELTE T CTE o (€4

S s AR
(4)



(c) Axial Component

~ M _ UWM YW  WHM| _ _F .1 &
p[at+ o T're t Bz] = "3 T3S
- — ul awl vl awl wl awl
+”[V2“]‘p{a—r—+r_—e'+ a_z'}
.._Bﬁ_p'v'ﬁ_——.iﬁ_p'a_w_l I
- Y or r o6 p'w z or u
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_oetwlgwl oo
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Where:
Z N .U, XN W
H=5 1t 1" e ¥ 32
2 2 2
d s} o)
VAN + + S
Se2 ror 2% 322
KL = Molecular viscosity

)
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Fr
Fé > = Average external forces in the radial, tangential
_ and axial direction.
F
z

The coupled non-linear system of Equations 2 - 5 is very complex and
requires the addition of the energy equation if compressible flows are to

be considered.

To simplify the problem we consider incompressible flow, thus decoupling
the energy equation and eliminating the triple correlation functions. Also,
H is now zero. 1In addition, we assume that the mean flow is steady, axi-~

symmetric and no body forces are present.

With the above simplifications and considering that the fluctuating
flow satisfies the continuity equation (Reference 22, p. 19), Equations

2 - 5 reduce to:

B: INCOMPRESSIBLE FLOW

1. Continuity Equation

Bgrﬁz - 0
or

¥l
N

+
R

(6)



2, Equations of Motion

(a) Radial Component

— — -2 - - —
= QU = oU v _ _1lge ou lou
UB_r + Ws; - r T _par + \)[arz + T St
2— = L2 2
+ U _ y_} _ [agu'w'z + 19(u'™y _ v ] )
3 2 2 dz r Oor 2
z T
(b) ‘Tangential Component
— — - = 9 2— — -
g L gX L UV _ ¥ oV 1N _ ¥V
p r T 2 r Or 2
dz or r
_ a(wlvlz + agulvl2 + ZUIVI] 8
dz or T (8)

- {'a% @ o+ %a%uﬁ>] )

E L]

Where v = kinematic viscosity = o
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.

Apparently, the hydrodynamical equations for a turbulent incompressible
fluid have a form similar to the original Navier-Stokes equation with con-
stant viscosity except that additional dependent variables called Reynolds'
stresses are present. These fictitious stresses characterize the turbulent
friction in the field and when multiplied by the mean velocity gradients
give the rate of production of turbulent energy. Hinze(l) explains the

physical interpretation of these fictitious forces and discussed the energy

relations in the turbulent field.

The system of Equations 6 - 9 has more dependent variables than
available equations, hence additional relationships are required,

(35) realized this problem and introduced the concept that the

Boussinesq
turbulent stresses behave like viscous stresses, i.e., they are proportion-
al to the mean velocity gradients. He termed the proportionality factor

as "eddy viscosity."

Although the existence of this idea is due largely to the analogy
with laminar flow, this property of the turbulent fluid is not like molec-

ular viscosity nor are they related as discussed earlier. One may there-~

fore raise a serious objection to the whole scheme. 1In support, Hinze (1,p.22)

commented: '"There is nothing against the formal introduction of the term
'eddy viscosity' if we are fully aware of its specific office, namely to
express the behavior of the turbulent stresses in terms of the mean velocity
gradients in a flowing fluid."

The mathematical nature of the eddy viscosity is not yet generally

(36)

ascertained., Stanisic and Groves argued that although it transforms



el

properly when assumed to be a second order tensor, it is not sufficiently
general to assure the existence of six linearly independent Reynolds'

stresses. They hinted the possibility that it is a fourth order tensor.

To account for the different values in different directions, there
. . . (37) .
were suggestions that the eddy viscosity be treated as a vector. This
is permissible provided the assumption that the Reynolds' stresses are
proportional to the mean deformation tensor is not used in the analysis.
The expression of the turbulence stresses in terms of the velocity gradi-

ents has to be ascertained by some other means (for example, with the aid

of phenomenolaqgical theories).

If the eddy viscosity is to be treated as a scalar, the average
turbulence pressure from the turbulent stresses must be taken as a separate
term in the formulation expressing the turbulence stress tensor in terms
of the mean deformation tensor. In this way, the two sides of the equation

become identically zero for an incompressible fluid (Reference 1, p.21).

In this investigation, the eddy viscosity function was derived with
the use of Karman's similarity hypothesis. It was found that for swirling
flow, eddy viscosity exists at two perpendicular planes of a fluid element
(see Figure 12), due to the presence of mean velocity gradients perpendicu-
lar to such planes. Assuming that the similarity conditions are simultane-
ously satisfied at every point in the field and treating the eddy viscosity
as a vector, a resultant expression was obtained. The evaluation of the

(31)

similarity constant was based on Kinney's investigation. (A detailed

discussion is given in Chapter VII.)

15



16

III. PHENOMENOLOGICAL THEORIES

Three elementary theories are commonly used to describe the turbulent

flow mechanism, namely:

1) Prandtl's Momentum Transport Theory
2) Taylor's Vorticity Transport Theory

3) von Karman's Similarity Theory

Each of these theories are based on assumptions that are not general in
application so that it is possible that one may apply in one case or in a
part of the flow field while the others do not. Schlichting(A) gives a

good introductory account of these theories.

The above-mentioned theories use the concept of a "mixing length"
which is that characteristic distance over which an agglomeration of fluid
particles is considered to preserve a transferable property. After traver-
sing this distance the fluid particles mix with the new surrounding fluid.
The fluctuation of the transferable property is related to the difference
between the value of this property at the two different lamina separated
by this length, In a manner, this concept of the mixing length is some-
what analogous with the mean free path in the kinetic theoty of gases,

The difference is that the latter concerns itself with the microscopic
motion of individual molecules strictly obeying the conditions assumed,
while the former deals with the macroscopic motion of a lump of fluid
particles that may undergo continuous changes due to extermal and viscous

effects. The assumptions made are, therefore, only approximately fulfilled.



Von Karman's Similarity Theory considers the mixing length to be a
length scale of the turbulence mechanism. It advocates that the turbu-
lent flow patterns at different points in the immediate neighborhood of
the reference point are similar and differ only in the scales of length
and velocity. With this concept, the mixing length is considered to be
independent of the magnitude of velocity and 1s only a function of the

velocity gradients as well as of the higher order derivatives.

For parallel flows in pipes and channels, Prandtl assumed the mixing
length to be proportional to the distance from the wall.(14) In this case
the length is related to the path of the fluid element and is therefore a
“lagrangian length." Karman's length is an "Eulerian length" since it is

considered to be a length scale in the flow field.

Prandtl's and Karman's formulation of the mixing length can be used
in conjunction with either momentum or vorticity transport theory. Gold-
stein(s) investigated the validity of Karman's mixing length function to
parallel flow in pipes and channels using both momentum and vorticity

transport theories in each case. He found that for turbulent parallel

pipe flows the predicted velocity distribution using the vorticity trans-
port theory's formulation for the shearing stress agreed well with the
experimental results of Stanton and Nikuradse as shown in Figure 2, where
Wm = maximum velocity, W, = friction velocity (wall shear stress/p)llz,
and W = local velocity. The figure shows a comparison of theoretically
predicted and experimentally measured velocity profile for turbulent paral-

(5)

lel flow in pipes after S. Goldstein: The velocity distribution was
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obtained using Taylor's vorticity transport theory as well as the mixin
g y y P y g

length expression derived from Karman's similarity theory.

For turbulent channel flow, the velocity distribution predicted by the

‘momentum transport theory agrees with experiment better than that using the

vorticity transport theory.

G. I. Taylor(6)

made a similar investigation for turbulent parallel
pipe and channel flows using his theory as well as Prandtl's momentum
transport theory. He took Prandtl's expression of the mixing length and

his results show that for turbulent parallel pipe flow, the velocity dis-

tribution predicted by his theory agrees with experimental data better than
that predicted by the other theory. The agreement is shown in Figure 3
where the notations are the same as those in Figure 2, For turbulent
channel flow, there is nothing to choose between the results of the two
theories since the disagreement with experimental data are the same for

both.

Based on the above results it appears that Taylor's vorticity
transport theory gives good results for pipe flows. This is due to the
fact that for a two-dimensional flow the transport of vorticity in un-
impeded in the flow field. This can be seen from the vorticity equation

which for conservative forces takes the form:

QR

—_ . - . - 2 _

TR AR @ -y -va = o (10)
where: V = the instantaneous velocity vector

0 = the instantaneous vorticity vector
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In a cylindrical geometry with axisymmetric flow, the term (Q "7) v,
which represents the "rate of change of vorticity when the vortex line
moves with the fluid and the strength of the vortices remain constant",(3)
vanishes and the remaining terms result in a diffu;ion-like equation. 1In
pipe flow unlike channel flow, the secondary flows present are not large
enough to destroy the two-dimensionality concept. Hence the fundamental
assumption of the vorticity transport theory is essentially fulfilled in
pipe flows.

In 1935, Taylor(7)

applied his theory in a modified form to turbulent
flow between concentric rotating cylinders (see Chapter V). When the
inner cylinder is rotating while the outer one is fixed he experimentally
verified that in over 837 of the annular space between the cylinders the
flow is definitely of the type predicted by his modified vorticity trans-~
port theory. The remaining space near the inner and outer cylinders has
a flow of the type predicted by the momentum transport theory. This re-
sult is shown in Figure 4 where the constancy of the angular momentum

(as predicted by the vorticity transport theory) prevails in a large re-

)

gion of the flow. Wattendorf,(11 in his experiments on turbulent flows

in curved channels and rotating cylinders, also made similar observations.

The above mentioned results suggest that Taylor's vorticity transport
theory should be applicable for investigating turbulent swirling flow in
pipes. However, in order to surmount the mathematical difficulties in-
volved, additional assumptions will be made. Furthermore, as the theory does
not yield a mathematical formulation of the mixing length parameter, von Karman's

similarity theory for turbulent motion will be used to achieve this end.
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IV. FORMULATION OF THE INCOMPRESSIBLE TURBULENT FLOW EQUATIONS OF MOTION

USING THE VORTICITY TRANSPORT THEQRY

The equations of motion for an incompressible fluid with constant

viscosity are:

v 1 2

st @V - 3 [-VP + F o+ uV!] (11)
where V = wvelocity vector

P = pressure

F = body force vector

p = density

t = time

L = molecular viscosity

Since

V2
(CARAVI)'A =V(}-) -V x (VxV)
and defining

V¥ = Q which is the vorticity vector, (11-a)

Equation 1l can be written as:

%+ Uz - va - > [-VP + O+ uvzl] (12)
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The vorticity transport theory assumes that: 1) the molecular
viscosity is negligible compared to the eddy viscosity of the turbulent
fluid; 2) the mean flow is steady and axisymmetric, and 3) body forces

are negligible. The instantaneous quantities are replaced by

v =Y+
Q =a + (13)
P = P + p'

where bars denote mean values and primes denote fluctuating components.

With the above assumptions and substituting the turbulent instantaneous

quantities (Equation 13) in Equation 12, and taking averages, one obtains:

2

| -

In this equation the Reynolds stresses are represented in terms of the

NI 1<
i<l
»
151
]
<

v

- -2
E + 3 ) + v'x Q° QL))

average vector product of the fluctuating velocity and vorticity vectors.

At this point we introduce the concept of the vorticity transport
theory which considers that a fluid element moves a distance L (the mixing
length) conserving its vorticity and after traversing this distance, the
lump of fluid mixes with the new environment. Assuming L as well as its
space derivative to be very small so that we can neglect its squares as

well as terms quadratic in the L's and their space derivatives, an



expression for the fluctuating vorticity vector, Q', can be derived in
terms of the mixing length and the mean vorticity vector. If we employ
the lagrangian continuity expression and Cauchy's equation for expressing

the vorticity at any point in terms of its vorticity at some previous

position, it can be shown that (see Appendix I)

Q' = Yx LxQ (15)

where L = mixing length vector with compouents (Lr’ LS’ Lz)' Substituting

Equation 15 into 14, we have:

2

v -

-.GI
2

Nll
<
]
D]
[
]
1
1ol
+

+ lz' X ‘7x L x Q)

(16)

Equation 16 will next be expressed in cylindrical polar coordinates where

the bar sign is dropped from the mean flow variables for convenience. The

resulting scalar equations are’
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Radial Component:

+§:|+w_'1.gﬂz' (17)

Tangential Component:

c
O/‘O/
b=
+
)
|
2
+
" E
n
oY,
A
o
Ury
+
H
o/
D
n
e,
+
o
N
..,
vy

u'oL 4 - +a.—_%€+-u—,-§§ (18)



Axial Component:

M M _

1] 5; + W g; =
u'oL
Z]

+ dz C -
v'oL

2
2, =

where Q = 2

cylindrical coordinates are:

(19)

and the vorticity components (Equation 1ll-a) in

(20)
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Equations 17, 18 and 19, that are extremely complicated, can be
simplified by applying Taylor's modified concept of his theory.(6)’(7)
A lump of fluid is conceived to leave a certain position with the local
components of vorticity of the mean flow, and to retain these components
till it mixes with its surroundings after traversing the mixing length.

If this condition is substituted into the mathematical formulation of

the process (see Appendix II) it follows that

L = constant (21)

If we further assume that the axisymmetric condition also holds for the

fluctuating flow, the equations of motion reduce to:

Radial Component:

e s emE e
Tangential Component:
oF ewge.m ¥ om gL

+ T % (23)
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Axial Component:

]
oW MW _ . 9N e T =T .
v vV, = -5 ¢ T( " qualr? - u'Le é
—= 9 - 3 = 9
-u'zg7-3+vrar+vzg§ (24)

The terms Ezf; , 1i.e., the turbulent transport coefficients that
appear in the system of Equations 22 to 24 will now be considered. Taylor,
in his application of the theory to parallel pipe flow assumed the turbuleat
transport coefficients to be isotropic, and we will make the same assumption

here. Expressed mathematically,

uiL = 0 if i+ j

(25)

em(i)lf i= j.

where e is the kinematic eddy viscosity and i, j =1r, 0, =z.

In the following chapter, Equations 22 to 25 will be applied to
different turbulent flow problems in order to check their validity. It
will be seen that the resulting equations are the same governing equations

that past investigators counsidered in the particular cases.
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V. APPLICATIONS OF THE DERIVED TURBULENT FLOW EQUATIONS

CASE A: PARALLEL FLOW IN PIPES (FULLY DEVELOPED)

v
B jlr_ _ ] G

Figure 5: Flow Geometry for Case A

In this case the only mean velocity present is in the axial directiom.

From the continuity equation, 6, it follows that:

W = W(r) only

so that by Equation 20 the mean vorticity components are:

§= o0 - -ar g - o

and the axial component of the equation of motion (Equation 24) reduces to:



L2

2]

- |
a ik R T L0 -
azlp t 2 = ul. 173 rdr (26)

dr

The term u‘Lr is the kinematic eddy viscosity, e which can be written as:

2
e = u'lL, = =~ L dw (see Reference 5)
m T dr
: T2
and since the flow is fully developed ) %; %—— = 0.
Equation 26 becomes:
1 dp 2 dw d2W aw
"oz T M ar |2 7 orar (273

S. Goldstein(s) solved the above equation using Karman's similarity
theory's formulation of the mixing length, L, (taken equal to the length

scale in the turbulent field) which for parallel pipe flow is:

aw
dr
L = Const 5
aw _ di
dr2 rdr
, . . dw
He solved Equation 27 using the boundary condition 3 - ® at r = 1

to evaluate one of the two constants of integration. The remaining con-

stant was evaluated by the use of the experimental data of Stanton and

Nikuradse.
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Figure 2 shows Goldstein's results compared with experimental data.

The agreement 18 very good indeed.

Taylor(6)

solved the above problem but his mathematical formulation
does not assume axisymmetry to hold for the fluctuating flow. He obtained
a positive sign in the right hand term of Equation 27. Using Prandtl's
assumption for the mixing length, he integrated the equation and his re-

sults are shown in Figure 3. It can be observed that the agreement be-

tween theory and experiment is also good here.

CASE B: FLOW BETWEEN ROTATING CONCENTRIC CYLINDERS

OUTER CYLINDER

INNER CYLINDER

S~

Figure 6: Flow Geometry for Case B

This problem had been considered theoretically and experimentally by

7
G. 1. Taylor( ) using the same theory for his theoretical predictions.



If the cylinders are sufficiently long and their ends are closed

there is no net axial flow and end effects may be neglected. Hence
w = 0.

From the continuity equation:
d
dr (ry = 0

and upon integration

U = Constant/r (28)

With the inner cylinder rotating while the outer one is at rest, the

following boundary condition applies:

Upon substitution in Equation 28, it follows that
Constant = O,

It can be seen that only the tangential component of the mean flow is

present. With V = V(r), the mean vorticity components are:

3 dav v
£ = o, M=o, (= F + I (29)
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Substituting Equation 29 into 22, 23 and 24 with the assumption of

isotropic transport coefficients, the equations of motion are:

1. Tangential Component

é = C1 or

34

(30)

(31)

Therefore,

(32)

(33)



Taylor performed an experiment to check the above theoretical
predictions. He found that for the case where the inner cylinder is
rotating and the outer cylinder is at rest, the angular momentum (xV) is
practically constant in the central portion (83% of the annular space be-
tween the cylinders) of the flow field. In this region, he concluded that
the flow is definitely of the type predicted by his theory because of the
fact that it obeys Equation 32, provided C1 must be equal to zero. The
experiment further showed that the theory is not valid near the walls so
that the usual no-slip condition will not apply in the mathematics of the

theory.

CASE C: FLOW ANALYSIS OF THE TURBULENT VORTEX TUBE

Figure 7: Flow Configuration of the Problem
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This problem had been studied intensively by Deissler and Perlmutter(l7)
where they divided the vortex configuration into two parts, namely the
core and the annulus. 1In a vortex tube the vortex is usually generated
by jets injected at the periphery of the outer cylinder. Following their
assumption that V = V(r) and that the mean flow is axisymmetric, the mean

vorticity components in the radial and axial directions are:

4 . d¢v) _ dv

rdr dr

R (<

When the mean vorticity values are substituted into Equation 23, we obtain

the tangential component of the equation of motion for this particular

case which is:

udv
dr

Vv
1 —— —— - —
= uwl 2 * Tdr r2 (34)

Multiplying both sides of the equation by the demsity and recalling that

u'Lr = e the kinematic eddy viscosity, we obtain
2
udv uv _ dav v _ V_
( ar T T ) = Pey 2 T oTar 2 (3%)
dr T

Equation 35 is the governing equation considered by Deissler and Perlmutter

in their investigation. Furthermore, they considered pe ~a constant. Their

36



theoretical results agree reasonably well with the experimental data

)]

obtained by Hartnett and Eckert.

It appears that the equations of motion for turbulent flow derived
by the vorticity transport theory are sufficiently gemeral. An attempt
will now be made to apply these equations to the study of turbulent

swirling flow.
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VI. GOVERNING EQUATTIONS FOR AN INCOMPRESSIBLE SWIRLING FLOW

In axisymmetric swirling flows, all the three mean velocity components

are present and they are functions of r and z. The mean vorticity compo-

nents are:

§_ .V

. oz
ol M

- - =
19

€= ;_—-a—f(rV)

Making the usual assumption of isotropic transport coefficients, and
substituting Equation 36 into Equations 22, 23 and 24, the equations

of motion for turbulent swirling flow are obtained.

1. Radial Component
2 2
ou ou v aQ U 3%
U + W = — = = + e —_— - S (37)
or oz T or m(r) aZZ oroz
2. Tangential Component
2 ' 2
(8)\ or r dz

(38)



x aw w 1w |

U§;+W-§;=-%%+em 2 ~ rdr ~ droz
(2) or
+ -rl-g—g (39)
Where:
p T

Q = o + 7

vt o= (u', v', w')

em(r)’ em(e), em(z) the kinematic eddy viscosity in the

radial, tangential and axial directions.

In the above equations (as in previous derivations) the molecular
viscosity was neglected according to the first assumption of the vorticity
transport theory. This assumption is, however, not valid in regions where
molecular viscosity is an important feature of the flow, i.e., regions
near a solid boundary. Sf¥nce it is desired to include such regions in

the present investigation, the equation of motion will be modified.

I1f we compare the tangential component of the mean turbulent Navier-

Stokes equation (Equation 8) with Equation 38, we note that the turbulent



stresses behave in a manner similar to the laminar stresses where the
eddy viscosity replaces the molecular viscosity. This shows that for the
tangential component of the motion equation, the fictitious "laminar flow"
concept of turbulent motion gives a one to one correspondence with an
incompressible laminar flow, This fact has been pointed out first by
Einstein and Li.(16)
Since the tangential component of the above turbulent flow equations
has been derived independent of the assumption that the shearing stress
is proportional to the deformation tensor, there is no restriction as to
the nature of the eddy viscosity. Comparison with the same component
of the laminar Navier-Stokes equation suggests that a turbulent flow
with constant eddy viscosity behaves like a laminar flow. However, in
turbulent swirling flow, the eddy viscosity may be a strong function of

the flow field, and in this investigation the function form will be

evaluated using von Karman's similarity theory.

The above arguments serve to justify the common concept that if it
is desired to include the molecular diffusion in the turbulent equations,

the eddy and molecular viscosities are additive.

The tangential component of the equation of motion considering

molecular diffusion can therefore be written as:

v N, W ov . 1 _ v
U g;_' + W az + T = (\) + em(e)) arz + T ar r2
2
+ §—‘25 (40)



Turbulence near a solid boundary. is suppressed and the flow tends to
become laminar. Ths usual no-slip condition at the wall can now be applied
in the integration of the above equation. However we will first non-

dimensionalize the equations and perform an order of magnitude analysis.

Let
v = U Uo
*
W = WW
(o]
%*
V = VV
o
*
r = rr
o
*
z = 2 2z
(o]

where all values with asterisks are dimensionless and of order unity and
those with subscript o are reference quantities, In swirling flow, the

axial and tangential velocities are in general prevalent so that:

=
L]

0(1)

<}
]

0(1)

In considering the axial change of W, we note that the axial velocity
profile changes only slightly over axial distances since the average value

of the axial velocity is a constant. Therefore, with

o]
[

0(1L)

o = of2)
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where

€ <<1,
w [ || w*
oz 2, \ az*
0(€) 0(1)
= 0() (41)

Equation 41 shows that W is a weak function of z so that:

H oLk (42)

To determine the order of magnitude of U, we consider the continuity

equation:

W
S; +

Fy
]
o

1
T

(rv)

Q/

T

Integrating this equation and using the boundary condition,

U = 0 at r = 0, we have:
r*
woro 1 BW* * *
u = = - -— r dr
Zo T az*
0
0(©) 0(1)
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Hence,

U, = 0(€) 8o that:

U<< W
(44)

UI<< VvV

Next we compare the change of V with respect to z to that of W with respect
to z. In swirling flow, the tangential velocity decreases uniformly to
zero whereas the axial velocity 18 unchanged on the average. It is there-
fore believed that the term %% is more important than g% in the tan-
gential component of the equation of motion. This opinion is also shared

(21

by Kreith and Sonju who have neglected %% in their swirling flow

analysis,

Applying the same order of magnitude analysis to all the equations of

motion and neglecting terms of order £ we have:

1. Radial Component

2
\)
= (45)

<
N

o)

P
dr \p +

N‘I

2. Tangential Componeunt

2 2
oV oV oV 1 ov v
Mo = O ey | 2 2 T v T2 (46)
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3. Axial Component

—2

<

Q/

+ V) QEW— - %—W- (47)

o |2
dz |\ p + ar2 r

Nll

(em(z)

Equation (46), also known as the "swirl equation," will be used to predict
the decay of angular momentum in the axial direction. The axial velocity
W will be considered as a function of r only and its average profile will
be evaluated from experimental measurements at different downstream

positions.

The swirl equation is non-dimensionalized as follows:

“me) = “®m (9)

where:
Wm = Maximum axial velocity of the fully developed profile
r = pipe radius
w
) = Kinematic molecular viscosity

Effecting the transformation, the dimensionless swirl equation is:



* (L + e gy’ 5™ v v &

W = + - +
* *2 *_ * * *
Jz NRe or r or PRI P
(48)
1 T
with NRe = % , the axial Reynold's Number. The asterisks can be

omitted in the above equation with a convention that all variables are

dimensionless.

In the present investigation, it is necessary t¢ go as far as 100 radii

Qv

downstream, Taki;g this as a reference value for z, we note that Sz is of
order 1/100 and é—%-of the order 1/10000, The latter is small enough that
it can be neglecizd in the present investigation. Furthermore, Kreith and
Sonju(lo) pointed out that in turbulent flow, one can safely assume the
term em(e)gz% to be negligible compared with W %%. Thus, the swirl equa-

tion finally becomes

(L+ e ) 2
v _ m)”’ | v %g_‘; - 5 (49)
r

W =— =
oz Nre arz

(10)

Equation 49 has been solved by Kreith and Sonju with the assumption
that the eddy viscosity is independent of the radial and axial distance,
being a function only of the axial Reynold's number. 1In the following
chapter, the eddy viscosity function will be derived using von Karman's
similarity theory for turbulent flow extended to a cylindrical geometry.

The subscript 6 of the eddy viscosity rotation in the swirl equation will

be dropped with a convention that henceforth, e applies to the swirl equation.
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VII. SIMILARITY CONDITIONS FOR TURBULENT ROTATING AND SWIRLING FLOWS

A. THE INSTANTANEOUS VORTICITY EQUATION

1f we neglect molecular viscosity, the equation of motion is:

ov
- 1.2 1 1
St +§7(Ey—) - (!xﬂ) =5-§- EVP (50)

To derive the vorticity equation we take the curl of both sides of
Equation 50 and obtain:

Q

5t @eye - @V + AV D + WV = 0

(51)
Since for an incompressible fluid {/+«V = O,and V- Q= {/- (Vxl) =0

Equation 51 further becomes

Q
st + @-Vog - @-vix = 0 (52)

Equation 52 in polar cylindrical coordinates is:

1. Radial Component

w aw w W o®

; e, v® L % %
58t US¢ t T o8 +ow oz ®r 3¢ r o8
- W, %% = 0 (53)
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2., Tangential Component

w aw o
) 9 v 9 ] v v 8 ov
ST tuR fFIS vtV T o5 C %
v gt
-5 T =0 (54)
3. Axial Component
Qw dw w L) W
z vz z dw e ow _ JQw
St:__+u$_+?ge_+ V82 "~ %ar T % 8 Dy 5z
= 0 (55)

Where the instantaneous quantities
vV = (u! v, W)

8 = (o, wy ®,)

B. SIMILARITY CONDITIONS FOR FULLY TURBULENT ROTATING FLOWS

1, Mathematical Analyais

For a fully turbulent rotating flow the mean velocities in the radial
and axial directions are not present while all the fluctuating flow compo-
nents are present, The instantaneous velocity vector has, therefore, the

following components:
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Vo= (', V+v', w) (56)

With V = V(r) and assuming the mean flow as axially symmetric one obtains:

£ o
= 0
_ ldaw
C T rdr

for the mean vorticity componentsyand the instantaneous vorticity vector is

(57)

Substituting Equations 56 and 57 into Equations 53, 54 and 55 we

obtain the following equatioms:

(a) Radial Component

=<
|O/
(.
t
H =
a)
<
Q/
|=
+
P
+
[~
.
+
i<
[e%Te %4
olvh
+
]
OJIO/
N

YU/ A UV
f or r 00 5z - ° (>8)
(b) Tangential Component

36 dr
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(¢) Axial Component

HES
+
Hi|<
e
+
1%,
+
I
o/
.

va' 1d ow' rd
;Eé‘ C OV & +[E;(

v'
r

anQ/

+

Consider a turbulent rotating field as shown in Figure 8 and choose

any point P(ro, e , zo) as a point of reference, Following von Karman's

o
concept of the similarity theory it is assumed that: 1) In order for the
turbulent disturbances to correlate at two different points, the field
of flow that must be considered is restricted to the immediate neighbor=-
hood of the reference point P. 2) In the neighborhood of the reference
point, the flow patterns are similar, i.e,, they differ only from point
to point in the scale of length and velocity. 3) The frame of reference
is moving with the mean velocity at point P and that the turbulent dis-

turbances in the immediate neighboring points around it are transported

by the mean flow. Also, since we are considering only the immediate

d(rv) d(dv/dr + v/r) d(v/r)
> and
dr dr dr °’

neighborhood of point P, for we
take their values at point P while for V/r, we take the first term of
the Taylor expansion about point P, namely

4z

.

dr

v
T = (@®-r1)
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Figure 8: Turbulent Rotating Field in a Cylindrical Geometry

Also the radial coordinate can be represented by

-]—' = ']-.' [1 - LI 4 + -..-..--.-.----o-.J) and
T T r
o [o]

following assumption 2,

L

length scale

A = velocity scale,
Also let the variables with asterisk, that are of order unity, represent the
similarity parameters in the turbulent flow field, The similarity assumption
implies the following relations:

*
r-r,=Lr; r (6 -6,) =16 z - 2, = Lz¥; & = 1t%/A;
(61)
ul = Autt; vt o= Avi¥y owt o= Ay E' = AE¥/L; ' = An'Y/L; €' = ACTF/L.
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Hence,

or . _ 1 0 _ _o
x T 1 38 T L
22" _ 1 at _ a
9z L ot L

Substituting the above relations into Equations 58, 59 and 60, we

obtain:

(a)

(b)

Radial Compomnent

T
o Oz o

T s

Tangential Component
o x

Li&éw _ ¥ *6_72_ _ Ljar vl av”

Al dr Tl Aldr r *

* * *
+ﬂg+u.*il%+v.*i?%+w,ﬂ_ §*a"

ot or o6
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LR ST R (63)

(c) Axial Component

e _ov) (LX) onfa v ot e |a
A dr rl ae* Al dr rl, az* A |dr | dr
‘% ‘i ‘% '
+ Y’) o éé;— + u'” d — + v éé;— + owt” ég——
T *
o ot or 36 dz
R A S L T REPU
- §- % 77 * é * 7 rv *
dr 38 dz o o6
, %
+ ot ::* -0 (64)

Equations 62, 63 and 64 are independent of the position of the reference
point P. This implies that the following coefficients in the above equations

must be constants:

(a") %F- = Constant

ey  EE . = Constant | (65)
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(c") AL(S—::- + Y_— = Constant
°lo
) (65)
2] a|® 4 ¥
@an L t dr L = Constant
A dr

The reference point P can be anywhere in the field so that the subscript
o can be omitted in Equation 65. The above relations yield the following

similarity conditions:

(1) L = K;r (using )
av _ v
(2) L = K, 3 g‘r’ z (from b' and d')
:i?( a t ;)
dv v
ac Y T
3) L = Ky g7 av v (from c¢' and d') (66)
-d_r'( ar t ?)
dv v .
) A = KL|a- - }-) (using b')
dv \' .
(5) A = KSL(g + -1:) (using c')
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2, Discussions

It should be noted that different expressions define the length and
velocity scales in the flow field. These conditions must be simultaneously
satisfied in every point of the field giving rise to a family of universal
velocity profiles. It is also evident from the above conditions that more
than one velocity profile that satisfies the similarity conditions can
exist in different rotating flow problems. This fact is supported by actual

(7), (32)

experimentation particularly that of G. I. Taylor, who reported two
very different velocity profiles in the field depending on which of the

concentric cylinders was rotated. This particular aspect will be discussed

further in a latter part of this report.

The similarity conditions can enable us to get an understanding of the
turbulent mechamism in rotating fields. From Equation 61, the tangential

component of the fluctuating velocity field is
*
(v' is of order unity)

Taking the 4th similarity condition and substitute it into the above

equation we have

oo v _ ¥ I '*l
| v | = KAL' (dr T v
or
v
v! 4';)
r - I"m dr (67)

*
where the mixing length Lm is taken as LK4' v' I.



If we substitute the 5th similarity condition and following the same

arguement, we have

Ir"'l - Lm"ddiv

With the usual concept of the mixing length, it appears that both angular

(68)

momentum and angular velocity are transportable quantities within the
field. The establishment of the fluctuating velocity field can therefore

be due to the transport of either or both of these quantities.

Past experimental studies of rotating and swirling flows in pipes
reveal a region of predominantly solid body rotation near the center of
the pipe. The rate of increase of the tangential velocity with radius
decreases continuously until a maximum velocity is reached. Thereafter
the tangential velocity decreases with radius as r ™ where

.5<m<1l (m=1corresponds to irrotational flow).

It is therefore obvious that a transition from rotational to
irrotational flow is taking place in the flow field. Figure 9 shows a
tangential velocity profile in a vortex tube at a point just a few dia-
meters downstream from the point of sSWirl generation as reported by

(18 )] (11)

Hartnett and Eckert. G. I. Taylor as well as Wattendorf also

give evidence of this tramnsition in turbulent rotating and curved flow

fields.
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A similar transition takes place in swirling flow, E. R. Hoffman and

P. N. Joubert(38)

reported a comparison of laminar and turbulent velocity
profiles for such flows. It appears that the turbulent profile deviated
more from the laminar one in the outer region., This is probably due to the

fact that in this region the ratio of turbulent to laminar transport coeffic-~

ient is higher than near the central region.

The presence of a predominantly irrotational flow in the turbulent
rotating field can provide an explanation as to why Taylor's vorticity
transport theory yields consistent results, In a region which has a
predominantly irrotational behavior the mean vorticity is very small.
With this condition, Taylor's assumption in his modified theory is more
nearly satisfied, namely "a lump of fluid is conceived to leave a certain
position with the components of vorticity of the mean flow and to retain
these components till it mixes with its surroundings after traversing

the mixing length."

3. Family of Similar Velocity Profiles for Turbulent Rotating Flow

Since the conditions given in Equation 66 must be satisfied simul-
taneously in order for similarity to hold, a family of similar velocity
profiles can be generated. The form depends upon the presence or absence

of the radial gradient of the axial component of the mean vorticity, %g .

If we equate conditions (1) and (2) in Equation 66 we obtain:

ol e

H
R =
e
1
HN'<§
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N'NN

Letting N = yields:
1
v |1 av v
dr2+;(1-N)E;- (1-N)?=0 (69)

Equation 69 is Euler's equation, the solution of which is

hq ho
v = Clr + Czr for h1 # h2
or (70)
hp
vV = (C3 + C41nr)r for h1 = h2
Where C1 to C4 are constants of integration and hl, h2 are the roots of

the characteristic equation

W2 - Nh 4+ (N-1) = O (71

The roots of Equation 71 are:

h = 1 and h = N - 1,

Thus, if we substitute the values of hl and h2 in Equation 70, the family

of similar velocity profiles resulting from conditions (1) and (2) is

V = ¢,r + C.r for 0 SN # 2

or (72)

\
N

V = C,r + C4r(1nr) for N =



Equating conditions (1) and (3) in Equation 66, the resulting

differential equation 1is:

K
a(av . v\ _ 3fav . vl -
arjar T T ) - K, | dr M (73-2)
X3
Letting M = o and integrating the above equation we obtain another form
1
of the family of similar velocity profiles,
c
_ 5 M+1
vV = I + C6r (73-b)

where 05 and C6 are constants of integration.

Similarly, taking conditions (2) and (3) we obtain:

v _ ¥ = av v
%l ar T ) = K3 (dr t T (74-3)
Here unlike the previous two cases, the radial gradient of the axial
K
vorticity component dC/dr does not appear, Putting S = Eg and integrating
3

the above differential equation, we obtain the following family of similar

velocity profiles:

v o= ¢ L8 D/ - D (74-b)

where C7 is a constant of integratiom.
All the three forms of similar velocity profiles derived above include

the irrotational profile (V = Constant/r) that was observed experimentally

by G. I. Taylor, To this end, the value of one constant of integration in
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Equations 72 and 73 must be assumed arbitrarily to be zero as was also
done by Taylor himself, Equations 72 and 73 include also the velocity
profile that was predicted by Taylor's vorticity tramsport theory

Ké
= 1 —
W = Kir + 7 ).

For an irrotational mean flow, is absent so that this type of flow

d
dr
should fall into the family of similar velocity profiles given by Equation
74 with the similarity constant S§ equal to zero. Furthermore, no arbitrary
assumption as to the value of the constant of integration is made here,

In the case of a pure rotational mean flow where is also absent, the

dr
value of the similarity constant S in Equation 74 is plus or minus in-
finity, It is interesting to note that for both types of mean flow (pure

rotational and irrotational), some of the similarity conditions in Equation

. . A d
66 are indeterminate due to the vanishing of

ar ° For example:

For irrotational mean flow, V = Constant/r.

av + V _ _ Constant 4 Comstant _
dr r 2 2
T T
Therefore,
d | dv Vi _
arl\ar T 7] T 0

Hence the third similarity condition becomes



which is indeterminate. For pure rotational flow, the second similarity
condition becomes indeterminate. Due to this indeterminacy of one of the
similarity conditions the assumption that all similarity conditions are
simultaneously satisfied in the flow field no longer holds. From Equation
65 it follows that if gr = 0, the coefficient listed in (d') is non-
existent. Tt is believed that the similarity concept is still valid for

pure rotational and irrotational cases for which a new set of similarity

constant results.

As was pointed out earlier, there is a gradual transition from
rotational to irrotational behavior in a confined rotating flow field.
Due to this phenomenon it is believed that at different regions of the
flow, different forms of similar velocity profiles can exist. The form
of similar velocity profiles near the axis is given by Equation 74. 1In
the intermediate region where gg is present the velocity profile may be

given by Equation 72 or 73, and also 74 if the tramsition to irrotational

flow is complete.

The region near the pipe wall requires special consideration. Here,
the similarity hypothesis is not valid, and the mixing length will be taken

as proportional to the distance from the wall , namely

L = ky(1-71) (75)

This assumption is analogous to Prandtl's treatment of parallel flows in

channels.
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The extent of this region where the above argument applies will be

discussed in Section C, Part 2 of this chapter.

(20)

While this investigation was still in progress, R. B. Kinney
published the results of his investigation concerning similarity in a
fully turbulent rotating plane flow. He extended von Karman's similarity
theory to a cylindrical geometry for the said type of flow using the same
concepts as considered here. However, the similarity conditions, number
(3) and (5) in Equation 66, were not revealed because of his consideration
of a two-dimensional fluctuating flow field only. He evaluated a universal

constant for the flow based on the experimental data of G. I. Taylor.

4, Shearing Stress and Eddy Diffusivity Expressious

The turbulent shearing stress can be written in terms of the correlation

between the fluctuating velocity components. Thus,

(76)

In terms of the similarity variables defined in Equation 61 the above

equation can also be written as

* *
T,, = = pA2 v v!
1] 1]

*
Since vi are of order unity it can be inferred that

2
Tij r - pA or

= ‘Constant) pA2 an



E;,«

From dimensional analysis, the kinematic eddy viscosity, e can be
expressed as

T. 1/2
e = al( ——1-1) L ' (78)

where oy is a constant.

Upon substitution of Equation 77 into Equation 78 and simplifying,

we have

e = + o LA (the + or - sign assures e (79
to be always positive,)

If the fourth similarity condition is substituted into Equation 77 and

79, the shearing stress and the eddy viscosity can be expressed in terms

of the shear velocity. We obtain

2
2 | dv v
(Tre)sh (Constant)1 SRR I T (80-a)
and

- B <\ A -

e = (Constant)1 L |35 - (80-b)
Combining these two expressions we get:

- av _ V. d |y -

(Tre)Sh Pen | dr r ] T PenTar (r) (80-¢)

Similarly, substituting the fifth similarity condition from Equation 66

into Equations 77 and 79 we obtain the shearing stress in terms of the mean

rotation of the flow.



Hence,

av v

2
(Tre)rot (Constant)2 +p L T bt oT (81)
- 2 [dv v
e, = (Constant)2 L (dr + 7
and
- av A ld
(Tre)rot Pen (dr + T = PEy [r dr ( Vﬂ

The above mathematical results suggest that the shearing stiess in
turbulent rotating flow arises due to transport of angular velocity as well
as angular momentum. It should be pointed out here that the widely used
hypothesis that the turbulent shear can be written as a product of a trans-
port coefficient and the shear velocity (as is the case in laminar £low)

is not sufficiently general.

Prandtl's momentum transport theory on the other hand, suggests that
in rotating flows the turbulent shear should be considered as a product of
a transport coefficient and the mean rotation. The present analysis serves
to unify the above conflicting concepts by reducing them to special cases

of a more general result.

If we assume that the stress generated by the transport of each

property is additive, the total shearing stress for rotating flow becomes:

T = (Tre)sh + (Tre)

re rot
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or

2 2
; 2/av _ ¥ 2(qv ¥
Tre = p| (Constant) L ( ar T + (Constant) L ( ac T T
And using Equation 74 we get:
2
T = o 12| (Constant) + (Constant) 2 (a |y
re = ° onstan n Ky dr T
2
_ 2 VA
Tre = pL (Constant)( ar . ) (82)
or using Equation 80-b
av Vi
Tre = P em(sh) dr r (83)
where
- 2fdv _ ¥
em(sh) = (Comstant) L ( ar T )

With the use of the same arguments as above, the total shearing stress

can also be expressed in terms of the mean rotation, We obtain:

dv )
Tre = ° em(rot)( ar Tt ) (84)
where
2(dv , ¥
em(rot) (Constant) L ( ar + - )

And using Equation 74-a we can also write:

2 (av
dr

(<

em(rot) (Constant) L

[a]
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These formulations of the shearing stress have been used by previous
investigators as mentioned earlier. Hoffman and Joubert,(39) for example,
used Equation 84. Kassner(lz) derived Equation 83 by considering a plane

rotating system of coordinates with the assumption that the fluid particles

(13)

used the same

(17)

equation for his vortical flow investigations and Deissler and Perlmutter

are under the influence of d'Alembert forces. Ragsdale

also used the same formulation (Equation 83) for their analysis of the vor-
tex tube. Investigators who used either expression for the shearing stress
have reported agreement of theoretical and experimental results in their

problems.

This is consistent with our previous finding that the turbulent shear
is proportional to the mean rotation as well as to the mean shear velocity,

thus explaining the apparent contradiction between the two hypotheses.

C. SIMITARITY CONDITIONS AND EDDY DIFFUSIVITY EXPRESSION FOR FULLY
TURBULENT SWIRLING FLOWS

1. Similarity Conditions

In turbulent swirling flows, the mean tangential velocity is a
function of the radius and the axial distance. In applying the similarity
concepts for this type of flow, the axial mean velocity will be considered
constant and the mean radial velocity will be meglected. These assumptions
are made to simplify the mathematical analysis as well as the physical

interpretation of the results,

If we use the mathematical procedure described in Section B, and

include the changes described above, we obtain the same set of similarity



conditions listed in Equation 66 and also two additional conditions.

The similarity conditions for swirling flow are:

1.

L

o,V
K6L(§?

K

oV

Pt

77 dz

r

> (85)

In establishing the above conditions, the radial and axial change of

oV

were neglected,
dz

The seventh similarity condition shows that the axial gradient of

angular momentum generates a fluctuating velocity field as well as Reynold's

stresses, This can be seen by substituting condition (7) into v' = Av'
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U

Figure 10: A Fluid Element in a Pipe with Swirling Flow

(in Equation 61) and in Equation 77. 1If we consider an element of fluid
shown in Figure 10, it is obvious that this phenomenon is responsible for
the production of a shearing stress on a plane perpendicular to the z-axis
and in the B direction (plane ABCD). The radial gradients of angular momen-~
tum, i.e, rotation, and angular velocity that is proportional to the shear

velocity generate shearing stresses in the plane perpendicular to the r-axis

and in the § direction (plane CDEF). The latter was discussed inthe last section.



2, Eddy Diffusivity Expression

Referring again to Figure 10, the plane CDEF, it was shown that the

shearing stress is

oV v
Tro = Pen(sh) (‘a_‘r' - ';‘) (83)

where

em(sh) (Constant) L2 (%% - %)

(partial notation is used here due to the dependence of the tangential

velocity on r and z.)

In the plane ABCD, the shearing stress is

oV
T = P€n(ang) 3;) (86)

where

. 2 {oy
em(ang) (Constant) L (g;) o

A resultant eddy viscosity expression for the present case, will be
obtained by simultaneously satisfying the similarity conditions 2 and 4 in

Equation 85.

Equating conditions 2 and 4, we have

w _ Rlw |
dz K, dr r
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The eddy viscosity expression in Equation 86 now becomes

(Constant) L2 (5" - ‘-’) (87)

em(ang) or r

If we take the resultant eddy viscosity to be the vector sum of the

two components, we obtain:

) )
ey = ‘\/(em(sh)) * (Cpcang)’

(gz - %)l -\/kConstant)z + (Constant)2 (87-a)

N v
r

2
(Constant) L S

Substituting the first similarity comndition into Equation 85, the above

equation becomes
N A
e = K (ar r) (89)

where

K = Constant,

Obviously, we can also express the resultant eddy viscosity in terms
of the mean rotation or the axial gradient of the mean tangential velocity,
However, the above form has been used by past investigators and they have

evaluated the constant K based on experimental data for rotating or vortex
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flow. Kinney(31) for example, found it to be approximately equal to 0,028
using G. I. Taylor's experiment of rotating flow between concentric cylinders.

3

Ragsdale also evaluated K from his vortex flow experiments.

In the present investigation, the KZ in Equation 88 waa taken as (Kinney's

Constant)2 times V2 (according to Equation 87-a), yilelding K = 0.0333. The
predicted values for mean tangential velocity at different downstream positions

were in good agreement with experimental data as will be shown in Chapter IX.

The length scale near the wall is assumed to be proportional to the
distance from it in analogy with the first similarity condition in Equation
85. This assumption has been experimentally verified to be correct for tur-
bulent parallel pipe flow up to a wall distance of approximately 0.10 radius
(see Schlichting, "Boundary Layer Theory", p. 510), Hence, with this assump-
tion, the eddy viscosity expression in the neighborhood of the wall was taken

as:

A

0.9 <r 1.0 (89)

e = K2(1 - )2 (

15
t
i<
e a——

In summary, the eddy viscosity expressions for the swirling flow field

in dimensionless form are as follows:

_ 2 2(ov _ ¥ <r<
e, = NRe K r (5; r) 0>-r =0.9
(90)
2 2 Jov v <
e, = N, K (1 -1 (5; r) 0.9<r = 1.0
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Equation 90 was obtained using the same reference quantities as
well as the same procedure in effecting the transformation of the swirl
equation into dimensionless form. (See Chapter VI). The Reynolds

Number is defined as:

with y evaluated at  (85°F, 14.7 psia),



VIII.SOLUTION OF THE SWIRL EQUATION

A. THE DIFFERENTIAL EQUATION

When the eddy viscosity expressions in Equation 90 are substituted

into the swirl equation (Equation 49) we obtain:

CE N Ed o IR | R
(91
where A\= r2 for O0<r 0.9
= (L-12 for 0.9<rS1.0
and the kinematic eddy viscosity is assumed to be always positive.
The boundary conditions are:
(a) v(l,z) = 0
(b) V(r,0) = f£(r) (92)
(c) v(0,z) = 0
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The swirl equation (Equation 91) will be expressed in terms of the
angular momentum of the fluid for convenience.
Letting
B = 1V, where B = B(r,z)

and substituting into Equation 91 and simplifying, we obtain

2 )
%8 _ 1] L 2y (28 _ 28)||[d%a . Lo8
8-5 T W N + KA or r gﬁ rar} (93)
Re
The corresponding boundary conditions are:
(a) B(r,0) = rf(r)
(d) B0,z = O (94)
(e) B(l,z) = O

Equation 93 is a highly non-linear partial differential equation of
the parabolic type, for which a closed form solution will not be attempted
here. Instead, this equation will be solved numerically on a high speed
digital computer. The required boundary conditions (Equation 94) specify
that the angular momentum is zero on the axis and on the stationary pipe,
and that the radial distribution of tangential velocity be prescribed at
some upstream axial location. 1In addition, the axial velocity that appears
as a parameter in Equation 93 must be specified, and this is taken to be a

function of radius only.

B. NUMERICAL SOLUTION OF THE ANGULAR MOMENTUM EQUATION

The angular momentum equation can be written as:

é§—1>§—§+-‘3- (95)

or

e1
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where

1 2y [9 2
el -

Re

Equation 95 will now be replaced by a system of finite difference

The second order derivative will be replaced by three point

equations.
central differences and for the first order derivatives, forward dif-
Figure 11 shows the grid notation for the

ferences will be used.

numerical scheme.

S /L 1L 11010 L)L R

@(1,2.) =0
n-1 h ntl
Jt+i
y 2 ~
d
@(r,O):ri‘(r) 3-1
JANY A

(3 (012) =0

— ‘7!

Grid Notation and Boundary Conditions

Figure 11:

\
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n
Let .
BJ

and replacing

= PB(jar, naz)

the derivative by their finite difference approximations:

We obtain:

Bn+1 . Bn
8 _ i i
dz Az
Bn - sn
9B _ Ipl  "j
or Ar
n n n
2% _ P12yt By,
Brz (Ar)2
nt+l 2D B n D B n
AT I BRI R e L ! Az
BJ (Ar)2 3 I L2 (Ar)2 oEe | P
D-
v 25 gh (96)
(ar)”
Equation 96 is an explicit positive type-difference equation if the

following inequalities are satisfied:

and

2D > ;%; Az : 1
| (ar) )
(97)
L(AI‘) T AT

It can be

shown that the above inequalities are always satisfied in the

present problem due to the assumption that the kinematic eddy viscosity is

always positive (see Equation 91).
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Barakat shows that for stability of the difference equation it

is sufficient that the first inequality be satisfied.

The stability criterion evaluated by the use of the Fourier series
method and von Neumann's condition of stability is discussed in Appendix
III. It will be noted that the criterion is identical to the first con~-

dition in Equation 97, i.e.,

2 7 + rir
(ar)

A marching type iteration of the explicit difference equation was
carried out with the use of an IBM 360 digital computer. It was assumed
that the angular momentum equation is quasi-linear and the coefficients of
the partial derivatives in the equation were evaluated from the known mean
flow conditions at the previous z-step. Twenty subdivisions were employed
in the radial direction, and as many as 500 steps were calculated in the

z-direction. A typical run took approximately 15 minutes (on a 360-40).

In order to verify the theoretical analysis, the predicted decay of
turbulent swirling flow in pipes was compared with experimental results

obtained at IITRI aud with those obtained by Musolf,
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IX. RESULTS AND DISCUSSIONS

A. COMPARISON WITH IITRI'S EXPERIMENT

The experimental set-up that produced swirling flow is shown in Figure 12.
It makes use of a sphere which is connected to a vacuum pump. The pressure i
the sphere was initially reduced to 1,5 psia., Ambient air entered through a
radial inlet section 30" in diameter that houses a cascade of adjustable blades.
The swirling air enters a 3" diameter Lucite tube that is 70 diameters long.
The radial distribution of both axial and tangential velocities were measured at
4 stations downstream located at 4, 36, 72 and 136 radii from the point of swirl

generation.

Since air was used as the experimental fluid, one may question the validity

of the previous theoretical analysis that is based on the assumption of an in=-

78

(28)

compressible fluid. Lavan and Fejer pointed out that for the laminar case
a meaningful comparison between the incompressible solution and the experimental

results for compressible swirling flows having high swirl ratios is possible.

Their arguments can be extended to turbulent flow.

It is usually assumed that for a turbulent flow, the mean flow as well as
the fluctuating flow fields satisfy the continuity equation, The continuity

relation for the mean flow neglecting density and velocity correlation is:

V' (e = 0
or

pV:¥ + oV = 0
For flow with large swirl the density gradient is almost in the radial
direction and the radial velocity component can be neglected in comparison

with the tangential and axial velocity. Therefore,
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FIGURE 12. SCHEMATIC DIAGRAM OF IiTRI’s SWIRLING FLOW EXPERIMENTAL SET-UP.
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Vof/:( %ﬁ" 0, 0)

<1
N
~~
“O
=
g

Hence,
vp'i?:«o

and the continuity equation for the mean flow reduces to:

0 (98)

<1

° ~
V ~
Furthermore, assuming that the density fluctuations are negligible compared

to the mean flow density, then the tangential component of the equation of

motion for compressible fluid is identical to Equation 8.

1. The Initial Tangential Velocity Profile

The first upstream station at which measurement of distributions of
the tangential velocity were taken was situated at an axial distance of
4 radii downstream from the point of swirl generation. This data was

smoothed out and used as input to the program.

Figures 13, 14, 23 and 24 show the initial conditions at Reynold's

Numbers of 220,000, 58,900, 147,000 and 279,000 respectively.

2, The Average Axial Velocity Profile

The axial velocity measurements at different radial and downstream
positions are shown in Figures 15 16, 17 and 18 for the same four flow con-
ditions. The average profile W(r) was evaluated by averaging the measured

values at each radial station. The resulting average radial distribution
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of the mean axial velocity is also shown in Figures 15 to 18, It should
be noted that an initial backflow occurs near the center of the pipe, for

the first two cases.

3. Discussion of Results

After the initial condition and the average axial velocity profile
were established, the numerical solution of the angular momentum equation

was obtained.

The results are shown in Figures 19 to 26. The data shown were obtained
at Reynold's Numbers of 220,000, 58,900, 147,000 and 279,000, Figures
19 and 20 show a comparison between the predicted and measured values of
the radial distribution of angular momentum at different downstream positions.
An examination of the measured data indicates that as the flow proceeds down-
stream, the region that exhibits an irrotational behavior widens and progressses
towards the center of the pipe. As a result, the point of maximum tangential
velocity shifts radially inward as can be seen in Figures 21 to 24 that show
a comparison between the computed and experimental values of the tangential

velocity at different radial and axial positions of the flow field.

An ingpection of Figures 19 to 24 show a reasonably good agreement
between theory and experiment. Figures 19 and 20, which represent a case
where the Reynold's Number as well as the swirl ratio is high, show an
excellent agreement between theory and experiment in the outer region all
the way to the last station downstream (z = 136 R). 1In the region near
the center there is a discrepancy which is due to a number of reasons.
Firstly, in this region there is an initial backflow as seen in the axial

velocity measurements at z = 4R (Figurel5), while the average radial
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distribution of axial velocity used in the analysis was always positive for

this case.

An inspection of the swirl equation,
1
- + e
v _ e ™ BC__I_J_'C
dz W or W

indicates that if W is negative, %g being always negative , the first

term on the right hand side will represent production rather than dissipation.
The noted discrepancy for this region is therefore easily explained if we
recall that in the analysis U was neglected and W was always positive,
Secondly, an examination of Figure 15 reveals that in the central region,

the axial velocity changes markedly as the flow progresses downstream.

Hence, even if W is always positive, §% is large and it may not be justi-
fied to neglect U here. It is conceivable that the convective tgrm %'C

may be larger than the diffusive term, Lastly, the discrepancy may also

be in part due to the fact that the experimental probing of rotating flows

near the axis is extremely difficult and the data cannot be considered ac-

curate.

Both Figures 20 and 22 that depict flow at low Reynold's Numbers with
high swirl ratio, as well as in Figures 23 and 24 that represent high Rey-
nold's Numbers with low swirl ratio, show good agreement between theory and
experiment up to an axial distance of about 72R, Further downstream the
actual decay is faster than predicted. An examination of the measured radial
distribution of the angular momentum for z > 72R, reveals that a large part
of the radial flow field has an irrotational behavior, It has been pointed

out previously that for this type of flow some of the similarity conditions



are either infinite or indeterminate. As a result, the eddy viscosity model

that was used is not strictly applicable here,

Figures 25 and 26 show the radial distribution of the predicted eddy
viscosity at different downstream poéition, and its axial variation at
r = 0.85, 0,70 and 0.50 for a Reynold's Number of 220,000. An inspection
of Figure 25 reveals that the eddy viscosity increases with radius up to
the vicinity of the wall, and then decreases rapidly. In the axial direc-
tion it initially increases and then decreases further downstream. These
variations decrease with radius so that the eddy viscosity tends to attain

a constant value for all downstream positions in the inner region.

The theory was also applied to a swirling flow field generated by
twisted tape inducers inserted in the inlet section of the pipe. This is

discussed in the next sectiom.

B. COMPARISON OF THEORETICAL RESULTS WITH MUSOLF 'S MEASUREMENTS

The theory was also applied to analyze the decay of the tangential
velocity as well as the angular momentum profiles for a tape-induced,
fully developed turbulent swirling flow field in a pipe. The predicted
values are compared with measurements made by Musolf(33) in 1963 in a
2-inch I,D. tube., This problem was also considered by Kraith and Sonju(zl)
in 1965. They used an empirically determined constant value of eddy vis-
cosgity for the swirl equation and obtained an analytical solution in terms
of Bessel-Fourier series for the resulting linear equation. The resulting
velocity profiles agree qualitatively with experimental data at distances

less than 20 diameters downstream.
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1. Initial Conditions and the Mean Axial Velocity Distribution

Figure 27 (after Smithberg and Landis(zs)) depicts the average swirl

velocity profile at the point of generation where a twisted tape insert

(21)

having a pitch of 10 pipe diameters was used. Kreith and Sonju approx-

imated the given profile by the expression

V(r,0) = f£(r) = % [ 6.3t - 0,013 (1.1 - r)~2-68 }
where H = pitch of the inducer tape.

Smithberg and Landis also reported a mean axial velocity distribution
at the same point in the flow field. This profile, shown in Figure 28, was

used in the present analysis in solving the swirl equation.

2, The Eddy Viscosity Model and Results

An inspection of the initial swirl velocity distribution (Figure 27)
indicates a predominantly solid body rotation in a large part of the flow
field. Since the eddy viscosity model which was derived from similarity
theory does not apply here, a different expression will be used. Figure 26
shown that the eddy viscosity is approximately a constant in the inner
region where the mean flow tends to be rotational. Following this trend
it will be assumed that the eddy viscosity is independent of r and z in
the region of predominantly rotational mean flow. This region was arbi-

trarily assumed to extend up to the radius of maximum tangential velocity,

(25)
Ragsdale suggested that for vortex flow, e should be directly

proportional to the tangential Reynold's Number., Following his suggestion

with a slight modification such that the axial Reynold's Number will be used
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in the present case, the eddy viscosity expression in the region mentioned

above takes the following form:

= . 0O<r<r 99
°n ¢ NRe = 7 = "max (99)
where C = Constant.
Toax = radius with maximum tangential velocity.

An approximate value of the constant was obtained by considering only
the region with rotational mean flow. Assuming that the mean axial velocity
is a constant (see Figure 28) the swirl equation was solved by the method
of separation of variables and the solution was expressed in a Fourier=-
Bessel series. It was observed that for large values of z, V(r,z) is
practically determined by the first term of the series. Hence, substituting
Musolf's measurements which were taken at the farthest downstream position

(100R), an average value of C was found to be approximately 0.00246,

At the outer region, that is at radii larger than the radius of
maximum tangential velocity, the expression for the eddy viscosity was

the same as that used previously (Equation 90).

Figure 29 shows a comparison between the calculated values of the

tangential velocity and the measurements obtained by Musolf(33) at a
Reynold's Number of 48,000. Figure 30 shows the predicted and measured
angular momentum profiles for the same flow conditions. An inspection of

these figures reveals qualitatively good agreement between theory and

experiment.
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X. CONCLUSIONS AND RECOMMENDATIONS

1, Turbulent swirling flows with coustant physical properties were
investigated analytically using mixiﬁg length theories., The tangential equa-
tion of motion (swirl equation) derived by applying G. I. Taylor's modified
transport theory and the concept of isotropic transport coefficients, is of
the same form as the tangential component of Navier-Stokes equations for

fluids with constant viscosity.

2. Theodore von Karman's similarity theory for the turbulent mechaunism
was extended to rotating as well as swirling flow in a cylindrical geometry.
A three-dimensional fluctuating velocity field was considered in both cases,
and similarity conditions were obtained. It appears that for rotating flows,
the shearing stress (Tre) is proportional to both shear velocity and mean
rotation of the fluid. According to the usual concept of a mixing length,
this indicates that the fluctuating velocity field is related to the radial
transport of angular velocity and to the exchange of angular momentum be-
tween concentric layers of fluid. It can also be shown from the similarity
conditions that the shear velocity and mean rotation are related to the radial

transport of vorticity.

3. Assuming that the similarity conditions are simultaneously satisfied
in the flow field, more than one form of similar velocity profiles were found
to be possible for rotating flows. This is in agreement with the experimental
obgservations of G, I. Taylor who found two very different turbulent velocity

profiles depending on which of the concentric cylinders was rotated.



The similarity conditions indicate that different forms of similar
velocity profiles may exist at different regions of the flow field at the
same time. This is in accord with the well known structure of rotating flows;
there is a gradual change of flow characteristics in the radial direction,
starting with predominantly solid body rotation near the center to V = Constant-

(r-m), in the outer region (m varying from 0.50 to 1.0).

4, For a fully developed turbulent swirling flow in pipes, von Karman's
similarity theory gives similarity conditions identical to those for rotating
flows, and also additional conditions which reveal that the fluctuating vel-
ocity field (hence, the turbulent stresses too), are also related to the trans-
port of angular momentum in the axial direction. This results in a turbulent
shear stress distribution in a plane perpendicular to the z-axis and in the

direction (Iée) in addition to the shear stress, T which arises due to the

rg’

radial transport of both angular velocity and angular momentum,

5. The presence of turbulent stresses Tr and Tzein swirling flow give

0
rise to eddy viscosities at different planes of a fluid element. A resultant
expression for kinematic eddy viscosity (assumed always positive) was formu-
lated using the assumption that the similarity conditions are simultaneously
satisfied in the flow field. The expression is:

e = K2r2 (%% - %) 0<r<0.9
The constant K was found to be equal to 0,0333, This value was deduced from

the one evaluated by R. B. Kinney (1967) for rotating flow using the experi-

mental data of G. I. Taylor.
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6. Fér the region near the wall, 0,90 < r < 1.0, the mixing 1éngth
was assumed proportional to the wall distance, The assumed expression is
analogous to that made by L. Prandtl in his studies on parallel flows in
channels and the region of validity is based on the result of experimental
studies of parallel flow in pipes. The proportionality constant was assumed

to be equal to that used in the interior. Thus, near the wall, we have:

e = K21 -n? (X . 1) 0.90 <r < 1.0
m or T -
7. Some of the similarity conditions become indeterminate or infinite

in value for a purely rotational (solid body rotation) as well as for irro-

tational flows. This invalidates the assumption that the similarity con-

ditions are simultaneously satisfied in the flow field. As a result, the

eddy viscosity expression is not strictly applicable for these cases.

8. The derived swirl and eddy viscosity expressions were used to
study the decay of angular momentum of a turbulent swirling flow field
inside a stationary pipe. Two sets of measurements were used for compari-
son between theory and experiment. The first which was taken at IITRI (1967)
considered swirl generated by radial blades with measurements taken as far
as 136R downstream. The second set was obtained by Musolf (1963) for swirls

generated by tape inserts inside the pipe.

In the first set, the agreement between theory and experiment was very
good all the way up to z = 136R for the case when both axial Reynolds Number

and swirl ratio were high (220,000 and 11.8 respectively). For cases where



the axial Reynolds Numbers are high but the swirl ratios are low or vice
versa, good agreements were obtained only up to z = 72R. Further downstream,

the actual decay is faster than predicted.

An inspection of the measured data revealed that as the flow progresses
downstream in the latter case, a small region near the wall first exhibits an.
irrotational behavior. This region widens further downstream until a large
part of the flow field has constant angular momentum for which the kinematic
eddy viscosity model used, does not strictly apply as was pointed out in

item 7.

In the second set of data, the agreement between theory and experiment

was also good.

9. Due to the tendency of the outer region to exhibit irrotational
motion as the flow progresses downstream, the radial position of the point
with maximum tangential velocity shifts towards the center. This character-
istic of the flow field is manifested also in the theoretical results using

the derived mathematical model of eddy viscosity.

An attempt was made to find an eddy viscosity model that is independent
of the radial and axial distances, but the calculated results using such a
model did not agree with the measured data. The point of maximum tangential

velocity shifts away from the center, contrary to experimeptal observations.
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APPENDIX I

DERIVATION OF THE EXPRESSION FOR THE FLUCTUATING VORTICITY VECTOR
IN A TURBULENT FIELD

4

Y
Figure A-1
Assumptions:
1, The components of the mixing length vector (see Figure A~1l) are
very small,
2. The space derivatives of the L's are also very small.

3. As a result of assumptions 1 and 2, terms quadratic in the L's

and their space derivatives can be neglected,
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Let:
(§O’TIO’ go) = wvorticity of the fluid element at point (a,b,c)
at time to. This is also the mean vorticity at

(a,b,c).

¢ 0.l

the mean vorticity components at some point

(x,y,z) after travelling the mixing length I,.

fluctuating vorticity components at (x,y,z).

(f' ' 7 " C )
By Taylor series and neglecting higher order terms:

o= t-ud b8

1 ox 2 dy dz
3 d d

Ny = M- 14 5_12 - Iy 373 - 1 87'3 (I-1)
3 4 ¢ >
Qo=C'L1$'L2§>§'L3az

At point (x,y,z), the vorticity of the fluid element is (£+§',

7]+T[', €+ g'). Using Cauchy's equation of expressing the vorticity at
any point in terms of its vorticity compomnents at some previous time: (3
E+ 8 = LE T+ L
Te M = & + N, & + (& x-2)
Crlr = LT85 + 48
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The equation of continuity in lagrangian form is:

d(x z) d(a, b, ¢) _
SCa, b, oy -~ 1 ° S v, - ! (1-3)

From Figure A-1l, the following relations are obvious:

L1 = x =~ a, L2 = y = b, L3 = 2z = C (1-4)
Thus:

T T e S PR

dx d3x °  dy dy *  dz dz

2a _ M ® _ M de _ (1-5)

oy dy ’ dx ox °’ dx ax

e _ . » _ % e _ %

dz ox °’ dz dz ’ dy dy

Expanding the determinant of the continuity equation (I-3), and

da Jda

substituting the values of S’ g;, eev e , from Equation I-5) and using

assumptions 1, 2 and 3, one obtains:

oL L oL

or in vector form:

V'L -=o (1-6")

This is the continuity equation in terms of the mixing length vector, L .

With the aid of the continuity equation, the derivatives of x, y aad z

with respect to a, b or ¢, can be expressed in terms of the derivatives of
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a, b and ¢ with respect to x, y or z.(4o) Thus:

3a, b . 3 | 3a, e +_B_<_:_[Bga=b2 .
o(x, y, ©) B(Y, z) T ox B(y, z) ox | a(y, 2)|
Hence:
9x _ o(b, ©)
da (ys 2)
9 _ 9o(a, ¢
db Ay, 2) (1-7)
ox _ 9(a, b)
dc Ay, 2)
Substituting Equation I-5 into Equation I-7 we have:
3 _ % .3 _ ., e
da  dy Oz dz  dy
oL oL JL JL
- 1 - =3y . (e =2y (-3
=1 -5 -5 - G5 5D
=1_§£g_aL3
dy dz
oL
But from Equation I-6, the last two terms can be represented by S;—. Hence,
oL
Ox 1
5a - 't &
Similarly,
ax _ M
3b ~  dy
(1-8)
x _ M
% = dz
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The derivatives of y and z with respect to a, b or c can be derived
using the same procedure as above. Substitute Equation I-8 into I-2, and
using Equation I-l and then solving for the fluctuating vorticity results

in the following relations:

AL dL dL gg f §
N e | 1 1 N . e s
f N § = T T( Jdy + C S5z~ 13k L2 dy - L dz (a)
Similarly for 7’(' and é' : (I-10)
oL oL oL .
Vo 2 2 2 N Y| d
T[ - 5_8—}}— + T{ dy + (- dz L dx L dy L3 gg (®)

v
|
vry
Q| o/
Xl
w
+
|
Qf o/
<] e
w
+
VN
Q] o/
Ny
w
1
|
1
=
Q/
v
=
Q/
vy

3 3% (c)

From vector analysis:
V.-a =0 (1-11)
or

éf + Y + ac = 0 (1-11")

dx dy dz

oL
Solving for géin I-11' and a—x-]-'- in Equation I-6 and substituting these into

Equation I-10a, the following expression for the vorticity in the x-direction

results after simplification:

§ - Sal - by - S ad - 1) (a)

Similarly for the vorticity in the y and z directions:

@€, - 1,6 (b)

(1-12)

OIIO/
"

nr - L ag - -



py . O
§' = = (W - Lg) - g_y(LZ4 - Lgp

Vectorially, Equation I-12 can be written as:

Q' = Vx(Lx0D

(1-13)
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APPENDIX II

APPLICATION OF THE MODIFIED VORTICITY TRANSPORT
THEORY TO THE ANALYSIS OF TURBULENT FLOW

With the use of Cauchy's Equation (I-2), the component of vorticity at
any point can be expressed in terms of its vorticity components at some

previous time.

§+ ¢

o da

§- A% + 7? ox + ox
. > > d
Nant = L5+ M5+ G5 a-2)

(g =6 M B+ &

The modified vorticity transport theory asserts that a lump of fluid
leaving a certain position with vorticity components of the mean motionm,
and upon traversing the mixing length, the vorticity components are re-

tained until it mixes with the surrounding fluid in the new position.

Mathematically, the above condition implies that:
£+ &
nm+n -7, (11-1)
(+ ¢ =4,

Comparing Equations I-2 and II-1, it follows that the following relations

"

§o

hold:.



¥
|
oy
|
R
]
-

da -
(I1-2)
> _ 3 _ 3y _ dy _ ¥ _ = _
S " T SmTSEcSsScS§s -0
From Equation I-8,
L . oL
ox 1 o) 2
5a = Pt & 5 = 1+t 5
= _ M y . X2
ob ~ Jdy °? a  Ox
x _ N y . %
dc _Bz : d¢  dz
T - F
d¢c 3z > da _ ox’ b dy

Substituting the values from Equation II-2 into Equation I-8 results
in the following values of the space derivatives of the components of the

mixing length vector:

dL,

1

S - ©°
BLI_O
Sy
aLl o
dz

This means that the component L1 is a constant. Similarly,

BLZ aL2 BLZ

= - % "5 -0
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BLB aL3 aL3

> ° %5 "5 °=°

From the above results it appears that the concept of the modified

vorticity transport theory requires that the componeants of the mixing

length vector are constants. This also means that,
L = Constant (11-3)

where L is the mixing length vector.
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APPENDIX III

STABILITY ANALYSIS OF THE EXPLICIT DIFFERENCE EQUATION

The solution of the finite~difference equation represented by Equation

96 can be written as a Fourier series, the form of which is:

n_ n i(jAr) (I11-1)
Bj = E: ¥ - e
K|

where:

Y
i =1\ -1

n and j are positive integers

amplification factor

Substituting Equation (III-1) into Equation 96, we obtain, after some

algebraic manipulations:

R E I ge-tCMD)]. LG
J
or
\y = 1 - T + ’Yei(jAr) + ¢e-i(jAr) (III'Z)
Since
eii(jAl‘) = cos(jAr) + i sin(jAr)

Equation III-2 further reduces to

¥ = 1 = 7 4+ (y+ @ cos(jar) + (v - @) i sin(jAr)
(III-3)
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Where:

T = 2D + rir Az
(ar)
D B
Yy = 2 + TAL Az
(ar) A
p = -2 7 bz
(Ar)
.y L1 . 4l) .,
The condition of stability according to von Neumann is
|| =1 (111-4)
Taking the worst case of Equation III-3, i.e., where
cos(jAr) = ~1
sin(jar) = O
we have
Yy = 1 - (T+vy+ & (I1I-5)
To satisfy the stability condition as given by Equation III-4, the
following inequality must be true in Equation ITI-5:
-2 S ~(T+y+® S0 (III-6)

Since the right inequality of Equation IIT-6 is always satisfied, the
stability criterion will be obtained if we consider the left inequality,
Thus:

(T+vy+® = 2

Substituting the values of 7, vy and @, the stability criterion becomes:
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2D2 B < 1
(ar)

(II1-7)

This is the same expression as that given in Equation 97.
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