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NOTATION

Cross-sectional area of a rib

Cross—-sectional area of a stringer

Length of plate in the x~direction

Length of plate in the y~direction

Flexural rigidity of the plate = E_>/12(1-V %)

Orthotropic Rigidity constant = D + (E?Ir/a)

Orthotropic rigidity constant = D + (ESIS/I)
Distance between uniformly spaced ribs |
Modulus of elasticity for the plate

Modulus of elasticity for a rib

Modulus of e%asticity for a stringer
Torsional rigidity of a rib

Torsional rigidity of a stringer

Shear modulus of elasticity of a rib

Shear modulus of eiasticity of a stringer
Orthotropic rigidity constant = D

Plate thickness

Bending rigidity parameter for a stringer =
E_I s/aD

' Distance between uniformly spaced stringers

Mass parameter for the plate = a4g‘ph/4‘\'(4D

Critical in-plane force acting on the plate in
the x-direction

Static in-plane force acting on the plate in the
x-direction
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Nt variable in-plane force acting on the plate in
the x-direction
. N, Total in-plane force acting on the plate in the
x-direction
N; In-plane force acting on the orthotropic plate
in the x-direction = N, + (P /4)
N, o Static in-plane force acting on the plate in the
¥ y—dlrectxon ,
N " Variable in-plane force acting on the plate in
Y the y-direction
N, Total in-plane force acting of the plate in the
A 4 y-direction
N¥* - In-plane force acting on the orthotropic plate in
4 the y-direction =-Ny + (Ps/l)
P, Axial force acting on a rib
Pg Axial force acting on a stringer
T Kinetic energy of the stiffened plate
t Time
v Potential energy of the stiffened plate

u(x,y,z,t)Deflection at {x,y) in the x-direction
vix,y.,2z,t)Deflection at (x,y) in the y-direction

w(x,y.,2,t)Deflection at (x,y) in the z~-direction

X,¥.2 Cartesian coordinates (z out of the middle-
. surface of the plate)
 a . 2 2
Sy Critical buckling parameter = b N&cr/ﬂT D
= Static in-plane load parameter = bZNxo/n’ZD
o Variable in-plane load parameter = bZNxt/m’ZD
B Aspect ratio = a/b
3 Frequency parameter = & 2/4112
e Frequency of the in-plane loading
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Mass density per unit volume of a rib

Mass density per unit volume of a stringer
Natural frequency
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1. INTRODUCTION

1.1 Objective of the Investigation

The object of this investigation is to determine
theoretically the boundaries of the regions of parametric
resonance of a simply supported stiffened rectangular plate
with closely spaced stiffeners of uniform size subjected to
periodic in-plane boundary forces. The theory is developed
so as to apply to plates reinforced by either or hoth
longitudinal and transverse stiffeners. The effects of
torsional rigidity and rotary inértia of the stiffeners are
also taken into account. Finally, the effects of size and
location of the stiffeners on the boundaries of the regions
of parametric resonance are studied.

1.2 History

Parametric instability mainly concerns the study of the
response of a mechanical or elastic system to certain types
of periodic loads. The term "parametric instability" stems
from the fact that the time-~dependent load appears in the
coefficients (parameters) of the differential equation of
motion of the system.

The problem of parametric instability has been studied
by several investigators (1, 2, 3, 4). A complete history
of the parametrlc instability of elastlc systems through
1951 is glven by Beilin and Dzhanelidze (5).* A more
recent review of the history is given by Evan-Iwanowski (6,7).

An article by Beliaev (8), published in 1924, is
considered to be the first analysis of parametric instability
of a structure. He studied the parametric response of a
simply-supported beam subjected to periodic axial loads of
the type P(t) = PQ-!-Pt cosOt.

The nonlinear problem associated with the parametric
response of an elastic column was studied by Weidenhammer (9, 10),
by Bolotin (11, 12), and by Grybos (13). Bolotin and Grybos
not only studied the nonlinear effects in the principal
region of instability, but also the higher order parametric
instability regions.

. .
Numbers in parenthesis designate references listed
in the Bibliography.



Experimental verification of the principal region of
parametric resonance reported by Beliaev and others was first
obtained by Utida and Sezawa (14). Bolotin (1ll), verified
the existence of the principal region of parametric resonance
and he also verified the behavior of the column within the
region of instability. The most extensive experimental investi-
gation of the boundaries of the principal region was performed
by Somerset (15,116), in 1964, who was the first to take P_, P
and of the axial load, P(t) = P + Pl cos €t, to be 1ndep8nde t
variables.

The research in the area of parametric instability of
plate structures is not as extensive as for columns. The first
investigation on rectangular plates was done in 1936 by
Einaudi (17).

Bolotin (18, 19), was the first to investigate nonlinear

- problems of parametric response of a rectangular elastic plate.
Somerset (20, 21, 22) in 1965 reinvestigated Bolotin’s non-
linear problems, and his investigation is mainly concerned
with an experlmental study of the nonlinear problem. This
experimental study is the only experlmental work that has

been performed in the area of plates prior to the work done

in the investigation presented here.

vu and Lai (23, 24), 1966, investigated the linear and
nonlinear problems of parametric response of a sandwich plate.
Anmbratsumyan and Gnuni (25, 26), 1961, studied the linear and
nonlinear problem for an infinitely long three layered plate
and took into account linear damping. The nonlinear problem for
three layered plates was also studied by Schmidt (27) in 1965.

Research in the proximity of the area of parametric
instability of stiffened plates was done by Ambratsumyan and
Khachaturian (28, 29) in 1959 and 1960. They studied the
vibrational and dynamic stablllty characteristics of
rectangular anistropic plates uszng a theory not based on
Kirchhoff's hypothesis.

1.3 Background Information

There are several mathematical models which can be used
to represent a stiffened plate system. In this investigation,
two different mathematical models are considered; which are:
(1) The plate and stiffeners each considered as discrete
elements.
(2) The stiffened plate considered as an equivalent orthotropic
plate.

The first mathematical model is an “exact" model. The
parametric resoni#nce of a rectangular plate reinforced with
both longitudinal and transverse stiffeners using the "exact"
model was studied by Duffield and Willems (30). The second



mathematical model requires some justification for its use
since it is an approximation. An orthotropic structure has
mechanical properties which possess three orthogonal planes

of elastic symmetry at each point. Examination of a stiffened
plate shows that its overall mechanical properties are -
different in different directions. '

Gerard studied the orthotropic model for stability
problems and states (31) that "orthotropic theory may be used
for compressed plates with three or more stiffeners, for
plates in shear with any number of longitudinal stiffeners
and for transversely stiffened plates for relatively small or
large values of EI/bD" (bending rigidity parameter). Gerard's
statement for compressed plates is based mainly on the results
of Seide (32). 8Seide's results show that. the error in the
stability parameter using the orthotropic plate theory for
stiffened plates with three stiffeners is of the order of ten
. percent. The error increases for small values of the bending
rigidity parameter of the stiffeners. The error decreases,
however, with an increasing number of stiffeners.

Using an "exact" model, Wah (33) studied the vibrational
characteristic of a stiffened plate and compared his results
with those of an orthotropic plate. His study reveals closer
agreement between the "exact" model composed of three stiffeners
and the orthotropic model, as compared to the stability case.
However, only one parameter for bending rigidity was studied.

In the investigation, several assumptions are made when
the stiffened plate is treated as consisting of discrete elements.
When the ribs and stringers are of a uniform size respectively
and are closely spaced, the stiffened plate can be considered
as an equivalent orthotropic plate. The problem of treating
the stiffened plate as an equivalent orthotropic plate lies in
the determination of the equivalent orthotropic rigidity
constants for the plate. There are both experimental and
theoretical methods available for the determination of the
rigidity constants.

Procedures to determine the rigidity constants experi-
mentally were devised by Hoffman and his coworkers (34, 35, 36)
and Beckett (37). The trouble with the experimental determination
of the rigidity constants is that the plate must first be
designed with no knowledge of the magnitude of the rigidity
constants and then redesigned after the rigidity constants are
found. Huffington (38) devised a theoretical method for the
determination of the rigidity constants of a stiffened plate
with only closely spaced ribs. He based the eguivalence of the
real system and the orthotropic system upon the equality of
their strain energies. An experimental verification of his
results showed good agreement. Another approach used by several
investigators (37, 38) is to average or “smear out" the elastic



and geometric properties of the stiffener over the stiffener
spacing. The advantage of the theoretical approach is that
the obtained equivalent rigidity constants are expressed in
terms of the stiffened plates elastic and geometric properties.



2. THEORETICAL ANALYSIS

2.1 Assumption

The investigation presented in this analysis is limited
to a dynamic system so constructed that the stiffeners are
attached to the plate in such a manner that the middle-surface
of the stiffeners coincides with the middle-surface of the
plate. It is assumed that the assumptions of both the classical
plate and beam theories hold for this system. It is also’
assumed that:

(1) The plate, ribs and stringers are fabricated from
isotropic materials

(2) The ribs and stringers respectively all have the same
elastic and geometric properties

(3) A perfect bond exists hetween the plate and the
stiffeners

In this investigation in the in-plane loading is taken to
be periodic in nature. The.magnitude of the in-plane loading,
applied at the boundaries of the system, will propagate at the
speed of the longitudinal frequency of the system. If the
frequency of the periodic in-plane boundary loading is taken to
be considerably below that of the longitudinal frequency, it is
reasonable to assume that the magnitude of the loading is
independent of the space coordinates of the system. This
implies that the whole system instantaneously senses the
magnitude of the loading and that the in-plane inertia effects
due to the periodic in-plane boundary loading are negligible.

2.2 Basic Energy Expressions

The kinetic and potential energies of the eguivalent
orthotropic plate can be cbtained directly from the kinetic and
potential energies of the stiffened plate when it is considered
as a discrete element model by using the "averaging” or "smearing
out” technique. The total potential energy of the discrete
element model is the sum of the strain and external potential
energies. In this investigation the external in-plane forces
are limited to those which are expressable in terms of a time~
dependent potential. Thus, for the discrete system the total
potential energy (39) is

V_Q_” [($%+ £xF-20-vi[ Sy Lo - (ST ady -
a b @
-.Lj B_ + NY( a«w-&- Evalei (1 fw Pdx +

dx{ + G.-A‘n. 5( Ndx  +
x- Ry o DR IY/ym(n

EoKI

K|
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in which E and E . are the modull of elastxclty, I_. and I k
are the mofiénts ofSEnertia, and Gpjdyj and GskJsk aré'the °
torsional rigidities at the it rlﬁ and kth stringer respec-
tively, see FPig. 1. (See notatxon page for the definition of
the remaining symbols in Bg. (l).) The effect of the torsional
rigidity.of the stiffeners is included in the determination of
the total potential energy, Eq. (1), for the dynamic system.
The averaging or "smearlng out" of the effects of the
stiffeners results in the following equation for the total
potential energy, which is

“iﬁ[(m%l‘)(% +(D+E.;L.X Lot +2DV %:“E i:,: *

(‘ZDO-—‘V“)-ﬁ-GrEp * G.;.\:, ( (Pr + Nx)(bw _
d dwdy

""(_EE_-FN*( l‘f’__)l d'ﬁd\( _— (2)
L d~

in which d is the spacing between the centers of the ribs
and 1 is the spacing between the centers of the stringers.

The total kinetic energy of the discrete system is the
sum of the kinetic energies of the plate and the stiffeners (39).

Thus the total kinetic energy is

[- 3 b
T= 1 (awji xTex Q -\-lw( %’.vj).._-‘]d‘ﬁdy *
(3 DX 3k
R & ' 3 " k3 2 -
¥ Z g[(’m Ar-)-( + T b"'v;g KW I.-;.(a w dxe +
Z” 8% s(ﬁn(.a. OR S/y=a b\{b‘t o]

Y b
+1 Cane A«( + T )‘ +Ta/Bw ¥ 4
2 E. g[ ) (b'\' 3t ek 2% e YR Z"‘ (3)

in which Ipy and I are the mass moments of inertia per unit
area of a small characteristic element of the plate about axes

x' and y' which pass through the center of gravity of the element
and which are parallel to the x and y axes respectively, I' .,
I"yi and I° are the mass moments of inertia about the

neutral (') and lomgitudinal (") axes for the ith rib and kth
stringer respectively. The effect of rotatory inertia is
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Fig. 1 An Equivalent Orthotropic Plate



included in the determination of the kinetic energy. Eq. (3},
for the dynamic system under consideration. When the effect

of the stiffeners is averaged or "smeared out" the expression
for the kinetic energy takes the form

T | § g[(?Ph + OnAr + @Ac,,\( +(Ip.,.+',§. % ];j,._ i':v;lh)‘). N

(I?-r *'_1;_‘_» + 1% Iw )"] dxdvy - (4)
d A B .

2.3 Hamilton's Principle

The dynamic behavior of a continuous system can be
formulated in terms of Hamilton's principle. Hamiiton's
principle is essential to this investigation in that it is the
- starting point for the determination of the equations of
motion and boundary conditions for thie-dynamic systems under
consideration. The mathematical statement of Hamilton's
principle for a conservative system is

TA=0O i )
in which
T
A= L ax - (6)
.h!
and
L=T-v —— (7)

in which T is the kinetic energy of the system, V is the
potential work energy of the noninertial forces acting on the:
system, and tj and ty are two instants of time. The expression
A is generally referred to as the "action integral" and L is
known as the “Lagrangian function®. The formulation of the
dynamic behavior for the systems under investigation in terms
of Hamilton's principle can be obtained by the substitution

of Egs. (2) and (4) into Eg. (5), which results in

q, O

A § X S, [(ppha, PrAr +?;As)( ) (Im-&lv"“.tf)

i, &

oo Tev L L) B 5 (0B (S
at av. >t ax p. S

—-((}.- Eﬁla)(b"w 2DV Iw BW —/2D0-V)* Gede +§g§% .
L > or*  ax* d L

(B @ G e @




2.4 Equations of Motion and Boundary Conditions

When the behavior of the system is formulated in terms of
Hamilton's principle, the problem reduces to the determination
of the necessary and sufficient conditions on the function
w(x,y,t) such that the integral A of Eq. (8) is stationary.
The determination of these conditions requires the use of
calculus of variations, see references (40, 41, 42, 43).
The necessary conditions which the function w must satisfy
generally take the form of differential equations with admissible
boundary conditions. The sufficient conditions are mathematically
more difficult to determine. However, Hamilton's ‘principle,
based on physical considerations, serves as the sufficient
condition.

In this study, the function w(x,y,t), with continuous
fourth order partial derivatives in R, is taken to be the
function which makes the integral A in Eg. (8) stationary.

A comparison function in the neighborhood of w{x,y.t) can be
constructed of the form

WY D)= Wk, Yit) + €N (X,Y,t) —= (9)

in which € is a small but otherwise arbitrary scalar and
rL(x,y,t) is an arbitrary function with continuous fourth
order partial derivatives which vanishes at the end points
t =ty and t = t;. This last condition on N_is required
because of the formulation of Hamilton's principle. Since
w(x,y,t) gives the integral A a stationary value, then this
implies that for Ww(x,y.t)

A (X)) = A W) === (10)

Equation (10) reveals that the integral A(w+€n ), as a function
of € , takes on a stationary value when € = 0, Therefore,
the necessary condition for A(W«-!-erl) to have a stationary
value at € = 0 is

d:ée) =0 —— (11)
e=o

The replacement of w(x,y,t) in Eq. (8) by the comparison
function given by Eg. (9) and the corresponding application of
Eg. (11) to Eq. (8) gives
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aydt dydt At ¥
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After considerable manipulation and applying the technique of
integration by parts or the divergence theorem

U diediig = (U 2xs de --- (13)
bxa- 3n

in which W is a continuyous function, Xj is the ith coordinate
of a set of q coordinates, § is the surface or contour of the
region R, and n is the normal to 8, Eq. (12) takes the form

. .
§ E‘(Q?h +& A _PzA;) IW * (TexaI¥+Le TW o+
d. L

S d L/ e
t, °
Tpy+Iv + 1o — (D+E/ L, (mg_,;i Fw —
f( a2 bx"&f." ( ) ) W
— 2DV IW = 2D (V) * GeTr + Gs I\ MW —/ReeNN Fw —
bx"'by 4 L/ >~ By = ax*
<q
— (&_ + Ny iﬂ] QdXdyd“b +j‘ % {[‘(IP’("'L"!'*L) a‘w +
1 " d L) aw
+-<D+ Eald W +Dv &W_+ /20 G-v) +e‘-3- +6 :'.,) Tw_+
X ay® 25 by %E ¥ dy

(_&*Ny) hw] dy n+[- (th‘«__t.}.ﬂ_f% Ew _+OVIEW
d x> WAk
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The application of the »fundamental lemma of the calculus of
variations" to Egq. {l14) together with the knowledge thatn is

an arbitrary function yields a partial differential equation
with admissible boundary conditions that constitute the necessary
conditions on w(x,y.t) for A to be stationary. The partial
differential equation that results from Eq. (14) is

(Pph 4+ BeAr + +@ Aq;\ 3W —~<I.Px +1r~ +1s _—
d -Q. b"ﬁ“ bs/ B‘h“
-—-(Iw+ Ih + I 3w+ <D+ E I $w o+ (‘LD*Gr T +
W™ x4 d

'\“_@q J&) b4w + (D‘\"E_Slﬂe) bW + q_ +N‘¥. b W +
Bx“b\/"

% (Pﬂa +Ny> _b____ﬂ'- o e (15)

The determination of the admissible boundary conditions from
Eg. (14) for a rectangular region requires the appllcatlon of
the following relations 3x/ on =0 forn =y, ax%x/3dn =

for n =x, Jdy/dn =0 forn=%x%, and jy/adn =1 for n = y.
Thus, the boundary conditions for the edges of the plate
parallel to the y-axis are:

D W +'\/’X‘w +ELe aw + Gph‘-a-erm- *GsTe) OW -

O w4 a L) ooy
- Iw*'lr-x- ) Fw +<Pu- Y\ 2W =0 - (16)
vt XS
W prescribed —= 1= O ——— (17)
DRAW - VEW\ +ErLr ¥w =0 —— (18)
x> dy* d 3x™ ‘

dW prescribed ~» %ﬂ_"—? = —— (19)
A 4
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in Eg. (16), G, is the shearing modulus of elasticity for the
plate. The boundary conditions for the edges of the plate
parallel to the x-axis are:

DEW + V. IW V+Eale BW + (Gph® + G I + G I W —

by® reres e N - R WA T,
-(IW + Iy +_1f;_> Pw +(R+Ny) W = 0O —mm (20)
d L/ ayat* \ L dy
or

W — N =0 --= (21)
D/w -V IW\N+Esls ¥wW =o —— (22)

2y* ax* % dYy> 4
or %_‘;_«_’prescribed — | = O -—= (23)

At the corners of the rectangular plate the following conditions
must be satisfied

PW = O _— (24)
2xDY

in which w must be evaluated at the corner, or

Wprescribed at the corners —+=1 = O -~= (25)

Bquations (15) through (25) represent the necessary conditions
w(x,y,t) for 3 A(w) to be stationary.

If the effect of torsional rigidity is neglected and if-
w is taken to be independent of time, then Eg. (15) reduces to
the form

Dy MW +2H2'W  +Dytw + NY Fw + N¥ 3w = 0o ___ (2¢)

A p——_——

de# dx* dy? w* 3K dy*
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in which
Dy= D+ E T, -== (27)
d ,
Dy =D+Eals -——— (28)
H= D ——— (29)
Nx = B+ N --- (30)
and
Ny = B+ Ny --= (31)

Equations (27) through (31) agree with the values of the
orthotropic rigidity constants obtained by Huffington (36)
for the limiting ease of elosely spaced ribs only. These
same three equations also agree with the orthotropic rigidity
constants proposed by Lechnitskii (44). Equation (26)
represents the governing equation for the case of static
stability of an orthotropic plate.

The substitution of Egs. (27), (28), (30) and (31)
into Eqg. (15) along with the introduction of additional
parameters yields

Dy 2*W 4+ 2H W 4Dy 2w + MBw ~ M Pw MW &

XA ¥y dy4 a2 dy? de* IS
+NX Pw +N"§ W mm O : - (32)

ox* dy*



in which
M= Qph *PrAr + G Po e
4 L
M'= Tex+ I, + Is
a A :
M= Loy +Te + 13 e
a4 £
and
H" D+ G\-\.Tr -+ 6‘ J-S wme——
2.4 2L

which replaces H in Egs. (29). In terms of the parameters
introduced above, the boundary conditions for the edges of
the plate parallel to the y-axis take the form

Dy 2w + (2H~VD) Pw MW +Nidww =0 ---

x> dxdy* 3% dt A%
or
W prescribed ataley
Dx W —VD¥EW =0 —
dx? dy*
or

dw prescribed
d X
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(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

The boundary conditions for the edges of the stiffened plate

parallel to the x-axis in term of the parameter given above
are



15

Dy W + @H-VD) 2w —M"$W —NJ 3w =0 - (41)

dy? ox* dy dydt> dy
or
W prescribed ———— (42)
Dy 3W - VDZIw =o - (43)
Y?. bxz .
or
_%xi_ prescribed ——— (44)
)/ .

2.5 8Solution of the Equation of Motion

This section is concerned with the determination of a
solution of Eg. (32) for the case of a rectangular stiffened
plate with simply-supported edges, see Fig. 2. The boundary
conditions for- the simple~supports can be found from the
equations for the admissable boundary conditions, Egs. (37)
through (44). The boundary conditions for the contour of
the stiffened rectangular plate are

W (X ay‘r 'b) " O,0 =0 — (45)
BW KLY =0 --- (46)
Ix* %= 0,0

W X,Y,t) l =0
y= P | --- (47)
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and
VW X, =0 —-- (48)
dy*  ly=o:b
The solution of Eg. (32) is sought in the form
W s = if Ton (D $or 69 - (49)
mel Nz
The functions (x,y) must form a complete set of

functions (45) oveE the rectangular region of the stiffened plate
and they must also satisfy term by term the boundary conditions
given by Egs. (45) through (48) A set of functions, (D mn(x Y).,
that are complete over the region of the stiffened plate

0=sx=a and O0sy==b and which satisfy the simply supported
boundary conditions are

O 06Y) =Sin mATX SN RTY - (50)
@ b
The replacement of ¢ ,,(x,y) by Eq. (50) in Eq. (49) gives
. oS OO0
WO, Y, 0 = T ) SIN MY SIN RATY

o 5 == (51

The substitutior;n ’c‘afnﬁq. (51) into Eqg. (32) gives
oo _
[(M +TM & m*mm")'rm * (ﬂ'\""ﬂ'"Dx ¥ 2004 H o+
.2 2.

aA’ a"& b’&

mel =i

+p*T* Dy —m* N ——n“'n"“ N.,)Tm,, sin rmrx sn MYy = ©
b* Tar " b

Since(b ., Bgq. (50), represents a complete set of functions,
the condition for linear independence

>

Crm® mn = O ~-- (53)

™ e
requires that each Cp,, must be equal to zero. Equation (52)
has the same form as Egq. (53) thus ’

(M+ oM mt ‘\T’M”) Tn + (m*ﬂ'* Dy + Znm®ar* # &
b oz . o* o>
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/ - 7
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Fig. 3 An Equivalent Orthotropic Plate Subjected to

Periodic In-plane Loading
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+ Y Oy - m*w* N’Z - M‘,ﬁ) Ton = @ | ——— (54)
b" a_;& b“-

form=1,2,~~02, n = 1,2,~-~20, Eguation (54) is valid for
any type of time-dependent in-plane edge forces acting on both
the plate and stiffeners provided that the forces can be
expressed in terms of time«dependent potentials.

" In the investigation presented in this chapter only the
effect of harmonic in-plane edge forces on the parametric in-
stability of the stiffened plate is considered, see Fig. 3.
The loading on the edge of the plate is

Ny @) = Nyo+ Ny, COS S - (55)
and

Ny @)= T Ngo + ' Nue COS O % — (56)

in which i and ' are proportionality factors relating the
magnitude of the static and variable components respectively
of the in-plane loading on the plate in the x-direction to

the corresponding components in the y-direction. The in-plane
edge load on each rib and stringer respectively is the same
and for the ribs has the form

P (13) = Ay_["?}- Nye + Vo' Ny COS et] —— (57)
, h

and for the stringers
R @)= As [*v; TilNyo+ Ve M'Nye €OS etl - (58)
n

in which ¥V r.wr’rfﬁf e and v’ g are proportionality constants
which relate the magnitude of the stiffener loading to the

plate loading. The substitution of Egs. (55) through (58) into
Egs. {30) and (31) gives the expressions for the equivalent in~-
plane edge loads N§ and N§ for the orthotropic plate, which are

Y

Ny @) = N¥o + N, cos 0% - (59)

and
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Ny @ = Nyo + Njx cosot --- (60)
in which
Nie = Neo (" AT —- (61)
‘dh
N = Nt (t*- A,-v,-) | ——— (62)
Nye = B Nm( be A:V's - (63)
and
NY*' = N (‘*‘As'\l’;) — (64)

The substitution of Egqs. (59) and (60) into Eq. (54) yields

(M+n1T‘M +m‘1r"M)Tm [( Tt D+ 2ot v+
e

D,,) (m"rr‘ N + P> N,,,,)- i N +

e Tar
e N’{m) CGSG‘\'J]Tmn =0 - (65)
b‘l-

form = 1,2,~~02, n - 1,2,--eo ., Equation (65) can also be
written in the following form

Amn ‘\:m,, @+ [Bm~—m,w (Cm+ Ii.o,) - N“(Em +uoﬂ).

¢ COS e‘t‘] Tmn“ O , Man= 12,3 -———meo —=w (66)
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in which
Aun= (M wartM + mrat — (67)
B ax
an m"ﬂ’“’ Ox + Znmraré W+ ntart Dy) - (68)
Tt = :
Cm = m 4\' <+A ’\7.:) e (69)
Cn= m T 1r (+ A\-‘Vr -== (70)
Dn = n-m* (H— A,.V)z ——— (71)
b* An
and
Dp = n*w™ C-r As-v;) —-—— (72)
b* ih

The division of Eg. (66) by B - Ngo (C, +J0 D )] and
the subsequent rearrangement o the resul%mg expression yields

T"ﬂ'ﬂ (t)+ﬂmn (l—' szn Coset) T‘!\’\Y\(t&)a o ,m o= "1;“-“',“ o——— (73)

in which
ﬂ:\ng B Nxc @-h\ + ﬂonj —— (74)
Aan
and
Monne= Nxt (C-m + A% 'Dn) - (75)

2[BrmnNeo Cm+ A O]

Later on it is shown that the expression for the static
buckling load, Ny.,, has the form

Nyer = Bwn ™ —-— (76)
Cm + DOy

The substitution of Eg. (76) into Eq. (65) gives
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I = Nyt €m+ LBy — (77)
2 [(Cm + L Dn)c N&c.r-"'Nv.o)]

When ¥ . = =g = = 1, which represents the same
magnitude of stress on both the plate and stiffeners, Eq. (77)
reduces to

Jhemn = _Nxt -—- (78)
2<§k&r"rQ#Q
It is also shown in the next section thatJl as given in

Eq. (74) is the natural frequency for the equivalent orthotboplc
plate.

Since the form of Eq. (73) is identical for all m and n
the indices can be omitted, hence

TH+N* (2 cosdt) TH = © --= (79)
This equation is the well known Mathieu's equation

2.6 Solution of the Differential Equation with Periodic
Coefficients

Equation (79) can be reduced from a second order equation
to a system of two first order equations. For this purpose,
Eq. (79) is expressed in the form

T@+bw Tw =o ' ~~- (80)
in which

B@W=N* (i-m coo 0 ) --= (81)
The introduction of the new variables

X&) = TR --- (82)
and

X2(8) = T(x) --= (83)
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into BEg. (80) reduces it to the following two differential
equations

X,®- X, ®=o0 --- (84).

and

X, (6) + BE) X, () = O —e— (85)

Equations (84) and (85) c¢an be combined through the use of
matrix notation to give

{x} « [Bw®)] {x} = {0} ~-- (86)

in which {x} is a column matrix (vector) with components
x3(t) and x3(t) and

— O ‘ -‘ | - -
[B@)] [w o] (87)

a square matrix of the second order.

The theory associated with the solution of Eqg. (86) is
discussed in references (39, 46). The results of the theory
reveal that the soclution of Eq. (79) or (86) is bounded
(stable response) over certain defined regions and is unbounded
{(unstable response) over the remaining defined regions. The
boundaries between the stable and unstable response regions are
characterized by the periodic solutions

TE+T) = T) --- (88)
with period T' and

TG+T) = =TE) == (89)

with period 2T'. Since this investigation is concerned with
the onset of parametric resonance it is thus necessary to
determine the conditions for which Egq. (79) or (86) has
periodic solutions. Since the required solutions are periodic,
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they can be expressed in terms of a Fourier series, thus for
a region of 27°

T ®=a, +z ayg COS Kot + b, Sin Kot -== (90)
z = 2 2
represents the solutions with period T*' and
L i d
Tal= Co +\ [cxcOS KOt + dy SN Ke+b
=z ~z Z 3

represents the solutions with period 2T'. Here the period
T*' is given by 2 /o . These series converge since the
periodic solutions satisfy the Dirichlet conditions. The
coefficients ap and by can be evaluated through the use of
the expressions

2T’
Qo =_1_ j T @& at -— (92)
[~
Qg = _\_ 3‘ T 6) cos KOt dt --- (93)
J 2
fT(-n) sin Ket dt == (94)
2

and Eg. (88). The evaluation of the coefficients yields the
following information

I

aozz S‘Teb) at -—— (95)
.Ti
T(t) CoS KTL db ,K= 2,40~ ~—~
Ay = 7 —— (96)

o K= [,35,~——m
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- ]

-+
2 T SNMKTE o K= Z,4,6,~——m—

--= (97)
@ A= \,3,5~———
The application of the information contained in Egs. (95)
through (97) to Eg. (90) reduces it to the form
e d
T = _g_._,,_+z Oy COS %8 % +by SIN KOL —m (98)
2. W g 4 2- 2,
In a similar manner, Eq. {(91) c¢an be reduced to
Tty
T )= Z ck cos Kot +de Sih Ket - (99)
Ka D, 2 ra

The substitution of Eq. (98) into Eqg. (79) and combining
like terms of 1, cos k & t and sin k © t and dividing by (L
yields 2 2

o

Qo ~ Oold COSOT+ [—-K‘e" + l]o.x. cos ket +
*

< Erall 44 z

+[-K"9 +1| bg SIN Ket —ag2um coset coskets —

4 0* FA 2

-bx2 o 6% Kot |= o
xLah C SN & } e (100)
However
(4 X% J K= O
2
&g CO2O 0 Ccos 5%1:_»== - Gy COSOT L= - —em (101)
rA
1cos K8 (onuayt M- oK 4=
2
o] -
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and
[~ -
ba sinet Ho=2
2
by, cos6t Sn Kot == S
2 ) . |
1 o Ket (be2) F B2y ) K= 4,6,m -
2 2.
h- P

The substitution of Egs. (10l1) and (102) in Eq. (100) gives

2 k=14 _ &~

, e

— Oy Ak cos KOt + “bfﬁ"'f-\ Arf-KrO™ “ | |~ XV
ra 4 .0*

2z

If YL is a linearly independent set of functions, then the
condition

[

Z rifi =0 ——— (104)

A my

requires that the . 's be equal to zero. Equation (103)
has the same form as Eq. (104) and the functions 1, cos k & t
and sin k @ t form a linearly independent set of 2

: 2
functions. Thus, the coefficients of Eg. (103) are equal to
zero, which implies that

Ao - G M=O -== {105)
2

(102)



= Ry M (—-K"e“- “+ l) O = O(ey A= O K= 2 4,00
4. N+

— o +\> b,— b M4 =0

o i

and

-‘b(K—?-) A [=K*O*F &\ bw~- bm.ﬂ_}M‘&O * K= 24,6~~~
4 O*

The multiplication of Eq. 5105) by 2, Eq. (106) by 1/4 for
k = 2 and Eq. (106) by 1/k< for k = 4,6,~-~ yields

~Ad am(.&: 3\ G- M ay=o0
4 A 4

and

-_'&{ K- +(‘ ~ B) Ok A A (pa)= O K=oy == e
K K K> :

in which

T=_0% —

4 0%

The substitution of Eg. (109) into Eq. (11l0) gives

27

(106)

(107)

(108)

(109)

(110)

(111)

(112)
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(./}_zé‘, i— - b] a, - /-‘5;— a,=o0 --- (113)

The introduction of the parameter § into Egs. (107) and
(108) yields

%- B3\ br-M b= O ——— (114)
A

—24 b *(_L: z) b= Ah_ by =On Kadyoy-—- (115)
K* 2

K* K

The first system of equations, Egqs. (11l) and (113) contains
only a; coefficients and the second system of equations,

Egs. (114) and (115) contwins only by coefficients. The
existence of non- trivial solutions for the above two systems of
homogeneous equations requires that the a, and coefficients
be non-zero. This condition requires that the determinant of
the coefficients of each of the two systems be equal to zero.
Hence, the condition for the existence of periodic solutions
with period 29r /@ has the form

det. ([A] V=B [:iD =o -—- (116)

and

et ([A] 2= 3 ['-‘::D'“"’ B —-- (117)

in which [1] is the unit matrix,
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(—..a*fﬂ_ - o {
2 4 A |
|
Al - |- L -& N --- (118)
1Y) {6 (o I
I
o - SRR S
b 3 3 3e
and -
B |
A —AL o |
4 4 %
|
Ay = | =M A & em= (119)
] @ \ |
|
o A LT |
—————_ e 26 |
WP

The parameters L2, . , and ¥ are given by Egs. (74)., (75)
and (112) respectively. Similarily the substitution of

Eg. (99) into Eq. (79) yields the conditions for the
existence of periodic solutions with a period 41 /@, which
are

det. ([ﬁg 2 -3 [ﬂ) =o ~—= (120)

and
det. ([@ 4 =3 [ﬂ) =o | ——- (121)
in which
- 7
ST - o |
t
Po= - o om - a2
a a A |
!
I
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and

~ -
f4=ak - AA for] {
|
E“_:] 4 = -2 L - | ——- (123)
a a = g
|
Q —rh { g
e 22 25
-

The eigenvalues, § , which are necessary for the existence
of periodic solutions of Eq. (66) are determined numerically from
Egs. (116), (117), (120) and (121). ‘

Finally it can be shown that for Ai=Othere exist per-
iodic solutions with period 2T in the vicinity of

& =20 ,K=\|,3,5,———— —— (124)
"3

and periodic solutions with period T in the vicinity of

O = 2 ,K=2,4,67———— --- (125)
K

Equations (124) and (125) give a relationship between the
frequency of the in-plane boundary forces and the frequencies
of the free vibrations of the stiffened plate, near which the
formation of unboundedly increasing vibrations is possible.
Thus, these relationships define the vicinity of the regions of
parametric instability for a stiffened plate. BAlso, Egs. (124)
and (125) indicate that there exists an infinite number of
regions associated with each L. . Somerset (20) calls the mode
associated with a particular value of fL as the spatial mode .
~and each mode associated with Egs. (124) and (125) for a given
‘spatial mode is called a temporal mode. This nomenclature is
adopted in this investigation.
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2.7 Special Cases
a. HNatural vibration Case

This section is concerned with the determination of the
natural frequencies for the equivalent orthotropic plate sub-
jected to static in-plane edge forces. When the variable
components N,, and Nyt of the harmonic in-plane loading are
equal to zero, Eq. ¥9) reduces to the form

T+ A>T = o - (126)
If a solution to Eq. (126) is sought . in the form

T+ = expP [X't:] -—= (127)
Then the substitution of Eq. (127) into Eg. (126) yielés

A= % AL 0L | - (128)

Thus the solution of Eqg. (124) is

Teeym A, exp [Lat] +8, exp[~iad] --- (129)
or
T@RY=C,cos Lt + D, SInax --=- (130)
in which
Cim A+ B, | ——— (131)
and
D= i (A-B)) -—— (132)

From Eg. (130) it is seen that Ll given by Eq. (74) represents
the natural frequencies of the equivalent orthotropic plate for
a specific value of Nyo and XX .
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When the effect of rotatory inertia is neglected and
when Nyo and Nyg are equal to zero, Eq. (74) reduces to the
form

L™ Bran -== (133)
Amn
in which
wma = M wee (134)

Equation (133) can be written in an expanded form in terms of
the elastic and geometric properties of a stiffened plate
with uniform material properties, which is

mn": {m H-’ﬂ‘@z) + mt Ewlr + n‘%" (ere +G§Is) -+

4
+!LE Ed'.-.]} «n-"D - (135)

in which © = a/b. This equation agrees with the results
obtained by Mikulas and McElman (37) for the same case. If

Eq. (74), for the case of Nxo and Nyo equal to zero, is

written in an expanded form in term Z of the orthotropic rigidity
constants, then it gives

D =4 m‘ D« + 2n*m* H +n‘ Oy M-wn"' n‘M+
a:l.b'ﬂ-
-~= (136)
Q“l’-
This equation agrees with the results obtained by Hoppman (47).

+_31\_’;M]

b. Static Stability Case

This section is concerned with the case of static stability
of the equivalent orthotropic plate. This case coxresponds to
the conditions that Ny, is not specified and that N,,. is equal
to zero. Also for thls case the deflection of the orthotropic
plate is independent of time. Subject to these conditions Eq. (73)
takes the form

[an Nyo (Cm+ A Dn)] =, M = Lo~ axcn —-== {(137)
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in which Ty, is a constant. The condition for the existence of
a non-triviial solution of Eq. (137) yields

(Nxo)c.r - _._'@.ﬂ}n_.__._
-=-= (138)
(Gt T2 O
in which N is the critical buckling load. For a plate with
only in~plane loading in the x~direction, that is = 0,
Eg. (138) reduces to
(Nvo) ce =  Bmn ——— (139)
Cm

Equation (139) can be written in the following expanded form

o az ™

(Nyo) e [m*«r‘" O« + M4 +n"u' DY-]/

| + AVV'-) —-~ (140)
dh
When m = n = 1 the equivalent orthotropic plate buckles into

a one-half sine wave mode. For this case when 5f , = 1, Eq.
(140) takes the form

(Nio) a = o [_‘e‘:. Oxvzri+a Oy f(Av -"-D -—- (141)
B | o v t

This equation agrees with the result given by Timoskenko and
Gere (48).



34

3. RESULTS

The theory developed in Section 2 led to the determination
of the eigenvalues of four matrices for the problem studied.
The numerical procedure used to determine the eigenvalues of
these matrices is based on the idea of reducing the original
matrix to a similar matrix whose eigenvalues are much easier to
determine.

The algorithm used in this investigation to reduce the
matrices to similar matrices was developed by Francis (49, 50,
51) which he calls QR-Transformation. The computer subroutines
based on this algorithm are from the SHARE library program
package 3006-~-01 and were written by Imad and VanNess (52).

3.1 Convergence Studies

The theory developed in Section 2 for the orthotropic
plate resulted in separate but similar differential equations
for the determination of the unknown time functions which are
the coefficients of a series which represents the deflection
function w(x,y,t) of the stiffened plate. Each of these dif-
ferential equations had the form of Mathieu's equation. The
solution for each of these differential equations was represented
by a Fourier series and this led to the determination of the
eigenvalues of four matrices whose size was dependent on the
number of terms taken in the Fourier series. The square root
of the eigenvalues of these four matrices represents the value
oféy@nl on the boundaries of the regions of instability.

Figure 12, which is valid for any spatial mode, shows the first
eight temporal mode regions. 1In section 2.6 it was shown that
a temporal mode existed for each term of the Fourier series.

The convergence curves given by Figs. 4 through 11 shows
how many terms of the Fourier series are needed to obtain
what appears to be convergence of the magnitude of the eigen-
values for a specific example. These eight graphs represent
the value ofeyﬁn,on the upper and lower boundaries of the
first four temporal modes atir = 1.2, wheres is the abscissa
of Fig. 12. A study of the convergence characteristics of the
magnitude of the square root of the eigenvalues showed that
more terms were needed to obtain convergence as the value of
AL was increased and as the order of the highest temporal mode
was increased. Thus AL = 1.2 represents an extreme case.
Examination of the eight convergence curves shows that the
value eyhn for the lower curve of the fourth temporal mode is
the slowest to converge but it does appear to have converged
to the correct value for an eight term approximation. The
value of @/24 for the eighth and tenth term approximation is
the same for the first six significant figures. However, the
error between the sixth and tenth term approximation is less
than one tenth of one percent. The error in the magnitude of
the eigenvalues must be kept small in order to prevent mis-
leading over-lapping of the temporal modes, expecially the
higher order temporal modes.
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3.2 Theoretical Results

The results for the parametric response of an ortho-
tropic plate are given by Fig. 12. These results plotted in
the (1, © /2L0L) parameter space represent the eigenvalues,
©/2fL, obtained from the matrices [B] j, through [B] 4
associated with the solution of Mathieu's function. The
square root of the eigenvalues correspond to the values
of ©/2JL on the boundaries between the regions of stability
and instability. These results are also presented in table
form in Tables One through Three in the Appendix. If a given
value of € and the values of £l and .t calculated from
Egqs. (74) and (75) respectively for a given stiffened plate,
are such that the parameters s+ and © /2(l. fall within the
shaded areas given by Fig. 12, then the stiffened plate is in
an unstable condition. Figure 12 shows that the principal
region of instability, that is the one associated with

©/2{L =1, is the most dangerous since it is the widest. The
results show that the width of the regions of instability -
decreases for the higher order temporal mode regions. The
results also reveal that, if possible, the orthotropic plate
should be designed so that the parameters ux and © /2L fall
within the stable regions.

The format of Fig. 12 is slightly different but similar
to the Strutt diagram normally associated with Mathieu's
equation. The form chosen seems to be more convenient for
engineering purposes. The results given by Fig. 12 are the
most complete set of results known in terms of the number of
instability regions presented and the range over which Mis
taken for this particular form of presentation. It took six-
teen terms of the FPourier series solution of Mathieu's equation
to obtain the results presented. The instability regions
obtained from Mathieu's equation which are presented in pre-
viously published investigations (1, 25, 44) appear to be
based on just a two or three term approximation since the
computation of the eigenvalues can be done by hand. A two
term approximation of the instability regions up toJsA = 0.6
is given by Figure 13. A comparison of Figs. 12 and 13
shows that a two term approximation gives good results for the
range of JA presented for the principal region of instability.
However, the two term approximation gives increasing poorer
results for the higher order regions of instability as M increases,
particularly for the lower stability boundary. Thus a two term
approximation leads to incorrect information about the location
of the higher order instability regions.

3.3 Evaluation of Results

The theoretical results presented in the last section,
Fig. 12, show that the most dangerous region of instability,
from the viewppint of width, is the first temporal mode
associated with any spatial mode. This wide width of the
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instability region implies that there is a wide band of frequencies
over which the stiffened plate will be unstable. The results

also show that widths of the temporal mode regions of instability
decrease as the order of the region increases. The narrow width
of these higher order regions implies that a small change in

the lcocad frequency, © , would remove the system from these
instability regions. . Thus, the higher order regions are not

as critical as the lower order regions.

The theory developed in this investigation only predicts
the location of the boundaries of the regions of instability.
Within these regions of instability the theory gives no infor-
mation about the behavior of the stiffened plate except that
the solution of the problem for these regions is unbounded.
This result implies that the transverse amplitude of the plate
will grow indefinitely as shown in Fig. 14.

Experimental results obtained from a stiffened plate with
a single transverse stiffener (30, 39) also show that the higher
the order of the temporal mode region, the less the magnitude
of the transverse amplitude. These results appear to indicate
that the build-up of the transverse amplitude is not sufficient
to cause the higher order temporal modes to be of concern.
However, this point does need further investigation. The
transverse amplitude of the real stiffened plate reaches an
upper limit within a region of instability due to stretching of
the middle~surface of the plate.

The results given by Fig. 12 also show that for ax greater
than 0.6 and © /2 £l less than 0.3 the stiffened plate will
always be unstable. A stiffened plate passing through the above
defined region would go from one temporal mode instability
region to another even though the plate is vibrating in an
unstable condition. The results indicate that the vibration
frequency of the plate would change periodically from a value
of ©® to a value of ©€/2, where © is the frequency of the in-plane
loading. However, the experimental results mentioned above
would seem to indicate that this large instability area would
not present much of a problem since the transverse amplitude
build-up would be very small.

The importance of the first temporal mode and the lesser
importance of the higher order temporal modes is further
illustrated when damping of the stiffened plate is taken into
consideration. The effects of damping on the boundaries of
typical instability regions is shown in Fig. 15 which represents
the results given by Mathieu's function modified to include
damping, see Bolotin (18). PFigure 15 shows that damping causes
the instability regions to withdraw from the © /2 £l ordinate.
The amount of withdrawal increases as the order of the temporal
mode increases. In case of an undamped temporal mode region,
the portion of the instability region where the upper and lower
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boundaries coincide will disappear if a damping is present.
Figure 15 thus indicates that the higher order temporal mode
instability regions would not exist in a practical range for
M4 . This result was observed in the experimental investigation
conducted on the stiffened plate with a simple transverse
stiffener (30, 39). It is also clearly illustrated in Fig. 15
why the principal region of instability is considered to be the
most critical as it exists for relatively small values of
oc'/ex cr even when damping is present.

The theoretical results given in section 3.2 are based on
a nondimensional representation of the data which is standard
practice. However, such representation can lead to misinter-
pretation of the results. Examination of these results could
lead to the mistaken conclusion that the temporal mode instability
regions associated with each of the spatial modes are separate
from one another. Figure 16 illustrates such an example. This
figure is taken from reference (39) and it represents the
parametric instability regions for a rectangular plate reinforced
with a single transverse stiffener as shown in Figure 17.
Figure 16 shows the first two temporal mode regions of instability
for each of the first three spatial modes superimposed in the
same (o<'/owcr , A © ) parameter space for a value of & /Jocor =
0.5. The above parameters are defined as follows.

Critical buckling parameter = bZNxcr/quD

cr

= Static in-plane load parameter = szxo/1T2D
o’ Variable in-plane load parameter = bzuxt/ﬁfzn

™M Mass parameter for the plate = a4€ ph/4¢( 4p

As can be seen from Figure 16 the temporal mode regions of
instability associated with the various spatial modes can
overlap. Figure 16 also shows for large values of & /o< r

the second temporal mode region of instability associate§

with the second spatial mode lies partly below the principal
region of instability associated with the first spatial mode

for values o< '/foc greater than 0.4. Figure 18 illustrates

an experimental tést run (39) which shows the response of a
stiffened plate when temporal mode regions associated with
different spatial modes overlap. This figure shows the transient
motion of the stiffened plate from the principal region associated
with the second spatial mode which overlaps the principal region
at this point. Figure 18 also indicates an interaction between
the two regions of instability where they overlap. The build-up
of amplitude for the second temporal mode region is significant.
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The linear theory presented in this investigation does
predict the location of the boundaries of the regions of
instability at which the onset of parametric response takes
place. The knowlege of these boundaryilocations provides the
designer with the necessary information so that a stiffened
plate can be designed to operate within the stable regions.
In conclusion, when the rectangular plate reinforced with
closely spaced stiffeners is analyzed as an equivalent
orthotropic plate, the regions of parametric instability when
expressed in non-dimensional form, are the same as those for
the unstiffened flat plate.
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4. CONCLUSIONS

Based on the results of this investigation the following

conclusions can be drawn:

1.

The theory developed in this investigation completely
predicts the parametric response, natural frequencies and
static buckling values for any simply-supported rectangular
stiffened plate, with closely spaced stiffeners.

The nost dangerous region of instability, from the stand-
point of width, is the first temporal mode associated
with the spatial mode which is the closest to the
fundamental static stability mode.

The theories developed in this investigation only predict
the boundaries of the regions of instability and they do
not give information about the behavior of the stiffened
plate within a region of instability.

The theory developed for the stiffened plate treated as
an equivalent orthotropic model using the "smearing out"
technigue has a distinct advantage over the general
orthotropic approach in that the stiffener size, spacing,
and material properties are contained in the resulting
expressions for the parametric response.

When the stiffened plate is analyzed as an equivalent
orthotropic plate the regions of instability when ex-
pressed in nondimensional form, are the same as those
for the unstiffened flat plate.
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"Vibration of Steel Joist-Concrete Slab Floor System--Part I,"
by Kenneth H, Lenzen and Joseph E. Keller, September, 1959.
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