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RESEARCH AND DEVELOPMENT OF A VORTEX VALVE
CONTROLLED HOT GAS (5500°F) SECONDARY INJECTION
THRUST VECTOR CONTROL SYSTEM

by
T. W. Keranen
and
A. Blatter

Bendix Research Laboratories
Southfield, Michigan

SUMMARY

This program resulted in the successful demonstration of a vortex
valve controlled secondary injection thrust vector control (SITVC) system
on a solid propellant rocket motor. The vortéx valves utilized in this
program (Phase II) were developed during.a Phase I effort.! These valves
have the capability of modulating a 750 psia, 1 1lb/sec flow of 16% alumi-
nized, 5500°F solid propellant gas, with a demonstrated operating time of
50 seconds.

The rocket motor used for the test was the NASA-furnished EM-72 model,
a 22~inch end burner containing 400 pounds of propellant. The motor is
capable of producing approximately 6800 pounds of thrust with a mass flow
rate of 30 lb/sec for 13 seconds.

The SITVC system consisted of a pilot stage which provided push-pull
control of two SITVC hot gas vortex valves. The pilot stage contained
a torque motor powered flapper-nozzle valve which, in turn, controlled
two vortex amplifier valves. A 2000°F solid propellant gas generator
(SPGG) supplied gas to the pilot stage. The two SITVC vortex valves were
supplied with gas from an auxiliary 5500°F SPGG.  The SITVC valves were
installed, on the horizontally positioned EM-72 rocket, such that one
valve injected in the engine thrust nozzle vertical plane and the other
in the horizontal plane.

The results of the hot gas tests conducted at Allegany Ballistics
Laboratory, Cumberland, Maryland, in October 1967, showed that the vortex
valve controlled SITVC System produced side forces up to 4% of the main
engine thrust. The SITVC System materials and structure were able to
control and handle the flow of aluminized 5500°F gas for over 50 seconds
with little component degradation.

The technology resulting from this program definitely establishes
the feasibility of utilizing vortex valves to control the injection of
combustion chamber gases into a thrust nozzle. The demonstration of a
buried nozzle rocket engine using vortex vlaves to control the injected
flow should be the next stage in this development activity.



INTRODUCTION

Secondary Injection Thrust Vector Control Concept

The attitude of a rocket vehicle can be controlled by deflecting the
main engine thrust wvector, Thrust vector direction control can be pro-
vided by gimballing the thrust nozzle or by use of auxiliary movable
vanes in the main nozzle exhaust. An alternate method of providing
thrust vector control is by the technique known as Secondary Injection
Thrust Vector Control (SITVC). The engine is stationary and f£fluid in-
jected in the thrust nozzle deflects the rocket thrust gases to steer
the vehicle. The fluid is injected into the thrust nozzle downstream
of the mnozzle throat (hence, the name 'secondary injection'). Response
is fast because the jets can be modulated rapidly in contrast to the
mechanical method in which large engine masses are moved by :servoactu-
ators. The SITVC technique eliminates the need for complex seals and
joints inherent in mechanical nozzle deflection systems.

A variety of fluids may be used for secondary injection, but it is
most efficient to injéct a high-temperature gas. The gas can be supplied
from an independent source, or from the rocket motor. In the case of a
direct chamber bleed system, the valves that control the secondary injec-
tion must withstand temperatures of 5000°F or more. In this severe
enviromment, a fluidic device with no moving parts, such as a vortex
valve, offers the possibility of greater reliability than a mechanical
moving-part valve.

Some solid propellants are highly aluminized, and there is a ten-
dency for molten aluminum oxide to condense out of the gas and to solidify
and '"'plate out" on flow channel surfaces. This "plating out" of aluminum
oxide can readily plug small clearances and passages, but the vortex
valve, with its large passages and no-moving-part design, is less suscep-
tible to plugging than conventional valve techniques.

A possible method of implementing a vortex valve controlled SITVC
System on a buried nozzle solid propellant rocket engine is shown in
Figure 1. The SITVC vortex valves will modulate bleed gas directly from
the rocket motor combustion chamber and inject it in the nozzle for SITVC.

Program Description

The goal of this program was to demonstrate a vortex valve controlled
SITVC system on a solid propellant rocket motor. This effort was conducted
in parallel with the last part of the Phase I effort. The goal of the
Phase I effort was the development and demonstration of a vortex valve
to control the flow of hot gas. The basic approach of this program was
to utilize existing NASA and Bendix technology and hardware. The program
plan consisted of the following steps.

(1) Develop a system concept that will feature a two-axis,
two vortex valve controlled SITVC system that will simu-
late a direct chamber bleed concept.
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(2)

(3)

(4)

Design and fabricate a vortex valve controlled
SITVC system that will utilize Phase I technology
and hardware and the NASA supplied EM~72 rocket motor.

Conduct a preliminary hot gas test on the fabricated
hardware to evaluate system performance and struc-
tural integrity. This test was conducted as the
sixth hot gas test reported in the Phase I final
report.

Conduct a complete system hot gas test on the EM-72
rocket motor at the Allegany Ballistics Laboratory,
Cumberland, Maryland.



SITVC SYSTEM DESCRIPTION

System Operation

The system utilized for this program was a two-axis system with a
single vortex valve in the yaw and pitch planes. The system is shown
schematically in Figure 2,

The system included a rocket motor, a SITVC vortex wvalve main stage
which modulated the flow of 5500°F gas, and a pilot stage which controlled
the main stage. The main stage consisted of two vortex valves, such as
that shown in Figure 3. These main stage valves were mounted 6n the EM-72
rocket motor such that one valve controlled secondary ingectlon flow in
the pitch plane and one in the yaw plane,

The main stage, which received its gas supply from a 5500°F solid
propellant gas generator (SPGG), was operated in a push-pull mode. The
push~-pull mode of main stage operation was utilized to impart a constant
impedance load on the 5500°F SPGG during system operation so that the
SPGG would have a constant output flow rate. The main stage push-pull
operation was such that when one vortex valve output flow decreased, the
other vortex valve output flow increased a similar amount., The net result
of this push-pull operation was that the total output flow from the two
vortex valves is approximately constant.

The main stage system received control inputs from the pilot stage.
The pilot stage consisted of two push-pull operated vortex amplifier valves
which were controlled by a torque-motor flapper-nozzle valve. The pilot
stage was supplied with gas from a 2000°F SPGG. The vortex amplifier
valves were separated from the 2000°F SPGG by three subsonic orifices
which provide the required pressure differentials between the vortex
valve supply and control. The pilot stage operation was initiated by an
electrical signal to the torque motor which produced a displacement of
the flapper. The flapper displacement caused a reduction in flow through
one of the nozzles and an increase in the nozzle upstream pressure. This
increased pressure resulted in increased control flow to one of the vortex
amplifier valves and a reduced output flow from that side of the pilot
stage. This pilot stage vortex amplifier valve output flow was the con-
trol flow to the main stage vortex valve on that side of the system.
Reduction of this control flow permitted an increase in the flow out of
that main stage valve and an increase in the amount of rocket motor thrust
vector deflection in the valve plane. Conversely, the other half of the
system experienced a reduction in main stage valve flow and thrust vector
deflection.

The SITVC system used for this program was designed as a heavyweight
bench test model. An actual flyable vortex valve controlled SITVC system
installed on a solid propellant rocket motor would be similar to the system
shown in Figure 1. This type of system would not require an auxiliary
5500°F SPGG because the main stage vortex valves would be supplied directly
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from the rocket motor. Also, in this system the main stage vortex valves
would be independently controlled (not push-pull) and would normally be
in the full turndown mode until thrust vectoring is commanded. When
rocket motor thrust vectoring is required, the appropriate vortex valves
or valve combinations would supply the proper amount of secondary injec-
tant gas to obtain the desired thrust vector deflection. This technique
will result in a SITVC system that is inherently simple and lightweight.

System Design

Installation of the vortex valve controlled SITVC system on the EM-72
rocket motor is shown in Figure 4 (also see Figures 15, 16, and 17). The
direct chamber bleed buried nozzle concept was not used in this installa-
tion due to inherent design limitations of the rocket motor. The direct
chamber bleed concept was simulated by supplying the SITVC valves from
an auxiliary gas source via a plenum chamber.

The two SITVC vortex valves were placed in two axes; one in the yaw
plane at 270 degrees and one in the pitch plane at O degree. Both of the
valves were located on the nozzle divergent cone at 75% of the distance
from the nozzle throat to the nozzle exit. Each injector port was sur-
rounded by several pressure taps to measure the shape of the shock pattern
and the pressure distribution in the nozzle at varying injectant flows.
Two-plane single-point injection was incorporated because of the large
volume manifolds on the 5500°F SPGG necessary for single-point injection.
The single-point injection offered the possibility of isolating each vortex
valve performance for test evaluation.

The two auxiliary SPGG's were mounted, as shown in Figure 4, to mini-
mize the bends in the 5500°F gas manifolding and to minimize changes in
torques on the engine and test stand assembly, during the test, due to
change in SPGG masses.,

Main stage SITVC vortex valves utilized in this program were developed
during the Phase I effort. The valve configuration, showing basic dimen-
sions and materials, is shown in Figure 5.

Hot gas flowing out of the main stage vortex valve was to be measured
with a "weeping'" orifice system. The "weeping" orifice system, shown in
Figure 6, used a port in the vortex valve injection nozzle as a subsonic
orifice. The port was flowed with nitrogen that passed through an upstream
sonic orifice. The sonic orifice was sized to provide a constant nitrogen
flow out of the port under all conditions, with the nitrogen source regu-
lated at 2000 psia. A change in hot gas flow through the vortex valve
load orifice caused a variation in impedance to the flow of nitrogen through
the port. This variation in flow impedance produced a change in pressure
upstream of the pressure port. This pressure variation was calibrated
to provide the measurement of flow through the vortex valve,

The hot gas flow was introduced into a short plenum chamber outside
the SPGG combustion chamber, and then directed to the SITVC vortex valves
through two 5.0-inch diameter steel manifolds internally insulated -with
carbon phenolic insulation.
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The pilot stage 2000°F gas was supplied from a SPGG manufactured
by Olin Mathieson Company. The propellant formulation was "OMAX 453D."

Manifolding used in the pilot stage was made from RA 333 pipe (Rolled
Alloy, Inc.).

Materials used in the pilot stage were: body-RA 333; orifices and
vortex amplifier valves — TZM molybdenum; seals — copper. The pilot
stage component parts are shown in Figure 7.

Rocket Motor and Test Stand Description

The rocket motor and test stand used for the test were supplied by
a separately contracted effort between Hercules ABL and NASA. The EM-72
rocket motor is a 22-inch end burner containing approximately 400 pounds
of propellant. The engine grain and nozzle were modified from an original

design to produce approximately 30 lb/sec mass flow rate for a duration
of approximately 13 seconds.

The test stand is designed for measuring engine yaw plane forces,
pitch plane forces, and axial engine thrust. A schematic of the engine
and test stand assembly is shown in Figure 8. The rocket motor, SITVC

system, and test stand assembly had a calculated natural frequency of
20 hertz.

+Fq
(Fq)
14.7

+Fy
(Fy)

P-5954

Figure 8 - Thrust Stand Transducer Locations
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TEST RESULTS

The testing accomplished during this program was done in two parts.
Cold gas test of the SITVC system and components was performed at the
Bendix Research Laboratories test facilities to verify the predicted per-
formance of the system and components prior to the hot gas test. The
hot gas test of the SITVC system mounted on the EM-72 rocket motor was
carried out at Allegany Ballistics Laboratory on 14 October 1967. Test
objectives of the program were:

(1) Simulate a direct chamber bleed SITVC system and
determine the effectiveness of vortex valve con~
trolled injectant flow.

(2) Demonstrate the throttling efficiency of the vortex
valve with the injectant flow.

(3) Demonstrate the capability of the vortex valve to
reliably control the flow of 5500°F, highly
aluminized gas.

Cold Gas Test Results

Cold gas testing was accomplished to determine the performance of
the main stage SITVC vortex valves and the complete vortex control system
before hot testing. The SITVC vortex valves were tested on gaseous nitrogen
by regulating the supply flow pressure at 750 psig and increasing the
control flow pregsure from 750 psig to a level at which the supply flow
was turned off. Resulting valve performance is shown in Figures 9 and 10.

Note the steep (high gain) portion of the turndown curve. Experience
with vortex valves indicates that this portion of the turndown curve can
be controlled by various geometric changes in the vortex valve. However,
this portion of the curve is always steep, and as long as the valve turn-
down is proportional with control pressure, the valve geometry normally
is not changed. The gain may be reduced by changes in the valve diameter
ratio, the chamber length and spoilers on the chamber walls. Flow
calibration curves are shown in Figure 11.

The test schematic and results of the SITVC system test cold gas
test are shown in Figures 12 and 13. The cold gas tests indicated that
the SITVC system should function as intended during the hot gas test.

Hot Gas Test Results

The hot gas system test schematic is shown in Figure 14. The arrange~
ment of the vortex valve SITVC system components and the location of the
various pressure transducers are shown. The transducers were installed
in pairs for redundancy in practically all cases. Note that the lower
portion of the circuit (the dashed lines) is the "weeping" orifice flow
measuring method used to determine the hot gas injectant flows. Pictures
of the system installation prior to the hot gas test are shown in Fig-
ures 15, 16, and 17.

12
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Figure 15 - Vortex Valve Controlled SITVC System Installation on
EM-72 Rocket Motor — Component Location

Figure 16 — Vortex Valve Controlled SITVC System Installation on
EM-72 Rocket Motor - Side View
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Figure 17 - Vortex Valve Controlled SITVC System Installation on

EM-72 Rocket Motor - Side View
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The effective test duty cycle, which matched the EM-72 rocket motor
burning time, is shown in Figure 18. This duty cycle was sequentially
repeated four times during the burn time of the 5500°F SPGG. The expected
burn time of the EM-72 rocket motor was 12 seconds; the 5500°F SPGG, 45
seconds; and the 2000°F SPGG, 32 seconds.

Prior to the test, all pressure and force transducers were calibrated
and checked. Also, several dry runs were performed to check out the firing
circuits, the TVC input program, the data acquisition system, and the vari-
ous ancillary equipment.

Performance of the EM-72 rocket motor, the 5500°F SPGG, and the
2000°F SPGG during the test is shown in Figures 19, 21, and 22 as plots
of operating pressure versus time. The rocket motor axial thrust for
the test duration is shown in Figure 20. Test data show that the EM-72
rocket motor operated at an average pressure of 481 psia which was 60 psi
lower than predicted. The engine produced a maximum axial thrust of
6800 pounds, which was 200 pounds lower than anticipated. The reduction
in thrust and engine chamber pressure has no significant effect on the
evaluation of the vortex valve control system.

The 2000°F SPGG, which provided control gas for the SITVC vortex
valves, operated at an average pressure of 2200 psia during the initial
l6-second period. As shown in Figure 21, the generator burned regressively
from 10 seconds until burnout. No external reason, such as leaks, has
been found to account for the regressive burning. The design pressure
was 2600 psi. The 5500°F SPGG which produced the secondary injectant gas
operated at an average pressure of 540 psia during the initial l6-second
period. Note that this SPGG burned progressively throughout the run.

The design pressure for this generator was 750 psia. Although both SPGGs
operated at lower pressures than intended, the control system generated
P./Pg ratios up to 1.8 to 1. This pressure ratio should have been enough
to turn down the main stage vortex valves. The injectant flow would be
reduced by the lower 5500°F SPGG pressure but this would not effect the
final test conclusions.

The measured pressures in the SITVC system at test times of 4.3,
12, 24, and 28 seconds, are shown in Figures 23 through 26. Test data
indicated that the pilot stage began malfunctioning at approximately
16 seconds and ceased functioning at 23.6 seconds. The pilot stage mal-
function appears to have been caused by failure of the torque motor that
powered the pilot stage flapper-nozzle valve.

During the first 16 seconds of the test, the SITVC system operated
as intended, except for the low system pressures. The "weeping orifice"
flow measurement system did not provide data. Control pressure-to-supply
pressure ratios for the pilot stage vortex valves and the SITVC vortex
valve remained fairly uniform during the first 1l6-second interval. The
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test Pc/Pg ratios for the yaw side vortex valves at test time 4.3 seconds,

as compared to cold gas test results and calculated values, are shown
below:

Pc/Ps Yaw SITVC Pc/Ps Yaw Pilot Stage
Vortex Valve Vortex Valve
Hot Gas Data 1.08 to 1.83 1.00 to 1.40
Cold Gas Data 1.01 to 1.50 1.01 to 1.30
Theoretical 1.05 to 1.50 1.05 to 1.35

These figures are typical of the yaw and pitch sides of the system for
the first 16 seconds of the test.

The "weeping orifice'" flow measurement system failed to function.
Pressures P,g and P45 did not vary with changes in valve flow as had
been experienced in previous hot gas tests. Typical "weeping orifice"
test data are shown in Figure 27. Failure of the flow measurement system
to function was attributed to aluminum oxide from the hot gas alternately
plugging and unplugging the sensing port. Loss of the flow measuring
system resulted in no accurate measurement of SITVC vortex valve flow
data and flow turndown performance.

One additional problem encountered in the SITVC system pilot stage
was an instability condition that occurred at null and low amplitude inputs
commands to the pilot stage flapper. Results of this flapper instability
are represented in plots of pilot pressures P35 and P37, shown in Fig-
ure 28. These pressures were controlled by the flapper position and
became noisy for all null and low amplitude command signals.  This noise
condition occurred during the cold gas testing and was corrected to
satisfy cold gas conditions by enlarging the flapper-nozzle vent area
to the maximum possible in the existing hardware design. It was not known
until after the hot gas test that the change was insufficient for the hot
gas conditions.

The secondary injection side forces produced by the vortex controlled
SITVC system on the EM-72 rocket motor are shown in Figures 29 through 32.
These figures show test data for system command signals of 2, 4, 8, and
16 hertz. The main engine bias forces were obtained by the offset when
the main engine fired but before the SITVC SPGG's fired. The average
yaw and pitch forces obtained from the data were as shown in Table 1.
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Table 1 - Yaw and Pitch Forces

Command | Test Total Actual Total . Grain Actual

sigal | mine | 100 |aius | Jov | Feeh || elghe | picen
2 hz |1~ 2|175/260 | -30 | 145/230| 90/160 |+40% | -47%* 83/153
4 hz |4 - 5|216/269 | -30 | 186/239 | 194/295 -140 94/195
8 hz |5 - 6]226/259 | -30 | 196/229 | 253/302 -172 121/170
16 hz |6 - 7 | (Noise) | -30 - 300/340 -201 139/189

%
Pitch bias at beginning of test. Bias variation in latter part of test

estimated from propellant consumption.
*k '

Grain weight loss estimated from average burn rates of all three grains.

Due to the loss of the secondary injection flow data, it is difficult
to perform a complete correlation between observed gside force and theoretical
side forces. Although the minimum injectant flow is not known, the maximum
flow can be estimated. No vorticity is present at maximum flow conditions
through a vortex valve; therefore, the flow may be estimated by using a
simple multiple orifice in series analysis. The engine bias and maximum
side force are known and a comparison of actual to theoretical force can
be performed with reasonable confidence at these points.

Performing such an analysis and plotting the points for theoretical
and actual performance on a graph of normalized side force versus normalized
injectant flow results in Figure 33. The theoretical points agree well
with the upper limit of the performance band associated with hot gas
secondary injection. The point "actual side force at zero vorticity" is
well within the expected band for hot gas. The computation of the points
as an iterative process and a sample calculation is presented in appendix A.
It appears that some loss in performance is present; however, the un-
certainty of the injectant flow rate prevents drawing a conclusion
regarding the effect of injectant jet rotation. The vortex walve will
inject a rotating stream of fluid into the thrust nozzle at all times
except when the vortex valve is full open. At this time there is no
vorticity in the valve and the injected fluid will have no rotational
component.

Note in Figure 33 that some side force exists at full turndown.
This is caused by the control flow required by the vortex wvalve which

enters the primary nozzle flow,thereby creating some side force. The
supply flow to the vortex valve is zero at full turndown but control flow

is maximum. As shown in Figure 1, if two vortex valve controlled injection
ports are located 180 degrees apart in a thrust nozzle, the net thrust

vector angle is still zero even though both valves are admitting control
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Al

flow into the thrust nozzle. A defection of the thrust vector would
occur only when the injected flows result in a net differential flow.

The decrease in amplitude of AF yaw and AF pitch forces for increases
in command signal frequency was attributed mainly to test stand response
limitations. The dynamic sinusoidal frequency response of the SITVC
system pilot stage control pressure, main stage control pressure, and
EM~-72 rocket motor yaw and pitch forces, as obtained from the hot gas test
data, is shown in Figures 34 through 37. The main stage vortex valve out-
let pressure was not plotted because of the failure of the "weeping orifice"
flow measurement system. Also, shown in these figures is the theoretical
dynamic frequency response of the pilot stage (P37 and P35) control pres-—
sure, main stage control pressure, and main stage outlet pressure (or
secondary injectant supply pressure). Theoretical data provide a close
correlation to the actual test data in most areas and indicate that there
should be very little loss in amplitude or increase in phase lag across
the main stage vortex valves. With these considerations, it can be
assumed, as an approximation, that the frequency response of the vortex
valve controlled SITVC system during the hot gas test was approximately
the same as the hot gas main stage vortex valve .control stage response.
The data show that the control pressure P39 had an amplitude attenuation
of ~2.2 db and a phase lag of 68 degrees at 16 hertz while the rocket motor
pitch forces recorded had an amplitude attenuation of -6.2 db and a phase
lag of 122 degrees with the same command signal. These results indicate
that the pitch SITVC command signal-amplitude was attenuated -4 db and
the phase lag increased 54 degrees between the main stage input command
and the output pitch force. 1In the.yaw plane the control pressure P4l
signal amplitude was attenuated -8.5 db and the phase lag increased by
70 degrees between the input command and the output yaw force at a command
signal frequency of 8 hertz.

Dynamic frequency response obtained for the SITVC system during the
hot gas test is not representative of a final design configuration such
as shown in Figure 1. The response of the SITVC system tested was com-
promised by the large control system manifold volumes that resulted from
the inherent system design required for push-pull operation with one pilot
stage controlling two SITVC vortex valves. A flyable vortex valve con-
trolled system would achieve better response performance by using indi-
vidual, close-coupled pilot stages for each SITVC vortex valve.

During the hot gas test, EM-72 rocket motor exhaust nozzle pressures
were monitored and the resulting data plotted on a nozzle pressure map.
Data shown in Figures 38(a) through 38(k) are typical data and cover one
system cycle starting at 4.155 seconds. The shock patterns shown are
estimated from the pressure distribution at the particular time and from
the change in injectant flow.

The vortex valve controlled SITVC system structure and material con-
tained the flow of aluminized 5500°F gas and 2000°F gas for the duration
of the 50-second test without any structural failures. Components of
the SITVC vortex valves are shown in Figure 39.
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Figure 39 - Post Test, Interior of Hot Gas SITVC Vortex Valve



Test Conclusions

Examination of the test data and hardware led to the following hot
gas test conclusions:

(1) Test pressure data showed that the vortex valve con-
trolled SITVC system components were of the proper
proportions to obtain desired system pressure distri-
bution but that the auxiliary gas generators operated
at pressures lower than expected.

(2) The SITVC vortex valves modulated the flow of alumi-
nized 5500°F secondary injection gas that produced
yaw and pitch forces on the rocket motor at frequencies
of 2, 4, 8, and 16 hertz for 16 seconds of the test time.

(3) SITVC system frequency response to a sinusoidal control
input showed an estimated amplitude ratio attenuation
of ~2.2 db and a phase lag of 68 degrees at 16 hertz.
The large control manifold volumes, necessitated by the
hardware packaging problem, were primarily responsible
for the apparent low frequency response.

(4) The pilot stage torque motor began malfunctioning at
16 seconds, which was 4 seconds after rocket motor
burnout, and thus affected the "engine out" portion
of the test.

(5) The "weeping orifice" flow measurement system did not
function due to plugging of the pressure measurement
ports with aluminum oxide which solidified from the
hot gas.

(6) The SITVC system handled the flow of alumininized 5500°F
gas and 2000°F gas for over 50 seconds with no structural
or material failures.
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CONCLUSIONS AND RECOMMENDATIONS

Conclusions

This program demonstrated the application of the vortex valve, a no-
moving~part fluidic device, as a valving element for controlling the flow
of highly aluminized 5500°F solid propellant gas to obtain secondary injec-
tion thrust vector control of a solid propellant rocket motor. The follow—
ing conclusions were drawn from the results of this program:

(1) The vortex valve utilized in this program is capable
of handling 1 1lb/sec flow of highly aluminized 5500°F
solid propellant gas for more than 50 seconds. The
vortex valve is a suitable valving element for throttling
the flow of hot gas from high performance rocket motors
in applications requiring direct chamber bleed gas
control such as SITVC Systems or engine throttling
applications.

(2) The vortex valve controlled SITVC System injectant
pressure frequency response to sinusoidal control
inputs showed an amplitude ratio attenuation of
-2.2 db and a phase lag of 68 degrees at 16 hertz.
This SITVC System design was based on mechanical
simplicity. Through the use of integrated com-
ponents, to reduce manifold volumes, dynamic system
performance could be greatly improved.

(3) The ratio of side forces to injectant flow rate is
within the band expected for hot gas injection. No
large loss is apparent for a rotating injectant flow
as generated by a vortex valve.

Recommendations

The experience gained from the demonstration of the hot gas vortex
valve controlled SITVC System results in the following recommendations
for the future.

(1) A vortex valve controlled SITVC System should be demon-
strated on a rocket motor using direct chamber bleed gas
from the rocket engine as the injectant. The recent
design trend of buried nozzle rocket motors provides
a practical configuration for such a demonstration.

The high differential pressure available between the
thrust chamber and the divergent nozzle section requires
‘that a vortex valve be located in the thrust chamber
with the outlet hole becoming the injection port.

Four such valves can provide complete pitch and yaw
thrust vector control on a rocket motor. Larger rocket
motors may require multiple valves in each quadrant.
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(2)

3

(4)

(5)

It is recommended that a new pilot stage be designed to
allow for the individual control of the main stage vortex
valves rather than the push-pull type of operation of

a pair of valves. A simple orifice and flapper-nozzle
valve type of pilot stage would be more compatible with
SITVC system installation and performance requirements
for small rocket motors.

The system tested to date has been a heavyweight, workhorse-
type. Enough experience with materials has been acquired
in this development program to permit the design of
flightweight hardware. Concurrent with such design should
be a weight tradeoff study to establish the competitive
position of the vortex valve controlled secondary injection
control system in comparison with other types of thrust
vector control. It is recommended that all future efforts
be accomplished with flightworthy hardware.

It is recommended that additional effort be made toward

the development of a technique for measuring the flow of
aluminized 5500°F solid propellant gases. Since materials
have been used in this program which survive for reasonable
periods of time in this environment, it appears that the
design and development of a reliable hot gas flow measure-~
ment device is possible.

It is recommended that other applications of the hot gas
vortex valve, such as for thrust control of a solid rocket
motor, be investigated.
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APPENDIX
SITVC PERFORMANCE ANALYSIS

The hot gas test performance of the vortex valve controlled SITVC
System was evaluated by comparing observed test results with theoretical
performance estimates. The evaluation was made for the yaw SITVC valve
at test time 4.3 seconds. The pitch SITVC valve was not evaluated due
to lack of data that would allow accurate separation of SITVC pitch forces
from- changes in EM-72 engine propellant weight losses and center-of-gravity
shifts that occurred during the test.

Since the flow measurement system failed to function during the test,
the secondary injection hot gas flows required to obtain theoretical yaw
forces were calculated from available pressure data and orifice sizes.

Hot Gas Flow Calculations

The deduced maximum and minimum hot gas flows and the theoretically
possible, fully turned down, minimum hot gas flow through the yaw SITVC
vortex valve for system conditions at test time 4.3 seconds (Figure 23)
aredetermined below.

By assuming that the yaw SITVC vortex valve is a simple sonic orifice
when its P./Pg ratio is 1.08 to 1, the maximum yaw valve hot gas flow
was determined to be:

o o Cafa® Pu3 0.8 (0.556) 0.237 (474)

W
yaw(test max.) 2 W/ﬁiE; ~/6000

W aw(test max.) = 0-676 1b/sec.

The theoretical minimum yaw wvalve flow possible with the flow of
6000°R gas completely turned off was found by assuming that the yaw valve
control injectors, Aj, are sonic orifices and that these injectors are
the only yaw valve gas source, The theoretical minimum yaw valve flow is:

C,C, AP

. . %% % Pa1_0.74 (0.412) D.04 (869)
yaw(theo. min.)  "1(max.) .
T41 W,2360

Wyaw(theo. min.) 0.218 1b/sec.
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The minimum yaw valve flow was obtained by assuming that the pitch
vortex valve was flowing at maximum and that the yaw valve flow was equal
to the 5500°F SPGG output (Wi3) minus the pitch valve flow (WB(min.))
plus the yaw valve maximum control flow (Wl(max.))-

The 5500°F SPGG output is:
3

i, = A p CP" =48 (0.0637) 0.044 p0-

. = 0.869 1b/sec.

The maximum pitch vortex valve flow is:

_%a% A5 Fuz 0.8 (0.556) 0.237 (474)

) T ~/6000

W5 (min.) = 0.676 1b/sec.

Therefore, the minimum yaw valve flow is:
w&aw(test min.) W3 = wS(max.) + wl(max.) = 0.869 - 0.676 + 0.218

wYaw(test min.) 0.411 1b/sec.

Side Force Calculations

Theoretical yaw plane side forces were calculated for the three yaw
vortex valve flow conditions considered in the flow calculations above.
The side force computations were made utilizing a procedure reported in
Reference No. 2 and outlined below.

The first step in the side force computation was to locate the shock
pattern in the primary nozzle that resulted from each of the three

secondary injection flows. The shock patterns were located using the
following trial-and-error procedure:

(1) Assume an M.
(2) Obtain D, and P, from Figure 42,

D -D
0

: e
(3) Calculate Lg; Lg = 51
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P P
(4) Obtain &, 8, Eg-, and §§-from Figure 41,
) 0 .

- 1
(5) Calculate PS, PS =3 (2 P, + Pj)

1/4
0.811 % p.. 1?2
i Tie

]

(6) Calculate h; h — —
(®, -P) [(Yj +1) P+ (Yj -1 Pl

where

; and for Yj =1.3, T = 0.761

(7) Calculate X; X =h [cos 8§ + tan (o + )] .
(8) Test for Les Ly = Lj + X cos o .

(9) 1If Lg from step 8 does not match that of step 3, assume
a new M, and repeat process.

The parameters and variables used in these computations are shown
in Figures 40, 41, and 42, and Table 2.

By utilizing some of the above parameters and the estimated shock
pattern information, the yaw side forces were found from the following
equation: -

‘ (5& 5 P A,
F .= \?T" 1] IX° tan 6 - Xh |+ {== - 1} |%Xh - —%— P_ cos

-

w, V,

+ P, - P ‘ A, + Ll cos €
| ol "j g

This equation for side force determination contains the following four
expressions which have the meanings indicated.
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X2 tan 6 - Xh

mlsvl

(1 -1 Po cos o pressure increase
o between shock and
separated region

e

Ps A, —
(2) - 1 Xh - D PO cos o pressure increase

o ' b}n separated region
(3)

P, - P A, cos ¢
(B = 2.) A

W, V.
(4) —Jg—l- cos €

pressure difference
Pj - Py acting on
injection nozzle area

momentum effect of
L.injected gas

The results of yaw side force calculations for the three secondary
injection flow conditions are shown in Table 3 and Figure 38(a).

Table 3 - Results of Yaw Side Force Calculations

Parameters Max. Yaw Min. Yaw ;Min. Yaw
Test Flow Test Flow Theo. Flow
h(in.) Accommodation height 0.878 0.66 0.62
Ls(in.) Distance between shock apex and exit 5.00 4,34 4.25
;z(psia) Avg. pressure in shock region 74.7 61 67
P (psia) Avg. pressure in separation reglon 115.6 65 72
§(deg.) Separation angle 24,2° 24.6° 24°
8(deg.) Shock angle 35 35.5 34.5
Fs(lb) Side force (calc.) , 303 171 89
Fj(lb) Side force (measured) 239 186 - %
a
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(B, /P)

av]]

crit.

T

SITVC

SPGG

GLOSSARY OF SYMBOLS

orifice area, in2

solid propellant grain cross—sectional area, inz
solid propellant burn characteristic constant
orifice flow discharge coefficient

thermodynamic gas constant, °RL/2/sec

nozzle diameter, in.

side force

orifice flow function

specific heat ratio

Mach No. - primary nozzle flow

solid propellant burn characteristic pressure exponent
nitrogen gas

pressure, psia

average pressure, psia

vortex valve control pressure, psia

= gas generator pressure, psia

vortex valve supply pressure, psia
pneumatic critical pressure ratio

solid propellant burn rate, in/sec
secondary injection thrust vector control
solid propellant gas generator
temperature, °F or °R

gas weight flow, 1b/sec

solid propellant grain density, 1b/in3
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ABSTRACT

The flow of hot (5500°F) gas from a solid propellant gas generator
has been successfully throttled by a fluidic, no-moving-part, vortex valve.
The vortex valve has been demonstrated by the application of hot gas
secondary injection thrust vector control to a solid propellant rocket
motor. The hot gas vortex valves were controlled by a pilot stage utiliz-
ing a flapper-nozzle and vortex amplifier valve arrangement which modulated
the flow of a 2000°F pilot stage solid propellant gas generator. Materials
found suitable for the 5500°F hot gas application consist of silver-

infiltrated tungsten, silica phenolic, carbon phenolic, and graphite
phenolic.
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