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A technique i s  developed fo r  identifying those l i n e a r  combinations of 
orb i t  parameters which can be estimated from a given span of tracking data. 
It i s  shown that t.here are class I observable parameters, which affect  the 

data strongly and mwt be included i n  the o rb i t  determination solution, and 
c l a s s  I1 observable parameters, which affect  the data weakly and can be 

ignored. 
tracking situations.  
t o  show t h a t  one would expect 2n + 4 combinations of potent ia l  terms t o  be 

c lass  I observable if an n- order potent ia l  model i s  postdated.  
analysis technique f o r  e f f i c i en t  o rb i t  determination i s  suggested. 

The method 9s numerically applied t o  two selected lunar orb i te r  
A theoret ical  explanation of the results is  developed 

t h  A Fourier 

1. INTRODUCPION 

The parameters which determine a s a t e l l i t e  o rb i t  are usually obtained 
from a maximum likelihood (weighted least squares) f i t  t o  the tracking data. 
The theore t ica l  formulation is w e l l  known, but prac t ica l  d i f f i c u l t i e s  arise 
when a very large number of parameters can a f fec t  the orb i t .  
i s  obviously impossible t o  estimate all of tk coefficients of the spherical 
harmonics describing the gravi ta t ional  potent ia l  of the central  body, yet 
any or  all of them m i g h t  have a significant e f f ec t  upon the solution of the 

o rb i t  determination problem. 
t o  be solved f o r  from physical considerations and in tu i t ive  Judgement., 

Theoretically, deletion of parameters from the solution can only be ju s t i f i ed  
by an examination of the observabili ty and apr ior i  uncertainty of the system. 

For example, it 

I 

I n  pract ice  one usually defines the paramiters 
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That is ,  a parameter or  l inear  combination of parameters may be deleted 
from consideration if it i s  unobservable, which means it does not affect  
the data  ( the pa r t i a l  derivative of data with respect t o  parameter i s  
zero), or i f  i t s  
perfect ly  known. 
attacked by computing the eigenvalues and eigenvectors of the  normal 
matrix (the inverse covariance matrix obtained from the data).  
l i nea r  combinations of parameters formed as  the inner products of the 

eigenvectors wi th  the o rb i t  parameters then become an uncoupled set of 
new parameters, and those l inear  combinations which correspond t o  
negligibly small eigenvalues are supposed t o  be deleted. This approach 
cannot be s t r i c t l y  correct,  however, for an arbitrary scaling of the 

or ig ina l  parameters w i l l  y ie ld  an a rb i t ra ry  set of eigenvalues and 
eigenvectors. 

apriori  variance is  zero, which means t h a t  it i s  
It has been suggested tha t  the problem might be the 

The 

It is  the purpose of t h i s  paper t o  describe a theoret ical ly  ju s t i f i ab le  
method fo r  identifying the  l i nea r  combinations of parameters t o  be solved 
fo r  and deleted. The analysis w i l l  be applied t o  a tracking study of two 
selected lunar orb i t s  (reference l), i n  order t o  show which terms are 

t h  s ignif icant  i f  a 4- order potent ia l  model i s  postulated. 
of the potent ia l  function w i l l  be developed t o  explain the numerical r e su l t s  
and t o  show that, i n  general, one would expect at most (2n f 4)  combinations 
of potent ia l  terms t o  be significant f o r  an n-order potent ia l  model. A 

technique f o r  e f f i c i en t  data reduction by a Fourier analysis w i l l  also be 
suggested. 

A modified form 

t h  

2. CLASSES OF OBSERVABU3 PARAMETERS 

In t h i s  section we w i l l  establ ish the theoret ical  jus t i f ica t ion  f o r  
considering only cer ta in  l inear  combinations of parameters i n  o rb i t  determi- 
nation analysis. The approach i s  based upon the following c lass i f ica t ion  of 
o rb i t  parameters : 

Unobservable parameters : 
which have no ef fec t  upon the data, and which can be deleted from consi- 
deration i n  the o rb i t  determination solution. 

those l i nea r  combinations of o r b i t  parameters 



Class I observable parameters: those l inear  combinations of orb i t  parameters 
which a f fec t  t h e  data strongly, and which must be inciluded i n  the orb i t  
determination solution. 

Class I1 observable parameters: those l inear  combinations of orb i t  parameters 
which affect  the data weakly, and which can be ignored i n  the o rb i t  determina- 
t ion  solution. 
resul t ing from the Class I parameter solution, however. 

These parameters can be determined from the data residuals 

The analysis proceeds as follows: Suppose there i s  a data vector (single 
data  type) which, af'ter l inear izat ion about a nominal trajectory,  takes the 

form 

where 62 i s  a m-dimensional vector composed of variations from nominal 
of unknown o rb i t  parameters, A is  the p a r t i a l  derivative matrix [a;/&] , 
and E i s  data noise. 
the ap r io r i  variances be 

L e t  the ap r io r i  estknates of bland E be zero, and 

--T 2 E t n n ]  = 0 1  

where I i s  the ident i ty  matrix, and E[ * * ]  indicates the statist ical  

expectation. Define 

T 4 -  6 y  = L A  6x 

where L i s  an orthogonal transformation such tha t  

( 3  1 

( 4  1 

D I 
d2 
111 
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Thus the 6yi a r e  l i n e a r  combinations of the 6x 

a x i s  of the  6x. coordinate system, The 6yi have unit ap r io r iva r i ances ,  

f o r  we have 

formed by scaling the  
6x. by the inverse of t h e i r  a p r i o r i  standard deviations j' and ro ta t ing  the  J 

J 

where 

Applying %he well-known formula, the m'axirnum l ikelihood (minimum variance ) 
estimate of 6F given 6; i s  

6T- = 2 1 [I + ? B  1 T B] -1 B T -  6z 
0 0 

- - 1 [I + ';T D 1 - l  BT6B 

(5 
- 2  

(5 

t h  
s ince,  from (5) and ' (8) ,  BTB = D. Thus the  i- component of 6F" is 

( 9 )  

t h  where 6.  i s  the i- column of the  B matrix. 
following def in i t ion :  

Since = di, w e  make the 
1 

2 
Definition: A parameter 5 y i i s  said t o  be unobservable i f  di = 0. 

a 
L 

A parameter 5yi i s  said t o  be Class I observable if (2) 2 E, where E i s  

a number which determines the  estimation e r ror  one is willing t o  accept 

\2 
(say E = 0.01); a parmeter  byi i s  said t o  be Class I1 observable if (>j < E. 
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This def in i t ion  is motivated by the f a c t  that delet ing the Class I1 and 

unobservable parameters from consideration w i l l  cause a data residual  of 

order E, which i s  supposed t o  be negligible. The (&) can be thought 

of as "signal-to-noise ratios" describing the information content of the 

data r e l a t ive  t o  the (un i t )  a p r i o r i  information. 

the Class I observable parameters f o r  the o r b i t  determination problem. 

Thus we seek t o  ident i fy  



3. NUMEFiICAL RESULTS FOR TRACKING OF LUNAR ORBITERS 

Orbit determination r e s u l t s  from tracking of lunar o rb i t e r s  (reference 1) 

have indicated t h a t  poor solutions are obtained when a r e l a t ive ly  small number 

of parameters are solved fo r ,  i n  the sense tha t  la rge  systematic data  res iduals  

and poor o r b i t  predictions are obtained. The e f f ec t  of neglected gravi ta t ional  

po ten t ia l  terms is the most probable cause of the d i f f icu l ty .  

might be improved by developing la rger  computer programs capable of solving 

f o r  more parameters, but this could be a formidrible task. 

theory developed above will be applied t o  ident i fy  those l inear  combinations 

of po ten t ia l  terms which are s igni f icant  for short tracking intervals .  

The results 

In t h i s  Section the 

It is  c l ea r  from the  previous discussion (and in tu i t i ve ly  obvious) 

t ha t  the  s ign i f icant  combinations of parameters t o  be ident i f ied  and solved 

f o r  depend upon the  assumed values of  t he  elements of  the  a p r i o r i  covariance 

matrix, t h a t  is ,  an a p r i o r i  judgement i s  required. Two ways of defining the 

poten t ia l  term variances were developed f o r  the  purpose of the study described 

here. I n  both cases it was assumed tha t  the poten t ia l  terms a re  uncorrelated. 

The l'gross variances" were some ra ther  large numbers chosen by increasing 

some published r e su l t s  (reference 1) by approximately a32 order of magnitude. 

The resul t ing standard deviations (variance" ) are  shown i n  Table I. The 

I'theory variancestt were smaller numbers obtained from a formula developed 

by Kaula (reference 2 ), who extrapolated geodesy data by arguing t h a t  the  
moon might be 35 times a s  rough a s  the  ear th .  Accounting f o r  appropriate 

normalizing f ac to r s  ( r e fe rence3 ,  pp. 7 )  the formula f o r  the  standard 

deviations a r e  

36 

4? 

I 

% s > =  n m n m  

where Cm, Sm are  the  coef f ic ien ts  o f  the  spherical  harmonics f o r  the moon, 

and born i s  the  Kronecker d e l t a  (equal t o  1 i f  m = 0, equal t o  zero otherwise). 

The r e s u l t s  of t h i s  calcuLation f o r  n 5 8 a re  shown in Table 2. 
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It was assumed t h a t  the  complete solut ion vector was composed of the 

poten t ia l  terms, t h e  i n i t i a l  posit ion and ve loc i ty  of the spacecraft ,  the  

s t a t i o n  locat ion e r rors  of a s ingle  doppler tracking s t a t ion  (Woomera, 

Austral ia) ,  and a doppler bias.  

parameter were a r b i t r a r i l y  chosen t o  be 

The standard deviations f o r  t he  non-potential 

Gross Standard Deviations 

0 ( i n i t i a l  posi t ion,  each component) = 10,500 f t .  

CJ ( i n i t i a l  veloci ty ,  each component) = 10.5 f t /sec 
CT (doppler b ias )  = ,001 f t / sec  
cs ( s t a t ion  l a t i t u d e  e r ror )  = 210 f t .  
cs ( s t a t  ion longitude e r ror  ) = 21 f t .  
CJ ( s t a t ion  a l t i t u d e  e r ror )  = 105 f t .  

Theoretical Standard Deviations 

CJ ( i n i t i a l  posit ion,  each component) = 1,050 f t .  

cs ( i n i t i a l  veloci ty ,  each component ) = 1.05 f t /sec 
cs (doppler bias)  = ,001 f t / s ec  
CJ ( s t a t ion  l a t i t u d e  e r ro r )  = 210 f t .  
cs ( s t a t ion  longitude e r ro r )  = 21 f t .  

. CJ ( s t a t i o n  a l t i t u d e  e r r o r )  = 105 f t .  

The data  noise standard deviation w a s  CT = 0.213 f t / sec  = 0.065 m/sec i n  

both cases, which corresponds t o  a 1 cycle/sec e r ro r  f o r  a one minute count 

of counted doppler. 
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Table 1: Gross Awior i  Standard Deviations 



-2: Theoretical Aprior i  Standard Deviations 
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The Class I observable parameters were determined f o r  eight lunar 

tracking s i tuat ions:  a high a l t i t u d e  and low a l t i t ude  nominal t ra jec tory  

was chosen; each of these t r a j ec to r i e s  and the associated p a r t i a l  deriva- 

tives w a s  computed with a nominal lunar  potent ia l ,  consisting of reasonable 
estimates of lunar potent ia l  terms, and a spherical  lunar potent ia l ,  with 

only the  cent ra l  body term present, and, f o r  each case, both the gross 

and theore t ica l  variances were applied. 
and low o rb i t  tracking s i tuat ions were: 

The character is t ics  of the high 

Low orbi t :  

High orb i t :  

semi-major axis = 1968 Km, eccentr ic i ty  = O.O&, 

inc l ina t ion  = 20.9', s ingle  s t a t ion  (Woomera) tracking 

with range rate data  a t  r a t e  of one point per minute f o r  
75 minutes 

semi-major axis = 2722 Km, eccentr ic i ty  = u . y i ,  
incl inat ion = 20.9 , single  s t a t ion  (Noomera) tracking 

with range r a t e  data, a t  r a t e  of one point per minute 

f o r  120 minutes 

0 

The calculations described i n  Section 2 were carr ied out for a 
parameter vector consisting of  34 terms: 
3 i n i t i a l  veloci ty  components, the 24 gravi ta t ional  po ten t ia l  terms through 

4- order ( the n = 1 terms are  t o  be interpreted as lunar ephemeris e r ror ) ,  

3 s t a t i o n  locat ion e r rors ,  and a range r a t e  bias. The eigenvalues di were 

determined, and the  Class I observable parameters were defined t o  be those 

3 i n i t i a l  posit ion components, 

t h  
2 

Sy. corresponding t o  [>r > 0.01, where cs = 0.213 ft /sec.  It was found 
1 

t h a t  in none of t he  eight cases studied were there  more than 10 Class I 

observable parameters. Tables 3 - 10 l ist  the  values of [>I2 associated with the  major eigenvectors , and coeff ic ients  cij which 

are the  major components of the eigenvectors. 

should estimate the  parameter combinations 

Thus theore t ica l ly  one 
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but,  as a simplifying approximation, it might suf f ice  t o  include only 

those -- f o r  which I C .  . I  2 some small number 2. Rounding off lcijl t o  

two s ignif icant  f igures ,  and se t t i ng  = 0.20, t he  potent ia l  terms which 

then remain as components of any of the  yi are l i s t e d  i n  Table 11. 

Tables 3-10 indicate  t h a t  all ini t ia l  posit ion and velocity components 

"j 1 J  

Since 

are s ignif icant ,  a reasonable f i t  t o  the  tracking data might be obtained 

by solving f o r  these parameters plus the poten t ia l  terms l i s t e d  in 

Table 11. This approach would yield approximately the  same data residuals 

obtained by solving f o r  t he  parameter combinations 1 )  \ y . : f .  Note t h a t  the  

sec to r i a l  po ten t ia l  terms (Cm, Sm> seem t o  be t h e  most important, and 

t h a t  t he  results f o r  t h e  nominal and spherical  potent ia l  cases a re  almost 

ident ical .  

L 1.1 
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4. 
ear  combinations 

of o rb i t  parameters a r e  s ignif icant  f o r  a l l  cases studied, and tha t  the 
combinations are  similar. In  t h i s  section we w i l l  seek a theoret ical  
explanation of t h i s  phenomenon. 

Let the nominal orb i t  be a Keplerian ellipse: and apply Lagrange's 
equations of motion (reference 3, page 29) t o  obtain the variation of the 
o rb i t a l  elements i n  the form 

t 
6a( t )  = 6a(o) + & [>) ds 

3t That i s ,  t o  first order we assume tha t  the o rb i t a l  elements (except M )  

are constants equal t o  t h e i r  in i t ia l  values. 
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where ( a ,  e ,  w, i, hl, M) are the Keplerian elements, N is the mean 

angular motion, and R n 
n- order potent ia l  model, which, f o r  small eccentr ic i ty ,  i s  approximately 

given by (reference 3) 

i s  the  gravi ta t ional  disturbing function f o r  an 
t h  

The p i s  the  

of the moon, 

eccentr ic i ty  

grav i ta t iona l  constant of the  moon, a is the mean radius M 
(e)  a r e ,  respectively, the incl inat ion and ( i )  and G 

F&mp 4Pq 
functions defined in reference 3, and 

(&-m) even 
'am1 

(4-m) even 
rs&m -i 

f j  I s i n  I(& - 2p) w + (4 - 2p + q )  M + m(O - e)]  

are the coeff ic ients  of the spherical  harmonics, and e i s  

rate multiplied by tracking time. The assumption of small 

eccentr ic i ty  i s  used i n  the  evaluation of G 

the index q ranges from -1 t o  +1 ra ther  than from - Q) t o  + 00 

terms are negl igible ,  

( e ) ,  f o r  it can be shown t h a t  
&mP 2 if  the  e 

Suppose we consider tracking arcs  suf f ic ien t ly  short 
- & n  - 

3,000 
t o  cause $ t o  be negligible (0 = - - - 
hour), and rewrite Rn i n  the form 

- Rn - '1 cos k M + bk s i n  k PI "k ._- . 

where the % and the  bk are combinations 

a ,  e ,  w ,  i, Q,  and the mean anomaly i s  M 

-01 f o r  a tracking time of one 

of  the  {CmL, Sm) and the  elements 
= N(t-to) with to = time of 



periapsis passage. Such a representation 
c) 

i s  val id  if  B and eL s r e  
negl igible ,  f o r  it can be seen from (19) and (20) tha t  Rn i s  then a combina- 

t i o n  of s ines  and cosines of kM, where k ranges from 0 t o  n+ l .  

the o r b i t a l  elements by qi, where ql = a, q2 = e ,  q3 = o, q4 = i, q5 = 0 ,  
96 = M, we use'equation (21) i n  equations (13) - (18) t o  obtain an expres- 

sion f o r  deviations from the  nominal o r b i t  in the form 

Denoting 

k-O 
where the  { uik, @*} a'," l i n e a r  combinations o f  the {%, bk) with coeff ic ients  

Suppose there i s  a continuous data type z ( t ) ,  such as doppler, which 

which depend upon the 

i s  o f  the form 

6 z ( t )  = H(t) 6q ( t )  + n ( t )  = A(t)  62 + n ( t )  (24) 

where 

and H(t)  and A(t)  a re  row matrices given by 

[p""' a q ( t ) f i  ;""I, ax respectively.  If H(t)  i s  

the (short)  tracking in te rva l ,  equations (22) and (23) show t h a t  the 
{9i) and the { Cm, Sm}terms of  an n- order potent ia l  model generate 

elements of the  A(%) matrix composed of  a t  most 2n + 4 l inea r ly  independent 

functions: n + 1 cosine functions, n + 1 sine functions, a constant, and 

t h  



a (constant) x (time). Since on ly  N l i nea r  combinations of parameters can 

be observed (determined) from data composed of N l inear ly  independent 
fwctions*, we conclude t h a t  a t  most 2n + 4 l inea r  combinations of the 
potential  coefficients and initial conditions can be determined from a 
short a rc  of tracking data. 
reduction i n  the nwnber of solution parameters can be achieved, fo r  with 
an n- order potential  model there are  n(n + 2) potential  terms t o  be 
considered plus the six s t a t e  variable components. 
agreement with the numerical resu l t s  obtained with a fourth order 
potential  model (n = 4), for a t  most 10 parameter combinations were 

found t o  be significant and theoret ical ly  we have 2n + 4 =12. 

This conclusion indicates tha t  a significant 

t h  

The theory i s  i n  

It should be noted tha t  the number of observable parameters increases 
i f  H(t) i s  not almost constant over the tracking interval.  
i f  any of the Hi(t) were of the form 

For example, 

hiO + ha cos M + h12 sin M + hi3t 

then the product A(t)6q(t) would generate sin kM and cos kM terms up t o  

k = n + 2 as  well as terms of the type ( t  cos kM) and (t sin kM) up t o  

k = n + 1 and a (constant) x ( t  ) term. This would indicate as  many as 
(4n + 9 )  observable parameters. 
t ha t  the non-constant portion o f  fi ( t  ) i s  not s ignif icant  , however. 

2\ 

The numerical r e su l t s  seem t o  indicate 

5 .  FOURIER MALYSIS OF DATA RESJDUALS 
The analyt ical  treatment developed i n  Section 4 could be applied t o  

determine the potential  terms from a Fourier analysis of data residuals. 
Suppose some small number of o rb i t  parameters have been estimated (such 
as  i n i t i a l  conditions on ly ) ,  result ing in data residuals of the form 

9 This statement of the relationship between l inea r  dependence and 

observability i s  eas i ly  ver i f ied,  and w i l l  not be demonstrated here. 



where 6q ( t )  Suppose we assume t h a t  the previously 

obtained solut ion f o r  initial conditions defines a s e t  of mean o r b i t a l  
element8twhich a re  t o  be held f ixed,  so tha t  p ( t )  can be put in to  the 

form 

= [ i ( t )  - {*(%)I. 

where {%, Bk) a r e  combinations of the {uij, Pij and the constant 

components of H ( t ) ,  and we have considered only the constant portion of 
the H ( t )  matrix t o  sum to n + 1 (see Part 4) .  
be thought of as data  containing information about the 2n + 3 signif icant  
combinations of  po ten t ia l  terms. 

The p ( t >  can therefore 

1 
The functions 6 0 s  kM, sin kMj are  not orthogonal over the tracking 

in t e rva l  T because T does not ,  i n  general, correspond t o  an a rc  length 

of 2n radius. A n  a l te rna t ive  representation of p ( t )  can be obtained as 

A A 
u cos mu + p sin mu m y Uk cos kM + B, s i n  kM = 

L A  

where 

2 n ( M  + 1\! to)T 
u ( t )  = [ NT 1 = (?) 

, 

The r igh t  hand series i s  composed of functions orthogonal over the in t e rva l  

T ,  and 

* That i s ,  we suppose t h a t  mean elements ra ther  than osculating elements 
a t  t = 0 are estimated in the o r b i t  determination procedure. 
secular  terms are  then eliminated and only the periodic terms remain. 

The 
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I 

I 

,‘\ i 
a re  linear combinations of the / a  @mi i k’ kj 

Thus the  (zm, 
experimentally determined from the residual data  by 

f3 ) y  and can be 

T 
6” Kl = $1 [cos mu(s)][p(s)] ds 

0 

&-I> 
It can be shown t h a t  the am, of  equations (31) and (32) are  the 

L pm/ 
minimum variance estimates, and, .assuming no apr ior i  information ( in f in i t e  
ap r io r i  variance) the estimation error has variance 

p c  
OriLy (2n + 3 )  values of i ~ m y  0, }are suff ic ient  t o  recover the (2n + 3 )  

numbers i f  the corresponding (2n + 3 )  X (2n + 3 )  dimensional 

2% e%- 
as (u , @ ), the minimum variance estimates of the potential  parameters 
{C S can also be recovered. Construct the rectan&Lar matrix 
\my nm, 



so tha t  

where E i s  the estimation e r ror  which, according t o  ( 3 3 ) ,  has variance 

o2 x (the ident i ty) .  If P i s  the ap r io r i  variance of the t 
the minimum variance estimates become 

This i s  the desired result. 

Note t h a t  some simplification of the e s t b t i o n  equations resu l t s  if 

the  residual  data can be interpreted as acceleration, so tha t  we have 

[residual acceleration) = C( t ) [ i ( t )  - ?(%)I + noise 

where C(t)  i s  a matrix resolving the  acceleration vector in to  a line-of- 

s ight  direction. 
doppler residuals o r  by solving f o r  an unknown acceleration vector from 

the  or ig ina l  data. The estimation procedure i s  essent ia l ly  the  same as 

Such a data  type could be constructed by d i f fe ren t ia t ing  

described above. 
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6. CowmSIoN 

In this paper we have shown that a relatively small number of 
combinations of orbit parameters are observable for a short arc. of lunar 
tracking data, and suggested several ways of exploiting this fact for 
orbit determination purposes: 

(I) Identify, either numerically or analytically, the observable 
parameter combinations and solve for these quantities. With 
this approach the solution parameters are linear combinations 
of all the parameters introduced in the initial p 'ob lem 

formulation. 

( 2 )  Identify, either numerically o r  analytically, the major 

components of the observable parameter combinations and 
solve for these quantities. vJith this approach one solves 
for a certain "best" subset of the solution parameters 
introduced in the initial problem formulation. 

(3 ) Analytically represent the observable parameter combina- 
tions as coefficients of a Fourier series, and numerically 
determine these coefficients from a spectral analysis of 
data residuals. 

With any of these methods the estimates of any or all of the 
parameters introduced in the initial problem formulation (e .g., the 

potential coefficients) can be recovered by the method described snm 
in Section 5. 
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