View metadata, citation and similar papers at core.ac.uk

|

P
brought to you by .{ CORE
provided by NASA Technical Reports Server

ON THE IDENTIFICATION OF OBSERVABLE ORBIT PARAMETERS;
WITH APPLICATION TO LUNAR ORBITER TRACKING

*
C. G. Pfeiffer

fostract

A technique is developed for identifying those linear combinations of

orbit parameters which can be estimated from a given span of tracking data.

It is shown that there are class I observable parameters, which affect the

data strongly and must be included in the orbit determination solution, and

class II observable parameters, which affect the data weskly and can be

ignored.

tracking situations.

The method is numerically applied to two selected lunar orbiter
A theoretical explanation of the results is developed

to show that one would expect 2n + 4 combinations of potential terms to be
class I observable if an nEE~order potential model is postulated.

A Fourier

analysis technique for efficient orbit determination is suggested.

1. INTRODUCTION

The parameters which determine a satellite orbit are usually obtained

from a meximum likelihood (weighted least>squares) fit to the tracking data.
The theoretical formulation is well known, but practical difficulties arise

when a very large number of paresmeters can affect the orbit.

For example, it

is obviously impossible to estimate all of the coefficients of the spherical
harmonics describing the gravitational potentiel of the central body, yet
any or all of them might have a significant effect upon the solution of the

orbit determination problem.

In practice one usually defines the parameters

to be solved for from physical congiderations and intuitive judgement. .
Theoretically, deletion of parameters from the solution can only be justified
by an examination of the observability and epriori uncertainty of the system.

%This work was partially éupported by contract RAS 9-h810, administered by
Manned Spacecraft Center, Houston, Texas, and NAS 2-4553, administered by
Ames Research Center, Moffett Field, California.

*Head, Maethematical Physics Section, Guidance end Analysis Department, TRW

Systems Group, Redondo Beach, California,

oo 2
-

N68-36625

(ACCESSION NUMBER)

(- 77965

(NASA CR OR TMX OR AD NUMBER)

FACILITY FORM 602



https://core.ac.uk/display/85243388?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

That is, a parameter or linear combination of parsmeters may be deleted
from consideration if it is unobservable, which means it does not affect
the data (the partial derivative of data with regpect to parameter is
zero), or if its @apriori variance is zero, which means that it is
perfectlf known. It has been suggested that the problem might be the
attacked by computing the eigenvalues and eigenvectors of the normal
matrix (the inverse covariance matrix obtasined from the data). The
linear combinations of parameters formed as the inner products of the
eigenvectors with the orbit parameters then become an uncoupled set of
new parameters, and those linear combinations which correspond to
negligibly small eigenvalues are supposed to be deleted. This approach
cannot be strictly correct, however, for an arbitrary scaling of the
original parameters will yield an arbitrary set of eigenvalues and

eigenvectors.

It is the purpose of this paper to describe a theoretically Justifiable
method for identifying the linear combinations of parameters to be solved
for and deleted. The analysis will be applied to a tracking study of two
selected lunar orbits (reference 1), in order to show which terms are
significant if a hEE-order potential model is postulated. A modified form
of the potential function will be developed to explain the numerical results
and to show that, in general, one would expect at most (2n + 4) combinations
of potential terms to be significant for an nEE-order potential model. A
technique for efficient data reduction by a Fourier analysis will also be
suggested.

2. CLASSES OF OBSERVABLE PARAMETERS

In this section we will establish the theoretical justificetion for
considering only certain linear combinations of parameters in orbit determi-
nation analysis. The approach is based‘upon the following classification of

orbit parameters:

Unobservable parameters: those linear combinations of orbit parsmeters

which have no effect upon the data, and which can be deleted from consi-

deration in the orbit determination solution.



Class T observable parameters: those linear combinations of orbit parameters
which affect the data strongly, and which must be included in the orbit

determination solution.

Clasg II observeble parameters: +those linear combinations of orbit parameters
which affect the data weakly, and which can be ignored in the orbit determina-

tion solution. These parameters can be determined from the data residuals

resulting from the Class I parameter solution, however.

The analysis proceeds as follows: Suppose there is a data vector (single
data type) which, after linearization sbout a nominal trajectory, takes the

form

5z = ADX +n (1)

where 6x is a m-dimensional vector composed of variations from nominal
of unknown orbit parameters, A is the partial derivative matrix [a7/5x],
and T is data noise. Let the apriori estimates of 6xand n be zero, and

the apriori variances be

]
=

E[6x6% ] (2)
Bt = o1 3

where I is the identity matrix, and E[++*] indicates the statistical

expectation. Define

' 1 .
55 = L'n7%ex (%)

(5)



Thus the 6yi are linear combinations of the 6xj, formed by scaling the
6X§ by the inverse of their apriori standard deviations and rotating the
axis of the GXj coordinate system,

The 6yi have unit apriori Variances,
for we have

- i1
Bl6767°] = LIA™Ban~RL = 71 (6)
Equation (1) becomes
8§z = BSY +n (7)
where
1
B = (arfL) (8)

Applying the well-known formula, the maximum likelihood (minimum variance)

estimate of 8y given dz is

55 = L [1+% 8817 Bl

2
o o

= i—z- (1 + .:.{:.5 D]-l‘BTéz (9)

o}

since, from (5) and (8), BTB = D. Thus the ;b component, of 65 is

2 -1
¥ 1 4\ -1 -
6yi = = 1 * 5 bi Sz (10)
a o
where Ei is the iLh column of the B matrix. Since 'Bi’ = di’ we make the
following definition:
Definition: A parameter Syi is sald to be unobservable if di2 = 0,
d. 2
-

=z g, where € is

A parameter 5yi is said to be Class I observable if (c
a number which determines the estimation error one is willing to accept
\R

d.
(say & = 0,01); a parameter 8y, is said to be Class II observable if (glj < €.



This definition is motivated by the fact that deleting the Class II and

unobservable parameters from consideration will cause a data residual of
d

order ¢, which is supposed to be negligible. The (-3;) can be thought
of as "signal-to-noise ratios" describing the information content of the
data relative to the (unit) a priori information. Thus we seek to identify

the Class I observable parameters for the orbit determination problem.



3. NUMERICAL RESULTS FOR TRACKING OF LUNAR ORBITERS

Orbit determination results from tracking of lunar orbiters (reference 1)
have indicated that poor solutions are obtained when a relatively small number
of parameters are solved for, in the sense that large systemétic data residuals
and poor orbit predictions are obtained. The effect of neglected gravitational
potential terms is the most probable cause of the difficulty. The results
might be improved by developing larger computer programs capable of solving
for more parameters, but this could be a formidable task. In this Section the
theory developed asbove will be applied to identify those linear combinations
of potential terms which are significant for short tracking intervals.

It is clear from the previous discussion (and intuitively obvious)
that the significant combinations of parameters to be identified and solved
for depend upon the assumed values of the elements of the apriori covariance
matrix? that is, an apriori judgement is required. Two ways of defining the
potential term variances were developed for the purpose of the study described
here. In both cases it was assumed that the potential terms are uncorrelated.
The "gross variances" were some rather large numbers chosen by increasing
some published results (reference 1) by approximately an order of magnitude.
The resulting standard deviations (variance®) are shown in Table I. The
"theory variances" were smaller numbers obtained from a formula developed
by Kaula (reference %), who extrapolated geodesy data by arguing that the
moon might be 35 times as rough as the earth. Accounting for appropriate
normali.zing factors (reference3l , pp. 7) the formula for the standard

deviations are

(2 - 5om)(n -m)!(2n + 1) 5 10_9 5

qbnmﬁnm) = (n + m)! 3

(11)

where Cnm’ Snm are the coefficients of the spherical harmonics for the moon,
and 6 is the Kronecker delta (equal to 1 if m = O, equal to zero otherwise).

The results of this calculation for n £ 8 are shown in Table 2.



It was assumed that the complete solution vector was composed of the
potential terms, the initial position and velocity of the spacecraft, the
station location errors of a single doppler tracking station (Woomera.,,

" Australia), and a doppler bias. The standard deviations for the non-potential

parameter were arbitrarily chosen to be

Gross Standard Deviations

o (initial position, each component) = 10,500 ft.
o (initial velocity, each component) = 10.5 ft/sec
o (doppler bias) = ,001 ft/sec
o (station latitude error) = 210 ft.
o (station longitude error) = 21 ft.
o (station altitude error) = 105 ft.
Theoretical Standard Deviations

o (initial position, each component) = 1,050 ft.
o (initial velocity, each component) = 1.05 ft/sec
o (doppler bias) = ,001 ft/sec
o (station latitude error) = 210 ft.
o (station longitude error) = 21 ft,

. o (station altitude error) = 105 ft.

The data noise standard deviation was o = 0.213 ft/sec = 0.065 m/sec in
both cases, which corresponds to a 1 cycle/sec error for a one minute count

of counted doppler.



fable 1: Gross Apriori Standard Deviations
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Table 2: Theoretical Apriori Standard Deviations
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The Class I observable parameters were determined for eight lunar
tracking‘situations: a high altitude and low altitude nominal trajectory
was chosen; each of these trajectories and the associated partial deriva-
tives was computed with a nominal lunar potential, consisting of reasonable
estimates of lunar potential terms, and a spherical lunar potential, with
only the central body term present, and, for each case, both the gross
and theoretical variances were applied. The characteristics of the high

and low orbit tracking situations were:

Low orbit: semi-major axis = 1968 Km, eccentricity = 0.04,
inclination = 20.9°, single station (Woomera) tracking
with range rate data at rate of one point per minute for

75 minutes

High orbit: semi-major axis = 2722 Km, eccentricity = 0.31,
inclination = 20.90, single station (Woocmera) tracking
with range rate data, at rate of one point per minute

for 120 minutes

The calculations described in Section 2 were carried out for a
parameter vector consisting of 34 terms: 3 initial position components;
3 initial velocity components, the 24 gravitational potential terms through
Aih order (the n = 1 terms are to be interpreted as lunar ephemeris error),
3 station location errors, and a range rate bias. The eigenvalues di2 were
determined, and the Class I observable parameters were defined to be those

di 2 ,

éyi corresponding to 5 > 0.01, where o = 0.213 ft/sec. It was found
that in none of the eight cases studied were there more than 10 Class 1

observable parameters. Tables 3 - 10 list the values of
12

d.
(;;J associated with the major eigenvectors, and coefficients Cij which

are the major components of the eigenvectors. Thus theoretically one

should estimate the parameter combinations



11

s 6x .,
R -—-41 1 = 'R X <
8y Ji: 4 (Gj) i=1, N =< 10 (12)

but, as a simplifying approximation, it might suffice to include only
those zs for which ]Cijl > some small number €. Rounding off ‘Ciji to
two significant figures, and setting g = 0.20, the potential terms which
then remain as components of any of the y; are listed in Table 11. Since
Tables 3-10 indicate that all Initial position and velocity components

are significant, a reasonable fit to the tracking data might be obtained
by solving for these parameters plus the potential terms listed in

Table 11. This approach would yield approximately the same data residuals
obtained by solving for the parameter combinations (yig. Note that the

Y A

sectorial potential terms (C most important, and

o’ Snn) seem to be the

that the results for the nominal and spherical potential cases are almost
identical.
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F. A THEORETTCAL EXPLANATION OF THE NUMERICAL RESULTS

The numerical results indicate that at most 10 linear combinations
of orbit parameters are significant for all cases studied, and that the

combinations are similar. In this section we will seek a theoretical

explanation of this phenomenon.

Let the nominal orbit be a Keplerian ellipse?-and apply Lagrange's

equations of motion (reference 3, page 29) to obtain the variation of the

orbital elements in the form

2 th aRn
sa(t) = éda(o) + 3= . (534“ ds
r L~
(t) (o) 1= 2 rt B! - &8 1 (aRn
6e(t) = 8e(o) + ' ] 98 - = ‘ dw
 Na2e j JO aM ) [ a2 Jfo 30
,,t/ 1 t
, 3R (1-e)® [ oR 1
sw(t) = dw(o) - -“§9§'i§fz ! tg{g)ds * l—g j (SEE ds
Na™(1-e")%] -o Na'e o

t, -

5 dw
Naz(l—e2 } ° ’ LNa (l—e ) sin 1j

. ! ok ;
5i(t) = 5i(o) ( 2ot 1 \f( n)d“"“? A ( )ds

g 1 BRh
sa(t) = on(o) + t A T / 57 ) ds
Na“(1l-e) sin i

[ b 3R
sM(t) = 6M(o) - %i&a(o)t + 1%; f (t - S)(Sﬂﬂ)dSJ
o .

t t
. - R
_{1_82 l aRn ds - 2 J é...rl\ ds.
P2 %) de Na J, 10a |

{Na e

e
p2d

are constants equal to their initial values.

That is, to first order we assume that the orbital elements (except M)

(16)
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where (a, e, w, 1, Q, M) are the Keplerian elements, N is the mean
angular motion, and Rn is the gravitational disturbing function for an
nEh order potential model, which, for small eccentricity, is approximately
given by (reference(3)

L “amfz £ +1
_ Kﬁ . Sy KT
R S '(75;I} ) F&mp(l} s Gqu(e) Sémpq (19)
L=l m=0 & p=0 q=1

The 4 is the gravitational constant of the moon, ay is the mean radius
of the moon, Fme(i) and Q&pq(e) are, respectively, the inclination and

eccentricity functions defined in reference 3, and

e (£-m)even
e’
m
Smeq(UJ,M,Q,B) = s cos [j(’L - 2p) w + ('f’ - 2p + Q) M+ m(Q - 9)]
' Lm'({,—m)odd
o (t-m)even
‘SL )
P
+ sin [(L -2p) w+ (L -2p +q) M +m(Q - 8)]
{C&m_ -
(4-m)odd (20)

where /étm s&m> are the coefficients of the spherical harmonics, and 6 is

moon's rotétioﬁ'rate maltiplied by tracking time. The assumption of smail
eccentricity is used in the evaluation of G%mp(e)’ for it can be shownéthat
the index g ranges from -1 to +1 rather than from — ® to + » 1if the e

terms are negligible. Suppose we consider tracking arcs sufficiently short

to cause 9 to be negligible (6 = 38200'; .01 for a tracking time of one
3

hour), and rewrite R in the form

n+l
R= \ a, cos k M+ b sink M - (21)
k=0

where the ay and the bk are combinations of the {Cnm’ Snm> and the elements
a, e, w, 1, Q, and the mean anomaly is M = N(t-t_) with t_ = time of
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periapsis passage. ©Such a representation is valid if 8 and e2 are
negligible, for it can be seen from (19) and (20) that R is then a combina-
tion of sines and cosines of kM, where k ranges from O to n+l. Denoting

the orbital elements by CPP where 9 =a, 9, =e, q3 =W, qA i, q5 Q,

qg =M, we use equation (21) in equations (13) - (18) to obtain an expres-

sion for deviations from the nominal orbit in the form

n+l
say(t) = 6q,(0) + ) a, [sin kM(t) - sin Ki(0)] + B, Leos ku(t) - cos kM(o)]
k=0 -
i=1,"+5 (22)
t nt}
éqé(t) = 6q6(o) - %g 6ql(s) ds + \"aék[sin kM(t) - sin kM(o)]
g ko
n+l .
+ }: Bék[cos kM(t) - cos kM(o)] c . (23)

} with coefficients

where the {'1k’ Blk} are linear combinations of the {ék’ K

which depend upon the {é (o).
Suppose there is a continuous data type z(t), such as doppler, which
is of the form

§z(t) = H(t) sq(t) + n(t) = A(t) 6x + n(t) (24)

where

=T

6x = [5q1(0)"’ 6Q6(O)’ all’ Bll’ s aij’ Bi-

3z(1)] 3a(t)!
and H(t) and A(t) are row matrices given by | Laq(t)i and B

( 27 (1) .
{82(2)5 aax }’ respectively, it H(t) is approximately constant over

the (short) tracking interval, equations (22) and (23) show that the
(q 57 and the C Sné}terms of an nEQ order potential model generate
elements of the A(t) matrix composed of at most 2n + 4 linearly independent

functions: n + 1 cosine functions, n + 1 sine functions, a constant, and
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- a (constant) x (time). Since only N linear combinations of parameters can
be observed (determined) from data composed of N linearly independent .
functions¥*, we conclude that at most 2n + 4 linear combinations of the
potential coefficients and initial conditions can be determined from a
short arc of tracking data. This conclusion indicates that a significant
reduction in the number of solution parameters can be achieved, for with
an n&g order potential model there are n(n + 2) potential terms to be
considered plus the six state variable components. The theory is in
agreement with the numerical results obtained with a fourth order
potential model (n = 4), for at.most 10 parameter combinations were

found to be significant and theoretically we have 2n + 4 = 12.

It should be noted that the number of observable parameters increases
if H(t) is not almost constant over the tracking interval. For example,
if any of the Hi(t) were of the form

Hi(t) = hyg * hyy cos M + hy, sin M + byt
then the product A(t)sq(t) would generate sin kM and cos kM terms up to
k =n + 2 as well as terms of the type (t cos kM) and (t sin kM) up to
k =n + 1 and a (constant) x(t2) term. This would indicate as many as
(bn + 9) observable parameters. The numerical results seem to indicate

that the non-constant portion of H(t) is not significant, however.

5. FOURIER ANALYSIS OF DATA RESIDUALS
The analytical treatment developed in Section 4% could be applied to

determine the potential terms from a Fourier analysis of data residuals.
Suppose some small number of orbit parameters have been estimated (such

as initial conditions only), resulting in data residuals of the form

% This statement of the relationship between linear dependence and

observability is easily verified, and will not be demonstrated here.
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-3

p(t) = [az(t) - H(t)g (t)] = H(t) 8q(t) + n(t) (25)

- - 3%
 where 8q(t) = [q(t) - q (t)]. Suppose we assume that the previously

[

obtained solution for initial conditions defines a set of mean orbital

*
elements which are to be held fixed, so that p(t) can be put into the
form

n+l

p(t) = E: a cos kM + Bk sin KM ) + n(t) (26)
k=0

where <§k’ Bk} are combinations of the <§ij’ Bij> and the constant
components of H(t), and we have considered only the constant portion of
the H(t) matrix to sum to n + 1 (see Part 4). The p(t) can therefore

be thought of as data containing information about the 2n + 3 significant
combinations of potential terms.

\
The functions (ﬁos kM, sin.kM] are not orthogonal over the tracking
interval T because T does not, in general, correspond to an arc length

of 2m radius. An alternative representation of p(t) can be obtained as

n+l a .
\° 4, cos kM + B, sin kM = >“'8 cos mu + B_ sin mu (27)
{is Kk k [, m m
k=0 m=0
where
2r(M + N t_)3 |
- ) - |&mt
ut) = [ NT | = (T) (28)

The right hand series is composed of functions orthogonal over the interval
T, and '

¥ That is, we suppose that mean elements rather than osculating elements
at t = 0 are estimated in the orbit determination procedure. The
secular terms are then eliminated and only the periodic terms remain.
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n+l 2 .

& = \ [cos muJla;, cos kM + B, sin kM] d ' 2

. L o , sin u (29)
k=0 '
n+] 2

o= VL0 reinml in 1] d

m R mu, ak cos kM + Bk sin u (30)
k=0 © : -

7, ! h

Thus the {’c\cm, Bm} are linear combinations of the {ak’ Bk}’ and can be

experimentally determined from the residual data by

T

ﬁn = -T%f Lcos mu(s)1lp(s)] ds (31)
o

} T

B = 2] Lot maiCete)] o 62

PENA
t can be shown that the {am’ ﬁm/ of equations (31) and (32) are the
minimum variance estimates, and,'assuming no apriori information (infinite

apriori variance) the estimation error has variance

E[n]z _— (33)

=1
—
2
i
Q
{ -
N
i
=
L
=
i
w
S
N
il

Only (2n + 3) values of [ﬁ;, ﬁm) are sufficient to recover the (2n + 3)
\

numbers {0.;, Bk\ if the corresponding (2n + 3) x (2n + 3) dimensional
' o I

i 5 /am’ /B\ )1 =S¢ A
‘-—————*ﬂ—} has full rank. Denoting this subset of the [ a , B
‘a(ak, Bk) ‘ o i

|
.

matrix

o au
as (@, B ), the minimum variance estimates of the potential parameters

{c

y O \ can also be recovered. Construct the rectangular matrix
\"nm’ “nm;
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D@ B _ T B

so that
-4 - A~
g ’5 fa
;:K,nm = }—-é
%3 T % (35)
=B CnmJ B

where € is the estimation error which, according to (33), has variance
o* X (the identity). If P is the apriori variance of the {Cnm’ Snmx’
the minimum variance estimates become

-4\ /_\__I\_
S 11 o
N S O Y D (36)
L"" 2 2 i -
C o o ~ B
nm

This 1s the desired result.

Note that some simplification of the estimation equations results if
the residual data can be interpreted as acceleration, so that we have

-3t

[residual acceleration] = C(t)[q(t) - q (t)] + noise

whére C(t) is a matrix resolving the acceleration vector into a line-of-
sight direction. Such a data type could be constructed by differentiating
doppler residuals or by solving for an unknown acceleration vector from
the original data. The estimation procedure is essentially the same as
described above. |
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6. CONCLUSION

In this paper we have shown that a relatively small number of

combinations of orbit parameters are observable for a short arc of lunar

tracking data, and suggestedAseveral ways of exploiting this fact for

orbit determination purposes:

(1)

(2)

(3)

Identify, either numerically or analytically, the observable

parameter combinations and solve for these quantities. With

this approach the solution parameters are linear combinations
of all the parameters introduced in the initial problem

formulation.

Identify, either numerically or analytically, the major
components of the observable parameter combinations and
solve for these quantities. With this approach one solves
for a certain "best" subset of the solution parameters

introduced in the initial problem formulation.

Analytically represent the observable parameter combina-
tions as coefficients of a Fourier series, and numerically
determine these coefficients from a spectral analysis of

data residuals.

With any of these methods the estimates of any or all of the

parameters introduced in the initial problem formulation (e.g., the

C

nm’

Snm potential coefficients) can be recovered by the method described

in Section 5.



(1)

(2)

(3)
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