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A FEASIBILITY STUDY ON TKE USE OF A COINCIDENCE MASS 

SPECTROMETER TO DETERMINE LUNAR ATMOSPHERE CONSTITUENTS 

Summary 

A Coincidence Mass Spectrometer b u i l t  by Johnston Laborator ies  Inc.  

was procured by the  Southwest Center f o r  Advanced Studies  f o r  t es t  and 

eva lua t ion  f o r  s u i t a b i l i t y  f o r  adapta t ion  f o r  use on the  lunar  sur face  t o  

make atmospheric measurements of  r e s idua l  lunar  gases.  Since the  i n s t r u -  

ment has a unique means of d i scr imina t ing  aga ins t  noise  pulses  by requi r ing  

t h a t  both the  i o n  and the  e l e c t r o n  released i n  an  ion iza t ion  event be de-  

t ec t ed ,  it appears t o  have s p e c i a l  m e r i t  f o r  lunar  measurements, where the 

gas pressures  a r e  exceedingly low and a good s ignal- to-noise  r a t i o  w i l l  

be required t o  permit the  measurement of minor cons t i t uen t s .  I n  experimental 

eva lua t ion ,  t he  instrument c l e a r l y  has considerable  m e r i t .  However, i t s  

f u l l  p o t e n t i a l  i s  l imi ted  by noise  introduced by s t r a y  e l ec t rons  from the 

e l ec t ron  beam and from modest s e n s i t i v i t y  due t o  the requirement t h a t  no 

more than  one i o n  be i n  f l i g h t  i n  the  d r i f t  tube a t  one t i m e  - t he  mass 

ana lys i s  i s  accomplished by measuring ion  t ime-of-f l ight  i n  a d r i f t  tube.  

Nevertheless,  i t  seems probable t h a t  t he  instrument performance a t  very low 

pressure  (below 10 t o r r )  can be expected t o  a t  l e a s t  equal ,  and probably 

b e t t e r ,  t h a t  of any o t h e r  type of instrument. Since the predicted 

performance a t  very low pressure f o r  both t h i s  type instrument and o the r  

-12 

types involves ex t r apo la t ion  by two o r  more orders  of magnitude, there  i s  

considerable  uncer ta in ty  i n  t h i s  conclusion. This uncer ta in ty  can only be 

resolved by f u r t h e r  development of severa l  instruments t h a t  appear t o  be 

su i ted  t o  lunar  measurements, such as  magnetic, quadrupole, and coincidence 

instruments ,  followed by comparative tests i n  a s i n g l e  system. 
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In t roduct ion  

A s  o r i g i n a l l y  de l ive red ,  t he  instrument had an unduly high noise  

l e v e l  which was recognized a s  due t o  s t r a y  e l ec t rons  from the  e l e c t r o n  

beam i n  the  i o n  source. This was i d e n t i f i e d  a t  J L I  a s  due t o  s c a t t e r i n g  

a t  one of t he  de f in ing  s l i t s  f o r  the beam. I n  the  f a l l  of 1966, a new 

ion  source involving the  use of  a saddle  poin t  lens  ins tead  of a s l i t  

was b u i l t  a t  J L I ,  and t h i s  was i n s t a l l e d  on the  instrument during the  

winter .  Since t h a t  time, t e s t i n g  has proceeded on the  revised instrument.  

The Coincidence Mass Spectrometer (CMS) i s  a unique instrument t h a t  

appears t o  have p a r t i c u l a r  advantages f o r  measurement of the lunar  atmo- 

sphere.  The lunar  atmosphere i s  usua l ly  estimated t o  be very tenuous, i n  

t he  neighborhood of 10 t o r r ,  al though there  is  g r e a t  uncer ta in ty  i n  

t h i s  e s t ima te ,  and the pressure could be considerably higher .  Recognizing 

the f a c t  t h a t  minor cons t i t uen t s  of the lunar  atmosphere could be important 

i nd ica to r s  of geologic condi t ions on the moon, i t  seems des i r ab le  t o  s e t  

a goal of measuring p a r t i a l  pressures  a s  low a s  t o r r .  This must be 

accomplished under r a t h e r  severe thermal condi t ions p reva i l i ng  during the 

lunar  day and n ight  and i n  the presence of cosmic r a d i a t i o n  without the  

sh ie ld ing  advantage of the  geomagnetic f i e l d  t h a t  reduces the  high-energy 

p a r t i c l e  r ad ia t ion  on laboratory instruments.  The coincidence f ea tu re  of 

the CMS provides a means of  d i scr imina t ion  aga ins t  noise  t h a t  i s  not  ava i l -  

ab l e  i n  o the r  instruments ,  and i t s  method of ana lys i s  permits the simul- 

taneous examination of the  e n t i r e  mass range r a t h e r  than looking f o r  one 

given mass a t  a t i m e ;  these  a r e  the  f ac to r s  t h a t  suggest t h a t  the  CMS 

mightbe the bes t  instrument t o  analyze the lunar  atmosphere. 

-11 
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To i n v e s t i g a t e  the  s u i t a b i l i t y  of the  CMS f o r  making measurements 

of  the  lunar  atmosphere, a labora tory  instrument has been procured from 

Johnston Laborator ies  Inc .  ( JLI) ,  Baltimore, Maryland. This instrument 

was del ivered t o  the  Southwest Center f o r  Advanced Studies  near  t he  

end of May, 1966. Since t h a t  t i m e ,  the  instrument has undergone in t ens ive ,  

though not  complete, t e s t i n g .  Although some fea tu res  of the instrument 

behavior s t i l l  appear anomalous i n  some degree,  i t s  p r inc ipa l  c h a r a c t e r i s t i c s  

and l i m i t a t i o n s  appear t o  have been wel l  determined. 

Instrument Descr ipt ion 

The bas ic  CMS i s  shown schematical ly  i n  Figure 1. A very narrow 

well-coll imated beam of e l ec t rons  i s  produced by the  e l e c t r o n  gun; t h i s  

beam d i s e c t s  the space between g r ids  G 

f i e l d  i n  t h i s  region causes the secondary e l e c t r o n  produced by a gas 

and G2.  A t ransverse  e l e c t r i c  1 

ion iza t ion  event  t o  be acce lera ted  toward the  e l e c t r o n  de tec to r ,  while t he  

corresponding ion  i s  acce lera ted  i n  the opposi te  d i r ec t ion .  The ion  passes 

through a f i e l d - f r e e  d r i f t  tube,  and a r r i v e s  a t  t he  ion  de tec to r  a few 

microseconds a f t e r  t h e  e l e c t r o n  reaches the  e l ec t ron  de tec tor .  Neglecting 

the  very s h o r t  t r a v e l  time of the  e l e c t r o n ,  t h i s  t i m e  i n t e r v a l  i s  d i r e c t l y  

proport ional  t o  the  square roo t  of the mass-to-charge r a t i o  of the ion.  

These t i m e  i n t e r v a l s  represent ing mass-to-charge r a t i o s  a r e  measured and 

s tored  d i g i t a l l y  by the da ta  handling e l ec t ron ic s .  Thus, the instrument 

i s  not  tuned t o  a s i n g l e  mass u n i t ,  but i s  prepared t o  accept s igna l s  from 

any mass u n i t  a t  any t i m e ,  except f o r  dead times t h a t  a r i s e  i n  the log ic  

during which no s igna l s  a t  a l l  are accepted. 

The log ic  funct ions of the  GMS requi re  t h a t  ana lys i s  proceed one ion  

a t  a t i m e  - it i s  not  poss ib le  t o  opera te  with more than one ion  simultaneously 
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i n  f l i g h t  through the  spectrometer a s  i t  i s  with most o the r  types of 

spectrometers.  This l i m i t s  the  CMS t o  r e l a t i v e l y  low s igna l  r a t e s .  The 

e l e c t r o n  beam i n  the  ion iza t ion  source is  correspondingly weak compared 

t o  t h a t  used i n  most o the r  instruments.  

The coincidence p r i n c i p l e  requi res  t h a t  a p a i r  of cor re la ted  events 

occur before an ion iza t ion  event can be recorded. For each i o n  t h a t  i s  

co l l ec t ed ,  t he re  must be a corresponding e l ec t ron  co l lec ted  a t  t he  opposi te  

de tec tor .  By use of t h i s  p r i n c i p l e ,  the  CMS i s  ab le  t o  d iscr imina te  aga ins t  

noise pulses  from the  de tec tors .  Noise occurs i n  the CMS only when p a i r s  

o f  noise  pulses  occur with such a r e l a t ionsh ip  t o  one another t h a t  they a r e  

not d i s t inguishable  from s igna l  pu lses ,  

The mass d iscr imina t ion  accomplished by the  CMS depends upon the  

accurate  measurement of the  d i f fe rence  i n  time of f l i g h t  of ions of ad jacent  

masses. The time of f l i g h t  i s  

where t i s  the  time of f l i g h t  of an i o n  of mass m d i s  the  length of 

the  d r i f t  tube,  V i s  the  constant  acce le ra t ing  vol tage ,  e i s  the charge 

on the  ion ,  and 6 t  

the s h o r t  d r i f t  t i m e  i n  the  acce le ra t ing  region. The 6 t .  a r e  proport ional  

t o E ,  so  equation (1) can be wr i t t en  

i i’ 

depends upon the instrument parameters and represents  
i 

1 

1 

ti = kl 

-6 and kl” 10 

used), where t i s  expressed i n  seconds and m i n  atomic mass u n i t s ,  I n  

fo r  the  CMS under evaluat ion (when a shor t  d r i f t  tube i s  

i i 
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t h e  CMS (see Figure l),  de tec t ion  of an  e l e c t r o n  from an ion iz ing  event 

s t a r t s  a clock. The de tec t ion  of an i o n  from the  same event s tops  the  

clock,  and i n  t h i s  way a measurement of t i s  accomplished. i 

The requirements on time r e so lu t ion  i n  order  t o  resolve one atomic mass 

u n i t  q t  mass m i s  i 

A t i  = k l \ l -  kl d x  1 

2m i 
(3) 

=-  f o r  the  present  instrument.  2\Iml 
-a This amounts t o  2.5 x 10 sec ( 2 5  nanoseconds) f o r  r e so lu t ion  of 1 amu 

a t  mass 400, o r  5 x 10 sec  (50 nanoseconds) a t  mass 100. The corresponding 

d r i f t  times a r e  20 and 10 ps.  These values f o r  the complete range of mass 

values up t o  200 a r e  shown i n  Figure 2 .  It should be emphasized t h a t  t h i s  

only ind ica t e s  the  time r e so lu t ion  requirements; with adequate time reso- 

-8  

l u t i o n ,  

f ac to r s  

of mass 

f ied  on 

the  a c t u a l  r e so lu t ion  of the  instrument w i l l  be l imited by such 

a s  thermal v e l o c i t i e s  i n  the source which i n  turn  cont ro l  the width 

peaks. The f u l l  width of a mass peak m a t  h a l f  maximum i s  iden t i -  

a time s c a l e  as  AT and AT = A t .  a t  t h a t  mass which numerically 

i 

iy  i 1 

i’ equals the  resolving power of spectrometer;  a t  g r e a t e r  masses,  AT^ > A t  

and a t  l e s s e r  masses,  AT^ < A t  i’ 

I n  a CMS without gated log ic ,  there  a r e  four  sequences of events t h a t  

can produce e r r o r  s igna l s .  These sequences a r e  described below: 
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1.  

2. 

3 .  

4 .  

A noise  pulse  from the  e l e c t r o n  d e t e c t o r  followed by a noise  

pulse  from the  ion  de tec to r  wi th in  the  t i m e  l i m i t  imposed by the  

instrument.  

An e l e c t r o n  pulse  from an a c t u a l  i o n i z a t i o n  event followed by 

a noise pulse  from the  ion  d e t e c t o r  before  the a r r i v a l  of  the  

ion. 

An e l e c t r o n  noise  pulse  followed by an ion  pulse  from an a c t u a l  

i o n i z a t i o n  event.  

The i o n i z a t i o n  of a heavy p a r t i c l e  followed by the  ion iza t ion  

of a l i g h t  p a r t i c l e  wi th in  a time i n t e r v a l  such t h a t  the  ion  

of l i g h t  mass can pass the heavier  ion  and produce an erroneous 

s i g n a l ,  o r  o the r  i nco r rec t  a s soc ia t ions  of e l ec t rons  and ions 

from d i f f e r e n t  ion iz ing  events .  

Gated log ic  e l imina tes  the  noise  sourees of 3 and 4 .  Gated log ic  i s  

a term t h a t  descr ibes  the cont ro ls  necessary f o r  e l iminat ing c e r t a i n  noise  

s igna l s .  There a r e  two separa te  ga te  funct ions,  and these a r e  described 

below: 

1. When a pulse  i s  received a t  the  e l ec t ron  de tec to r ,  the  ion iza t ion  

of p a r t i c l e s  i s  stopped by turning o f f  the  e l ec t ron  beam f o r  a 

period of  25 microseconds (75 microsecond ga te  i s  a l s o  ava i l ab le ) .  

Thus a noise  pulse  a t  the  e l ec t ron  de tec to r  cannot be followed 

by a t r u e  ion  pulse ,  s ince  the  e l ec t ron  beam i s  turned o f f  i m -  

mediately and no ions can be formed. A l s o ,  two ion iza t ion  events 
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cannot t ake  p l ace  separated by a s h o r t  enough i n t e r v a l  of  t i m e  

so  a s  t o  cause erroneous pulses  by i n c o r r e c t  a s soc ia t ion  o f  

pu lses  from the  i o n  and e l e c t r o n  de tec to r s .  

2. The path of  the  ions  down the d r i f t  tube i s  blocked by a de- 

f l e c t i n g  f i e l d  u n t i l  an e l e c t r o n  pulse  has  been received,  a t  

which time the  d e f l e c t i n g  f i e l d  i s  removed f o r  5 microseconds t o  

permit t he  ion  t o  pass.  Thus i f  an e l e c t r o n  from an  ion iza t ion  

event i s  m i s s e d ,  the  ion  w i l l  be trapped and w i l l  not  reach the  

ion  detectol;.  

The noise  equations f o r  the  CMS a r e  developed below. L e t  

N = t r u e  r a t e  o f  i o n i z a t i o n  events  p e r  second 

F f r a c t i o n  of secondary e l ec t rons  co l l ec t ed  

= t r u e  r a t e  a f  de t ec t ion  of secondary e l ec t rons  ( N  e e 

= r a t e  of de t ec t ion  of s t r a y  e l ec t rons  

= noise  r q t e  i n  e l e c t r o n  m u l t i p l i e r  (and i o n  mul t ip l i e r )  when no 

fe  

NS 

Nn 

N = feN) 

p a r t i c l e s  aye being detected 

f .  = f r a c t i o n  of ioqs co l l ec t ed  
-4 

The sources of noise  described above con t r ibu te  the  number of noise  counts 

ind ica ted  below wi th in  a t i m e  i n t e r v a l   AI-^ corresponding t o  the f u l l  width 

i' a t  h a l f  maximum of a mass peak a t  mass m 

1. Spurious noise  a r i s i n g  from random noise  pulses  i n  ion and 

e l e c t r o n  de tec to r s  and c o l l e c t i o n  o f  s t r a y  e l ec t rons  a t  t he  

e l e c t r o n  d e t e c t o r ,  
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2. Noise caused by t r u e  e l e c t r o n  events  followed by noise  pulses  

i n  the  i o n  m u l t i p l i e r ,  

(feN) Nn  AI-^ . (5) 

If the  ion  from the  ion iza t ion  event i s  de tec ted ,  a noise  pulse  

from the  i o n  de tec to r  a t  a l a t e r  time w i l l  not  cont r ibu te  t o  noise ,  

so this  noise  term decreases by a f a c t o r  (1-f.)  a t  the  high end 
1 

of the  mass sca l e .  

Noise caused by t r u e  ion  de tec t ion  evencs preceded by noise- 

t r iggered  e l e c t r o n  events ,  

3 .  

(Nn + Ns) f i  NATi . 

This term i s  eliminated with gated log ic .  

4 .  Noise caused two ion iza t ion  events where the  ion and e l e c t r o n  

t h a t  a r e  detected a r e  from d i f f e r e n t  events ,  

( f e  N) ( f i  N) ATi . (7) 

This term i s  eliminated with gated logic .  

The t o t a l  noise  counts t h a t  f a l l  wi th in  the  i n t e r v a l  corresponding t o  

the, f u l l  width of a mass peak a t  h a l f  maximum a r e  therefore  

4- NsNn -I- feN Nn 4- f.N i n  N + f.N 1 s  N 4- f e 1  f.N 
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The s i g n a l  r a t e  i s  f f.N, s o  the  s ignal- to-noise  r a t i o  i s  e i  

fe fi N 
(S/N) = c) n 

AT(NL + N N + feN Nn + fiN Nn -I- fiN Ns f fefiNL) n s n  

When gated log ic  i s  used, t h i s  reduces t o  

I '  N~~ + NsNn + feN Nn 

and 

fe  f i  N 

ATi Nn (Nn + Ns + f N) (S/N) = 
e 

(9) 

The noise  r a t e  N n 

below 1 O - I  sec- l .  

p ressure ,  and may range from 10 t o  10 sec  ; the  lower l i m i t  is  s e t  by 

the  longest  reasonable t i m e  t o  acquire  a spectrum and the upper l i m i t  by 

the  gated log ic ,  which tu rns  the  e l ec t ron  beam o f f  f o r  25 p s  whenever an 

e l ec t ron  i s  detected.  N i s  the  r a t e  of de t ec t ion  of s t r a y  e lec t rons .  I n  

the  o r i g i n a l  vers ion  of t he  instrument,  these arose mainly from the  e l ec t ron  

beam, amounting t o  about 10 of the  e l ec t ron  beam curren t .  I n  the revised 

instrument,  the s t r a y  e l ec t rons  and count r a t e s  i n  general  a r e  s t rongly  

dependent upon the  m u l t i p l i e r  vol tage adjustment - something t h a t  probably was 

a l s o  t r u e  with the  o r i g i n a l  vers ion  but  not thoroughly explored. When the 

m u l t i p l i e r  vol tage i s  5000, which i s  the  top of the  meter range, t he  s t r a y  

e l ec t rons  do not exceed about 10 of the e l ec t ron  beam, as the s t r a y  e l ec t ron  

count r a t e  Ns does not  exceed 10 see  when the  beam curren t  i s  10 amp. 

I f  the  m u l t i p l i e r  vol tage i s  turned up a s  f a r  a s  poss ib le  - of f  s c a l e  

i n  the  e l e c t r o n  m u l t i p l i e r  i s  genera l ly  very low, probably 

The r a t e  of i on iza t ion  N i s  v a r i a b l e ,  depending upon 

-2  5 -1 

S 

-6 

-8 

3 -1 -8  
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-7 on the meter - the  s t r a y  e l e c t r o n  r a t i o  increases  t o  about 10 , as about 

300 sec are observed when the e l e c t r o n  beam i s  5 x 10 amp. 

e i  

-1 - 10 
Without gated l o g i c ,  t he  noise  a t  high s i g n a l  l e v e l s  (f  f N > Ns) 

would inc rease  with increas ing  s i g n a l  f a s t e r  than  t h e  s i g n a l ,  leading t o  

a decrease i n  s igna l - to-noise  r a t i o  with increas ing  s i g n a l  l eve l s .  This 

decrease i s  caused by t h e  noise  con t r ibu t ion  ind ica ted  i n  equat ion (7), 

which v a r i e s  a s  N , while the  s i g n a l  v a r i e s  d i r e c t l y  with N. 2 

The time i n t e r v a l  AT corresponding t o  the  width of a mass peak a t  

h a l f  maximum v a r i e s  with mass. The na ture  of the  v a r i a t i o n  of AT with 

mass can e a s i l y  be evaluated on t h e  b a s i s  of the  l ikel ihood t h a t  t he  energy 

i 

i 

spread i s  the  same f o r  a l l  masses. I f  t he  energy spread i s  V the time 

d i f f e rence  across  the  peak w i l l  be approximately equal t o  the r eve r sa l  time 

0’ 

fo r  an ion which i s  i n i t i a l l y  d i r ec t ed  away from the ion d e t e c t o r ,  o r  

 AT^ = - 2F 
E e 

where e i s  the e l e c t r o n i c  charge and E the e l e c t r i c  f i e l d  i n  the acce le ra t -  

i ng  region. This can be w r i t t e n  

 AT^ = k 2 p T -  ’ 

where k is  a cons tan t  t h a t  can be evaluated i f  the resolving power R of the 
2 

instrument i s  known. When mi = R,   AT^ i s  equal t o  A t  which i s  the time i’ 

reso lu t ion  required t o  separa te  ad jacent  mass peaks; t h i s  has been evaluat-  

ed i n  Figure 2.  The r e s u l t s  a r e  shown i n  Figure 3 f o r  s eve ra l  values of 

reso lv ing  power. This i n d i c a t e s ,  f o r  example, t h a t  the  widths a t  h a l f  maximum 

of mass peaks i n  terms of a time sca l e  vary from 25 ns a t  100 amu t o  36 ns 

a t  200 amu when the resolving power of the instrument i s  200. Since AT i 

increases  with mass, the s ignal- to-noise  r a t i o  decreases with increas ing  

mass. This treatment has assumed impl i c i ty  t h a t  noise  pulses  a r e  uniformly 



- 13 - 
TIME (NANOSEC) 



- 14 - 

d i s t r i b u t e d  i n  t i m e  - an  assumption t h a t  i s  probably j u s t i f i e d  with only 

minor r e se rva t ions ,  such as t h a t  expressed following equat ion (5). 

Other d e t a i l s  of  t he  CMS a r e  discussed i n  Appendix 2 ,  bu t  t he  above 

d iscuss ion  covers the  e s s e n t i a l  f a c t o r s  governing i t s  performance. 

Performance of  the  Laboratory C M S  

- 9  The s p e c i f i c a t i o n  on the vacuum system f o r  the  C M S  was 5 x 10 t o r r ,  

This was not  achieved with the  o r i g i n a l  vers ion  of  with bakeout t o  4 0 O o C .  

the  instrument u n t i l  t he  d i f f u s i o n  pump was replaced with an ion  pump. 

Af t e r  t he  new ion  source was i n s t a l l e d ,  leaks were never e l iminated t o  the  

poin t  of  achieving t h a t  vacuum again,  and i t  i s  f e l t  t h a t  a new vacuum 

envelope would be required t o  g e t  below 10 t o r r .  Bakeout has been ac- 

complished with temperatures a t  var ious  p a r t s  of the  instrument ranging 

from 280 t o  4 0 O o C .  

a f t e r  bakeout, and a b e t t e r  design might be found t o  reduce t h i s ,  An 

o r i g i n a l l y  present  uncer ta in ty  introduced by an i n t e r a c t i o n  between the  

-8 

The gold gaskets  appear t o  show some tendency t o  l eak  

CMS and the i o n i z a t i o n  pressure  gage t h a t  i s  used t o  determine the pres- 

sure  has  been el iminated by r e loca t ing  the vacuum gage. Or ig ina l ly  when 

the CMS was turned on, the  ion iza t ion  gage apparent ly  saw the  d r i f t  tube 

p o t e n t i a l  and reacted t o  i t  i n  such a way t h a t  the pressure ind ica t ion  f e l l  

by about a f a c t o r  of two. This apparent ly  resu l ted  from the ion iza t ion  

gage having been mounted phys ica l ly  too c lose  t o  the  d r i f t  tube,  

The s e n s i t i v i t y  i n  the  o r i g i n a l  instrument w a s  less than had been 

- 10 -6 expected. With a beam cur ren t  of 5 x 10 

t o r r ,  the  s igna l  r a t e  was about 250 sec , Extrapolat ing t o  obta in  the  

expected count r a t e  f o r  a p a r t i a l  pressure of 10 t o r r  - a reasonable 

objec t ive  f o r  measurements on the moon - the  count r a t e  would be only 

amp and a pressure of  10 

-1 

- 15 
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-9 2.5 x 

amp a t  a pressure  of 3 x 10 

when t h e  m u l t i p l i e r  vo l tage  i s  5000. 

a t  

i n  e l e c t r o n  beam curren t .  It i s  thought t h a t  t he  beam cur ren t  can be in-  

creased t o  loe6 amp, o r  even possibly 10 

would be 5 x sec , s t i l l  undesirably low even i f  the  s ignal- to-noise  

r a t i o  were adequate. It was an t i c ipa t ed  t h a t  the  extrapolated s e n s i t i v i t y  

a t  t o r r  would be about f i f t y  t i m e s  l a r g e r  than t h i s ,  based on infor -  

mation regarding the  s e n s i t i v i t y  of e a r l i e r  CMS instruments.  A quadrupole 

o r  o the r  mass analyzer  with an ion  source capable of de l ive r ing  10 

something t h a t  can be expected from a source u t i l i z i n g  a 3 x amp beam of 

80-volt  e l ec t rons  - should have a s i g n a l  r a t e  of 1 sec  a t  t o r r .  This 

would provide a signal- to-noise  r a t i o  of un i ty  i f  the  spurious count r a t e  

-1 6f a m u l t i p l i e r  de t ec to r  were 1 sec  . 
spectrum over a mass range of about 100 with r e so lu t ion  near  100, the  aver- 

age count r a t e  p e r  mass u n i t  would be about 10 sec , o r  about ten  t i m e s  

g r e a t e r  than i s  apparent ly  t o  be expected from a CMS when the  m u l t i p l i e r  

vol tage i s  5000 V. I f  the  m u l t i p l i e r  vol tage i s  run up to  the top of the  

range, the  s e n s i t i v i t y  of the CMS i s  increased by a f a c t o r  of about twenty, 

s o  under these  condi t ions the  CMS performance might be expected t o  equal 

t h a t  of a quadrupole. 

sec''. With the new ion  source,  a beam cur ren t  of 9 x 10 

-8 -1 t o r r  produces a s i g n a l  r a t e  of about 150 see 

-1 This ex t r apo la t e s  t o  5 x sec 

t o r r ;  the  inc rease  i n  s e n s i t i v i t y  i s  j u s t  equal  t o  the  increase  

-5 
amp. A t  l oq6  amp, the  s i g n a l  r a t e  

-1 

-4 amp/torr - 

-1 

To provide f o r  scanning of the  

-2  -1 

The r e so lu t ion  of the CMS i s  genera l ly  very good. With a long d r i f t  

tube,  a r e so lu t ion  of 350 was a t t a ined ;  t h i s  i s  s i g n i f i c a n t l y  below the  

s p e c i f i c a t i o n  of 500, but  i s  high enough f o r  a l l  foreseeable  needs. With 

the  normal d r i f t  tube,  the  r e so lu t ion  i s  not as high. A c a r e f u l  measure- 

ment of  the  width of  the  N2 peak indicated a width a t  ha l f  maximum of 17 ns, 



which, according t o  Figure 3 ,  corresponds t o  a r e so lu t ion  of about 150, 

a l s o  ample f o r  a l l  recognized needs. 

The signal- to-noise  performance of the  CMS i s  the  most v i t a l  charac- 

t e r i s t i c  t o  eva lua te ,  s ince  it i s  i n  the area  t h a t  t he  CMS has p o t e n t i a l  

advantages over a l l  o the r  instruments.  

of equations (9) and (ll), provided values  are obtained f o r  a number of  

This can be predicted on the  bas i s  

operat ing c h a r a c t e r i s t i c s  of t he  instrument.  

The ion  and e l e c t r o n  c o l l e c t i o n  e f f i c i e n c i e s  a r e  e a s i l y  obtained by 

comparing the  e l e c t r o n  count r a t e  f N ,  the  ion  count r a t e  f.N (obtained 

with the  gated log ic  o f f )  , and the  coincidence r a t e  f f.N. This i s  in-  

dicated i n  Table 1, where da ta  a r e  shown f o r  a m u l t i p l i e r  vol tage of  5000 V 

and a g r e a t e r  value which could not  be read d i r e c t l y .  Although the re  i s  

considerable  s c a t t e r  i n  the  determinat ions,  i t  appears reasonable t o  ac- 

cept  f i  = 0.13 and f 

f .  = 0.25 and f = 0.4  when the maximum m u l t i p l i e r  vol tage i s  used. These 

values can be changed some by changing some of the  instrument adjustments,  

but  they can be regarded as  reasonably typ ica l .  The s e n s i t i v i t y  of these 

f ac to r s  t o  changes i n  operat ing vol tage on- the  m u l t i p l i e r  must be regarded 

a s  a disadvantage of the  instrument.  However, i t  a f f e c t s  p r i n c i p a l l y  the  

s e n s i t i v i t y  - it  should not a f f e c t  the  accuracy. 

e 1 

e i  

= 0.04 when the  m u l t i p l i e r  vol tage i s  5000 V, and e 

1 e 

It turns  out  t h a t  the  ion ga te  i s  only p a r t i a l l y  e f f e c t i v e ,  and t h i s  

must be taken i n t o  account i n  eva lua t ing  the  s ignal- to-noise  r a t i o .  The 

ga te  e f f i c i e n c y  can be evaluated by measuring the  i o n  count r a t e  with the  

log ic  o f f  and with the  g a t e  closed ( i . e . ,  log ic  i n  t e s t  por t ion) .  Deter- 

minations a r e  summarized i n  Table 2. Again, t he re  i s  considerable  s c a t t e r ,  

bu t  3 x appears t o  be a reasonable value; the  value does not appear to 

be dependent upon the  m u l t i p l i e r  vo l tage ,  

ga te  e f f i c i ency ,  the s ignal- to-noise  r a t i o  must be evaluated by using equation 

Because of t h i s  l i m i t a t i o n  of the  
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Pressure 
(torr) 

1.0 x 
1.0 x 
5.0 

5.0 

3.0 

3.0 
3.0 

1.2 

1.2 

1.2 

2.6 x 
2.6 x 

2.6 x 

Pressure 

2.6 

2.6 

2.6 

9.3 x lom8 

9 . 3  x 
9.3 x 

9.3 x 
3.4 x 10- 
2.9 x 
2.7 x lov8 
2.5 x 

8 

TABLE 1 

Count Rates with 5000 Volts on Multiplier 

Beam Current 
(amp> 

4 

5 

5 x lo-1o 
9 

5 

9 

5 

9 

5  LO-^ 

5 x 

5 x 

5 x 

5 x 

eN 

20,000 

2,500 

14,000 

1,300 

8 , 100 
4,600 

450 

4 , 500 

2 , 200 

200 

1 , 500 

7 50 

70 

fe f iN fi 

4,200 0.21 

3 40 0.14 

2,500 0.17 

180 0.14 

1,600 0.20 

6 80 0.15 

60 0.13 

600 0 . 1 3  

2 80 0.13 

26 0.13 

150 0.10 

75 0.10 

6.0 0.12 

Count Rates with Maximum Voltage on Multiplier 

Beam Current 

5 

5 x 
5 x 
9 

5 

5 x 10-l0 
5 x lo-11 

9 

5 

1.5 x lom8 

5 x .. 

*eN 

36,000 

4,000 

400 

30,000 

15,000 

1,500 

140 

22,000 

11,000 

6,200 

600 

fefiN 

15,000 

1,000 

110 

9,000 

4,200 

360 

35 

5,000 

2 , 400 

1 , 100 

80 

fi 

0.42 

0.25 

0 . 2 8  

0.30 

0 . 2 8  

0.24 

0.25 

0.23 

0.22 

0.18 

0.13 

2.5 x LOa8 5 x 10-lL 60 7 0.12 

f iN 

62,000 

8,000 

44,000 

4 , 500 

28,000 

15,000 

1,800 

15,000 

6,500 

500 

4 , 200 

2,200 

200 

fiN 

24,000 

2,800 

250 

20,000 

9,000 

80 0 

100 

11,000 

3,000 

5 , 800 

250 

30 

e 

0.07 

0.042 

0.06 

0.04 

0.06 

0.05 

0.03 

0.04 

0.04 

0.05 

0.035 

0.034 

0.03 

f 

fe 

0.62 

0.36 

0.44 

0.45 

0.47 

0.45 

0 .35  

0.45 

0.41 

0.37 

0.32 

0.23 
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Pres su re  
( t o r r )  

1.0 x 
1.0 x 

5.0 

5.0 

2.0 

2.0 

2.0 

1.2 

1.2 

1.2 

2.6 x 

2.6 x 

2.6 x 

Pressure 

2.6 

2.6 

2.6 

9 . 3  x 

9 . 3  x 
9 . 3  x 

9 . 3  x 

3.4 x lo-8 

2.9 x 

2.7 x loe8 
2.5 x 

2.5 x 

TABLE 2 

Ion  Gate Eff ic iency ,  Mul t ip l i e r  Voltage 5000 V 

Beam Current Ion Count Rates Eff ic iency  

(amp) Logic Off Gate Closed 

4 62,000 150 2.5 

8,000 24 3 . 0  

5 44,000 120 2.7 

5 x 4,500 20 4.4 

9 28,000 70  2.5 

5 15,000 45 3 . 0  

5 x 1,800 6 3.0 

9 15,000 45 3.0 

5 6,500 20 3.1 

5 x 500 4 8.0 

9 4,200 8 1 . 9  

5 2,200 7 3 . 2  

5 x lo-1o 200 2 10.0 

5 x 

Ion Gate Ef f i c i ency ,  Maximum Mul t ip l i e r  Voltage 

Beam Current 

5 

5 x 

5 x 

9 

5 

5 x 

5 x 

1.5 x lom8 
9 

5 

5 x 

5 x 

Ion Count Rates 

Logic Off Gate Closed 

24,000 50 

2,800 6 

250 3 

20,000 45 

9,000 25 

800 6 

100 3 

11,000 35 

5,800 15 

3,000 5 

250 4 

30 2 

Efficiency 

2.1 

2 . 1  

1.2 

2.2 

2.8 

7.5 

3 0 . 0  

3 . 2  

2.6 

1.7 

16.0 

67.0 
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(9) ins tead  of equat ion (ll), but  with f i  i n  the  denominator reduced by 

the  f a c t o r  3 x fi  i n  the  numerator should not be changed. 

I n  the  o r i g i n a l  vers ion  of the  instrument,  the  e l e c t r o n  count r a t e  

became cons tan t  a s  the  pressure  was reduced, due t o  s t r a y  e l ec t rons  from 

the  ion iz ing  beam, and t h e  s t r a y  e l e c t r o n  r a t i o  was evaluated a s  3 x 10 

From Table 1 f o r  m u l t i p l i e r  vol tage 5000 V, i t  can be seen t h a t  the  e l e c t r o n  

count rate with the  new source i s  70 when the  beam curren t  i s  5 x 10 

o r  3 x 10 e l ec t rons  s e c  . Comparison of the  e l ec t ron  count r a t e  with t h a t  

a t  h igher  pressures  ind ica t e s  t h a t  s t r a y  e l ec t rons  do not cont r ibu te  s ign i -  

f i c a n t l y  t o  the  count r a t e  of 70, and i t  i s  estimated t h a t  about 30 s t r a y  

e l ec t rons  p e r  second might escape not ice .  T h i s  i nd ica t e s  t h a t  the  s t r a y  

e l e c t r o n  r a t i o  must be no g r e a t e r  than 10 . The noise ca l cu la t ions  f o r  

5000 V m u l t i p l i e r  vo l tage  have been made on t h e  assumption t h a t  the  r a t i o  

i s  equal  t o  10 . When the  maximum m u l t i p l i e r  vol tage i s  used and a s  the 

pressure  i s  reduced, there i s  a c l e a r  leve l ing  o f f  of the  e l ec t ron  count 

-7  r a t e ,  and the  s t r a y  e l e c t r o n  r a t i o  i s  about 10 . I n  view of the f a c t  t h a t  

the  higher  m u l t i p l i e r  vo l tage  increases  the  e f f i c i e n c y  fe of de tec t ing  

e l ec t rons  by a f a c t o r  of 10, t h i s  determination ind ica t e s  t h a t  the  s t r a y  

e l e c t r o n  r a t i o  f o r  5000 V m u l t i p l i e r  vol tage i s  probably very c lose  t o  10 . 
The noise  r a t e  Nn of the  mul t ip l i e r s  i s  not  known, but i s  c l e a r l y  

-6 

- 10 
amp 

9 -1 

-8  

-8 

-8 

-1 very small. For the  ca l cu la t ions ,  a value of 10 has been assumed. 

Figure 4 shows the  r e s u l t s  of ca l cu la t ions  f o r  5000 V m u l t i p l i e r  

-6 vol tage and e l ec t ron  beam curren ts  of 10 and 5 x amp, ca lcu la ted  

from equat ion (9) using the  values given above, and using a value of 25 ns 

f o r  AT, which according t o  Figure 3 i s  appropriate  t o  r e so lu t ion  100 near  

mass 30. The dashed curves apply f o r  no gated log ic ,  and the  s o l i d  curves 

apply with gated log ic ,  f o r  which f .  i n  the denominator of equation (9) is  
1 
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- 2 1  - 

-3 reduced by the  f a c t o r  3 x 10 

the  f a c t  t h a t  the i o n  ga te  i s  only p a r t i a l l y  e f f e c t i v e .  

wherever it appears t o  take i n t o  account 

Three po in t s  a r e  

p lo t t ed  - they a r e  r ep resen ta t ive  of experimentally determined s igna l - to-  

noise  r a t i o s  with a beam cur ren t  near  5 x 10 amp. The f i t  with the  - 10 
computed curves i s  su rp r i s ing ly  good, although the  t rend does not  agree 

a s  w e l l  a s  one would l i ke .  Beam cur ren t s  a s  l a rge  a s  10 

used i n  the present  instrument ,  a s  the  count r a t e s  g e t  unacceptably l a rge  

-6 
amp cannot be 

s ince  the  pressure  cannot be reduced t o  s u f f i c i e n t l y  low values.  

The s ignal- to-noise  r a t i o s  indicated i n  Figure 4 f o r  count r a t e s  

below 1 sec-l a r e  not  very r e l i a b l e ,  a s  they depend upon N and Ns, both 

of which a r e  poorly determined. The r e l a t i v e l y  low p la t eau  on the  curve 

f o r  

s loping por t ion  of the  curves a t  very low count r a t e s  a r e  governed by the  

n 

4 amp with gated log ic ,  about 10 , is  e s s e n t i a l l y  set  by N s ,  and the  

product NnNs. 

-4 -1 It was indicated e a r l i e r  t h a t  a count r a t e  of 5 x 10 sec  could be 

-6  expected a t  t o r r  with a beam curren t  of 10 amp. Figure 4 i nd ica t e s  

t h a t  a s ignal- to-noise  r a t i o  j u s t  i n  excess of un i ty  might be expected 

under these conditions.  It was a l s o  mentioned e a r l i e r  t h a t  the  CMS i s  a 

f a c t o r  of t e n  lower i n  s e n s i t i v i t y  than the  s e n s i t i v i t y  predicted fo r  a 

quadrupole working a t  u n i t  s ignal- to-noise  r a t i o .  The s i m i l a r i t y  i n  s igna l -  

to-noise values  suggests t h a t  the comparison i s  a va l id  one. 

Signal-to-noise r a t i o s  t o  be expected a t  maximum m u l t i p l i e r  vol tage 

a r e  shown i n  Figure 5, which i s  very s i m i l a r  t o  Figure 4 .  

m u l t i p l i e r  vol tage,  a count rate of  10 sec  should be expected a t  10 

torr with a beam cur ren t  of 10 amp. For t h i s  count r a t e ,  the  s ignal- to-  

With the  maximum 

-2 -1 - 15 

-6  

noise  ra t io ,  according t o  Figure 5 ,  should be about 5. Thus performance i s  

predicted t o  be s l i g h t l y  b e t t e r  than f o r  a quadrupole. 
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It i s  c l e a r  t h a t  a major improvement i n  s ignal- to-noise  could be 

achieved with a l e s s e r  r a t i o  of s t r a y  e l ec t rons  t o  beam e lec t rons .  It 

would be d e s i r a b l e  t o  have a s ignal- to-noise  r a t i o  of  100, which would 

be achieved i f  the  s t r a y  e l e c t r o n  r a t i o  were near  10 . -9 

P r i o r  t o  the  i n i t i a t i o n  of t h i s  eva lua t ion  p r o j e c t ,  there  was v i r t u a l -  

l y  no experience with CMS operat ion outs ide  the  p l a n t  of the  manufacturer, 

J L I .  Its operat ion a t  SCAS has convinced the  operators  t h a t  t he  CMS has 

considerable capab i l i t y .  However, i t  i s  a l s o  c l e a r  t h a t  add i t iona l  de- 

velopment i s  needed t o  br ing it t o  i t s  f u l l  p o t e n t i a l .  Test ing has not 

been ca r r i ed  out  a t  the  pressures  below 10 t o r r  where i t s  advantages 

should show up the  bes t .  This instrument was designed f o r  laboratory 

operat ion r a t h e r  than f o r  test a t  p a r t i c u l a r l y  low pressure ,  and considerable  

rebui ld ing  and repackaging would be required t o  permit t e s t  a t  pressures  

below t o r r .  

- 10 

Subs tan t ia l  quest ions s t i l l  remain concerning the  noise l eve l  a t  

low pressures .  The es t imates  made i n  ex t rapola t ing  expected performance 

i n  t h i s  s tudy may have been too conservat ive,  and s ignal- to-noise  perfor-  

mance could tu rn  out  t o  be much b e t t e r  than suggested here.  The CMS sens i -  

t i v i t y  w i l l  apparent ly  be comparable t o  t h a t  achievable i n  o the r  instruments 

such a s  the  quadrupole. However, predicted performance a t  10 amp re- 

presents  an ex t r apo la t ion  by over two orders  of magnitude, and unexpected 

e f f e c t s  may wel l  appear when such a s u b s t a n t i a l  change i s  made i n  operat-  

ing parameters. 

high beam cur ren t s  could only be accomplished i f  the  vacuum i s  improved by 

a corresponding f a c t o r ,  so a s  t o  keep the  count r a t e s  within acceptable  bounds. 

- 6  

Laboratory operat ion and evaluat ion of performance a t  

The r e l i a b i l i t y  of the  present  instrument has not  been impressive. 

There has been a s u b s t a n t i a l  number of  component f a i l u r e s .  



APPENDIX I 

The Lunar Atmosphere 

Although the luna r  atmosphere i s  known t o  be exceedingly tenuous, 

knowledge of i t s  composition should prove t o  be of considerable  value from 

a geochemical viewpoint. The f a c t  t h a t  it i s  very tenuous a l s o  makes i t  

p a r t i c u l a r l y  suscep t ib l e  to  contamination from f l i g h t  operat ions.  

i t  i s  important t o  make the  observat ions a t  t he  e a r l i e s t  poss ib l e  t i m e .  

Hence, 

Owing t o  i t s  extreme tenuos i ty ,  a very s e n s i t i v e  mass spectrometer w i l l  be 

needed t o  determine i t s  composition, 

The lunar  atmosphere i s  known from o p t i c a l  measurements t o  be l e s s  

dense than about 

l i m i t .  A search f o r  f r e e  e lec t rons  has s e t  a much lower l i m i t .  Occul ta t ion 

of rad io  s t a r s  has d isc losed  t h a t  the  concentrat ion of e l ec t ron  (and 

therefore  of ions a l so )  does not exceed 20 cm . An e a r l i e r  number, 10 , 
-3  has sometimes been combined with a 10 degree of i on iza t ion ,  corresponding 

roughly t o  the  degree of i on iza t ion  a t  the  maximum i n  the e a r t h ' s  ionosphere, 

t o  give a neu t r a l  p a r t i c l e  concentrat ion o f < l O  p a r t i c l e s  cm , o r < 3  x 10 

atm., o r  <2 x 10 t o r r .  Even t h i s  was an u n r e a l i s t i c  l i m i t ,  a s  ion loss  

by d i f fus ion  t o  the sur face  would proceed s o  f a s t  i n  such an atmosphere a s  

t o  make the degree of i on iza t ion  much smaller  than t h a t  a t  the ion iza t ion  

t h a t  of the  e a r t h ' s ,  which i s  not a very s t r i n g e n t  upper 

-3 3 

6 - 3  - 14 
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3 maximum i n  the  e a r t h ' s  atmosphere. A r e a l i s t i c  l i m i t  based on the  10 ions 

cm i s  about 3 x lo-' t o r r ,  whereas the  l i m i t  indicated by the newer 

number is  4 x 10 t o r r ,  which corresponds t o  a concentrat ion of about 

1 . 4  x 10 p a r t i c l e  c m  . 

-3 

- 10 

7 -3 
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Although t h e  e x t e n t  of t h e  contamination problem due t o  rocke t  exhaust 

i s  d i f f i c u l t  t o  a s s e s s ,  some es t imates  can be made e a s i l y .  A t  the  t i m e  of  

l i f t  o f f ,  t he  ins t rumenta t ion  w i l l  be exposed t o  a dynamic pressure  of about 

2 x t o r r  f o r  about 20 s;  so f a r  a s  water vapor i s  concerned, t h i s  

corresponds t o  exposure t o  very dry  a i r .  

water-vapor p a r t i a l  p ressure  of 17  t o r r ,  so the  water vapor environment during 

Moist a i r  with dew poin t  2OoC has 

l i f t  o f f  corresponds t o  a i r  with re la t ive humidity of  The mass flow 

i n  the  rocket  exhaust i s  52 kg s , o r  about a ton  i n  the 20 seconds required 

f o r  the rocket  t o  depar t .  

-1 

Only a s m a l l  f r a c t i o n  of the  rocke t  exhaust can be absorbed on the  

lunar  sur face  and l a t e r  re leased over a r e l a t i v e l y  long period of t i m e .  I f  

the mass of absorbed gas a t  the  landing s ide  is  W grams, and i t  i s  released 

wi th  a time constant  T,  the  r a t e  of r e l ease  i s  - e - t / T .  

molecular weight 20 moving with a ve loc i ty  of 30 m s 

concentrat ion of  1 .5  x 10 c m  , or  a contaminant pressure of 4 x 10 t o r r .  

The t i m e  dependent contaminant pressure i s  the re fo re  (4  x 

W = 10 g (corresponding t o  1% absorpt ion of t h e  rocket  g a s ) ,  t h i s  i nd ica t e s  

t h a t  p > lo-'' t o r r  f o r  10 days i f  T = lo6  s ;  p > 10 

T = 10 s ;  p > 10 t o r r  f o r  a few hours i f  T = 10 s ;  and p > t o r r  f o r  

a few minutes i f  T = 10 s. Therefore,  i f  the  r a t e  of r e l ease  i s  f a i r l y  

rapid - charac te r ized  by a t i m e  constant  of a small f r a c t i o n  of a day - then 

the concentrat ion becomes small a f t e r  a day o r  two; and i f  the r a t e  of 

r e l ease  i s  slow - charac te r ized  by a t i m e  cons tan t  of many days - then the 

contaminant gas concent ra t ion  i s  low because of i t s  slow rate  of release. I f  

1 g s - l  of gas with 

gives rise t o  a p a r t i c l e  

T 
-1 

9 -3  - 8  

- t'T) / T  . For e 
4 

-9  t o r r  f o r  1 day i f  

5 - 8  4 

2 

one percent  of t h e  rocke t  exhaust i s  absorbed and released with a t i m e  constant  

of 10 days,  t he  contaminant p a r t i a l  pressure could be i n  excess of t o r r  



1-3 

f o r  10 days. 

p ressure  would be i n  excess of 10 

10"O t o r r  i n  a few days. 

sure  would f a l l  below t o r r  i n  l e s s  than a day. 

I f  the  t i m e  constant  were 1 day, the  contaminant p a r t i a l  

t o r r  f o r  a day, but  would drop below 

I f  the  t i m e  constant: were 10 sec . ,  the  pres- 

- 9  

4 

The as t ronaut  w i l l  use water evaporation i n  h i s  back pack f o r  cool ing,  

and t h i s  w i l l  r e l ease  water vapor near  the  back of h i s  neck a t  the  r a t e  of 

about 0 . 3  g s-I. -4 This w i l l  give r i s e  t o  a vapor pressure of about 10 

t o r r  a t  1 m. This could se r ious ly  i n t e r f e r e  with at tempts  t o  measure the 

composition of gases re leased a t  d r i l l  ho les ,  bu t  t he  e f f e c t  should not be 

important f o r  instrumentat ion l e f t  behind on the  lunar  sur face  by the  

as t ronaut  when he leaves.  

The nature  of the  lunar  sur face  a s  ind ica ted  by o r b i t e r  p i c tu re s  sug- 

ges t s  t h a t  a l o t  of  gas has been released.  Although much of t h i s  must have 

escaped, i t  i s  not  u n r e a l i s t i c  t o  expect t h a t  enough remains t o  measure. 

Some idea of t yp ica l  r e l ease  r a t e s  can be obtained by considering o ther  

p lane ts .  The CO average r e l ease  r a t e  on e a r t h  over geologic time has been 

9 - 2  -1 6 about 5 x 10 cm s , and on Mars, i t  has been about 5 x 10 . The H 2 0  

r e l ease  r a t e  on e a r t h  has been about 5 x 10" cm 

about 2 .4  x 10 cm s . The time constant  for escape from an atmosphere 

i s  given by 

2 

- 2  -1 s , and the argon r e l ease ,  

6 - 2  -1 

H 
T =  

1 kT 'i -Y ' - (y) (1 + Y)e G 
kT i s  the  sca l e  he ight ,  m the  molecular mass, g the where y = -, H = - 

acce lera t ion  of g rav i ty ,  r the d is tance  from the  center  of the p l ane t ,  k 

the Boltzman cons tan t ,  and T the  temperature. 

mgr 
kT mg 
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M T g 4 (km) - =  mgr y H (km) 7 (sec) 

4 1 1300 830 6920 5.35 1290 3.25 x 10 

4 1300 830 6920 21.4 324 4 .4  x 10 (1 .5  x 10 y r )  10 3 

16 1300 830 6920 85.5 81 3.6 x (lo2' yr)  

4 2000 830 6920 13.9 498 4.54 x 10 (6  days) 5 

5 16 400 166 1738 13.9 125 5 .1  x 10 ( 6  days) 

40 400 166 1738 34.8 50 1.53 x ( 5  x 10 y r )  8 

Note t h a t  atomic oxygen escapes from t h e  moon a s  r e a d i l y  as helium escapes 

from t h e  e a r t h  (T, 5 t i m e s  smal ler ;  M y  4 t i m e s  g r e a t e r ;  escape energy, 20 

times smal le r ) .  For thermal escape alone,  argon and heavier  gases could 

accumulate on the moon f o r  per iods of h a l f  a b i l l i o n  years  and longer.  

The accumulation t i m e  f o r  helium i n  the  e a r t h ' s  atmosphere i s  much 

longer than the  escape t i m e  from the  exosphere, because of the  l a r g e  re- 

s e r v o i r  i n  the  lower atmosphere. The helium content  of  the exosphere i s  

5 about 6 x 10 x 5 x lo7 = 3 x atoms cmm2. The helium content  of the 

-6  troposphere i s  5 x 10 

0.4 x 10 g r e a t e r  than the exospheric content .  This increases  the  t i m e  

constant  f o r  escape t o  0.7 x 10 years  f o r  a s i t u a t i o n  where the  exospheric 

temperature remains a t  2000 K ,  o r  t o  10 years  i f  the  exospheric temperature 

i s  as  high a s  2000°K only 7% of the  t i m e .  The helium flow r a t e  upwards a t  

the  base of t he  exosphere a t  2000°K i s  H/T = 5 x 10 / 4 . 5  x lo5 = 100 c m  s 

and the  r a t e  of loss  i s  6 x 10 x 100 = 6 x 10 atoms c m  s . The r a t e  

x 3 x 10'' x 8 x l o5  = 1.2 x lo2' atoms c m - 2 ,  o r  

7 

5 

0 6 

7 -1 , 
5 7 -2  -1 

of loss averaged over a s o l a r  cyc le  i s  less than one t en th  t h i s  f i g u r e ,  
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as  the  high r a t e  of loss i s  maintained only for a r e l a t i v e l y  b r i e f  period 

near the  maximum of t h e  s o l a r  cycle .  Such cons idera t ions  a r e  however not 

re levant  on the  moon. 



APPENDIX I1 

E l e c t r i c a l  Operation of the  Coincidence Mass Spectrometer 

A schematic drawing of the  CMS i s  shown i n  Figure A l ,  and the  cont ro ls  

for  t he  var ious p a r t s  a r e  discussed below. Figure A2 shows the  i n t e r n a l  

and i n t e r f a c e  e l e c t r i c a l  connectors. 

The ion  source cons i s t s  of an e l ec t ron  beam i n  the  form of a t h i n  sheet  

between and p a r a l l e l  t o  two gr ids .  The gr ids  ca r ry  pos i t i ve  and negative 

p o t e n t i a l s  s o  t h a t  any ion-electron p a i r s  t h a t  a r e  formed i n  the  e l ec t ron  

beam a r e  drawn out  of the  source region. The gr id  p o t e n t i a l s  a r e  indepen- 

dent ly  ad jus tab le  with con t ro l s  labeled "ion accelerator"  and "e lec t ron  

beam def lec tor" ;  s ince  the  e l ec t ron  beam i s  bent by the  f i e l d  between the  

g r i d s ,  the cont ro ls  somewhat i n t e r a c t  with one another and with the  "e lec t ron  

gun def lec tor"  cont ro l  f o r  the e l ec t ron  beam, which cont ro ls  the beam de- 

f l e c t i o n  before i t  en te r s  the  region between the g r ids .  The vol tage applied 

t o  the  ion acce le ra to r  can be monitored on the funct ion t e s t  meter by turning 

the s e l e c t o r  switch t o  t h e  pos i t i on  IAX100; s i m i l a r l y ,  the e l ec t ron  beam de- 

f l e c t o r  vol tage is  monitored a t  pos i t i on  EBX100, while the e l e c t r o n  gun de- 

f l e c t o r  vol tage cannot be monitored. 

manually o r  servo cont ro l led  by the  beam curren t  o r  the ion r a t e ,  and there  

a re  cont ro ls  t o  s e t  the prescribed cur ren t  o r  ion  r a t e ;  the  servo s e l e c t o r  

switch i s  labeled servo,  and the con t ro l s  a r e  labeled "manual, beam, and 

ion rate ."  The fi lament power f o r  the e l ec t ron  beam can be turned off  by 

an independent switch labeled "fi lament power." 

monitored on the funct ion t e s t  meter by turning the s e l e c t o r  switch t o  FE'Xl. 

The e l ec t ron  beam i s  co l lec ted  a t  an e l ec t ron  t r a p ,  and the cur ren t  i s  

The beam curren t  can be control led 

The fi lament power can be 
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- 12 measured with an electrometer  whose range i s  10 t o  amp. "he 

electrometer  output is  displayed on a meter, and the  electrometer  of course 

becomes a p a r t  of t h e  servo loop when the  servo switch is  i n  the  "beam" 

pos i t ion .  To measure t h e  e l ec t ron  beam cur ren t ,  t he  range con t ro l  should 

f i r s t  be turned t o  t h e  "zero set" pos i t i on  and the  "zero adjust"  con t ro l  

should be used t o  zero the  meter; then the s e l e c t o r  switch can be turned 

t o  t h e  appropr ia te  range and the  beam curren t  read  on the meter. There i s  

a cont ro l  gr id  i n  t h e  e l ec t ron  gun so t h a t  t he  e l ec t ron  beam can be i n t e r -  

rupted by t h e  gated logic .  

The e l ec t ron  de tec to r  cons i s t s  of an e l ec t ron  m u l t i p l i e r ,  t o  which 

the required high vol tage is  supplied by a separate  power supply. This 

power supply i s  cont ro l led  by a switch and a h e l i p o t  t o  regula te  t he  vol t -  

age; t he  vol tage applied t o  the  m u l t i p l i e r  can be monitored by the  function 

t e s t  meter when the  s e l e c t o r  switch is turned t o  the pos i t i on  EMXlOO. The 

m u l t i p l i e r  i s  connected t o  an ampl i f ie r  d i scr imina tor .  The discr iminator  

threshold i s  set  by a potent imeter  on the  instrument cont ro l  panel;  there  

i s  a l s o  a switch t o  con t ro l  the ampl i f ie r .  This switch i s  labeled "electron 

amplif ier ' '  and the  "discr iminator  threshold' '  adjustment i s  immediately above 

it. 

t e c t o r  ampl i f ie r  d i scr imina tor  can be monitored on the  function t e s t  meter 

by turning the  s e l e c t o r  switch t o  the pos i t i on  AEX. l .  The output pulses  

from the  ampl i f ie r  d i scr imina tor  have a length of about 4-00 ns. 

pulses  from the  ampl i f i e r  d i scr imina tor  connected t o  the e l ec t ron  de tec to r  

The d c  vol tage a t  t he  output of t he  f i r s t  s tage  of the e l ec t ron  de- 

Output 

go t o  3 separa te  c i r c u i t s  - the  ga te  pulse  generator ,  the count rate meter, 

and the  time-to-pulse-height converter.  
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The g a t e  pulse  genera tor  i s  mounted a t  t he  r e a r  of the  spectrometer 

near t he  connection t o  the  vacuum pump. When a pulse  i s  received from the  

e l e c t r o n  d e t e c t o r  ampl i f i e r  d i sc r imina to r ,  the ga te  pulse  genera tor  generates  

two pulses ,  one t o  tu rn  o f f  the  e l e c t r o n  beam and one t o  open the  ga te  f o r  

ions  i n  the  d r i f t  tube.  The e l ec t ron  beam pulse has two poss ib le  lengths;  

the  des i red  length  i s  selected by means of a toggle  switch on the  pulse  

generator .  

with the  normal o r  s h o r t  d r i f t  tube) ,  and i n  the  up pos i t i on ,  about 75 ps 

( f o r  use with the  long d r i f t  tube).  The pulse  cu t s  o f f  the  e l e c t r o n  beam 

f o r  the  corresponding period of t i m e  by means of a con t ro l  gr id .  The ion  

I n  the  down pos i t i on ,  t he  pulse  has  a length of 25 ps  ( f o r  use 

ga te  pulse  removes the  vol tage from de f l ec t ing  p l a t e s  t h a t  normally pro- 

h i b i t  t h e  d r i f t  of ions  down the  d r i f t  tube; on r e c e i p t  of a pulse  from 

the  e l e c t r o n  de tec to r ,  t he  de f l ec t ing  vol tage i s  removed f o r  5 IJIS.  Thus, 

t h i s  pulse  generator  provides the  gated logic .  There i s  a con t ro l  on the  

cont ro l  panel t h a t  permits the  deac t iva t ion  of t h i s  log ic  c i r c u i t .  I n  the 

"off" pos i t i on ,  the  ion  ga te  remains open continuously; i n  the "test" 

pos i t i on ,  the  ion  ga te  remains closed continuously; the  gat ing of the  

e l ec t ron  beam i s  not  a f f ec t ed  by the  switch pos i t ion .  The vol tage sup- 

p l i ed  t o  the  gated log ic  c i r c u i t  can be monitored on the funct ion t e s t  

meter by turning the  s e l e c t o r  switch t o  the  pos i t i on  GLX10. 

The count r a t e  meter has two s e l e c t o r  switches,  one t o  s e l e c t  input  

from the  e l e c t r o n  d e t e c t o r ,  the  ion  de tec to r ,  o r  the coincidence c i r c u i t .  

The o the r  switch s e l e c t s  range. 

The high vol tage power supply provides high vol tage f o r  the e l ec t ron  

beam, f o r  the ion  acce le ra to r  g r i d ,  f o r  the Einzel  l ens ,  and f o r  the  d r i f t  
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tube. The d r i f t  tube vol tage  and the  i o n  a c c e l e r a t o r  vo l tages  can both 

be monitored on t h e  func t ion  t e s t  meter by turn ing  the  s e l e c t r o  switch 

t o  DTXlOO and IAXlOO r e spec t ive ly .  The Einzel  lens  i s  an e l e c t r o s t a t i c  

focusing device t o  increase  the  propor t ion  of ions  passing down the  d r i f t  

tube t h a t  a c t u a l l y  reaches the ion  de tec to r .  

The ion  d e t e c t o r  c o n s i s t s  of an e l e c t r o n  m u l t i p l i e r ,  t o  which the re- 

quired high vol tage  i s  suppl ied by a separa te  power supply. The power sup- 

p ly  i s  cont ro l led  by a switch and a h e l i p o t ;  t he  vol tage  appl ied t o  the  

m u l t i p l i e r  can be monitored by the  funct ion tes t  meter by turn ing  the  

s e l e c t o r  switch t o  the pos i t i on  IMX100. The e l e c t r o n  m u l t i p l i e r  i s  con- 

nected t o  an  ampl i f i e r  d i scr imina tor .  The d iscr imina tor  l e v e l  i s  s e t  by a 

h e l i p o t  on the  instrument con t ro l  pane l ,  and there  i s  a l s o  a switch t o  con- 

t r o l  the  ampl i f ie r .  The dc vol tage a t  the output  of t he  f i r s t  s t age  of t he  

ion  d e t e c t o r  ampl i f i e r  d i scr imina tor  can be monitored on the  funct ion t e s t  

meter by turn ing  t h e  s e l e c t o r  switch t o  the  p o s i t i o n  A I X . l .  The output 

pu lses  from the  ampl i f i e r  d i scr imina tor  have a length of about 400 ns. 

Output pu lses  from the d iscr imina tor  go both t o  the  count r a t e  meter and the  

t ime-to-pulse-height conver te r .  

The low vol tage  power supply provides regulated vol tages  of -12 v o l t s ,  

+12 v o l t s  and +lo0 v o l t s  t o  operate  the  o the r  e l e c t r o n i c  u n i t s .  

outputs  can be monitored on the  funct ion meter by s e t t i n g  the  s e l e c t o r  

switch a t  +LIZ1 o r  -LVXl; and the  +lo0 v o l t  output  can be monitored a t  GLX10. 

The two ampl i f i e r  d i s c  imina tors ,  the  e lec t rometer ,  the  count r a t e  meter,  

and the  t ime-to-pulse-height converter  operate  on t 1 2  v o l t s .  

ga t e  and ion-gate pulses  opera te  on 212 and +60 v o l t .  The fi lament power 

supply and the  th ree  high vol tage  power suppl ies  opera te  from the  24 v o l t s  

The 212 v o l t  

The e lec t ron-  
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ava i l ab le  on the  f 1 2  v o l t  l i n e s ;  these four suppl ies  a l l  use dc t o  ac  

i n v e r t e r s  and employ almost i d e n t i c a l  vo l tage  r egu la to r s  and 30 kc o s c i l -  

l a t o r s .  

The t ime-to-pulse-height converter  requi res  two inputs  and i t  provides 

one output.  The sequence of events i s  (1) a pulse  from the  e l ec t ron  de tec to r  

s t a r t s  the  cycle  by a c t i v a t i n g  a p re se t  time delay c i r c u i t  which i s  fo l -  

lowed by a l i n e a r  sawtooth generator  whose rise time i s  a l s o  ad jus tab le ;  

(2) a pulse  from the  ion  de tec to r  s tops  the  sawtooth generator  and holds 

the  value which has been reached when the  pulse  was recieved; (3) a sample 

of  the  vol tage reached by the  sawtooth i s  taken and del ivered t o  the  output .  

The c i r c u i t  then r e s e t s  i t s e l f  and awaits  the  next pulse  from the e l ec t ron  

de tec tor .  While performing i t s  funct ion,  the  converter  w i l l  not accept 

pulses  from the e l e c t r o n  de tec to r .  

The s t a r t  pulse  i s  received a t  an input ga te  which i s  i n i t i a l l y  open; 

i t  t r i g g e r s  a delay sweep generator  which generates  a l i n e a r  sawtooth vol tage.  

The delay sweep generator  sawtooth i s  applied simultaneously t o  two vol tage 

comparators. The f i r s t  has a low t r igge r ing  l e v e l  and t r i g g e r s  almost 

immediately, c los ing  the  input  g a t e  f o r  the conver te r ,  thus r e j e c t i n g  any 

addi t iona l  s t a r t  pulses  t h a t  might come along. The second comparator has 

i t s  t r igge r ing  l eve l  set  with a he l ipo t  t o  give f ine  adjustment of the  

delay time t o  t r i gge r ing ;  t h i s  s t a r t s  t he  scan cont ro l .  The scan con t ro l  

i s  a b i - s t ab le  mul t iv ibra tor ;  i t  provides a pulse  t h a t  r e s e t s  the  delay 

sweep generator ,  preparing it  f o r  the  r e c e i p t  of the next s t a r t  pulse;  i t  

a l s o  t r i g g e r s  the  scan sweep generator ,  which generates  a highly l i n e a r  

sawtooth vol tage.  The scan sweep generator  c lose ly  resembles the delay 

sweep generator ,  but i t  has only coarse adjustment of the scan time. The 
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scan sweep generator  sawtooth i s  appl ied simultaneously t o  two vol tage 

comparators; t he  f i r s t  t r i g g e r s  an i n h i b i t  c i r c u i t  almost immediately 

and keeps the  input  ga te  t o  the  converter  closed f o r  the dura t ion  of the  

sweep; the  second has a vo l tage  l e v e l  j u s t  below t h e  maximum of the  

sawtooth, and i t  a c t s  t o  reset the system i f  a s top  pulse  is  not  received 

during the  sawtooth scan. 

output  ga t e ,  which i s  normally closed.  

of  an AND g a t e  and a one-shot monostable mul t iv ibra tor .  

qu i re  two input  pu lses ,  one of which i s  supplied by the  scan generator  f o r  

the dura t ion  of the  scan sweep and the  o ther  of which i s  the  s top  pulse .  

When the  two inputs  a r e  simultaneously present ,  the  AND gate  t r i g g e r s  the  

mul t iv ibra tor .  The f i r s t  output from the  mul t iv ib ra to r  performs two functions.  

The f i r s t  funct ion i s  t o  t r i g g e r  the l e v e l  ho ld ,  which a r r e s t s  the sawtooth 

scan and holds i t s  value.  The second funct ion i s  t o  open the  output ga te  

a f t e r  a s u i t a b l e  delay,  allowing the  sawtooth vol tage a t ta ined  a t  the time 

of the  s top  pulse  t o  appear a t  the  output .  The width of the output pulse  

The sawtooth i s  continuously applied t o  the  

The s top  pulse  ga te  c i r c u i t  cons i s t s  

The AND gate  re-  

i s  determined by the  one-shot mul t iv ibra tor .  The second output from the 

mul t iv ib ra to r  r e s e t s  the  scan con t ro l ,  which i n  t u r n  r e s e t s  the  scan sweep 

generator .  This completes the cycle and the c i r c u i t  i s  ready fo r  another 

s t a r t  pulse .  

The scan sweep generator  sawtooth waveform i s  generated by charging 

a capac i tor  with a constant  cur ren t .  When the  generator  i s  r e s e t ,  the  

capac i tor  must be permitted t o  discharge,  thus giving r i s e  t o  an exponential  

decay of the  sawtooth waveform. This presents  no problem when the  generator  

i s  r e s e t  by v i r t u e  of a s top  pulse  a r r i v a l ,  because the  output pulse  w i l l  

have been obtained and the s top  pulse  ga te  c losed,  r e j e c t i n g  add i t iona l  s top 
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pulses ,  before  the  exponent ia l  decay of the scan sweep generator  waveform 

begins,  I f ,  a l t e r n a t i v e l y ,  the upper l e v e l  reset con t ro l  r e s e t s  the  scan 

c o n t r o l ,  t h e  s l i g h t  delay i n  c los ing  the s top  pulse  ga t e  could permit a s top  

pulse  t o  be e f f e c t i v e  i n  causing a sample of  t he  generator  output t o  be taken 

during i t s  exponent ia l  decay. I n  t h i s  way, these  meaningless pulses  of 

random amplitude would con t r ibu te  t o  background noise.  To prevent t h i s  

from occurr ing,  t he  t r i g g e r  pulse  from the  upper l e v e l  reset is  applied 

d i r e c t l y  t o  the s t o p  pulse  ga t e ,  c los ing  i t ,  while the  same pulse  i s  de- 

layed somewhat before  being used t o  r e s e t  the scan cont ro l .  This i n su res  

t h a t  the  s top  pulse  ga te  i s  closed,  t o  r e j e c t  unwanted s top  pu l ses ,  before 

the exponential  decay of the  sweep output i s  begun. 

The output pu lse  from the time- to-pulse-height converter  i s  analyzed 

by a commercial pulse  he igh t  analyzer.  I t s  opera t ion  i s  somewhat the  in- 

verse  of the  time-to-pulse-height converter.  It w i l l  not accept  add i t iona l  

pu lses  during i t s  ana lys i s  cyc le ,  which i s  genera l ly  longer than the  time 

of f l i g h t  of the  ions t h a t  have generated the pulses .  On t h i s  account, 

some s igna l  pulses  can be formed by the time-to-pulse-height converter  but 

re jec ted  by the  pulse  he ight  analyzer  because i t  i s  not ready fo r  them. 


