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SUMMARY

Numerical results (based on the theory of C. T. Chang) are presented for use in prediction
of the perturbed downstream flow field resulting from the interaction of a planar entropy
discontinuity with an infinite planar shock. Downstream pressure, vorticity, and entropy
fluctuation values are presented in parametric form for normal shocks and for oblique shocks
generated by wedge flow: for wedge half-angles from 4 to 30 degrees, for upstream Mach
numbers from 1.4 to 10, and over the entire range of orientations of the oncoming entropy
disturbance.

Discontinuous large values in the amplitudes of all flow perturbations occur at an "effective
Mach number, Mg" velue of unity in the flow. For Mg > 1 the genérated pressure distur-
bance radiates as sound, while for M_ < 1 the pressure disturbance amplitude decays with
distance from the shock. These numerical results, when combined with typical entropy
fluctuation magnitudes, give sound pressure levels greater than those typical for boundary
layer noise, and equal to those produced by shock-turbulence interactions, for typical
aerospace applications.

For the case of a random field of entropy waves interacting with a shock, the required
relaiions for the harmonic components of all three downstream modes are presented, and

an expression is derived for the root-meon-square pressure amplitude caused by an isotropic
entropy field, but this study has not progressed to the point of numerical results.
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1.0

INTROOUCTION

Many of the important problems in gas dynamics are concerned with the effect of
small disturbances in a supersonic “‘ow with shock waves present. The impetus to
study the resulting downstream perturbation field has come from such problems as
oscillating shocks ahead of blunt bodies, Reference 1, or flared sections on launch
vehicles, oscillating shocks in supersonic inlets and exit nozzles, and disturbances
in supersonic wind tunnels, Reference 2. The major interest in several current
investigations is in the pressure field genzrated by the interaction, since the fluc-
tuating pressure field associated with a shock is thought to have been the cause of
several catastrophic failures of launch vehicles; in any case,the pressure field must
be predicted to enable minimum-weight design of such structures.

First-order perturbation theory indicates that the governing equations for a com-
pressible, viscous, and heat-conducting gas can have three distinctively different
types of disturbance fields: (a) entropy, (b) vorticity, (c) pressure and irrota-
tional velocity (sound). When the intensity of the fluctuations is small, the three
modes are independent. Non-linear coupling between the various modes can occur
if the intensity of the disturbances is large or if interactions at boundaries occur
(e.g., at a solid wall, a shock wave, or the boundory of a wake or a jet). Thus,
when a shock wove is perturbed from its equilibrium configuration (as by interaction
with any one of the three fundamental modes), the field downstream of the shock is
composed of the original field plus perturbation fields of all three modes (vorticity,
entropy and sound) generated by the interaction. When the perturbations are small,
the three resulting fields are computable from separate systems of linear partial
differental equations, connected only through the boundary conditions on the shock
wave and any solid boundories present. Since the equations are linear, Fourier
synthesis can be applied, and so it is useful to consider the interaction of a single
simple disturbance with a shock wave.

Although the problem of interactions between weak disturbances and shock waves

in a uniform stream of perfect gas has received a good deal of attention, most of

it hos been concentrated on interaction of a plane shock with sound waves or with
turbulence (vorticity) . Sound-shock interactions were dealt with in References 3,
4, and 5, and Chu (Reference 5) included the effect of reflection between a wal.
and the shock wave. Regarding vorticity-shock interactions, Ribner (Reference 6)
studied the interaction cf a shear wave with a shock, and demonstrated the exist-
ence of sound waves and refracted shear-entropy waves in the flow behind the shock.
In Reference 7 this work was generalized to give the noise radiated by the inter-
action of a shock with turbulence. Moore (Reference 8) analyzed the interaction of
sound with an oblique shock wave. Lowson {Reference 9) extended the numerical
information available based on theory in References 7 and 8, including the motion
of the shock wave during the interaction, and showed that the fluctuating pressure
field is of significant magnitude in typical supersonic flow problems.
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The remaining mode, en!ropy waves, are represented by either temperature or
densitv discontinuities (at constant pressure) in the gas and are carried along at
the local mean flow velocity of the gas. Entropy waves may be due to such causes
as temperature strctification in the medium, presence of an upstream shock wave
undergoing perturbations, or an unsteady upstream heat source as can occur in
combustors or in heated supersonic wind tunnels. Morkovin concluded in Refer-
ence 2, for example, that entropy wave interactions with shock waves can be the
largest source of noise in supersonic wind tunnels. The entropy fluctuation mode
has been analyzed by Chang, Reference 10, who gave the theory for interaction
of a plane entropy wave with an oblicue plane shock wave. In addition to giving
solutions for @ number of specific cases involving a shock produced by an infinite
wedge (including reflections from the wedge) and several varieties of restriction
on the nature and relative orientation of the entropy wave, Chang also gave the
solution for the general case of the unsteady interaction of a single (step function)
plane entropy disturbance and an infinitzly extended oblique plane shock where
the body causing the shock is tacitly assumed to be absent. It is Chang's solution
of this general case that has been used to obtain the numerical results given here.

While the theoretical foundation exists in Reference 10, the method is unwieldy |

. for routine engineering use, and only a few numerical results were previously
available: Reference "1 for a sinusoidal entropy wave interacting with a normal

shock at an upstream Mach number of 1.45 only, and Reference 1*for the same
case over an extended range of Mach numbers up to Mach 10. It is the purpose

of the present report to provide parametric numerical results for the downstream
flow field, covering the range of flow conditions which might be encountered in
practice, and tc make order of magnitude estimates for the most extreme pressure
fields which might be generated, based on existing data for entropy fluctuation
magnitudes. The required equations for the roct-mean-square pressure fluctuations
resulting from a random field of entropy waves are also presented, but the random
field case has not been carried to the point of numerical resuits.

* To be amended in a forthcoming corrigendum by Dr. Morkovin.



2.0

2.1

THE SHOCK-ENTROPY INTERACTION

Chang's Theory for the Shock-Entropy Interaction

Chang's analysis (Reference 10) begins with a unified treatment” concerning
upstream disturbances of all three modes (vorticity, entropy, and sound) inter-
acting with a shock wave, and then specializes on the entropy mode. The medium
is taken to be a non-viscous ideal gas, and the analytical model is as follows: A
wedge is placed in a uniform flow field and an oblique shock is formed at the wedge.
The shock divides the flow field into two regions: An upstream region with uniform
velocity U  and a downstream region with uniform velocity U, Figure 1. A plane
entropy disturbance (simple step function in temperature) is introduced upstream and
is convected with the main flow toward the shock. Since the main interest is the
interaction of the shock with the upstream disturbance and its effect on the down-
stream flow field, the presence of the wedge is now ignored (ruling out reflection
phenomena), and the shock is taken as infinitely extended.

Three sets of rectangular coordinate axes will be used, Figure 1: x* ¢ y*, with
oy" taken along the shock plane; X, 0¥ s with o X, taken along the velocity

1
vector U of the upstream main flow; and x 0 y, with o x taken along the velocity
vector U of the downstream main flow .

The flow parometers will be replaced by their corresponding nondimensionalized
ones. If Ap, Ap, As, and Au denote the perturbations of pressure, density,
entropy and velocity, their corresponding dimensionless parameters will be given

by:

A A A — AT
p = P, p==2f£ =25 7 = A” m
7 P Pm “p

where subscript "m" refers to the unperturbed main flow. Whenever no number
subzcript is attached, reference is to the region downstream of the shock; for me
region upstream of the shock a subscript 1 wiil be used.

The equations governing the flow field, both upstream and downstream of the shock,
are the three conservation laws of mass, momentum and energy . The equation of
state gives a relation among the three thermodynamic variables. After replacing
the independent time variable t by two reduced space variables

T = At, T = A't = (AI/A)T (2)

* Chang's derivation is summarized here in some detail, since it is only
available in his thesis on a loan basis.



the governing equations are:

Moss:

-g—l';— + divd = 0 (3)
Momentum

Du _

D + grad p = 0 (4)
Energy

Ds _

Dr 0 (5)
State:
where

D () )

Dr  a+ Ml d x, )
for flow in the upstream region, and

D 9 a

br - 2+ = M35 @)
for flow in the downstream region.
The velocity field can be split into two parts, an irrotational part _GZ and a
rotational part T:, such that

curl 0y =0, divy = 0 %

2 s

Then two potential fields can be introduced, a scalar potential ¢ and a vector
potential E, defined by

—

— _ - — ,
ul = grad ¢, U curl E (10)

The governing flow equations, in terms of the potentials, are:




ve - ~ = 0 (1)
D~

Lo DE _

div E = 0, D+ - 0 (12)

De _

Dr 0 - A (13)

the three modes (sound, vorticity, and entropy) are clearly indicated by Equations
(5), {6), and (7) respectively. In terms of our non~dimensional parameters, the
vorticity W is given by

W = A curl —u: = A curl cort E (14)

The scalar potential ¢ represents the sound field, with pressure and velocity
perturbatiors

. (2 2
P = ‘(aT M ax)"’ (15)
and

—u’z=—grcd<p

The governing equation for ¢ <'*ffers from the conventional wave equation only
by a convective term

d
d x

and could be reduced to the conventional wave equation by a Galilean transformation
equivalent to using a frame of reference moving with the unperturbed mean flow:

M

x'= x - M~
y'' = vy
= 1 (16)

With the coordinate system x” o y" (with the oy” axis nlong the mean position of
the shock) the shock configuration can be given as

*

. X =W(Y*IT) (17)
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To first order, the local perturbed velocity of the shock is AW _ (= ‘Pf), and the
deflection is ¥_., where this subscripting means partial differentiation. If one
isolates a small ‘element of *he shock and superposes a velocity vector of the sume
magnitude but opposite direction as AW_ to the whole flow field fore and oft of
the shock, and then applies theRankine~Hugoniot equaticns to the flow parameters
across the shock, the downstream perturbed flow parameters can be solved explicitly
in terms of the given upstream flow parameters and the local shock deflection and
velocity. This solution involves rewriting the conservation equations for mass,
energy, momentum normal to the shock and momentum along the shock in terms of
the sum of mean flow and perturbation quantities, retaining only the first order
terms, and then using the fact that the mean flow must obey the same conservation
laws. The result, shown in matrix notation for clarity, is:

f. s ] —A A A 0 ] FS ]
+ i 12 13 -
0
Py = A A Ags P. +
™ A A A 0 T
+ 31 32 33 -
*> 0 0 0 *
L V,), _ L. A44.4 ...v-_J
(& M cos B [ m
11 11
M
“21 cos B "
+ v, + Y
T M cos B y n *
31 31
T 0
41
L. - L. - (]8)

The subscripts + refer to flow properties immediately behind the shock; and sub-
scripts -, to flow properties just ahead of the shock. The downstream perturbed
velocity has been resolved into components A uv* and A v* normal and tangential

to the unperturbed shock plane respectively; u* and v* are their non-dimensionalized
forms: u* = AU*/A and v* = AV'/A,

The coefficients occurring in Equations (18) are given by



(19)



T ! fm 2 P 2
31 = ] - N2 ] - 'p_' ] + N + (Y"']) ] - 'p—— N
m 1m
P
_ m (19)
a1 = (p,m - ]) N Cont.

With N and N the Mach numbers upstream and downstream of an equivalent
normal shock:

le M‘ sine, N =M sinf (20)

Since all the coefficients A and © are functions only of N, N and the
density ratio p/p!m , then for any given value of y they are only functions of the

shock strength x:
x=rp/P. (21)

Thus the obliqueness of the shock, or dependence on the shock angle B, enters
only in termsinvolving ¥ = , the local shock inclination. It may also be noted
that the system of Equations (19), containing one more unknown than the number
of equations, is insoluble without the addition of another relation involving the
shock configuration.

From the governing equation of the entropy mode, it can be seen that an arbitrary
function in the form of a plane wave is a possible solution:

A
1T [len A' Tl x otm, yl)] (22)

where & is the inclination of the normal to the entropy wave front with respect
to the main flow velocity U, upstream of the shock, and



ils cos &, m = sin 8 (23)
This will be useful later on when the object is to synthesize a random field of
entropy disturbances from such inonochromaiis spectral components.

The incoming disturbance drifts along the shock at a speed”

_ cos &
Cs " cos (& -¢) Ul (24)

so that the flow pattern of the incoming disturbance appears stationary to an
observer moving along the shock at this speed, and in such a reference frame the
downstream flow fizld appears time independent. That is, with respect to the
reference frame x', y', T' obtained from the following Galilean transformation,
the downstream flow solution is a function of x' and y' only:

* [

X = x
C
* , s
y = vy *+ A T
T = 7 (25)

This transformation is 2quivalent to superposing on the whole flow field a velocity
- Cs; to an observer affixed to this moving coordinate system the downstream main
flow has an apparent velocity Ug, which is the vectorial sum (Figure 2)

Ug = U+ (-C) (26)

and which has the magnitude and inclination o with respect to the main flow
given by

(27)

* One will note that this fails at (§ - €) = n/2, i.e., where the oncoming
entropy wave is paraliel to the shock, and this special case is treated below
in Section 2.1.4.



.

The vorticity and entropy trajectories are along the velocity vector U , and the
system of governing equations can be simplified by rotating the coordinate oxes
along and normal to this direction. The prablem has an effective Mach number
Mg = Ug/A and its corresponding effective Mach angle p, = arcsin (1/M).
This new reference frame X OY is specified by

rX] [sin (a -B) -co:(a-'B)] |ZX|CI
I_Y = | cos (¢ =B) sin (a -B) y' (28)

In the reference frame the system of governing equations becomes

Mass:
dp au avVv
Me ax " ax * ay = O
Moriantum:
au | dp _
Me x * ax = O
oV dp _
M 3x ¥ 3y = O (29)
Energy:
as
3 = 0

for X sin(a=-=B) + Ycos(a-B)> 0O
The components of perturbed velocity U and V in the XOY reference frame

are related to the components u* and v* in the original shock - affixed co-
ordinate system by:

u* sin (a -B) cos (a -B) U
= (30)
v* - cos (a -B) sin (a -B) \Y
In the coordinate frame X OY and restricting our interest tc the entropy mode as

the only upstreara disturbance, the beundary conditions at the shock can ve
written as

10
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] i ]
S+ An
Py - AZI s
U+ A sin (a -8)
31
v, A:” cos (a -PB)

x  (Mcosp -C/A)

x  (Mcos@ - C/A)

"l Mcosp - C/A)sin@-B) - x cos (@-3) sin (2 -p)q:y
A 4
. (M cos B ":;s/A) cos fa -B)+ t“ sin  {a ~-B)

L 31 ] | (3])

‘ot Xsin{a-B) + Ycos(a-B) = O

From the Y—component of the momentum equation,

P = Mo, ' 32)
After the elimination of U, V, and p, a governing equation for the potential

¢ results: :

(Mi -1) -4’xx oy = O (33)

which is hyperbolic or elliptic depending cn whether Mg > 1 or M < 1. Physi-

‘cally, h.is means that when M, > 1 the sound field generated at a fixed point is

affected only by a localized distortior of the shock; but in the case Mg < 1 it is
affected by the whole shock configuration, and we must expect the subsonic case
to involve an integral equation. Analogous to the classical wavy wall problen,
the resulting pressure waves propagate downstream along a characteristic with
ceastant amplitude for the supersonic regime (Mg > 1); but in the subsonic case
(Mg < -1) the pressure distuioance amplitude diminishes with distance from the

. shock, part of the disturbance energy being fed beck into the shock.

1
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2.1.1

The Supersonic Case, Mg > 1

For Mg > 1, the governing equation for ¢ in the XOY reference frame reduces
to a simple wave equation, which is also obeyed by the fluow parameters p and
V. By eliminating U between the equations of continuity and momentum, one
obtains a pair of wave equations in terms of V and q = - (cos p.) p:

ra I T |
a X Mdle 3y 9
= 0 34)
2 2 ||y
tan pe 3y T aX
for Xsin(a-{i).+ Ycos(a=-8) > 0
and subject to the boundory condition at the shock:
d ~A, coste " (M cos p - Co/A) cos pg -l
= S- + -
\" A:n cos (a- B)J w®  (McosB - C/A) cos (a-B)+u__lsin(u-{3)J
oi 4
x sin{a~-B) ¥y (35)

ct Xsin{(a-B) + Ycos(a=-B) = 0.

The field of characteristics associated with these wave equations are given by
X - Ycoti, = constantand X + Y cot u, = constant, since the Riemann
invariants along these lines are (q - V) and (g + V). The solutions to the wave
equations (34), therefore, are:

= F (X-Ycotp) + F, (X+Y cot pg)

q
-V =’F‘ (X—Ycotpe) + F2 (X+Ycofpe) {(36)

Only one of the two functions F, or F_ represents sound waves prupugating
downstream. In the cose of a normal shock (B = n/2) itis F,, and in the case

of an oblique shock the choice depends on the magnitude of C,, the trace veiocity
of the entropy wave along the shock. Referring to Figure 2, when C_ is on the

lower segment (below the first intersection of the shock and the sonic circle), Fz

is to be taken; when C_ is on thz upper segment (C; 2 C_ ) then F, is to be

taken. Whenever Cs ?alls between Cs and Cs , then 'Me< 1, a case consicered
later. ! 2

12



The boundary condition at the shock, after eliminating the shock inclination ¥
gives another relationship between q and V together with the given disturban:e
s_, allowing the function F, or Fz to be determined:

(@) When Cs < C52
q= F, = -T, (8) cos My S- - (37) 7
®) When C > C_:

q = F' = - T (6) cos e S- (38)
where
Q, cos (a-B)-A, Gsin(a-p) :
T2 ) A cos (a-B) - Gsin (a-p)fcospe (39)
Ql cos (a -B) - \,, Gsin (a -B)
T, (6 A cos (@ -B) - Gsin {a B) - cos He “0)
and

G= M cos B - (C./A)

By determining q from the appropriate equations above, and substituting this value
of q back into the original equation relating the boundary conditions at the shock
(35), one can find the local shock inclination ¥ . At this point, all the required
quontities are avaiiable for the calculation of the downstream flow perturbations
through Equations (31). As vorticity is preserved along streamlines, the vorticity-
generating function f (Y), which is defined by:

df
w = -A 4y (41)

can also be calculated.

13
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2.1.2

The Subsonic Case, My < 1

For M_< 1, the potential equation for ¢ reduces to the Laplace equation if the
Prandt{-Glauert transformation is applied. Introduce a complex variable defined

E=X+iY

V=41-M: Y (42)

and any anclytic function ¢ (&) or W (¢) = d¢/dt will be a solution.
W (¢) is related to the physical porameters through : »

1-M

Me

W(g) = VX Y) +i p X, Y) (43)

Again eliminating V between the continuity and momentum equations, one obtains
a pair of Cauchy-Riemann equations:

av 3 (\h-ﬂf_ \)

a X Y M,

av¥ T ax\ M,

(44)

for the region

Xsin(a -B) + cos{(a-B) > 0

2
1-M2

The boundary conditions to be satisfied by W (¢} are (a) to remain bounded ot
infinity and (b) to satisfy

[Xcos (a-B)- Gsin(a -B)]p-V

- [0 cos (6 -p) -4y Gsin(a-p)] 5. “5)
_Y
at the shock, i.e., at Xsin (a -B) + l-Mz cos(a-B) = 0
e

14



It is more convenient to work with a set of coordinate axes rotated into the shock
position, through the transformation

x* cos A sin A X
= (46)

Y -sin A cos A Y

where )\ is defined by
2

cot A - 1-M, ton {a -B) (47)
and the boundary condition at the shock is now specified along X* = 0.
A solution for W (£*) which satisfies the boundary condition at infinity is

: . . |

W) = / _.9_("% dn (48)

2n £ -k

-
where
= X'+ i Y
with 'g (n) bounded and continuous in the half-plane x"> 0.
Chang compares the conventional complex potential with W (¢) .= d ¢/d¢ and
notes that the function g (n)/2w can be interpreted as the strength of a source
loccted on the shock plane at a distance n from the origin, or can be interpreted

as a dipole moment with respect to the sound field (p and V) genervted downstream.

The real and imaginary parts of W (¢ *) are:

1-m I x*
p = / 3 7~ @a(n)dn (49a)
M, 2w X* + (Y*-n)
-®
1 (-
V= 2 . 2 g (n)dn
2= X* + (Y -n) (49b)

which one may substitute back into the shock boundary condition, Equation (45),
and obtain the following integral equation to be used in determining g (Y ™):

15
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. P‘ 1 [ g ) dq}={§2,cos(°'m"\ Gsin (@-f) (s_
. n-Y* 21 ’

To obtain (50) Chang has used the fact that

1 X a(n) (v
lim 1 dn = L C (81
X*~0 2nJ X" +(Y'-n) 2

-

and the notation " P" for Cauchy's principal value for the improper integral .
At this point, for any given set of conditions, everthing in Fquation (50) is known

numerically except g (Y*), which is to be found, and the principal value of the
integral . Compressing Equation (50) for convenience into the form

. ®

D g(¥*) + pI! / 50) gl - ¢ (52)

21[ r]-Y* ‘
-o
where
1 Mo (. |

D =7 \(I-Mi ?A cos (a-p) - GS?"(“’B)§

and

C

gQ' cos (a-B)- A2l G sin (0‘[3)§ S

let us find the principal value of the integral . Applying Picara's iteration method,
setting g (n) = 0 in (52) requires the trivial result that g (Y*) = C. Setting
g (n) equal to a constant, K, gives an integral of the form

@
K dn
2 n-Y"

-0

16




2.1.3

From residue theory, and based on the boundary condition at infinity giving a
closed contour, the value of the integral is 2wi, giving:

K/md“*= K (wi) = iK (53)
27 n-Y 2n

-

Inserting this into Equation (52), since D and C are real numbers, K is complex.
Equating real and imaginary parts gives two equations to solve for K; and K. .
After -etaining only the real part, the solution for g (Y*) is:

- DC

g (Y') = 3
1+D

(54)

Next, one may solve for the pressure perturbation immediately downstream of the
shock (at X* = 0) from Equation (49a). Utilizing the limit value of the integral
as X*—0 as given by (51), Equation (49a) becomes:

M g (Y*)

€

P), = 5 - (35)
x*=0 \h-Me 2

Having the pressure perturbation at the shock, then the shock displacement V¥,

can be found from 4
C
S .
p = A_"| s_ + T (M cos B- )sm (a -B) ¥, (56)

Having ¥, all the remaining downstream flow perturbations and the vorticity
generating function can be calculated also.

The Case Me =1

At Mg =1, the governing equation for the potential ¢ reduces to the parabolic
form

byy = 0 , (57)

As Mc—>1, the Mach angle pe— /2, and the two charocteristics coalesce
into u single line, X = constant. The drift velocity in a sound wave being
normal to the wave front, then

vy © 0

17
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2.1.4

In this case one can determine the pressure field p directly, from

Qlcos (n-B)-A2| Gsin (a -B)
p= -F(X) = — S_ (58)
A cos (a -B) - Gsin (a -PB) '

Special Case of Parallel Entropy and Shock Waves

One may note from Equation 24) that the foregoing derivation fails in the case of
parallel shock and oncoming entropy wave (that is, for (6 - €¢) = n/2), and so
this case is handled separately. The oncoming entropy wave can be expressed in
the form

{0 A
1 A

(cos &) v - x* (59)

For an observer moving along the shock (along the y* axis, there is no transverse
disturbance. The entire shock is struck by the entropy wave instantaneously, and
the shock remains plane and simply oscillotes along the x* axis. This is in contrast
to the case (6§ - €) # n/2, where a ripple moves aiong the shock at the trace
velocity C,. Hence ¥, * = 0 in Equation (18), and it follows that v* = 0, so
that the flow field downstream of the shock is one-dimensiona!. Chang here make-
a substitution of variables:

x' x* - N+
T = T

and rewrites the conservation equations for mass, momentum and energy accord-
. . » * . .

ingly, from which it can be seen that (-p) and u~ form a pair of simple wave
equations. Since no disturbance can propagate upstream of the shock, only the
right-running wave is taken:

p, = vy, = F (¢ - x") (¢9)
When transformed back into the original x*, T coordinates, the downstream flow
field is completely determined by the two functions s, (N7 - x*) and

F {(1 +N)T-x* } . From the boundary conditions at the shock (at x* =0)
these functions are

F T n
-s— = e — = = - (6])

and
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If the shock displacement is also desired, it can be obtained from

a 30

A - A,
x*= y = _3 “z'f s_(r) dr (63)

One may note that restriction to parallel waves, with the resulting one-aimensional
downstream flow field, gives an immensely simplified problem, involving only six of
the fourteen transfer coefficients, Equations (14).
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2.2

Numerical Results

The computer progrom described in the appendix, ba<ed on the above analysis, has
been used to obtain values defining the perturbed dowristream flow field resulting
from the interaction of a single entropy discontinuity with a shock wave. While a
number of intermediite quantities (such as the transfer coefficients, vorticity
generating function, and local shock deflection) are availcble in the printout, only
those quantities useful for engineering estimates or for understanding of the results
are presented here. They include the effective Mach number; the downstream
fluctuations of entropy, pressure, and vorticity; and an alternate presentation of
the pressure fluctuations referenced to free-stream dynamic pressure.

The results presented cre for two coses of practical interest: (1) Normal shocks,
and (2) Oblique shock; arising from wedge flow . While it is possible to calculate
a downstream oei terbed flow field for free combinations of € (the shock wave angle)
and B (the anyle betw.cen the shock wave and the downstream mean flow velocity
vector; see Figure 1'. Gt each upstream Mach number there is only one value of
flow deflection angle or wedge half-angie (€ - B ) which will produce the shock
angle B. For each wedge half-angle (¢ - B), the lower limit of free stream Mach
number has been taken as the value at which the mean flow behind the shock remains
supersonic, Reference 12, und results are given from this lower limit to Mach 10.
The wedge half-angles (€ - B) covered in the numerical coses repcited here range
from 4 degrees (corresponding to a flat plate with boundary layer) to 30 degrees.
This range should cover most cases of interest for external flows over high-speed
aircraft and separation shocks produced by conical flares on launch vehicies.

The value of the entropy discontinuity orientation, &, has been varied from one
degree (nearly normal to the free-stream flow direction, see Figure 2) to 89 degrees
(nearly parallel to the free-stream flow. For parallel shock and entropy waves,

(8§ - €) = m/2, the general method for oblique shocks fails and these results are
shown separately. For normal shocks, this is an important case, as it corresponds
to temperature discontinuities normai to the flow. Because of the bulk of the data
involved, results are shown only for the extremes of the § range and for that region
of 8's giving maximum flow perturbations.

Some of the resu'ts have been plotted as functions of & rather than M ; these
graphs, in conjunction with the graphs of effective Mach number M, show how
the flow perturbation values reach ancmalous maxima at values of § corresponding
tc M_ = 1. This trend agrees with the single publiched result of Chang in Refer-
ence 10. Referring o Figure 2, the occurrence of M_ = 1 corresponds to values
of thz trace velocity, C,, of the entropy disturbance ront along the shock such
that the vector C_ just intersects the sonic circle. For C_ between the tw . possible
intersection points, M, < 1, and for any other values of C., M_> 1. As dis-
cussed above, when M_ < 1 the generated pressure disturbance propagates with
constant amplitude, but when M, < 1 the amplitude decays with distance from
the shock. For any given combination of € and B, there is c bounded region of
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the Mach number and entropy wave inclination plane where the effective Mach
number is subsonic, and energy can be fed back into the shock. As an example,
Figure 9 shows this boundary in terms of critical angle 8" for € = 50 degrees,

B = 30 degrees, corresponding to o wedge angle of 20 degrews. The two branches
of the boundary, 87 and 8*,orise from values of C_ corresponding to the two
intersections of the shock and the sonic circle, Figure 2. For more accuracy in the
perturbation values at M_ = 1, it would be desirable either to use more closely
spaced input values for near the region of the peak, or to set M_ =1 and compute
the value of the peak directly. In the results shown here, the peak was sometimes
obtained by extrapolating the adjacent curves to intersect at the volue of M, or &
known to correspond to Mg = 1; however, the numbers are sufficiently accurate

for engineering predictions.

With & below used to indicate perturbation values (e.g., 6§ p = p=p_, where

3 i . . . . m .
p is the mean value), and with subscripts 1 and (- ) used to indicate the region
upstream of the shock, the perturbed flow quantities sh-./n in the figures are defined

as follows:

For the entropy fluctuations,

( s, ) (Ss/C )_ (8 I/Tm )_
DYAN CLARERN (AR >

For the pressure fluctuations,

P, (8p/v P, )+
() 6

In this form, the fluctuating pressure magnitudes are referenced to the local mean
pressure, but the upstream mean flow conditions are sometimes more conveniently
known. The dynamic pressure is given by

1
9 = g eV =L oM

Hence, the downstream pressure fluctuation magnitude, referenced to twice the
upstream “ynamic pressure is:

X b\ /
() o Y, G, e

2
vp M7
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where x is the shock strength (or stotic pressure ratio) and q, is the upstream
dynamic pressure.

The vorticity generation is shown here in terms of 1he magnitude of the vector sum
of ii 2 two velocity perturbation components:

VORT uﬁ + vf
S = S (67)
where
Svu Sv
= ] d v = R
v, A an | A ,

measured along and normal to the x, axis (free-stream direction) respectively, and
A is the local sonic velocity behind the shork.

It should be noted that a single value of specific heat ratios,

C
_ P
v T
\'
has been used in the calculations, y = 1.40. For strong shocks (i.e., large

upstream normal Mach number components), molecular dissociation begins to
absorb part of the total energy of the flow, and the value of y decreases slightly,
affecting all the ratios of flow properties across the shock. However, this effect
is not significant in the present results, since (1) in the most extreme case for the
oblique shock results (Mach 10 and a flow deflection angle of 30 degrees) the error
in the present coefficient across the shock, for example, due to use of y = 1.40
would only be 3 percent; and (2) the flow purturbation results, shown up t» Mach
20 for the normal shock case, are insensitive to Mach number for values above

Mach 8.

Reviewing the trends of the results, for the special case of parallel shock and
entropy wave inclination, Figure 3 shows the relative magnitude of the downstream
entropy wave decreasing steadily from unity fer the lowest possible shock strength
to values below 0.03 for upstrecm normal components of Mach number N, > 10.
The downstream disturbances of pressure and velocity increase from zero at the
lowest possible shock strength to an asymptotic value of about -0.4 at high Mach
numbers. The generated pressure and velocity disturbances are of opposite sign to
the oncoming temperature discontinuity; that is, a positive step increase in tem-
perature will generate a rarefaction; and a negative change in temperature, a
compression. The entire entropy wave strikes the shock wave simuitaneously,
giving an infinite effective Mach number Me'
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The reader should not attempt te compare the present numerical results for pressure
and velocity perturbation with those of Morkovin, Reference 1, as his result. are
being corrected in a forthcoming corrigendum, in cccordonce with Reference 13.

Continuing to the normal shock cases (taken from the computer results) Figure 4
shows the variation of effective Mach number M, with entropy wave inclination
angle &, for upstream Mach numbers M, from 1.1 10 20. As § approaches zero,
M, approaches infinity as described above. The effective Mach number decreases
through the critical M, = 1 within the range 60° < & < 70° for all these up-
stream Mach numbers. Judging from Chang's single numerical example, we should
expect discontinuous maxima of the flow perturbation quantities to occur near

& = 70°, and this is borne out in Figures 5 through 8. The values shown for

5 = 0 are taken from the parcllel v . & solution, above. For the pressure per-
turbation, the results lie too clese to the curve for 5° £ § £ 30° to be shown
separately. Ail the results become insensitive to Mach number for M, > 8.

In the cblique shock cases, for any given shock strength and shock angle B it is
possible to have two values of entropy wave inclination & which will result in a
critical effective Mach number M, =1, corresponding to the two branches bounding
the subsonic region, Figure 9. Depending on the wedge half-angle and upstream
Mach number, there may be either one or two values of & at wiich M, =1. This

is apparent in Figures 10 through 12, which show the variation of M, with §, with
upstream Mach number Ml as a porameter, for three wedge half-angles (¢ - B) = 4°,
12°, 30°. As the upstréam Mach number increases, the critical values of & (cor-
responding to M, = 1) shift to lower values.

The effect of the shock interaction on the strength of the temperature discontinuity
is given in Figures 13 through 21 in terms of the ratio (s . /5_). Since s, = (6T)/T
and s _ = (8T) l/Y > where subscript 1 refers to the upstream conditions, then the
meaning cf the ratio (s, /s_) in terms of temperature discontinuity magnitudes and
local mean static temperatures can also be expressed as:

s (6T) T

+ _ . 1
s B (ST)' T : ©8)

where T /T is the inverse siatic temperature ratio across the shock and always has
a value less than unity. )

Figuras 13 through 18 show s_/s_ plotted versus upstream Mach number up to

M, = 4, with a single value of & for each figure. The peaks in the curves
correspond to values of /v, at which the effective Mach number M_= 1; and

the minima {(os in Figure 16), io minima in the corresponding curves of effective
Mach number. For those regions of & where the effective Mach number is super-
sonic for all values of wedge half-angle, the effect of the interaction on the
entropy discontinuity magnitude increases steadily with increasing wedge half-angle
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(that is, with increasing shock strength) for any given upstream Mach number .
When both subsoniz and supersonic effective Mach numbers occur, as in Figure 14,
this simple trend no longer occurs.

In Figures 19 through 21, the results for s_/s_ are plotted as a function of &,
one figure for each upstream Mach number, for M, = 3,6, 10. Here the occur-
rence of peak values ot critical values of & is more readily apparent. As the
value of the wedge half-angle increases, the magnitude of the peak corresponding
to Mg =1 increases and occurs at higher values of §. For those values of (¢ - B)
where the curve of M, crosses unity twice, there are two amplitude pecks; again,
the amplitude minima correspond to minima in the effective Mach number curves.

The amplitude of the pressure pulse generated by the interaction is given in Figures
22 through 31, in a sequence paralleling that for the presentation of s./s_. The
results are shown in terms of p+/5_ , which is defined above in Equation (79).

The general trends are the same as discussed above for the entropy disturbance
magnitudes, with sharp maxima occurring where M_ = 1. However, in the case
of the pressure disturbances the minima (correspondmg to minima in the curves of

“M,) also have discontinuous slopes. The range of p,/s_ encountered extends

from -0.8 to +3, with the largest value of the maximum occurring near M 2,
& = 80 degrees, (e - B) = 30 degrees.

These pressure magnitude values are also shown, in Figures 36 through 39, in a

form more convenient for calculations, since the pressure perturbation values arr
referenced entirely to upstream conditions, in accordance with Equation (66).

These results are shown only for the extremes of the range of & and for those values
of & corresponding to muximum pressure disturbance. It should be emphasized

that for M_ < 1 these pressure pulse magnitudes exist only immediately behind
the shock and decay thereafter.

The vorticity generation parameter, as defined above in Equation (67), is shown
in Figures 32 through 35. It shows maxima with discontinuous slopes, similar to
the other interaction results, with the magnitude of the peak increasing with up-~
stream Mach number M, and with wedge half-angle (¢ - B). The largest values
of the vorticity pcrometer (over therange 1.1 £ M <10, 1°¢ § < 89°, and

49 < (e - B) < 30°) occurs in the vicinity of M 2 3, § = 80°, (- [3) = 30°,

as did the largest peaks in the pressure perturbation magnitude .

It would be useful next *> estimate the magnitudes of pressure perturbations which
might be experienced in practice. Two cases will be considered: (a) the seporation
shock ahead of a conical flare on a cylindrical body, as on a launc¢h vehicle, at a
low supersonic Mach number, and (b) oblique shocks on a supersonic aircraft at
cruise Mach number ond altitude. On the basis of the scant experimental results
availabie for temperature fluctuation magnitudes (discussed further in Section 2.3),
a value of 2 percent of he total temperature is taken here.
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For a separation shock stonding ahead of a conical flare on a cylindrical body,
the shock angle B varies with free-stream Mach number only, and is nearly
independent of flare angle, Reference 9. Therefore, os a first estimote, the
wedge flow resulis given here can be used to predict the pressure perturbation,
simply by taking the correct wedge half-angle to produce the equivalent shock
angle at any given Mach number, Figure 40. For Mach numbers from 1 to 4,
the required wedge half-angle varies from 0 to 14.6 degrees. Taoking a flight
condmon of M, = 1.2, h = 25,000 ft. (corresponding to a dynamic pressure
ofq = 800 b /Ffz), cmd with the appropriate wedge half-angle of (e -B) = 4°,
volues of

(£5)/t5,

as large as (-2) can occur.

When the temperature fluctuation magnitude is translated into a static temperature
reference at this Mach number, (6 T/T) = 0.0258. Hence the pressure pulse
wouldbe §p = 82.51b /ft?, or in terms of sound pressure level, referenced

to 0.0002 dynes/cm?, SPL= 166 dB.

For a supersonic aircraft cruising at Mach 3, h = 70,000 ft., and again taking
extreme values of (¢ - B) = 30°, an upstream temperature discontinuity of 0.01
referenced to the total temperature, and the value of & which gives the largest
pressure perturbation, a value of

(se)/en),

as high as (+2) can occur. The resulting pressure pulse has a magnitude of 144 dB,
substantially lower than that for the lounch vehicle case,primarily beceuse the free
stream dynamic pressure is lower by an order of magnitude.

It should be emphasized that these numbers represent extreme values reached by

the seiection of what are probably extreme values for (& T/D and &, and that
most levels encountered in practice wil! be lower. Further, these are instantaneous
pressure pulses and not a continuous level.
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3.0

TYPICAL ENTROPY FLUCTUATION MAGNITUDES

In Section 2.2, an entropy fluctuation magnitude (step emplitude) of 2 percent of

the free stream (absolute) total temperature was used to make a first estimate of

the downstream pressure fluctuation to be expected from entropy-shock interactions.
A number of researchers have measured values of temperature or density fluctuation
intensity in jets, wakes, and boundary layers (References 14 through 20); maximum
values from some of these results are shown in Table I. Caution must be applied in
interpreting these values, as not the same reference conditions were given for all

the data. In general, the jet and boundary layer data are root mean square tempera-
ture fluctuations referenced to jet or free-stream total temperature, while the wake
data are mostly root mean square density fluctuations referenced to local mean density
in the wake, all taken by hot-wire anemometry. The data of Clay, etal., are ampli-
tude values estimated from Schlieren photographs. '

The data fall into two magnitude categories: (a) Maximum fluctuation intensities
between 15 and 40 percent for jets and wakes, and (o) maximum fluctuation inten-
sities between 2 and 5 percent for boundary layers. There is no discernible trend
with Mach number, but aside from Kistler's boundory layer data there are too few
Mach number points to provide ony conclusion about trends. It is difficult to
imagine a trend with Mach number, however, in which the tempe: ‘ure fluctuation
would not asymptotically approach sorne fraction of a typicat driving temperature
difference in the flow, such as the difference between recovery temperature and
wall temperature in a boundary layer or the temperature defect in a wake.

Entropy fluctuaticns in wakes persist for long distances downstream of the bocy,
still showing significant magnitudes at 1,000 diameters. For launch vehicles,
the wakes of upstream pretukerances mey be the most important source of strong
entropy fluctuaiions #o interact with downstream standing shocks.

Attempts to obtain large but pure entropy fluctuations (without vorticity fluctuations
present) for expeiimental purposes were reported by Morkovin (Reference 2) ond by
Hamernik (Reference 21). Morkovin used eiectically heated rods in the Johns Hopkins
Supersonic Tunnel and produced entropy fluctuations dominent over the vorticity and
scund signals, but only of about 0.2 percent intensity when referenced to the total
temperature . Hamernik used an exploding wire to produce o temperature spot to
interact with a reflected normal shock in a shock tunnel and cbtained o peak density
amplitude Ap/pr ; ¥ 4 percent, where the reference density was the lozal con-

dition after passage of the shock front, for a shock strength of 1.8, corresponding
to a shock Mach number of 1.3.

Tyoical temperature fluctuation values for the background in wind tunnels are less
than half a percent of the total temperature. For example, Reference 16 cites a
measured value of 0.04 percent in the Johns Hopkins 7" x 11" supersonic (Mach
1.75) tunnel. In the first few feet of the atmosphere, temperature fluctuations as
large as 3 to 4 percent sometimes occur near highly heated surfaces such as airport
runways.
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TABLE |

ENTROPY FLUCTUATION DATA (EXTREME VALUES)

Flow Mach Number Reference Entropy Data
Range : (Extreme Values)
Free Jet, Round Subsonic 14 18 percent
Heated (r.m.s. fluct. temp.,
ref. to centerline
static temp.)
Boundary Layer, M, = 1.75 15 2.5 percent (fluct.
Flat Plate amplitude, ref. to
tunnel total temperature)
Boundary Layer, My = 1.72 17 4.8 percent
Flat Plate 3.5 » 3.6 percent
4.67 2.1 percent
(r.m.s. fluct. temp.
ref. to tunnel total
temperature)
Wake of Axisymmetrici M = 1.75 16 2-3 percent (r.m.s.
Rod temp. fluct. ref. to
tunnel total temperature)
Wake of Axisymmetricc M = 3.0 :8 7 percent (r.m.s. fluct.
Rod temp. ref. to local center-
line total temperature)
Wake of Sphere Mg T 8 19 15 percent (density fluct.
amplitude ref. to loca! mean
density)
Wake of Sphere M, = 8.5 20 30 percent (r.m.s. density
fluct. ref. to local mean
, density)
Wake of 12-uegree M, = 22.8 20 40 percent (r.m.s. density
Cone fluct. ref. to local meon
density)
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4.1

RANDOM FIELD OF ENTROPY DISTURBANCES INTERACTING
WITH A SHOCK WAVE

According to the Fourier integral theorem, a random field can be represented as a
superposition or spectrum of elementary waves. A single spectrum ‘vave can be
interpreted physically as a plane sinusoidal wave of temperature or density veriation,
being convected downstream at the local mean flow velocity. Before synthesizing
the random field, one must consider a single harmonic component. Again fullowing
Chang, Reference 10, the description of the interaction of a single harmonic entropy
wave with a shock wave is given below.

The Harmonic Components

The plane upstream entropy wave can be characterized by its amplitude R, its
wave number k , and its inclination & with respect to the flow velocity U, :

A
1
s, = R cos k, lzl M, -7 - (llx' +moy,) 69)
where (see Figure 41)
LI = f:osS, m = sin §

Initially, let us restrict attention *o the special case of a normal shock. Here,
some simplification occurs, since the three sets of coordinate axes x,0y , xoy,
ond x*oy" coincide, and the unperturbed shock plane can be taken along the

y axis. For the "supersonic" case M, > 1 the function F, becomes

sin p

- - . S - R -

F' = cospeopcos lk' ™ (a+ pg) (X YCO?PQ); (70)
where
C

-(f—)ﬁsina- chosu .

Op = Cs _ RS
(—A—)(A sin a - cos pe)-Bcosa
Ul |

a = arctan l-cot ) "D— ’

_ . | cosa l
Be =  arcsin l- M
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The local displacemenr of the shock is given by
y = 'pm sin (k' ml,y') v (71)

where

A A
(...:‘.-) sina - ( 2 ) cos o
™ by
1 /
v (S

-r) (Ksina-cos pe) - Becos a

The vorticity - generating function f (Y) and the entropy are given by:

fF(Y) = (OU + :‘:\Z) cos ('fml Y/cos a ) (72)
and
s (Y) = a, cos (k' m, Y/cos a) (73)
where
(S ol
a, = IA A cosa+B,sma‘ L (ku"’ubw) - RS cos a
ond

- )
— S
a = ApRo- T, ( a ) (k;m by)

For the "subsonic" case Mg < 1, the function g(n) is given by

O
= = a cos m + sin m ———
7RSS VI LN WY (P VEl A WY [P Ve ‘

(74)

where
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The local shock displacement is

¢ =

where

1

a

| 4

cos(klm‘y') + bW

Q

C
Q

S
cosa - s
2 1 A

sin a

sin (k' m, y')

(75)

kl"‘l"ﬂi:

and
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l
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2

l
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' A S sina-Bcoso} + ___e_(_s__)
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Finally, the vorticity and entropy generating functions are given, respectively, by

e (s (1 3 ) i (o, )
f (Y) =(0U+ Me cos k‘m' vl B bU“- M, sin klm' s (76)

and

where

(3]
_ s
b = " \A (klm‘ow)

)

By rewriting the solution in the original physicol coordinotes, i.e., the x, y, 7
reference frame, the three modes can be expressed explicitly. For Me> 1,

p=opcoskp :(]+Mcosep)1-&px‘*mpy)z (77)
s = cosk%EMT-(fo' my): (78)
i= ‘-k(o + :E-))sink‘zMT-(Zx’rm )' (79)
A u M 7

where
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zp = cos Gp = sin(a+p,)
k = k' (ml/m)
f = sina

For M, < 1, the three modes are given by

p = e"x/d {opcos kp {" + M cos ep)'r - (sz +mpy)]

‘ , (80)
+ bpsin kp [(l +Mcosep)'r - (sz +mp>‘)] ‘

s = a_cos k [EMT - (fx +my)] - bs sin k [lM'r -(fx+m y)] (81)

%=-k§(au+ ::)sink[lMT-(!-x*"my)] +

b

(82)
+ (bu+ M:)cosk {lMT-([x + my)]%

where
kp = k' (ml/mp)
2
( M 2)I‘c:nc:
1 -M
L 2 12
1 + ‘—‘—7M tan a J
1 - M¢
k = kl(m'/m)
f = sina
and
d = ]-Mz

- M2 /2
kM, (1= M)
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4.2

The amglitudes of the wave generated at a given value of the shock strength are
functions of &, the inclination of the incoming disturbance. For M_< 1, the
amplitudes of the flow parameters refer to values immediately after the shock .

Now that the expressions are avuilable for the downstream fiow perturbations due

to the interaction of o single Fourier component of entropy with a normal shock,

the corresponding random field can be constructed. The method follows that used

by Ribner to treat the case of a convected field of vorticity interacting with a shock.
Just as Ribner used an aggregate of vorticity waves with a suitable distribution of
amplitudes among the various wave lengths and inclinations to represent a turbulent
field, so can an aggregate of entropy waves represent a random field of entropy spots.

The Random Fielc

Foilowing Ribner, (Reference 7), expressions are next derived for .he root-mean-square
amplitude of the downstream pressure iield generated by a random field of entropy waves
(of given r .m.s. amplitude) interacting with o normal shock.

In general vector notation, and referring to any general physical quantity n, an ele-
mentary spectrum wave (harmonic component) is also expressible as: ‘

e
dn=dz e * (83)

where k is the wavenumber vector directed normal to the wavefronts and of magnitude
2n/\ (Figure 41), and d is the complex amplitude of the wave. When n stands
for a scelar quantity (such as temperature, density, entropy, or pressure), thes~ are
simple scala” waves.

The mean squcre level of a random disturbance n s

_n; =/[n n) dk (84)

where [n n] is the spectral density, and[n n ]is in turn related to the complex
amplitude d Zﬂ (k) ond its complex conjugate by:

[nnldk = 47 (i) dzn‘(.&) (85)

For the specific case ¢f random upsiream entropy disturbances generating downstream
pressure disturbances, the oncoming entropy wave is expressible as

k, -+ x
ds = dZ e (86)

S
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and the downstream pressure disturbance as

dp = dZ e '=" % (87)

and the direction of the wavevector for pressure is normal to the wavefronts of sound.
The pressure wave amplitudes and entropy wave amplitudes are connected by the transfer
function

de= P dz (88)

where P_ is the single-wave transfer function between entropy and pressure, which
is wavenunber dependent.

The desired r.m.s. pressure fluctuation will be given by

-?=/[pp] dk (89)

Through Equations (85) and (88),

S
[pe] dt = |R| 9ZdZ, (50)

and

_pT =/ IPSI2 [ss] dk (en

This velates the r.m.s. pressure fluci iation to the spectral density of the oncoming
entropy field and the wavenumber-dependent transfer function. For an isotropic
field of oncoming entropy waves (i.e., a scalar field with spherical symmetry),
the spectral density has the general form

[ss] = k? F(k) (92)

where F (k) is an arbitrary function of k that will finally cancel cut in forming
ratios.

Going over the spherical polar ccordinates, the wavenumber components are

k] = =ksind

kl7 = k cosbcos ¢

k3 =  k cos §sin ¢
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and
dk = ik cossdkde d& ' (93)

Then the r.m.s. pressure fluctuation becomes

@ = +u/2
M- 2
p’ =/ k2 F (k) dk dq,/ irs' cos & d§ (94)

o 0 -w/2

Aiso, the - .m.s. entropy fluctuation is

. ® Zu +u/2
2 =/[ss] dk =/ k2 F (k)dkf d¢f cos§ d& (95}
¢ o

-u/2

Therefore, the ratio of r.m.s. pressure fluctuation to r.m.s. entrepy fluctuation
produced by an isotropic field of entropy woves is

w/2
2,2 2 ‘ :
p/s" = lPs! cos§ db (96)
]
o -
includir, enfrcpy waves of all wavelengths and orientations.

The required siagle wavenumber transfer function was defined, in Equation (€3), as
the ratio d Z_./d Z_, the ratioc of the complex ampiitude of ¢ .ingle hammonic pres-
sure weve to the complex amplitude of the single karmonic entrcpy wave that produced
it. Its absolute value I P_| will be sbtained from section 4.1. The absolute vaive
of the upstream entropy wave amplitude is obtained from Equation (69); and those of
the downstream pressure fluctuation, from Equation (80) for the subsonic case, and
from Equation (77) for the supersonic case. It must be remembered that the point of
transition from subsonic tc supersonic case is also a function of vector wavenumber

k through the wave inclination & .

For the supersonic case, Mg > 1, the rransfer function is:

2 9
IPS - LI ( p ) | (97)

: s VR

and for the subsonic case; M < 1, the transfer function is:
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2 2
'Plz = Ip' =(°P) +(_be_) (98)
R N LT L

where the amplitude compcnents OP/RS and bp/Rs ore given for the supersonic
case by:

C
op ) (Ts) Q‘.sina - Qz cosa 99
R C ‘
s (Ts.)(Asina - cos p) - Bcos a

and for the subsonic case by:

a C Q cs . Q -
P f. s ) 1 A sina- & cosa
R = }JA T sinu-Bcosa,’
s ‘ C 2 ]_MZ C \2
lA fsina—ﬂcosa“-“Mz—(‘i—'
(100)
b Cs
P Qz ces a -(—A-)Q:sinu
P . I YV
[A (———s )sina-BcosaJ + ( i )
A M A
e
{ : -
‘l'Me (\'
x M, 77) (101)

From the comple» 'ty of the expressions for the transfer functions in both Mach number
~sgions (mainly t.« form of taeir .ependence on wave inclincrion §), as well as the
fact that the boundary of validity of the two expressions also dep .nds cn S, then a
numerical intearation of Equation (96) will be involved in applying these exprassions
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to obtain numerical results. Qualitative conclusions which may be drawn from the
equations themselves include:

)

2)

When Me > 1, the waves generated downstream are in phase with the
incoming disturbance, but when M, <1 there is a phase shift across

the shock.

When Mg > 1, M > pressure waves generated have a permanent waveform,
but when Mg < 1 they decay with distance. At a fixed value of shock
strength the absorption distance d is a function of the inclination of the
oncoming disturbance &, larger values of & (or oncoming wave fronts
more nearly normal to the shock) corresponding to shorter absorption
distances. Increasing shock strengths also result in increasing decay rate
with distance from the shock.
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CONCLUSION AND RECOMMENDATIONS

The strength of the pressure disturbance gen-rated by an entropy disturbance inter-
acting with a shock wave depends strongly upon the inclination angles of the entropy
wavefront and of the shock. For every flc v condition there is a region of entropy
disturbance angles for which an "effective Mach number” in the flow is subsonic,
ond the wressure wave amplitudes decay with distance from the shock, part of the
disturbance energy being fed back into the shock. For all other entropy disturbunc:
angles, the "effective Mach number" is supersonic and the pressure disturbanice pro-
pagates at constant amplitude . Entropy disturbarice angles encountered in practice
will depend upon :he source of the disturbances, but will most often be a mixture of
a!l angles, so that part of the generaied pressure field - /ill propogate as acoustic
waves while the remainder decays with distance.

Example estimates, based on flight conditions typical for launch vehicles and
supersonic cruise vehicles, and using entropy disturbonce inputs typical for boundary
layers, show pressure fluctuation magnitudes larger than for boundary layer noise and
equal to those produced by shock-turbulence interactions. Therefore, the entropy-~
shock interaction can ccuse sericus levels of fluctuating pressure and shoutd be
explored further. : |

The large density fluctuations measured in superscnic wakes, and the persistence of
the density fluctuctions over large downstream distances, make wakes of upstream
protuberances on launch vehicles particularly suspect if there are standing shocks
downstream. Since several of the trends and conclusions in Reference 2 are subiect
to revision, the possibility of resonent osciliations of standing shocks (driven by
entropy-shock interactions and by acoustic reflections berween the bedy and the
shock) should be re-examined.

Regarding entropy fluctuations in jets, the citea data (for o subsonic, heated jet)
showed maximum values almost an order of magnitude larger than those used in the
sample predictions. In a hot, supersonic rocket exhaust with oblique shocks, the
shock-entropy interaction could be a major source of noise. Typical en‘ropy fluc-
tuation magnitudes and shock conditions for rocket exhausts should be applied to
estimate the importance of this interaction as a noise source, compared to the
strengths of other sources present .

As foundation for further assessment of the pressure 1i:!ds from shock-entropy inter-
actions, the analysis methods should be hased on improved models of the actuai
flows. The first step would be to complete the random entropy field cate, since a
random field of entropy spots cauld then be represented by a field synthesized from
all wavelengths civd orientations of harmcnic components.
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Previous work has concentrated upon wne of the three modes at a time (entropy,
vorticity, sound) interacting with a shock, the present being no exception. Yet
natural flows contain all three riodes, with one sometimes dominant; and in an
experiment it is difficult to generate significont entropy or vorticity fluctuations
without also generating the other. The four.dation exists (in Reference 2) for
obtaining the downstream perturbed flow fieid from an upstream flow containing
all three modes, without superposing individual solutions. Experimental data
suggest thot temperature disturbances are negatively correlated with velocity
disturbances. Then the combined effect of temperature and velocity fluctuations
interacting with a shock would not be a simple addition of the results for each,
but must consider the cross-terms arising in the interaction. The combined result
for a spatially homogeneous field of temperature and vorticity discontinuities,
plus sound waves, interacting with o shock should be determined.
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Figure 30. Generated Pressure Distuibance,
Oblique Shock Case, M =6
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Figure 32. Generated Vorticity,
Obliqu_e Shock Case, 5=1°
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Figure 33. Generated Vorticity,
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Figure 34. Generated Vorticity,
Oblique Shock Case, & = 80
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Figure 35. Generated Vorticity
Oblique Shock Case, & = 89°
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Figure 37. Pressure Disturbance Referenced to Free-Stream Conditions,
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- APPENDIX A

. COMPUTER PROGRAM TO CALCULATE VARIOUS QUANTITIES
ASSOCIATED WITH SHOCK ENTROPY INTERACTION

By

Do_vid M. Lister
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APPENDIX A

COMPUTER PROGRAM TO CALCULATE VARIOUS QUANTITIES
ASSOCIATED WITH SHOCK ENTROPY INTERACTION

Contents:
Definition of Input Formats
Definition of Output Altematives j ~
Diagrams of Coordinate Systems Used <
A.1  Definition of Mathematical rEquaﬁons Used
A.2 Definitior of Symbols Used
A.3  Flow Diagrams
A .4  Fortran Listing of Program

A.5 Exomple of Results

Definition of Input Format

Quantities input are:
(1)  The date of the rvn, e.g. 10/23/67, columns 1 through 8, fornat 2A4
() s_,e,B,M,7,8, A, ISW, ISW2 format 7F10.0, 215 -
(3) Repeat (2) for as many inputs as required.
Note that the quantities s_ through A, are defined in Sectioﬁ A.2.
If y £ 0 then the run is terminated
If ISW > 1 then "8"" routine omitted

If ISW2 = 0 then full anotated output is obtained

If ISW2 # 0 then the results for this case will appear oniy in the summary tables.

Al
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Defi .ition of Output Alternatives

- For =ach set of input data a full set of annotated results is output if ISW2 = 0 (see Section

A.5).

At the end of each run or when the number of sets of input data equals @ multiple of fifty, tables
of the variable sets of input data with their calculated output quantities are printed (see Section
A.5).

Note that all angles are quoted in degrees and radians.
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Figure Al. Basic Flow Coordinate Systems

Sonic Circle

\

Figure A2. Intrinsic Frame of Reference with Respect to Downstream Flow Field
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A.1 SHOCK ENTROPY INTERACTION

The Qven input quantities to the program are:
M'I €, BI Y A'r S_

The equations used to compute the various required quantities are:

P 7 N"; -1
M x o= s ——
E Pim 6

SR s
(2 M = Y Ii— ing.
& 7N";-1 /'" "

{ A (7N2-1) (N§+5)j

Q) —_—= ;
i A 36 N?

I 2 |2
’— (3.12) A” - (_pL"_)(.N_.) - (y-1 (] _ _pﬂ..) N2
- Pim 1 'm
§ N2 [ 2 N
ﬁz: = - (l-—)[] +(y-1) Nz] + l—l-(pi)(_)]
g 1-N plm L p!m NI
j -N p N
,- Ve (IR ()
1-N2 o AN\ e
b P 1 p
i Me = (ye1) (1 _ _"‘_)(1 ] ___'l‘_)NZ
( plm N? plm
i
i
5
A4

“

(19)



Fm_
Pm

)|

P
Pm

)[l +N? + (y-1) (1 -

AS



(3.14)

(3.18)

(3.13)

(4)

(5)
(5.1)

l 6.01)
6.10)

= ® .oé)

6.17)

(6.17d)

(6a,b)

Ab

N = Msin 3
P 6x+1

im x+6
NI = M‘ sin €

- (A
A = (A‘) Al ,
u = MA
U' = MlAI
_ cos &
Cs T cos(85-¢) u
e = arcsin (—Ml—)
Ve

%) .
Y 1= [ sin (a -B) cos (a’-B)] [U"'] (Matrix Notation)
v -cos (@-B) sin fa-B) v,

] PA ] PTI' McosB - C /A)

+ u n s
Pl | M . | (Mcosp - G/A)
u, A, sin (a -B) " (M cosB - CS/A)sin @-B) - ™, cos @-B)
V: A, cos @-B) " (M cosB - Cs/A) cos (@ -B) - 1r“sin @-B)

X sin (a bl B) q’y
5 freos - 3

v, = . -

. A:” cos (a B) s_+ 1[3‘ McosB A
O = Cssin(a-ﬁ)-'u'sinu
O = Ue sin @-P) -Usinp » simultaneous

(20)

(20)

(24)

(30)

(3—1)

) cos (u~-B) + 1r“sin (@ -B)]sin @) ‘Py

(27)



sy

v

) Mg = 2+ -
(7.05) q = -T, (8) cos Mg S- | (37
7.0 q = T (8)cosy, s | (38)
von [z -
L
- 21
14
4]
B = - —
b g
21
_ B
G = Mcosp -C_/A
Q, = A A=A
2% 31
Qz = .&2‘ B
CS
(7.03q) q = -4, €08 pg s.o= 1wy, (McosB - T)nospe sin (a-B) ‘l-'y (35)
2, cos @ -B) - %, Gsin @-p)
(7.05) T,6) = _2 P!~ Ginfa-p (39)
Acos(a-B)-Gsin(a-B)+cospe
0.06) T, - Z1cosB) =Y Guin@-p) (o)

A cos l@-B) - Gsin (@-B) - cos He

) v, sin € cos € u*
y = _ cos & ine v (Matrix Notation)
o
+

(9) J = _
Fy) Up + Me
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5y
1

(10)

an

(12)

(13)

(14)

(15)

(16)

(20)

{21)

(22)

(23)

(24)

A cos @-B) - Gsin (ﬁ‘ﬂ)}

1 Me
D = T T
2 ! -Me
C = {Qlcos(c-ﬁ)- Azlein(cl-B)€ s _
(YY) = DC
1+D?
Y |
P] = - = ‘9(\-" )
=0 2 Vi-m' |
p]x*=0 - % S
wY = T (M cos B -CO/A, sin (@ -B)

)

M?

6 = n-¢- @-B)

UI ]
tan (%) = T - cose

3 J

i Cs sin B

a = arctan ._Cs co_—s B-U
8" = arcsin b}\l&]
AC? =

A8

U+ A7 -2U {Usinp - cosp VA7 -Usin?g | =

(54)

(55)



-

(25) BC = 2A cos8' = 2 VA2 -U2sin?p

(26) AB = AC - BC i.e., c = C - BC

$2 L}

Note that the equation numbers on the left hand side are those referred to by the flow charts
(Section A.3) and those on the right hand side are those used by E. Cuadra in the report.

Derivation of Equations 23 through 26

To find AB and AC

i.e., CS2 and CS1
Given BAD = B

AD =uU

BD =DC=A
Let pBC = pCB = ©
Consider ADBC then CDB = 180 - 28

Consider ~ ACDA then CDA = 180 -p -6

A9



iostievcyiomy L
G .

Apply the cosine rule to A CDA
AC? = 2 + A? - 2AU cos (180 -B - )

Apply the sine rule to A CDA

AL U
“sinB T sin@
- sin@ = —g—&in

1}
>
~
T]
C
>
e,
3
()
Bl
J

< cos ©

ACt = Yl+AZ-2U [u sin?B - cosp VA? - U2 sin?B
From ADBC

—
BC = 2Acos® = 2 V[Az - U2 sin? B] and
AB = AC - BC

Now
8 = sin ' [US‘TB ]

o' = 180 - CDA
= 180 - (180 -8 - 0)
=B+e

a;= p+180-86

Al0



Sy, 1

Py

B i

A.2

TABLE OF SYMBOLS,

THEIR COMPUTER CODE EQUIVALENTS AND DEFINITIONS

’ Symbol

Computer

Code Description
M‘ EMI Upstream flow Mach number .
ETA
€ EE " Shock wave angle, referenced to the x. - axis -
EV(IC)
BETA Angle between the shock wave and the downstreom mean
B BB flow velocity vector.
BV(IC)
v GAMMA Ratio of specific heats.
DELTA
S DV(ISW, IC). Inclinction of upstream entropy wave with respect ‘o main
Y .
oD I flow direction.
DDV(IC)
A, A Spead of sound in the fiow field upstream of the shock.
S SM Dimensionless mcgnitude of the upstream entropy
- SMV(IC) pertubation.
N, _ ENT Upstream Mach number corresponding to a normal shock of
INTV(IC) equivaler: strength.
CHI Shock strength in terms of the ratio of pressure of the
X g
CHIV(IOY unprturbed flow across the shock.
i M EM Downstream flow Mcch number.
i
i . Z
i N N Cownstream Mach number corresponding tc a normal sheck
of equivalent strength.
& m/Pvm RORAT D 2nsity ratio across the shock, downstream to upstream.
A/Al ARAT Ratio of acoustic velocities across the shock, downstream to
L upstream.

All




Computer

Symbol Code Description
U Ul Mean flow velocity dowristream of the shock.
A A Speed of sound ‘n the flow field upstream of the shock.
U u Mean flow velocity downstream of the shock.
AL OMEGA(LJ) Transfer coefficients for thc interaction (see derivation
Y in text).
.. PI(I,J) Transfer coefficients for the interaction (see derivation
'} in text).
Cs Cs Drift speed cf the upstream entropy wave along the shock
CSV(ISW)
ALPHA Inclination of U_ with respect to the downstream mean
¢ AA Flow direction U
AV(ISW, JC) ow direction: U.
Ue UE Apparent mean flow velocity dow: stream of the shock with
respect to an observer moving with C_ .
: EME
M, EMEV(IC) Effective Mach number corresponding to U_ .
He EMEWE Effective Mach angle corresponding to M, .
A ABAR Ratio of transfer coefficients, m,, /T
B B Ratio of transfer coefficients, T /112]
G C A nondimensional group in the solution for the Rieinann
invariants, cose Me> 1.
2 OMEG ] A convenient groupirg of transfer coefficients in the solution
for the amplitude funct'on T, (8).
P OMEG 2 A convenient grouping ot transfer coefficients in the solution

vor +he amplitude function TZ(S) .

Al12




Computer .
D jon
! Symbol Code escription
Z Cs2
Cs' CsSV(2) Intersection of shock plane and sonic circle iying nearest the
CS52v(IC) origin.
CcSt1 .
c Csv(1) Intersection of shock plane and sonic circle lying farthest
s CSIV(IC) from the origin.
1.(8) 72D An at.nplitude function required for the pressure perturbation
2 solution, case M_>1 (s.a. report text).
T,(8 TI1D An amplitude function required for the pressure periurbation
solution, case M e>l (s.a. report text).
A dimensionless parameter related to the downstream pressure
q Q perturbation, one member of the pair making up the Riemann
invariants (s.a. report text).
¥ PSIY Local shock deflection owing to the interaction.
[ y PSIYV(IC) '
S, SP Dimensionless magnitude of the downstream entropy perturbation.
(- SPV(IC)
P, PP Dimensionless magnifude of the (dewnstream) generated pressure
- PPV(IC) perturbation.
U, up Dimensionless magnitude of the (downstream} velocity
[~ UPV(IC) perturbation component along downstream mean flow velocity
vector.
v, VP Dimensionless magnitude of the (downstreom) velocity
VPV(IC) perturbation component normal to downstream mean flow
velocity vector. » '
u* us Dimensionless magnitude of the (downstream) velocity
_ perturbation, component along x * axis (along shock plane).
t v* VS Dimensionless magnitude of the (downsiream) velocity
: perturbation, component along y* axis (normal to shock plane).
|

Al3




Computer

Symbol Code Description

Uy ULl Dimensionless magnitude of the (downstream) velocity

uLI1w(IC) perturbation, component along x, axis :

Vi VL1 Dimensionless magnitude of the (downstream) velocity

VLKIC) perturbation, component along y, axis.
f(Y) FY Vorticity generating function (s;o. report text)
FYV(IC) )

C C A convenient grouping in the solution for the equivalent
source function g(Y"); s.a. report text.

g(Y*) GYsS A function related to the strength of an equivalent source
located on the shock plane (s.a. report text), case Me< 1.

P(x* =0) PCS Dimensionless pressure perturbation immediately behind the

PCSW(IC) shock, for the case Me< 1.
P, 1 ANG Dimensionles:. pressure perturbation referenced to local
T —}| ANGW(IC) stream dynamic pressure. '
- M2
P_ X ANC Dimensionless pressure perturbation referenced to upstream
TS ANCV(IC) (free stream) dynamic pressure.
- M
TDD
8 THETAD Enclosed cngle between U, and the x - axis.
THDV(IC) '

D ») A convenient grouping in the solution for the equivalent
source function g(Y*), s.a. report text.

0 THET Enclosed angle between the shock plane and the radics vector
of the sonic circle ending at the intersection of sonic circle
and shock.

VORT VORT A A

VORTV(IC) \ IR
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A.3 FLOW DIAGRAM

Read the date of the run
Set the count of the number
of cases equal to zero. (IC)

Set PIE = 3.141592. Add one to
the count of cases in this run

Print
Sub

€

Output heading and the
date. Read SM, EE, B8
EM1,GAMMA DD, A1, ISW,ISW2

Convert EE,BB,DD to Radians
Place EM1,EE,BB,SM in
output area for print subroutine

Output end of r n messages
on line printer and console

typewriter T ™

AlS

10.19.67

Note that ISW2 determines
the output format of the
results.




R ey e ey

] { )

Ioeamvaon
' '

Compute the sines
and cosines of ETA,
and B8ETA

N

Compute cosine (€ -¢€)

Add 19 tc § _ Yes
Convert to rads.

Compute cos,sin &
and sin (5-€). Place
DD in O/P area for print scb.

Set PP, VLI,'ANC, ANG

Equal to Zero

Compute Ul =EM1 + Al

1 EQ. (3.13)

N,

EQ. (1)
A |

X

* Note that the value of

ISW determines whether CS,

CS1 or C52 is being used to
compute values of parameters

in the latter part of the progrom.



:. w.ﬂﬂlllﬁ'

m ' m m M lw-, it -u'

fros—" . !

Output message
on line printer

)y
]
ISW =1
M
EQ. (3.14)
| N
o EQ. (3.18
<5> Q. (3.1
pm/plm
EQ. (3
(A/A))?
ISW =1

Output message
on the line printer

Al7

(A/A,)

EQ. (4)




Zeroise the storage
area forAi., L

J 4

) l EQ. (3.12

Aij'

L
J

EQ. (6.01)

S

EQ. (¢ a,b)

-

Compute sin (@ - B)
and cos (a - B)

1 EQ. (7)

Me

0

Al8



i
' EQ. (23)
8
: » EQ. (24)
- \
L. C
i S|
Ly .
] Place Csl in o/p area
: for print subroutine
I £Q. (29)
; BC
EQ. (26)
C
$2

Place Csz in the o/p area

for print subroutine

ISW =0

Al9



>
.
EQ. (6.10)
He
ﬁf Yes
i He S * T = o< 0
- No
v EQ. (7.07)
o [ A
i [ Compute cos (p_)
: and sec? (a -B?
] EQ.(7.07)
ISW =0
o/p message or iine B, G, Q, Q,
: printer ~
r’A Yes -
EQ. (7.060)
Yes EQ.(7.050)
. | 1,(8)
i 1,(8)
L EQ.(7.06)
) EQ.(7.05)
q
q
|
1

A20




EQ.(7.03)

£EQ.(6.17)

+'p+’U+'V+

EQ.(6.09

u* vt

EQ.(8)

‘_

U,V

VORT =v/(UL12+VL12)

EQ.(9)

f(v) I

(o) —-

|
Sef g(y*)lp(xlo)lel
ANG,ANC =0,

EQ.(15,16)

ANG,ANC

Y

A2l

EQ.(20)

D leger




-~

latest version of

I No
|
‘‘‘‘‘‘‘ | 10.9.67
I .
Qutput the results. / : Note that in the
~
\\\ I the progrom the
NG : 8* routine is
\\\ | omitted.
ISW=ISW + 1 ~
1 >1
C =C o i\lsvy - 14

U= AW T

l EQ.(22)

a

Convert and store,a in
degrees. Store also in
sub.o/p field. Compute
Na sin (@), cos (@)
) cos ‘@ -B) and
sin(a-p).

EQ. (21)

a=a+n

Convert and store

& in degrees. Store
Yes No alse in subreutine

output field.
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f«dlulm 4

. -

Dbt

it ey

e sden b

e

rosisicinaie

Sat M_ = 1.0. Compute
e
sin (6-¢€),cos (& -¢)
sin § and ¢os §

V.=0

EQ. (6.i7d

[

s+.p+,U£]

£EQ.(6.09)
1

£EQ. (8)

EQ.(6.17 a,b,c)

VORT =v/ (JL1%+ VLIT)']

F(y)

EG. 9)

A23



- wu.

A,

-

£Q.(7.07)

A,8,9,

£Q.(10)

D

T
|

C

EQ.(11Y)

EQ.(12

u

+ 7+ T+

\

EQ.(- -

|

a,c,d)

£EQ.(6.09)

VORT=v/ (UL12+VL1?)

cQ. (9




4
i
i
Flow Charts Continued
. Output heading
i for €,8,M;,N;, ¥,
i CS‘,CSI,S"ZG;'Q;'G; -
i
Set I ct.lt. = N-1
o . ‘ , Setlct. =1
t. Start new puge. O/p heading ' .
.. for MllNlleﬁl 8! les-l S+l . — ' .
i : PP,UL1, VLI, FY,ANG. ’
1
¢ | Output By Myis Mo fé
[ G5, CS-0s Sy3r 85 i )
Set I ct.lt. = N-1 onda;i. I=1+1 3
¥ Set I cont = 1
-~ ‘ Yes of lEnCimt No
O/p Mn'?"i"i'pi'si:Me;'S-i' - 2
| SPLPPLULI VLI FY, ANG,. Add T 1o
: start new page. O/p heading for '
£ | No Yes ANC. 6t PCS, VORT Output ANC,.01,¥ ., VORT,
‘ Set I ct.lt.=N-1, Set ct. =1 SetI=1 -1

End
@: Skip to end - - Yes of I Court Mo -
of poge v
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A4 FORTRAN JISTING OF PROGRAM
3200 rtuniAN (2.1.0)7(R13) ¢ 7

e A U

LU AN rEiA(4,4),F1(4.4),05V02)0051/(5U),C0evtDu0sEv DU, YUl

1 1:’(DU‘AEN1/(30’16PIV(30)134(205“,1A\l(?p50)

oo e 3 ~; g ( 6 ' - - 20} E“l‘il!l" ll‘:ﬂl !“]¥!2"!.

14 v (DU ) ANV (90, ASCY (D)L THUVID )PS5V e (5d),rudvidd ), vixividy)

cai) AGErbt (D01 ida) (CoVL2)00S2)

v (A8G,E5%) 191,140z
201 r -~ 14t (2A4)

S, =

121 ~55.1419v2
1Czioe)

Lo (:L-50) 400,400,/

§ 40» -e-~u (00,2hy) SM,xE, Bv, Fi1,0A048,0U, a)  slsem,las?2
i ’ €40 rwu- 1mi (7r1ae.4,21») S
1t (D 2.EX.0) 956,907
902> art1c(0l1,300)a4D1,E2 — ~
307 i UrmAl (102,2995400R 2 TRUP Y [NTERATT [ UN,224,2A4/)
B 907 rtiA=Bserlb/160.0 )
i cTazkeeFi1k/l0u. 4
; LeLiASLDebie/lb6.y ; i
5~ cMlvilC)=er ]
y Evi-jo)=g- . ,_

ts (1 )=pgr
sAv{iirssn NE - - s G —e
Toar (CAMMA) 122,122,228 T
122 taic rrlb11CIC) )
rr;ilc (61,4006)
- ) vhile (59,4G0)
i - < 400 rourMal (3X,1PnEME LB RON)
s . s1eP

cu tu 6L
123 se=351in{EiA)
- LESCUS(ETA)
f' sgzsintglkls)

——— e e e e e e R . PR

Co=UudIBEIA)
632 Lure=li StuELTA-ETL) L
. ir (A (LL*E)=-0.0060u01 ) o0UG,600,601
€0N LUsUL+1,.h
e tasiLePle/z1e0.06
) tu |- b6(e
f*“_""’"”“"z,i‘LUEcdb(EEL.A)
e U eSS IN(UELTAETA)
SOsStHERlLELTA)
Y Ly« 1l)=pu
: -~20.0
f : c.o12u. 0
LiiL=y,Q
& vz 0
L1z leal
-vlzrmieSE

¢ LAl Sniekr1e/ . 0-1.0076€6,0
i o __malvaat)zevl
: wnivtill)zCHi
Cos (Ccid wENT«S5.0)/ (ENiwENL®7 . 0~3.0) )/ tew?
o ir (cM) 402,403,432 '
407 ~tlc (91,320) L
320 F _~mAL (O5X,12nEN [MAG|-ARY) -

A26 '
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coo e 11
j—- 403 = czaeri(em) S o
f SREL L A )
‘ L utALS(Crle6, Q1. 0) /€0 [*0,0 . R
) sxars{(7 . U0eentieb s1-1.0)e(Fyl1eE " 145.0))/ e 1ot 1236,0)
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