General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

7 PACILITY FORM 602 (THRU) (CODE) 980.35 (CATEGOR (NAS

angemanna an là bha seisear e

•

WYLE LABORATORIES TESTING DIVISION, HUNTSVILLE FACILITY

GPO PRICE \$_____ CFSTI PRICE(S) \$_____ Hard copy (HC) <u>3.00</u> Microfiche (MF) research

653 July 65

WYLE LABORATORIES – RESEARCH STAFF REPORT NUMBER WR 67–17

• , •

INTERACTIONS OF A SHOCK WAVE WITH AN ENTROPY DISCONTINUITY

By

Elizabeth Cuadra

Work Performed Under Contract NAS 8-21100 Principal Investigator, M. V. Lowson

FEB 1953

12

-

FOREWORD

١

This report is submitted under Contract NAS 8-21100, Aerodynamic Noise Research. The program has been administered by the Unsteady Aerodynamics Branch, National Aeronautics and Space Administration, George C. Marshall Space Flight Center, Huntsville, Alabama

The author expresses her appreciation to the following Wyle Laboratories personnel: David M. Lister for computer programming, and Dr. Martin V. Lowson for guidance in the derivation for a random field of entropy waves and other helpful discussions.

SUMMARY

Numerical results (based on the theory of C. T. Chang) are presented for use in prediction of the perturbed downstream flow field resulting from the interaction of a planar entropy discontinuity with an infinite planar shock. Downstream pressure, vorticity, and entropy fluctuation values are presented in parametric form for normal shocks and for oblique shocks generated by wedge flow: for wedge half-angles from 4 to 30 degrees, for upstream Mach numbers from 1.4 to 10, and over the entire range of orientations of the oncoming entropy disturbance.

Discontinuous large values in the amplitudes of all flow perturbations occur at an "effective Mach number, M_e " value of unity in the flow. For $M_e > 1$ the genérated pressure disturbance radiates as sound, while for $M_e < 1$ the pressure disturbance amplitude decays with distance from the shock. These numerical results, when combined with typical entropy fluctuation magnitudes, give sound pressure levels greater than those typical for boundary layer noise, and equal to those produced by shock-turbulence interactions, for typical aerospace applications.

For the case of a random field of entropy waves interacting with a shock, the required relations for the harmonic components of all three downstream modes are presented, and an expression is derived for the root-mean-square pressure amplitude caused by an isotropic entropy field, but this study has not progressed to the point of numerical results.

Ī

TABLE OF CONTENTS

Page Number

82

Ì

Į

I

I

I

I

I

FOREW	VORD		ii
SUMMARY		iii	
TABLE OF CONTENTS		iv	
LIST OF FIGURES		v	
LIST OF SYMBOLS		viii	
1.0	INTRODUCTION		1
2.0	THE SHOCK-ENTROPY INTERACTION		3
	2.1	Chang's Theory for the Shock-Entropy Interaction	3
	2.1.1	The Supersonic Case, $M_e > 1$	12
	2.1.2	The Subsonic Case, $M_e < 1$	14
	2.1.3	The Case M _e = 1	17
	2.1.4	Special Case of Parallel Entropy and Shock Waves	18
	2.2	Numerical Results	20
3.0	TYPICA	AL ENTROPY FLUCTUATION MAGNITUDES	26
4.0	RANDOM FIELD OF ENTROPY DISTURBANCES INTERACTING WITH A SHOCK WAVE		28
	4.1	The Harmonic Components	28
	4.2	The Random Field	33
5.0	CONC	LUSION AND RECOMMENDATIONS	38
REFERE			40

APPENDIX A	COMPUTER PROGRAM TO CALCULATE VARIOUS
	QUANTITIES ASSOCIATED WITH SHOCK ENTROPY
	INTERACTION

LIST OF FIGURES

Í

l

I

I

I

I

Figure Number		Page Number
1	Basic Flow Coordinate Systems	42
2	Intrinsic Frame of Reference with Respect to Downstream Flow Field	42
3	Special Case of Parallel Shock and Entropy Wave, $(\delta - \epsilon) = \pi/2$	43
4	Variation of Effective Mach Number, Normal Shock Case	44
5	Downstream Entropy Wave Amplitude, Normal Shock Case	45
6	Generated Pressure Disturbance, Normal Shock Case	46
7	Generated Vorticity, Normal Shock Case	47
8	Pressure Disturbance Referenced to Free-Stream Conditions, Normal Shock Case	48
9	Typical Boundaries of Subsonic Region	49
10	Effective Mach Number, Oblique Shock Case, Wedge Half-Angle (ϵ – β) = 4°	50
11	Effective Mach Number, Oblique Shock Case, Wedge Half-Angle (ε –β) = 12 ⁰	51
12	Effective Mach Number, Oblique Shock Case, Wedge Half-Angle (ε – β) = 30°	52
13	Downstream Entropy Wave Amplitude, Oblique Shock Case, $\delta = 1^{\circ}$	53
14	Downstream Entropy Wave Amplitude, Oblique Shock Case, $\delta = 10^{\circ}$	54
15	Downstream Entropy Wave Amplitude, Oblique Shock Case, $\delta = 30^{\circ}$	55
16	Downstream Entropy Wave Amplitude, Oblique Shock Case, $\delta = 50^{\circ}$	56

LIST OF FIGURES (Continued)

1

Ì

Ì

ł

l

ļ

l

ł

1

Į

۰.

Figure Number		Page Number
17	Downstream Entropy Wave Amplitude, Oblique Shock Case, δ = 80 ⁰	57
18	Downstream Entropy Wave Amplitude, Oblique Shock Case, δ = 89 ⁰	58
19	Downstream Entropy Wave Magnitude, Oblique Shock Case, M ₁ = 3	59
20	Downstream Entropy Wave Magnitude, Oblique Shock Case, M ₁ = 6	60
21	Down tream Entropy Wave Magnitude, Oblique Shock Case, M ₁ = 10	61
22	Generated Pressure Disturbance Oblique Shock Case, $\delta = 1^{\circ}$	62
23	Generated Pressure Disturbance, Oblique Shock Case, 8 = 10 ⁰	63
24	Generated Pressure Disturbance, Oblique Shock Case, $\delta = 50^{\circ}$	64
25	Generated Pressure Disturbance, Oblique Shock Case, 8 = 60 ⁰	65
26	Generated Pressure Disturbance, Oblique Shock Case, $\delta = 70^{\circ}$	66
27	Generated Pressure Disturbance, Oblique Shock Case, $\delta = 80^{\circ}$	67
28	Generated Pressure Disturbance, Oblique Shock Case, $\delta = 89^{\circ}$	68
29	Generated Pressure Disturbance, Oblique Shock Case, M ₁ = 3	69
30	Generated Pressure Disturbance, Oblique Shock Case, M ₁ = 6	70

LIST OF FIGURES (Continued)

Ĩ

I

I

I

I

I

I

I

I

Figure Number		Page Number
31	Generated Pressure Disturbance, Oblique Shock Case, M ₁ = 10	71
32	Generated Vorticity, Oblique Shock Case, $\delta = 1^{\circ}$	72
33	Generated Vorticity, Oblique Shock Case, $\delta = 70^{\circ}$	73
34	Generated Vorticity, Oblique Shock Case, $\delta = 80^{\circ}$	74
35	Generated Vorticity, Oblique Shock Case, 8 = 89°	75
36	Pressure Disturbance Referenced to Free-Stream Conditions, Oblique Shock Case, $\delta = 1^{\circ}$	76
37	Pressure Disturbance Referenced to Free-Stream Conditions, Oblique Shock Case, δ = 70 ⁰	77
38	Pressure Disturbance Referenced to Free-Stream Conditions, Oblique Shock Case, $\delta = 80^{\circ}$	78
39	Pressure Disturbance Referenced to Free-Stream Conditions, Oblique Shock Case, $\delta = 89^{\circ}$	79
40	Interpretation for Separation Shocks Before Conical Transitions	80
41	Shock Interaction Diagram for Simple Harmonic Entropy Waves	81

LIST OF SYMBOLS

Roman Symbols

I

I

I

l

I

I

I

I

l

I

l

l

l

Α	speed of sound in downstream flow field
A ₁	speed of sound in upstream flow field
Ã	ratio of transfer coefficients, $\pi_{31}^{/}/\pi_{21}^{-}$
ap	downstream pressure fluctuation amplitude, harmonic case
a _s , b _s	downstream entropy perturbation amplitude, harmonic case
a _v , b _v	velocity perturbation amplitude, harmonic case
α _ψ , ե _ψ	shock displacement amplitude components, harmonic case
В	ratio of transfer coefficients, $-\pi_{41}/\pi_{21}$
с	see Equation 52
с Р	specific heat at constant pressure
c v	specific heat at constant volume
C _s	drift speed of the interaction point along the shock (trace velocity)
C _{s1}	intersection of shock and sonic circle lying farthest from origin
C _{s2}	intersection of shock and sonic circle lying nearest the origin
D	see Equation 52
f (Y)	vorticity generating function (Equation 41)
G	a nondimensional group in solution for Riemann invariants (Equation 40)
g (Y*)	a function related to the strength of an equivalent source located on the shock plane (Equation 50)

LIST OF SYMBOLS (Continued)

k,	upstream wavenumber, harmonic entropy wave
L ₁	cos δ
Μ	Mach number of the flow downstream of the shock
M	Mach number of the flow upstream of the shock
M _e	effective Mach number corresponding to Ue
m	sin F
N	normal component of downstream Mach number
N ₁	normal component of upstream Mach number
р ⁴	dimensionless magnitude of downstream pressure perturbation
q	one of the two Riemann invariants (Equation 36)
٩	upstream dynamic pressure
R _s	upstream amplitude, harmonic entropy wave
^s _′ ^s ₁	upstream entropy perturbation magnitude
^s +	downstream entropy perturbation magnitude
т	temperature (absolute)
Τ ₁ (δ)	an amplitude function for subsonic case (Equation 40)
Τ ₂ (δ)	an amplitude function for supersonic case (Equation 39)
t	time

LIST OF SYMBOLS (Continued)

U ·	downstream mean flow velocity	
U	upstream mean flow velocity	
U e	effective mean flow velocity (apparent velocity of downstream mean flow to an observer moving at trace velocity ${\bf C}_{\bf s}$)	
U I	dimensionless magnitude of velocity perturbation component along upstream mean flow direction	
u *	dimensionless magn ⁻ tude of velocity perturbation component along shock plane direction	
u ₊	dimensionless magnitude of velocity perturbation component along downstream mean flow direction	
VORT	vorticity magnitude parameter, $(u_1^2 + v_1^2)^{1/2}$	
۳	dimensionless magnitude of velocity perturbation component normal to upstream mean flow direction	
v*	dimensionless magnitude of velocity perturbation component normal to shock plane direction	
v ₊	dimensionless magnitude of velocity perturbation component normal to downstream mean flow direction	
Х, Ү	coordinate axes along and normal to the effective velocity vector ${\sf U}_{\sf e}$	
x, y	coordinate axes along and normal to the downstream mean flow	
×,,,,	coordinate axes along and normal to upstream mean flow	
×*, y*	coordinate axes along and normal to the shock plane	
Greek Symbols		
a	inclination of effective velocity U _e with respect to downstream mean flow velocity U	
β	angle between the shock and the downstream mean flow velocity vector U ₁	

LIST OF SYMBOLS (Continued)

I

I

I

1

1

I

I

I

Ĭ

I

I

I

I

i

I

I

Į

•

.

γ	ratio of specific heats
δ	inclination of upstream entropy wave with respect to main flow direction
E	shock wave angle, referenced to x1-axis
θ	enclosed angle between shock and that radius vector of the sonic circle ending at intersection of sonic circle and shock
θ'	enclosed angle between U _e and the x ₁ -axis
Λ _{ij}	transfer coefficients for the interaction (see text)
۴ _e	effective Mach angle corresponding to Me
π ij	transfer coefficients for the interaction (see text)
۹ m	mean density in downstream flow
ρ im	mean density in upstream flow
т	a reduced space variable At
φ	velocity potential
X .	shock strength (ratio of mean static pressures across the shock)
Ψ τ	local perturbation velocity of the shock
Ψ ϓ	local shock deflection
۳	a grouping of transfer coefficients (Equation 40)
Ω2	a grouping of transfer coefficients (Equation 40)
ω	vorticity

1.0 INTRODUCTION

Many of the important problems in gas dynamics are concerned with the effect of small disturbances in a supersonic flow with shock waves present. The impetus to study the resulting downstream perturbation field has come from such problems as oscillating shocks ahead of blunt bodies, Reference 1, or flared sections on launch vehicles, oscillating shocks in supersonic inlets and exit nozzles, and disturbances in supersonic wind tunnels, Reference 2. The major interest in several current investigations is in the pressure field generated by the interaction, since the fluctuating pressure field associated with a shock is thought to have been the cause of several catastrophic failures of launch vehicles; in any case, the pressure field must be predicted to enable minimum-weight design of such structures.

First-order perturbation theory indicates that the governing equations for a compressible, viscous, and heat-conducting gas can have three distinctively different types of disturbance fields: (a) entropy, (b) vorticity, (c) pressure and irrotational velocity (sound). When the intensity of the fluctuations is small, the three modes are independent. Non-linear coupling between the various modes can occur if the intensity of the disturbances is large or if interactions at boundaries occur (e.g., at a solid wall, a shock wave, or the boundary of a wake or a jet). Thus, when a shock wave is perturbed from its equilibrium configuration (as by interaction with any one of the three fundamental modes), the field downstream of the shock is composed of the original field plus perturbation fields of all three modes (vorticity, entropy and sound) generated by the interaction. When the perturbations are small, the three resulting fields are computable from separate systems of linear partial differental equations, connected only through the boundary conditions on the shock wave and any solid boundaries present. Since the equations are linear, Fourier synthesis can be applied, and so it is useful to consider the interaction of a single simple disturbance with a shock wave.

Although the problem of interactions between weak disturbances and shock waves in a uniform stream of perfect gas has received a good deal of attention, most of it has been concentrated on interaction of a plane shock with sound waves or with turbulence (vorticity). Sound-shock interactions were dealt with in References 3, 4, and 5, and Chu (Reference 5) included the effect of reflection between a wal! and the shock wave. Regarding vorticity-shock interactions, Ribner (Reference 6) studied the interaction of a shear wave with a shock, and demonstrated the existence of sound waves and refracted shear-entropy waves in the flow behind the shock. In Reference 7 this work was generalized to give the noise radiated by the interaction of a shock with turbulence. Moore (Reference 8) analyzed the interaction of sound with an oblique shock wave. Lowson (Reference 7 and 8, including the motion of the shock wave during the interaction, and showed that the fluctuating pressure field is of significant magnitude in typical supersonic flow problems.

The remaining mode, entropy waves, are represented by either temperature or density discontinuities (at constant pressure) in the gas and are carried along at the local mean flow velocity of the gas. Entropy waves may be due to such causes as temperature stratification in the medium, presence of an upstream shock wave undergoing perturbations, or an unsteady upstream heat source as can occur in combustors or in heated supersonic wind tunnels. Morkovin concluded in Reference 2, for example, that entropy wave interactions with shock waves can be the largest source of noise in supersonic wind tunnels. The entropy fluctuation mode has been analyzed by Chang, Reference 10, who gave the theory for interaction of a plane entropy wave with an oblique plane shock wave. In addition to giving solutions for a number of specific cases involving a shock produced by an infinite wedge (including reflections from the wedge) and several varieties of restriction on the nature and relative orientation of the entropy wave, Chang also gave the solution for the general case of the unsteady interaction of a single (step function) plane entropy disturbance and an infinitely extended oblique plane shock where the body causing the shock is tacitly assumed to be absent. It is Chang's solution of this general case that has been used to obtain the numerical results given here.

While the theoretical foundation exists in Reference 10, the method is unwieldy for routine engineering use, and only a few numerical results were previously available: Reference 1 for a sinusoidal entropy wave interacting with a normal shock at an upstream Mach number of 1.45 only, and Reference 1* for the same case over an extended range of Mach numbers up to Mach 10. It is the purpose of the present report to provide parametric numerical results for the downstream flow field, covering the range of flow conditions which might be encountered in practice, and to make order of magnitude estimates for the most extreme pressure fields which might be generated, based on existing data for entropy fluctuation magnitudes. The required equations for the root-mean-square pressure fluctuations resulting from a random field of entropy waves are also presented, but the random field case has not been carried to the point of numerical results.

* To be amended in a forthcoming corrigendum by Dr. Morkovin.

2.0 THE SHOCK-ENTROPY INTERACTION

2.1 Chang's Theory for the Shock-Entropy Interaction

Chang's analysis (Reference 10) begins with a unified treatment concerning upstream disturbances of all three modes (vorticity, entropy, and sound) interacting with a shock wave, and then specializes on the entropy mode. The medium is taken to be a non-viscous ideal gas, and the analytical model is as follows: A wedge is placed in a uniform flow field and an oblique shock is formed at the wedge. The shock divides the flow field into two regions: An upstream region with uniform velocity U_1 and a downstream region with uniform velocity U, Figure 1. A plane entropy disturbance (simple step function in temperature) is introduced upstream and is convected with the main flow toward the shock. Since the main interest is the interaction of the shock with the upstream disturbance and its effect on the downstream flow field, the presence of the wedge is now ignored (ruling out reflection phenomena), and the shock is taken as infinitely extended.

Three sets of rectangular coordinate axes will be used, Figure 1: $x^* c y^*$, with $o y^*$ taken along the shock plane; $x_1 o y_1$, with $o x_1$ taken along the velocity vector U₁ of the upstream main flow; and x o y, with o x taken along the velocity vector U¹ of the downstream main flow.

The flow parameters will be replaced by their corresponding nondimensionalized ones. If Δp , Δp , Δs , and Δu denote the perturbations of pressure, density, entropy and velocity, their corresponding dimensionless parameters will be given by:

$$p = \frac{\Delta p}{\gamma p_m} , \quad \rho = \frac{\Delta \rho}{\rho_m} , \quad s = \frac{\Delta s}{c_p} , \quad \vec{v} = \frac{\Delta \vec{v}}{A}$$
(1)

where subscript "m" refers to the unperturbed main flow. Whenever no number subscript is attached, reference is to the region downstream of the shock; for the region upstream of the shock a subscript 1 will be used.

The equations governing the flow field, both upstream and downstream of the shock, are the three conservation laws of mass, momentum and energy. The equation of state gives a relation among the three thermodynamic variables. After replacing the independent time variable t by two reduced space variables

$$\tau = At, \tau_1 = A_t t = (A_1/A) \tau$$
 (2)

^{*} Chang's derivation is summarized here in some detail, since it is only available in his thesis on a loan basis.

the governing equations are:

Moss:

$$\frac{D p}{D \tau} + div \vec{u} = 0$$
(3)

Momentum:

$$\frac{D u}{D_1} + \text{grad } p = 0 \tag{4}$$

Energy:

$$\frac{D s}{D \tau} = 0 \tag{5}$$

State:

 $s = p - \rho \tag{6}$

where

$$\frac{D}{D\tau} = \frac{\partial}{\partial\tau} + M_1 \frac{\partial}{\partial x_1}$$
(7)

for flow in the upstream region, and

$$\frac{D}{D\tau} = \frac{\partial}{\partial\tau} + M \frac{\partial}{\partialx}$$
(8)

for flow in the downstream region.

The velocity field can be split into two parts, an irrotational part $\overrightarrow{u_s}$ and a rotational part $\overrightarrow{u_s}$, such that

$$\operatorname{curl} \overline{u} = 0, \quad \operatorname{div} \overline{u} = 0$$
 (9)

Then two potential fields can be introduced, a scalar potential ϕ and a vector potential $\vec{E},$ defined by

$$\overrightarrow{U}_{l} = -\operatorname{grad} \phi, \quad \overrightarrow{U}_{s} = \operatorname{curl} \overrightarrow{E}$$
(10)

The governing flow equations, in terms of the potentials, are:

$$\nabla^2 \phi - \frac{D^2 \phi}{D \tau^2} = 0 \tag{11}$$

div
$$\vec{E} = 0$$
, $\frac{D\vec{E}}{D\tau} = 0$ (12)

$$\frac{Ds}{D\tau} = 0 \tag{13}$$

The three modes (sound, vorticity, and entropy) are clearly indicated by Equations (5), (6), and (7) respectively. In terms of our non-dimensional parameters, the vorticity $\vec{\omega}$ is given by

$$\vec{\omega} = A \operatorname{curl} \vec{v} = A \operatorname{curl} \operatorname{curl} \vec{E}$$
 (14)

The scalar potential ϕ represents the sound field, with pressure and velocity perturbations

$$p = -\left(\frac{\partial}{\partial \tau} + M \frac{\partial}{\partial x}\right)\phi$$
(15)

and

$$\vec{u} = - \text{grad } \phi$$

The governing equation for ϕ differs from the conventional wave equation only by a convective term

$$M \frac{9}{3 \times 6} M$$

and could be reduced to the conventional wave equation by a Galilean transformation equivalent to using a frame of reference moving with the unperturbed mean flow:

$$x' = x - M\tau$$
$$y' = y$$
$$\tau' = \tau$$
(16)

With the coordinate system x^* o y^* (with the oy^{*} axis along the mean position of the shock) the shock configuration can be given as

$$x^{*} = \Psi \left(y^{*}, \tau \right) \tag{17}$$

To first order, the local perturbed velocity of the shock is $A\Psi_{\tau} (= \Psi_{t})$, and the deflection is Ψ_{y*} , where this subscripting means partial differentiation. If one isolates a small element of the shock and superposes a velocity vector of the same magnitude but opposite direction as $A\Psi_{\tau}$ to the whole flow field fore and aft of the shock, and then applies the Rankine-Hugoniot equations to the flow parameters across the shock, the downstream perturbed flow parameters can be solved explicitly in terms of the given upstream flow parameters and the local shock deflection and velocity. This solution involves rewriting the conservation equations for mass, energy, momentum normal to the shock and momentum along the shock in terms of the sum of mean flow and perturbation quantities, retaining only the first order terms, and then using the fact that the mean flow must obey the same conservation laws. The result, shown in matrix notation for clarity, is:

The subscripts + refer to flow properties immediately behind the shock; and subscripts -, to flow properties just ahead of the shock. The downstream perturbed velocity has been resolved into components Δu^* and Δv^* normal and tangential to the unperturbed shock plane respectively; u^* and v^* are their non-dimensionalized forms: $u^* = \Delta u^*/A$ and $v^* = \Delta v^*/A$.

The coefficients occurring in Equations (18) are given by

$$\begin{split} & \Lambda_{1} = \left(\frac{\rho_{m}}{\rho_{im}}\right)^{2} \left(\frac{N}{N_{1}}\right)^{2} - (\gamma - 1) \left(1 - \frac{\rho_{m}}{\rho_{im}}\right) N^{2} \\ & \Lambda_{21} = \frac{N^{2}}{1 - N^{2}} \left\{ \left(1 - \frac{\rho_{m}}{\rho_{im}}\right) \left[1 + (\gamma - 1) N^{2}\right] + \left[1 - \left(\frac{\rho_{m}}{\rho_{im}}\right)^{2} \left(\frac{N}{N_{1}}\right)^{2}\right] \right\} \\ & \Lambda_{31} = \frac{-N}{1 - N^{2}} \left\{ \left[1 - \left(\frac{\rho_{m}}{\rho_{im}}\right)^{2} \left(\frac{N}{N_{1}}\right)^{2}\right] + \left(1 - \frac{\rho_{m}}{\rho_{im}}\right) - \gamma N^{2} \right\} \\ & \Lambda_{12} = \left(\gamma - 1\right) \left(1 - \frac{\rho_{m}}{\rho_{im}}\right) \left(1 - \frac{1}{N_{1}^{2}} - \frac{\rho_{m}}{\rho_{im}}\right) - N^{2} \\ & \Lambda_{22} = -\frac{-N^{2}}{1 - N^{2}} \left\{ \left(1 - \frac{\rho_{m}}{\rho_{im}}\right) + \left(1 - \frac{1}{N_{1}^{2}} - \frac{\rho_{m}}{\rho_{im}}\right) - N^{2} \\ & \Lambda_{32} = -\frac{N}{1 - N^{2}} \left\{ \left[1 - \left(\frac{\rho_{m}}{\rho_{im}}\right)^{2} \left(\frac{N}{N_{1}}\right)^{2}\right] + \gamma \left(1 - \frac{\rho_{m}}{\rho_{m}}\right) \left(1 - \frac{1}{N_{1}^{2}} - \frac{\rho_{m}}{\rho_{im}}\right) - N^{2} \\ & \Lambda_{32} = -\frac{N}{1 - N^{2}} \left\{ \left[1 - \left(\frac{\rho_{m}}{\rho_{im}}\right)^{2} - \frac{N^{2}}{N_{1}} \right] \\ & \Lambda_{33} = -\frac{1}{1 - N^{2}} \left(1 - \frac{\rho_{m}}{\rho_{im}}\right) \right\} 2 + (\gamma - 1) \left(1 - \frac{\rho_{m}}{\rho_{im}}\right) - N^{2} \\ & \Lambda_{33} = -\frac{1}{1 - N^{2}} \frac{N}{N_{1}} \left\{1 - \left(\frac{\rho_{m}}{\rho_{im}}\right)^{2} + \gamma \left(1 - \frac{\rho_{m}}{\rho_{im}}\right)^{2} - N^{2} \\ & \Lambda_{44} = -\frac{\rho_{m}}{\rho_{im}} - \frac{N}{N_{1}} \end{aligned}$$

(19)

$$\pi_{11} = -(\gamma - 1) \left(1 - \frac{\rho_{1m}}{\rho_{m}}\right)^{2} \left(\frac{\rho_{m}}{\rho_{1m}}\right) N$$

$$\pi_{21} = -\frac{N}{1 - N^{2}} \left(1 - \frac{\rho_{1m}}{\rho_{m}}\right) \left[2 + (\gamma - 1) \left(1 - \frac{\rho_{m}}{\rho_{1m}}\right) N^{2}\right]$$

$$\pi_{31} = -\frac{1}{1 - N^{2}} \left(1 - \frac{\rho_{1m}}{\rho_{m}}\right) \left[1 + N^{2} + (\gamma - 1) \left(1 - \frac{\rho_{m}}{\rho_{1m}}\right) N^{2}\right]$$

$$\pi_{44} = -\left(\frac{\rho_{m}}{\rho_{m}} - \frac{1}{2}\right) N$$
(19)

$$\pi_{41} = \left(\frac{\rho_{\rm m}}{\rho_{\rm m}} - 1\right) \, N \tag{19}$$
Cont.

With N, and N the Mach numbers upstream and downstream of an equivalent normal shock:

$$N_1 = M_1 \sin \epsilon$$
, $N = M \sin \beta$ (20)

Since all the coefficients Λ and π are functions only of N₁, N and the density ratio ρ/ρ_{1m} , then for any given value of γ they are only functions of the shock strength χ :

$$x \equiv P_m / P_{im}$$
(21)

Thus the obliqueness of the shock, or dependence on the shock angle β , enters only in terms involving $\Psi_{y} \star$, the local shock inclination. It may also be noted that the system of Equations (19), containing one more unknown than the number of equations, is insoluble without the addition of another relation involving the shock configuration.

From the governing equation of the entropy mode, it can be seen that an arbitrary function in the form of a plane wave is a possible solution:

$$s_{1} = s_{1} \left[\boldsymbol{\ell}_{1} M_{1} \frac{A_{1}}{A} \tau - (\boldsymbol{\ell}_{1} x_{1} + m_{1} y_{1}) \right]$$
(22)

where δ is the inclination of the normal to the entropy wave front with respect to the main flow velocity U₁ upstream of the shock, and

$$\boldsymbol{l}_{1} \equiv \cos \delta, \quad m_{1} \equiv \sin \delta \tag{23}$$

This will be useful later on when the object is to synthesize a random field of entropy disturbances from such monochromatic spectral components.

The incoming disturbance drifts along the shock at a speed^{*}

$$C_{s} = \frac{\cos \delta}{\cos (\delta - \epsilon)} U_{1}$$
(24)

so that the flow pattern of the incoming disturbance appears stationary to an observer moving along the shock at this speed, and in such a reference frame the downstream flow field appears time independent. That is, with respect to the reference frame x', y', τ' obtained from the following Galilean transformation, the downstream flow solution is a function of x' and y' only:

$$x^{*} = x'$$

$$y^{*} = y' + \frac{C}{A} \tau$$

$$\tau = \tau'$$
(25)

This transformation is equivalent to superposing on the whole flow field a velocity – C_s ; to an observer affixed to this moving coordinate system the downstream main flow has an apparent velocity U_e , which is the vectorial sum (Figure 2)

$$U_{e} = U + (-C_{s})$$
 (26)

and which has the magnitude and inclination a with respect to the main flow given by

$$\frac{C}{\frac{s}{\sin \alpha}} = \frac{U}{\frac{s}{\sin (\alpha - \beta)}} = \frac{U}{\frac{e}{\sin \beta}}$$
(27)

* One will note that this fails at $(\delta - \epsilon) = \pi/2$, i.e., where the oncoming entropy wave is parallel to the shock, and this special case is treated below in Section 2.1.4. The vorticity and entropy trajectories are along the velocity vector U_e , and the system of governing equations can be simplified by rotating the coordinate axes along and normal to this direction. The problem has an effective Mach number $M_e = U_e/A$ and its corresponding effective Mach angle $\mu_e = \arcsin(1/M_e)$. This new reference frame XOY is specified by

$$\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} \sin (\alpha - \beta) & -\cos (\alpha - \beta) \\ \cos (\alpha - \beta) & \sin (\alpha - \beta) \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix}$$
(28)

In the reference frame the system of governing equations becomes

Mass:

$$M_{e} \frac{\partial p}{\partial X} + \frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} = 0$$

Momentum:

$$M_{e} = \frac{\partial O}{\partial X} + \frac{\partial p}{\partial X} = 0$$

$$M_{e} = \frac{\partial V}{\partial X} + \frac{\partial p}{\partial Y} = 0$$
(29)

Energy:

$$\frac{\partial S}{\partial X} = 0$$
for X sin (a - b) + Y cos (a - b) > 0

The components of perturbed velocity U and V in the XOY reference frame are related to the components u^* and v^* in the original shock – affixed co-ordinate system by:

$$\begin{bmatrix} u^{*} \\ v^{*} \end{bmatrix} = \begin{bmatrix} \sin (\alpha - \beta) & \cos (\alpha - \beta) \\ -\cos (\alpha - \beta) & \sin (\alpha - \beta) \end{bmatrix} \begin{bmatrix} U \\ V \end{bmatrix}$$
(30)

In the coordinate frame XOY and restricting our interest to the entropy mode as the only upstream disturbance, the boundary conditions at the shock can be written as

$$\begin{bmatrix} s_{+} \\ P_{+} \\ U_{+} \\ V_{+} \end{bmatrix} = \begin{bmatrix} A_{11} \\ A_{21} \\ A_{31} \sin (\alpha - \beta) \\ A_{31} \cos (\alpha - \beta) \end{bmatrix}$$

$$s_{-}$$

$$A_{31} \sin (\alpha - \beta) \\ A_{31} \cos (\alpha - \beta) \end{bmatrix}$$

$$+ \begin{bmatrix} \pi_{11} & (M \cos \beta - C_{s}/A) \\ \pi_{21} & (M \cos \beta - C_{s}/A) \\ \pi_{21} & (M \cos \beta - C_{s}/A) \\ \pi_{31} & (M \cos \beta - C_{s}/A) \sin (\alpha - \beta) - \pi_{1} \cos (\alpha - \beta) \\ \pi_{31} & (M \cos \beta - C_{s}/A) \cos (\alpha - \beta) + \pi_{41} \sin (\alpha - \beta) \end{bmatrix} \sin (\alpha - \beta) \Psi_{y}$$

$$(31)$$

at $X \sin (\alpha - \beta) + Y \cos (\alpha - \beta) = 0$

From the Y-component of the momentum equation,

$$V = \phi_{Y}$$

$$p = -M_{e}\phi_{X}$$
(32)

After the elimination of U, V, and p, a governing equation for the potential ϕ results:

$$(M_e^2 - 1) \phi_{XX} - \phi_{YY} = 0$$
(33)

which is hyperbolic or elliptic depending on whether $M_e > 1$ or $M_e < 1$. Physically, this means that when $M_e > 1$ the sound field generated at a fixed point is affected only by a localized distortion of the shock; but in the case $M_e < 1$ it is affected by the whole shock configuration, and we must expect the subsonic case to involve an integral equation. Analogous to the classical wavy wall problem, the resulting pressure waves propagate downstream along a characteristic with constant amplitude for the supersonic regime ($M_e > 1$); but in the subsonic case ($M_e < -1$) the pressure disturbance amplitude diminishes with distance from the shock, part of the disturbance energy being fed book into the shock.

2.1.1 The Supersonic Case, $M_e > 1$

For $M_e > 1$, the governing equation for ϕ in the XOY reference frame reduces to a simple wave equation, which is also obeyed by the flow parameters p and V. By eliminating U between the equations of continuity and momentum, one obtains a pair of wave equations in terms of V and $q = -(\cos \mu_e) p$:

$$\begin{bmatrix} \frac{\partial}{\partial X} & -\tan \mu_{e} & \frac{\partial}{\partial Y} \\ \tan \mu_{e} & \frac{\partial}{\partial Y} & -\frac{\partial}{\partial X} \end{bmatrix} \begin{bmatrix} q \\ V \end{bmatrix} = 0$$
(34)

for $X \sin(\alpha - \beta) + Y \cos(\alpha - \beta) > 0$

and subject to the boundary condition at the shock:

$$\begin{bmatrix} q \\ V \end{bmatrix} = \begin{bmatrix} -\Lambda_{21} & \cos \mu_{e} \\ \Lambda_{31} & \cos (\alpha - \beta) \\ 31 \end{bmatrix}^{s} + \begin{bmatrix} -\pi_{21} & (M \cos \beta - C_{s}/A) \cos \mu_{e} \\ \pi_{21} & (M \cos \beta - C_{s}/A) \cos (\alpha - \beta) + \pi_{41} \sin(\alpha - \beta) \\ \sigma_{11} & (M \cos \beta - C_{s}/A) \cos (\alpha - \beta) + \pi_{41} \sin(\alpha - \beta) \\ \sigma_{11} & (M \cos \beta - C_{s}/A) \cos (\alpha - \beta) + \pi_{41} \sin(\alpha - \beta) \end{bmatrix}$$

$$x \quad \sin (\alpha - \beta) \Psi_{v} \qquad (35)$$

ct $X \sin(\alpha - \beta) + Y \cos(\alpha - \beta) = 0$.

The field of characteristics associated with these wave equations are given by $X - Y \cot \mu_e$ = constant and $X + Y \cot \mu_e$ = constant, since the Riemann invariants along these lines are (q - V) and (q + V). The solutions to the wave equations (34), therefore, are:

$$q = F_{1} (X - Y \cot \mu_{e}) + F_{2} (X + Y \cot \mu_{e})$$
$$V = -F_{1} (X - Y \cot \mu_{e}) + F_{2} (X + Y \cot \mu_{e})$$
(36)

Only one of the two functions F_1 or F_2 represents sound waves propagating downstream. In the case of a normal shock ($\beta = \pi/2$) it is F_1 , and in the case of an oblique shock the choice depends on the magnitude of C_s , the trace velocity of the entropy wave along the shock. Referring to Figure 2, when C_s is on the lower segment (below the first intersection of the shock and the sonic circle), F_2 is to be taken; when C_s is on the upper segment ($C_s \ge C_s$) then F_1 is to be taken. Whenever C_s falls between C_s and C_s^2 , then $M_e < 1$, a case considered later. The boundary condition at the shock, after eliminating the shock inclination Ψ_y gives another relationship between q and V together with the given disturbance s_, allowing the function F_1 or F_2 to be determined:

(a) When
$$C_{s} \leq C_{s_{2}}$$
:
 $q = F_{2} = -T_{2}(\delta) \cos \mu_{e} s_{-}$ (37)
(b) When $C_{s} \geq C_{s_{1}}$:

$$q = F_1 = -T_1(\delta) \cos \mu_e s_-$$
 (38)

where

$$T_{2}(\delta) = \frac{\Omega_{2} \cos (\alpha - \beta) - \Lambda_{21} G \sin (\alpha - \beta)}{\widetilde{A} \cos (\alpha - \beta) - G \sin (\alpha - \beta) + \cos \mu_{e}}$$
(39)

$$T_{1}(\delta) = \frac{\Omega_{1} \cos (\alpha - \beta) - \Lambda_{21} G \sin (\alpha - \beta)}{\widetilde{A} \cos (\alpha - \beta) - G \sin (\alpha - \beta) - \cos \mu_{e}}$$
(40)

and

$$A = \pi / \pi , \quad B = -\pi / \pi / \pi ,$$

$$\Omega_1 = \Lambda \tilde{A} - \Lambda , \quad \Omega_2 = \Lambda B ,$$

$$G = \frac{B}{M \cos \beta - (C_s / A)}$$

By determining q from the appropriate equations above, and substituting this value of q back into the original equation relating the boundary conditions at the shock (35), one can find the local shock inclination Ψ_y . At this point, all the required quantities are available for the calculation of the downstream flow perturbations through Equations (31). As vorticity is preserved along streamlines, the vorticitygenerating function f (Y), which is defined by:

$$\omega = -A \frac{df}{dY}$$
(41)

can also be calculated.

2.1.2 The Subsonic Case, $M_e < 1$

For $M_{\rm e}$ < 1, the potential equation for ϕ reduces to the Laplace equation if the Prandtl-Glauert transformation is applied. Introduce a complex variable defined by

$$\xi = X + i\overline{Y}$$

where

$$\overline{Y} = \sqrt{1 - M_e^2} Y$$
(42)

and any analytic function $\phi(\xi)$ or $W(\xi) = d\phi/d\xi$ will be a solution. W(ξ) is related to the physical parameters through

$$W(\xi) = V(X, \overline{Y}) + i \frac{\sqrt{1 - M_e^2}}{M_e} p(X, \overline{Y})$$
(43)

Again eliminating V between the continuity and momentum equations, one obtains a pair of Cauchy-Riemann equations:

$$\frac{\partial V}{\partial X} = \frac{\partial}{\partial \overline{Y}} \left(\frac{\sqrt{1 - M_e^2}}{M_e} p \right)$$
$$\frac{\partial V}{\partial \overline{Y}} = \frac{\partial}{\partial X} \left(\frac{\sqrt{1 - M_e^2}}{M_e} p \right)$$
(44)

for the region

$$X \sin (\alpha - \beta) + \frac{\overline{Y}}{\sqrt{1 - M_e^2}} \cos (\alpha - \beta) > 0$$

The boundary conditions to be satisfied by $W(\xi)$ are (a) to remain bounded at infinity and (b) to satisfy

$$\begin{bmatrix} \widetilde{A} \cos (\alpha - \beta) - G \sin (\alpha - \beta) \end{bmatrix} p - V$$
$$= \begin{bmatrix} \Omega_{1} \cos (\alpha - \beta) - \Lambda_{21} & G \sin (\alpha - \beta) \end{bmatrix} s_{-}$$
(45)
$$\overline{Y}$$

at the shock, i.e., at X sir $(\alpha - \beta) + \sqrt{1 - M_e^2} \cos(\alpha - \beta) = 0$

It is more convenient to work with a set of coordinate axes rotated into the shock position, through the transformation

$$\begin{bmatrix} X^{*} \\ Y^{*} \end{bmatrix} = \begin{bmatrix} \cos \lambda & \sin \lambda \\ -\sin \lambda & \cos \lambda \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}$$
(46)

where λ is defined by

$$\cot \lambda = \sqrt{1 - M_e^2} \tan (\alpha - \beta)$$
 (47)

and the boundary condition at the shock is now specified along $X^* = 0$.

A solution for $W(\xi^*)$ which satisfies the boundary condition at infinity is

$$W(\xi^{*}) = \frac{i}{2\pi} \int_{-\infty}^{\infty} \frac{g(\eta)}{\xi^{*} - \xi_{1}^{*}} d\eta$$
(48)

where

$$\xi^* = X^* + i Y^*$$

with $g(\eta)$ bounded and continuous in the half-plane $X^* \ge 0$.

Chang compares the conventional complex potential with $W(\xi) = d \phi/d\xi$ and notes that the function $g(\eta)/2\pi$ can be interpreted as the strength of a source located on the shock plane at a distance η from the origin, or can be interpreted as a dipole moment with respect to the sound field (p and V) generated downstream.

The real and imaginary parts of W (ξ^*) are:

$$\frac{\sqrt{1-M_{e}^{2}}}{M_{e}}p = \frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{X^{*}}{X^{*}^{2}+(Y^{*}-\eta)^{2}}g(\eta)d\eta \qquad (49a)$$

$$V = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{(Y^{*} - \eta)}{X^{*2} + (Y^{*} - \eta)^{2}} g(\eta) d\eta$$
(49b)

2

which one may substitute back into the shock boundary condition, Equation (45), and obtain the following integral equation to be used in determining $g(\Upsilon^{*})$:

$$\frac{M_{e}}{\sqrt{1-M_{e}^{2}}} \left\{ \widetilde{A} \cos (\alpha - \beta) - G \sin (\alpha - \beta) \right\} \frac{g(\Upsilon^{*})}{2} + P \left\{ \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{g(\eta)}{\eta - \Upsilon^{*}} d\eta \right\} = \left\{ \Omega_{1} \cos (\alpha - \beta) - \Lambda_{21} G \sin (\alpha - \beta) \right\}^{s} - \frac{1}{2\pi} G \sin (\alpha - \beta) = \frac{1$$

To obtain (50) Chang has used the fact that

$$\lim_{X^* \to 0} \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{X^* g(\eta)}{X^{*^2} + (Y^* - \eta)^2} d\eta = \frac{g(Y^*)}{2}$$
(51)

and the notation "P" for Cauchy's principal value for the improper integral.

At this point, for any given set of conditions, everthing in Equation (50) is known numerically except g (Y^*) , which is to be found, and the principal value of the integral. Compressing Equation (50) for convenience into the form

$$D g (Y^*) + P \left\{ \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{g(\eta)}{\eta - Y^*} d\eta \right\} = C$$
 (52)

where

$$D = \frac{1}{2} \frac{M_e}{\sqrt{1 - M_e^2}} \left\{ \widetilde{A} \cos (\alpha - \beta) - G \sin (\alpha - \beta) \right\}$$

and

$$C = \left\{ \Omega_1 \cos (\alpha - \beta)^2 - \Lambda_2 G \sin (\alpha - \beta) \right\} s_{-1}$$

let us find the principal value of the integral. Applying Picara's iteration method, setting $g(\eta) = 0$ in (52) requires the trivial result that $g(Y^*) = 0$. Setting $g(\eta)$ equal to a constant, K, gives an integral of the form

$$\frac{K}{2\pi}\int_{-\infty}^{\infty}\frac{d\eta}{\eta-Y^{*}}$$

From residue theory, and based on the boundary condition at infinity giving a closed contour, the value of the integral is $2\pi i$, giving:

$$\frac{K}{2\pi}\int_{-\infty}^{\infty}\frac{d\eta}{\eta-Y^{\star}} = \frac{K}{2\pi} \quad (2\pi i) = iK \quad (53)$$

Inserting this into Equation (52), since D and C are real numbers, K is complex. Equating real and imaginary parts gives two equations to solve for K_i and K_r . After retaining only the real part, the solution for $g(Y^*)$ is:

$$g(Y^*) = \frac{DC}{1+D^2}$$
 (54)

Next, one may solve for the pressure perturbation immediately downstream of the shock (at $X^* = 0$) from Equation (49a). Utilizing the limit value of the integral as $X^* \rightarrow 0$ as given by (51), Equation (49a) becomes:

$$p)_{x^{*}=0} = \frac{M_{e}}{\sqrt{1-M_{e}^{2}}} \frac{g(Y^{*})}{2}$$
(55)

Having the pressure perturbation at the shock, then the shock displacement $\ \Psi_{y}$ can be found from

$$p = \Lambda_{21} s_{-} + \pi_{21} \left(M \cos \beta - \frac{C}{A} \right) \sin (\alpha - \beta) \Psi_{y}$$
 (56)

Having Ψ_y , all the remaining downstream flow perturbations and the vorticity generating function can be calculated also.

2.1.3 The Case $M_e = 1$

At $M_e = 1$, the governing equation for the potential ϕ reduces to the parabolic form

$$\phi_{YY} = 0 \tag{57}$$

As $M_e \rightarrow 1$, the Mach angle $\mu_e \rightarrow \pi/2$, and the two characteristics coalesce into a single line, X = constant. The drift velocity in a sound wave being normal to the wave front, then

$$\phi_Y = 0$$

In this case one can determine the pressure field p directly, from

$$p = -F(X) = \frac{\Omega_1 \cos (\alpha - \beta) - \Lambda_{21} G \sin (\alpha - \beta)}{\widetilde{A} \cos (\alpha - \beta) - G \sin (\alpha - \beta)} s_{-}$$
(58)

2.1.4 Special Case of Parallel Entropy and Shock Waves

One may note from Equation (24) that the foregoing derivation fails in the case of parallel shock and oncoming entropy wave (that is, for $(\delta - \epsilon) = \pi/2$), and so this case is handled separately. The oncoming entropy wave can be expressed in the form

$$s = s \left\{ M_1 \quad \frac{A_1}{A} \quad (\cos \delta) \quad \tau - x^* \right\}$$
(59)

For an observer moving along the shock (along the y^* axis, there is no transverse disturbance. The entire shock is struck by the entropy wave instantaneously, and the shock remains plane and simply oscillotes along the x^* axis. This is in contrast to the case ($\delta - \epsilon$) $\neq \pi/2$, where a ripple moves along the shock at the trace velocity C_s . Hence $\Psi_y^* = 0$ in Equation (18), and it follows that $v^* = 0$, so that the flow field downstream of the shock is one-dimensional. Chang here maker a substitution of variables:

$$x' = x^* - N \tau$$

 $\tau' = \tau$

and rewrites the conservation equations for mass, momentum and energy accordingly, from which it can be seen that (-p) and u^* form a pair of simple wave equations. Since no disturbance can propagate upstream of the shock, only the right-running wave is taken:

$$p_{\perp} = u_{\perp} = F(\tau' - x')$$
 (69)

When transformed back into the original x^* , τ coordinates, the downstream flow field is completely determined by the two functions $s_+ (N\tau - x^*)$ and $F\{(1 + N)\tau - x^*\}$. From the boundary conditions at the shock (at $x^* = 0$) these functions are

$$\frac{F}{s_{-}} = -\frac{P_{+}}{s_{-}} = \frac{U_{+}}{s_{-}} = \frac{\Lambda_{31}}{\pi_{21}} \frac{\pi_{21}}{\pi_{21}} - \frac{\Lambda_{21}}{\pi_{31}} \frac{\pi_{31}}{\pi_{21}}$$
(61)

and

$$\frac{s_{+}}{s_{-}} = \Lambda_{11} + \frac{\pi_{11} (\Lambda_{21} - \Lambda_{31})}{\pi_{21} - \pi_{31}}$$
(62)

If the shock displacement is also desired, it can be obtained from

I

the other d

$$x^{*} = \Psi = \frac{\Lambda_{31} - \Lambda_{21}}{\pi_{21} - \pi_{31}} \int s_{-}(\tau) d\tau \qquad (63)$$

One may note that restriction to parallel waves, with the resulting one-aimensional downstream flow field, gives an immensely simplified problem, involving only six of the fourteen transfer coefficients, Equations (14).

2.2 Numerical Results

The computer program described in the appendix, based on the above analysis, has been used to obtain values defining the perturbed downstream flow field resulting from the interaction of a single entropy discontinuity with a shock wave. While a number of intermediate quantities (such as the transfer coefficients, vorticity generating function, and local shock deflection) are available in the printout, only those quantities useful for engineering estimates or for understanding of the results are presented here. They include the effective Mach number; the downstream fluctuations of entropy, pressure, and vorticity; and an alternate presentation of the pressure fluctuations referenced to free-stream dynamic pressure.

The results presented are for two cases of practical interest: (1) Normal shocks, and (2) Oblique shocks arising from wedge flow. While it is possible to calculate a downstream beiturbed flow field for free combinations of ϵ (the shock wave angle) and β (the angle between the shock wave and the downstream mean flow velocity vector; see Figure 1), at each upstream Mach number there is only one value of flow deflection angle or wedge half-angle ($\epsilon - \beta$) which will produce the shock angle β . For each wedge half-angle ($\epsilon - \beta$), the lower limit of free stream Mach number has been taken as the value at which the mean flow behind the shock remains supersonic, Reference 12, and results are given from this lower limit to Mach 10. The wedge half-angles ($\epsilon - \beta$) covered in the numerical cases reported here range from 4 degrees (corresponding to a flat plate with boundary layer) to 30 degrees. This range should cover most cases of interest for external flows over high-speed aircraft and separation shocks produced by conical flares on launch vehicles.

The value of the entropy discontinuity orientation, δ , has been varied from one degree (nearly normal to the free-stream flow direction, see Figure 2) to 89 degrees (nearly parallel to the free-stream flow. For parallel shock and entropy waves, $(\delta - \epsilon) = \pi/2$, the general method for oblique shocks fails and these results are shown separately. For normal shocks, this is an important case, as it corresponds to temperature discontinuities normal to the flow. Because of the bulk of the data involved, results are shown only for the extremes of the δ range and for that region of δ 's giving maximum flow perturbations.

Some of the results have been plotted as functions of δ rather than M_1 ; these graphs, in conjunction with the graphs of effective Mach number M_e , show how the flow perturbation values reach anomalous maxima at values of δ corresponding to $M_e = 1$. This trend agrees with the single published result of Chang in Reference 10. Referring to Figure 2, the occurrence of $M_e = 1$ corresponds to values of the trace velocity, C_s , of the entropy disturbance front along the shock such that the vector C_s just intersects the sonic circle. For C_s between the two possible intersection points, $M_e < 1$, and for any other values of C_s , $M_e > 1$. As discussed above, when $M_e < 1$ the generated pressure disturbance propagates with constant amplitude, but when $M_e < 1$ the amplitude decays with distance from the shock. For any given combination of ϵ and β , there is a bounded region of

the Mach number and entropy wave inclination plane where the effective Mach number is subsonic, and energy can be fed back into the shock. As an example, Figure 9 shows this boundary in terms of critical angle δ^* for $\epsilon = 50$ degrees, $\beta = 30$ degrees, corresponding to a wedge angle of 20 degrees. The two branches of the boundary, δ_1^* and δ_2^* , arise from values of C_s corresponding to the two intersections of the shock and the sonic circle, Figure 2. For more accuracy in the perturbation values at $M_e = 1$, it would be desirable either to use more closely spaced input values for near the region of the peak, or to set $M_e = 1$ and compute the value of the peak directly. In the results shown here, the peak was sometimes obtained by extrapolating the adjacent curves to intersect at the value of M_1 or δ known to correspond to $M_e = 1$; however, the numbers are sufficiently accurate for engineering predictions.

With δ below used to indicate perturbation values (e.g., $\delta p = p - p_m$, where p is the mean value), and with subscripts 1 and (-) used to indicate the region upstream of the shock, the perturbed flow quantities shown in the figures are defined as follows:

For the entropy fluctuations,

$$\left(\frac{s_{+}}{s_{-}}\right) = \frac{\left(\frac{\delta s/C_{p}}{\rho}\right)_{-}}{\left(\frac{\delta s/C_{p}}{\rho}\right)_{+}} = \frac{\left(\frac{\delta T/T_{m}}{\rho}\right)_{-}}{\left(\frac{\delta T/T_{m}}{\rho}\right)_{+}}$$
(64)

For the pressure fluctuations,

$$\left(\frac{P_{+}}{s_{-}}\right) = \frac{\left(\frac{\delta p}{\gamma P_{m}}\right)_{+}}{\left(\frac{\delta T}{T_{m}}\right)_{-}}$$
(65)

In this form, the fluctuating pressure magnitudes are referenced to the local mean pressure, but the upstream mean flow conditions are sometimes more conveniently known. The dynamic pressure is given by

$$q = \frac{1}{2} \rho V^2 = \frac{\gamma}{2} p M^2$$

Hence, the downstream pressure fluctuation magnitude, referenced to twice the upstream dynamic pressure is:

$$\left(\frac{P_{+}}{s}\right) \cdot \frac{\chi}{M_{1}^{2}} = \left(\frac{\delta P}{\gamma P_{1} M_{1}^{2}}\right) / \left(\frac{\delta T}{T}\right)_{1} = \left(\frac{\delta P}{2 q_{1}}\right) / \left(\frac{\delta T}{T}\right)_{1}$$
(66)

where χ is the shock strength (or static pressure ratio) and q_1 is the upstream dynamic pressure.

The vorticity generation is shown here in terms of the magnitude of the vector sum of the two velocity perturbation components:

$$\frac{VORT}{s} = \frac{\sqrt{u_1^2 + v_1^2}}{s}$$
(67)

where

$$v_1 = \frac{\delta v_1}{A}$$
 and $v_1 = \frac{\delta v_1}{A}$

measured along and normal to the x_1 axis (free-stream direction) respectively, and A is the local sonic velocity behind the shock.

It should be noted that a single value of specific heat ratios,

$$\gamma = \frac{C}{C},$$

has been used in the calculations, $\gamma = 1.40$. For strong shocks (i.e., large upstream normal Mach number components), molecular dissociation begins to absorb part of the total energy of the flow, and the value of γ decreases slightly, affecting all the ratios of flow properties across the shock. However, this effect is not significant in the present results, since (1) in the most extreme case for the oblique shock results (Mach 10 and a flow deflection angle of 30 degrees) the error in the present coefficient across the shock, for example, due to use of $\gamma = 1.40$ would only be 3 percent; and (2) the flow purturbation results, shown up to Mach 20 for the normal shock case, are insensitive to Mach number for values above Mach 8.

Reviewing the trends of the results, for the special case of parallel shock and entropy wave inclination, Figure 3 shows the relative magnitude of the downstream entropy wave decreasing steadily from unity for the lowest possible shock strength to values below 0.03 for upstream normal components of Mach number $N_1 > 10$. The downstream disturbances of pressure and velocity increase from zero at the lowest possible shock strength to an asymptotic value of about -0.4 at high Mach numbers. The generated pressure and velocity disturbances are of opposite sign to the oncoming temperature discontinuity; that is, a positive step increase in temperature will generate a rarefaction; and a negative change in temperature, a compression. The entire entropy wave strikes the shock wave simultaneously, giving an infinite effective Mach number M_2 . The reader should not attempt to compare the present numerical results for pressure and velocity perturbation with those of Morkovin, Reference 1, as his result; are being corrected in a forthcoming corrigendum, in accordance with Reference 13.

Continuing to the normal shock cases (taken from the computer results) Figure 4 shows the variation of effective Mach number M_e with entropy wave inclination angle δ , for upstream Mach numbers M_1 from 1.1 to 20. As δ approaches zero, M_e approaches infinity as described above. The effective Mach number decreases through the critical $M_e = 1$ within the range $60^\circ < \delta < 70^\circ$ for all these upstream Mach numbers. Judging from Chang's single numerical example, we should expect discontinuous maxima of the flow perturbation quantities to occur near $\delta = 70^\circ$, and this is borne out in Figures 5 through 8. The values shown for $\delta = 0$ are taken from the parallel v_{-} e solution, above. For the pressure perturbation, the results lie too close to the curve for $5^\circ \leq \delta \leq 30^\circ$ to be shown separately. All the results become insensitive to Mach number for $M_1 > 8$.

In the oblique shock cases, for any given shock strength and shock angle β it is possible to have two values of entropy wave inclination δ which will result in a critical effective Mach number $M_e = 1$, corresponding to the two branches bounding the subsonic region, Figure 9. Depending on the wedge half-angle and upstream Mach number, there may be either one or two values of δ at which $M_e = 1$. This is apparent in Figures 10 through 12, which show the variation of M_e with δ , with upstream Mach number M_1 as a parameter, for three wedge half-angles ($\epsilon - \beta$) = 4°, 12°, 30°. As the upstream Mach number increases, the critical values of δ (corresponding to $M_e = 1$) shift to lower values.

The effect of the shock interaction on the strength of the temperature discontinuity is given in Figures 13 through 21 in terms of the ratio (s_{+}/s_{-}) . Since $s_{+} = (\delta T)/T$ and $s_{-} = (\delta T)_{1}/T_{1}$, where subscript 1 refers to the upstream conditions, then the meaning of the ratio (s_{+}/s_{-}) in terms of temperature discontinuity magnitudes and local mean static temperatures can also be expressed as:

$$\frac{s_{+}}{s_{-}} = \frac{(\delta T)}{(\delta T)_{1}} \cdot \frac{T_{1}}{T}$$
(68)

where T_1/T is the inverse static temperature ratio across the shock and always has a value less than unity.

Figures 13 through 18 show s_{\perp}/s_{\perp} plotted versus upstream Mach number up to $M_1 = 4$, with a single value of δ for each figure. The peaks in the curves correspond to values of im_1 at which the effective Mach number $M_e = 1$; and the minima (as in Figure 16), to minima in the corresponding curves of effective Mach number. For those regions of δ where the effective Mach number is supersonic for all values of wedge half-angle, the effect of the interaction on the entropy discontinuity magnitude increases steadily with increasing wedge half-angle
(that is, with increasing shock strength) for any given upstream Mach number. When both subsonic and supersonic effective Mach numbers occur, as in Figure 14, this simple trend no longer occurs.

In Figures 19 through 21, the results for s_{+}/s_{-} are plotted as a function of δ , one figure for each upstream Mach number, for $M_{1} = 3, 6, 10$. Here the occurrence of peak values at critical values of δ is more readily apparent. As the value of the wedge half-angle increases, the magnitude of the peak corresponding to $M_{e} = 1$ increases and occurs at higher values of δ . For those values of $(\epsilon - \beta)$ where the curve of M_{e} crosses unity twice, there are two amplitude peaks; again, the amplitude minima correspond to minima in the effective Mach number curves.

The amplitude of the pressure pulse generated by the interaction is given in Figures 22 through 31, in a sequence paralleling that for the presentation of s_{+}/s_{-} . The results are shown in terms of p_{+}/s_{-} , which is defined above in Equation (79). The general trends are the same as discussed above for the entropy disturbance magnitudes, with sharp maxima occurring where $M_{e} = 1$. However, in the case of the pressure disturbances the minima (corresponding to minima in the curves of M_{e}) also have discontinuous slopes. The range of p_{+}/s_{-} encountered extends from -0.8 to +3, with the largest value of the maximum occurring near $M_{1} = 3$, $\delta = 80$ degrees, ($\epsilon - \beta$) = 30 degrees.

These pressure magnitude values are also shown, in Figures 36 through 39, in a form more convenient for calculations, since the pressure perturbation values arr referenced entirely to upstream conditions, in accordance with Equation (66). These results are shown only for the extremes of the range of δ and for those values of δ corresponding to maximum pressure disturbance. It should be emphasized that for $M_e < 1$ these pressure pulse magnitudes exist only immediately behind the shock and decay thereafter.

The vorticity generation parameter, as defined above in Equation (67), is shown in Figures 32 through 35. It shows maxima with discontinuous slopes, similar to the other interaction results, with the magnitude of the peak increasing with upstream Mach number M_1 and with wedge half-angle ($\epsilon - \beta$). The largest values of the vorticity parameter (over the range $1.1 \le M_1 \le 10$, $1^\circ \le \delta \le 89^\circ$, and $4^\circ \le (\epsilon - \beta) \le 30^\circ$) occurs in the vicinity of M = 3, $\delta = 80^\circ$, ($\epsilon - \beta$) = 30° , as did the largest peaks in the pressure perturbation magnitude.

It would be useful next to estimate the magnitudes of pressure perturbations which might be experienced in practice. Two cases will be considered: (a) the separation shock ahead of a conical flare on a cylindrical body, as on a launch vehicle, at a low supersonic Mach number, and (b) oblique shocks on a supersonic aircraft at cruise Mach number ond altitude. On the basis of the scant experimental results available for temperature fluctuation magnitudes (discussed further in Section 2.3), a value of 2 percent of the total temperature is taken here. For a separation shock standing ahead of a conical flare on a cylindrical body, the shock angle β varies with free-stream Mach number only, and is nearly independent of flare angle, Reference 9. Therefore, as a first estimate, the wedge flow results given here can be used to predict the pressure perturbation, simply by taking the correct wedge half-angle to produce the equivalent shock angle at any given Mach number, Figure 40. For Mach numbers from 1 to 4, the required wedge half-angle varies from 0 to 14.6 degrees. Taking a flight condition of $M_1 = 1.2$, h = 25,000 ft. (corresponding to a dynamic pressure of $q_1 = 800$ lb /ft²), and with the appropriate wedge half-angle of ($\epsilon -\beta$) = 4°, values of

$$\left(\frac{\delta p}{2q_1}\right) / \left(\frac{\delta T}{T}\right)_1$$

as large as (-2) can occur.

When the temperature fluctuation magnitude is translated into a static temperature reference at this Mach number, $(\delta T/T) = 0.0258$. Hence the pressure pulse would be $\delta p = 82.5 \text{ lb / ft}^2$, or in terms of sound pressure level, referenced to 0.0002 dynes/cm², SPL = 166 dB.

For a supersonic aircraft cruising at Mach 3, h = 70,000 ft., and again taking extreme values of $(\epsilon - \beta) = 30^{\circ}$, an upstream temperature discontinuity of 0.01 referenced to the total temperature, and the value of δ which gives the largest pressure perturbation, a value of

$$\left(\frac{\delta p}{2q_1}\right) / \left(\frac{\delta T}{T}\right)_1$$

as high as (+2) can occur. The resulting pressure pulse has a magnitude of 144 dB, substantially lower than that for the launch vehicle case, primarily, because the free stream dynamic pressure is lower by an order of magnitude.

It should be emphasized that these numbers represent extreme values reached by the selection of what are probably extreme values for $(\delta T/T)$, and δ , and that most levels encountered in practice will be lower. Further, these are instantaneous pressure pulses and not a continuous level.

3.0 TYPICAL ENTROPY FLUCTUATION MAGNITUDES

In Section 2.2, an entropy fluctuation magnitude (step amplitude) of 2 percent of the free stream (absolute) total temperature was used to make a first estimate of the downstream pressure fluctuation to be expected from entropy-shock interactions. A number of researchers have measured values of temperature or density fluctuation intensity in jets, wakes, and boundary layers (References 14 through 20); maximum values from some of these results are shown in Table I. Caution must be applied in interpreting these values, as not the same reference conditions were given for all the data. In general, the jet and boundary layer data are root mean square temperature fluctuations referenced to jet or free-stream total temperature, while the wake data are mostly root mean square density fluctuations referenced to local mean density in the wake, all taken by hot-wire anemometry. The data of Clay, et al., are amplitude values estimated from Schlieren photographs.

The data fall into two magnitude categories: (a) Maximum fluctuation intensities between 15 and 40 percent for jets and wakes, and (b) maximum fluctuation intensities between 2 and 5 percent for boundary layers. There is no discernible trend with Mach number, but aside from Kistler's boundary layer data there are too few Mach number points to provide any conclusion about trends. It is difficult to imagine a trend with Mach number, however, in which the temper 'ure fluctuation would not asymptotically approach some fraction of a typical driving temperature difference in the flow, such as the difference between recovery temperature and wall temperature in a boundary layer or the temperature defect in a wake.

Entropy fluctuations in wakes persist for long distances downstream of the body, still showing significant magnitudes at 1,000 diameters. For launch vehicles, the wakes of upstream protuberances may be the most important source of strong entropy fluctuations to interact with downstream standing shocks.

Attempts to obtain large but pure entropy fluctuations (without vorticity fluctuations present) for experimental purposes were reported by Morkovin (Reference 2) and by Hamernik (Reference 21). Morkovin used electically heated rods in the Johns Hopkins Supersonic Tunnel and produced entropy fluctuations dominant over the vorticity and sound signals, but only of about 0.2 percent intensity when referenced to the total temperature. Hamernik used an exploding wire to produce a temperature spot to interact with a reflected normal shock in a shock tunnel and obtained a peak density amplitude $\Delta \rho / \rho_{ref} \cong 4$ percent, where the reference density was the local condition after passage of the shock front, for a shock strength of 1.8, corresponding to a shock Mach number of 1.3.

Typical temperature fluctuation values for the background in wind tunnels are less than half a percent of the total temperature. For example, Reference 16 cites a measured value of 0.04 percent in the Johns Hopkins 7" × 11" supersonic (Mach i.75) tunnel. In the first few feet of the atmosphere, temperature fluctuations as large as 3 to 4 percent sometimes occur near highly heated surfaces such as airport runways.

TABLE I

1

ľ

1

Ĺ

		the second data was a	
Flow	Mach Number Range	Reference	Entropy Data (Extreme Values)
Free Jet, Round Heated	Subsonic	14	18 percent (r.m.s. fluct. temp., ref. to centerline static temp.)
Boundary Layer, Flat Plate	M _∞ = 1.75	15	2.5 percent (fluct. amplitude, ref. to tunnel total temperature)
Boundary Layer, Flat Plate	M _∞ = 1.72 3.56 4.67	17	4.8 percent 3.6 percent 2.1 percent (r.m.s. fluct. temp. ref. to tunnel total temperature)
Wake of Axisymmetric Rod	M _{co} = 1.75	16	2-3 percent (r.m.s. temp. fluct. ref. to tunnel total temperature)
Wake of Axisymmetric Rod	M _{co} = 3.0	:8	7 percent (r.m.s. fluct. temp. ref. to local center- line total temperature)
Wake of Sphere	M _∞	19	15 percent (density fluct. amplitude ref. to local mean density)
Wake of Sphere	M _{co} = 8.5	20	30 percent (r.m.s. density fluct. ref. to local mean density)
Wake of 12-uegree Cone	M _{ac} = 22.8	20	40 percent (r.m.s. density fluct. ref. to local mean density)

ENTROPY FLUCTUATION JATA (EXTREME VALUES)

4.0 RANDOM FIELD OF ENTROPY DISTURBANCES INTERACTING WITH A SHOCK WAVE

According to the Fourier integral theorem, a random field can be represented as a superposition or spectrum of elementary waves. A single spectrum wave can be interpreted physically as a plane sinusoidal wave of temperature or density variation, being convected downstream at the local mean flow velocity. Before synthesizing the random field, one must consider a single harmonic component. Again fullowing Chang, Reference 10, the description of the interaction of a single harmonic entropy wave with a shock wave is given below.

4.1 The Harmonic Components

The plane upstream entropy wave can be characterized by its amplitude R_s , its wave number k, , and its inclination δ with respect to the flow velocity U_1 :

$$s_1 = R_s \cos k_1 \left\{ l_1 M_1 - \frac{A_1}{A} \tau - (l_1 \times t + m_1 y_1) \right\}$$
 (69)

where (see Figure 41)

$$\mathbf{L}_1 = \cos \delta, \ \mathbf{m}_1 = \sin \delta$$

Initially, let us restrict attention to the special case of a normal shock. Here, some simplification occurs, since the three sets of coordinate axes $x_1 \circ y_1$, $x \circ y$, and $x^* \circ y^*$ coincide, and the unperturbed shock plane can be taken along the y axis. For the "supersonic" case $M_e > 1$ the function F_1 becomes

$$F_{1} = -\cos \mu_{e} a_{p} \cos \left\{ k_{1} m_{1} \frac{\sin \mu_{e}}{\cos (\alpha + \mu_{e})} (X - Y \cot \mu_{e}) \right\}$$
(70)

where

$$a_{p} = \frac{\left(\frac{C_{s}}{A}\right) \Omega \sin \alpha - \Omega_{2} \cos \alpha}{\left(\frac{C_{s}}{A}\right) (\tilde{A} \sin \alpha - \cos \mu_{e}) - B \cos \alpha} \cdot R_{s}$$

$$\alpha = \arctan \left\{ -\cot \left(\delta - \frac{U_{1}}{U}\right) \right\}$$

$$\mu_{e} = \arcsin \left\{ -\frac{\cos \alpha}{M} \right\}$$

The local displacement of the shock is given by

$$\Psi = \dot{v}_{\psi} \sin \left(k_1 m_1 y^{\prime} \right) \tag{71}$$

where

$$k_{1}m_{1}b_{\psi} = \frac{\left(\frac{A_{1}}{\pi_{21}}\right)\sin\alpha - \left(\frac{A_{21}}{\pi_{21}}\right)\cos\mu_{e}}{\left(\frac{C}{-\frac{s}{A}}\right)(\widetilde{A}\sin\alpha - \cos\mu_{e}) - B\cos\alpha} \cdot R_{s}$$

The vorticity – generating function f (Y) and the entropy are given by:

$$f(Y) = \left(\alpha_{U} + \frac{\alpha_{p}}{M_{e}}\right) \cos \left(\frac{\nu_{m_{1}}}{Y/\cos \alpha}\right)$$
(72)

and

$$s(Y) = a_{s} \cos(k_{1} m_{1} Y/\cos \alpha)$$
(73)

where

$$\mathbf{a}_{U} = \left\{ \widetilde{A} \left(\frac{C_{s}}{A} \right) \cos \alpha + B \sin \alpha \right\} \pi_{21} \left(k_{1} m_{1} b_{\psi} \right) - \lambda_{31} R_{s} \cos \alpha$$

and

$$a_{s} = \Lambda_{11} R_{s} - \pi_{11} \left(\frac{C_{s}}{A} \right) (k_{1} m_{1} b_{\psi})$$

For the "subsonic" case $M_e < 1$, the function $g(\eta)$ is given by

$$\frac{g(\eta)}{2\pi} = \frac{1}{\pi} \frac{\sqrt{1-M_e^2}}{M_e} \left\{ a_p \cos\left(k_1 m_1 \frac{\eta}{\sqrt{1-M^2}}\right) + b_p \sin\left(k_1 m_1 \frac{\eta}{\sqrt{1-M^2}}\right) \right\}$$
(74)

where

$$a_{p} = \left\{ \widetilde{A} \quad \frac{C}{s} \quad \sin \alpha - B \cos \alpha \right\} \times \left\{ \frac{\Omega_{1}}{A} \quad \frac{C}{s} \quad \sin \alpha - \Omega_{2} \quad \cos \alpha}{\left\{ \widetilde{A} \quad \frac{C}{s} \quad \sin \alpha - B \cos \alpha \right\}^{2} + \frac{1 - M_{e}^{2}}{M_{e}^{2}} \left(\frac{C}{s} \right)^{2}} \cdot R_{s} \right\}$$

and

.

I

I

I

1

Ē

ĺ

Without

POWER AND

httpaset 11 mil

A NUMBER OF TAXABLE PARTY

I

$$b_{p} = \frac{\Omega_{2} \cos \alpha - \Omega_{1} - \frac{C}{s} \sin \alpha}{\left\{ \widetilde{A} - \frac{C}{s} - \frac{1 - M_{1}^{2}}{A} - \frac{1 - M_{e}^{2}}{S} + \frac{1 - M_{e}^{2}}{N_{e}^{2}} - \frac{C}{A} - \frac{1 - M_{e}^{2}}{N_{e}^{2}} - \frac{C}{S} - \frac{1 - M_{e}^{2}}{M_{e}} - \frac{C}{S} - \frac$$

The local shock displacement is

$$\Psi = a_{\psi} \cos(k_1 m_1 y') + b_{\psi} \sin(k_1 m_1 y')$$
 (75)

where

$$k_{1}m_{1}\alpha_{\psi} = \frac{1}{\frac{\pi}{21}} \frac{\Omega_{2} \cos \alpha - \Omega_{1} \frac{C_{s}}{A} \sin \alpha}{\left\{ \widetilde{A} \frac{C_{s}}{A} \sin \alpha - B \cos \alpha \right\}^{2} \div \frac{1 - M_{e}^{2}}{M_{e}^{2}} \left(\frac{C_{s}}{A} \right)^{2}} \cdot \frac{\sqrt{1 - M_{e}^{2}}}{M_{e}} \cdot R_{s}$$

and

$$k_{1}m_{1}b_{\psi} = \frac{1}{\frac{\pi}{21}} \frac{\Lambda_{21} \frac{s}{A} \frac{1-M_{e}^{2}}{M_{e}^{2}} + \Lambda_{31} \sin \alpha \left\{ \widetilde{A} \frac{s}{A} \frac{s}{A} \sin \alpha - B \cos \alpha \right\}}{\left\{ \widetilde{A} \frac{s}{A} \frac{s}{A} \sin \alpha - B \cos \alpha \right\}^{2} + \frac{1-M_{e}^{2}}{M_{e}^{2}} \left(\frac{s}{A} \right)^{2}} + \frac{R_{s}}{M_{e}^{2}} \left(\frac{s}{A} \right)^{2}}$$

Finally, the vorticity and entropy generating functions are given, respectively, by

$$f(Y) = \left(a_{U} + \frac{a_{P}}{M_{e}}\right) \cos\left(k_{1}m_{1} + \frac{Y}{\cos a}\right) - \left(b_{U} + \frac{b_{P}}{M_{e}}\right) \sin\left(k_{1}m_{1} + \frac{Y}{\cos a}\right)$$
(76)

and

i

1

Marrie School

Puratedes -----

-

THE PARTY OF

Concerns - - Marine

The second second

ŧ

$$s(Y) = a_s \cos\left(k_1m_1 \frac{Y}{\cos a}\right) - b_s \sin\left(k_1m_1 \frac{Y}{\cos a}\right)$$

where

$$a_{s} = \Lambda_{11} R_{s} - \pi_{11} \left(\frac{C_{s}}{A}\right) (k_{1}m_{1}b_{\psi})$$
$$b_{s} = \pi_{11} \left(\frac{C_{s}}{A}\right) (k_{1}m_{1}a_{\psi})$$

By rewriting the solution in the original physical coordinates, i.e., the x, y, τ reference frame, the three modes can be expressed explicitly. For $M_e > 1$,

$$p = a_{p} \cos k_{p} \left\{ (1 + M \cos \theta_{p}) \tau - (l_{p} x + m_{p} y) \right\}$$
(77)

$$s = a_{s} \cos k \left(\boldsymbol{l} M \tau - (\boldsymbol{l} \times + m \gamma) \right)$$
(78)

$$\frac{\omega}{A} = \left\{ -k \left(\alpha_{U} + \frac{\alpha_{p}}{M_{e}} \right) \right\} \sin k \left\{ \boldsymbol{l} M \tau - (\boldsymbol{l} \times + m \gamma) \right\}$$
(79)

where

$$k_{p} = k_{1} \left(\frac{m_{1}}{m_{p}} \right)$$

$$k_{p} = \cos \theta_{p} = \sin (\alpha + \mu_{e})$$

$$k = k_{1} (m_{1}/m)$$

$$k = \sin \alpha$$

For $M_e < 1$, the three modes are given by

$$p = e^{-x/d} \left\{ a_{p} \cos k_{p} \left['' + M \cos \theta_{p} \right] \tau - (\boldsymbol{l}_{p} \times + m_{p} \gamma) \right] + b_{p} \sin k_{p} \left[(1 + M \cos \theta_{p}) \tau - (\boldsymbol{l}_{p} \times + m_{p} \gamma) \right] \right\}$$
(80)

$$s = a_{s} \cos k \left[\boldsymbol{\ell} M \tau - (\boldsymbol{\ell} x + m y) \right] - b_{s} \sin k \left[\boldsymbol{\ell} M \tau - (\boldsymbol{\ell} x + m y) \right] \quad (81)$$

$$\frac{\omega}{A} = -k \left\{ \left(\alpha_{U} + \frac{\alpha_{p}}{M_{e}} \right) \sin k \left[\boldsymbol{l} M \tau - \left(\boldsymbol{l} \times + m y \right) \right] + \left(b_{U} + \frac{b_{p}}{M_{e}} \right) \cos k \left[\boldsymbol{l} M \tau - \left(\boldsymbol{l} \times + m y \right) \right] \right\}$$
(82)

where

I

l

I

I

I

I

Ī

$$k_{p} = k_{1} (m_{1}/m_{p})$$

$$l_{p} = \frac{\left(\frac{M^{2}}{1-M^{2}}\right) \tan \alpha}{\left[1 + \left(\frac{M^{2}}{1-M^{2}} \tan \alpha\right)^{2}\right]^{1/2}}$$

$$k = k_{1} (m_{1}/m)$$

$$l = \sin \alpha$$

and

$$d = \frac{1 - M^2}{\kappa_1 M_1 (1 - M_e^2)^{1/2}}$$

The amplitudes of the wave generated at a given value of the shock strength are functions of δ , the inclination of the incoming disturbance. For $M_e < 1$, the amplitudes of the flow parameters refer to values immediately after the shock.

Now that the expressions are available for the downstream flow perturbations due to the interaction of a single Fourier component of entropy with a normal shock, the corresponding random field can be constructed. The method follows that used by Ribner to treat the case of a convected field of vorticity interacting with a shock. Just as Ribner used an aggregate of vorticity waves with a suitable distribution of amplitudes among the various wave lengths and inclinations to represent a turbulent field, so can an aggregate of entropy waves represent a random field of entropy spots.

4.2 The Random Field

Following Ribner, (Reference 7), expressions are next derived for the root-mean-square amplitude of the downstream pressure field generated by a random field of entropy waves (of given rum.s. amplitude) interacting with a normal shock.

In general vector notation, and referring to any general physical quantity η , an elementary spectrum wave (harmonic component) is also expressible as:

$$d\eta = dZ_{\eta} e^{i\underline{k} \cdot \underline{x}}$$
(83)

where k is the wavenumber vector directed normal to the wavefronts and of magnitude $2 \pi / \lambda$ (Figure 41), and d Z_{η} is the complex amplitude of the wave. When η stands for a scalar quantity (such as temperature, density, entropy, or pressure), these are simple scalar waves.

The mean square level of a random disturbance η is

$$\overline{\eta^2} = \int [\eta \eta] dk$$
(84)

where $[\eta \ \eta]$ is the spectral density, and $[\eta \ \eta]$ is in turn related to the complex amplitude d Z_n (k) and its complex conjugate by:

$$\left[\eta \eta \right] d \underline{k} = \overline{d Z^{*}_{\eta} (\underline{k}) d Z_{\eta} (\underline{k})}$$
(85)

For the specific case of random upstream entropy disturbances generating downstream pressure disturbances, the oncoming entropy wave is expressible as

$$ds = dZ_{s} e$$
(86)

and the downstream pressure disturbance as

$$dp = dZ_{p} e^{-i\frac{k}{2} \cdot \frac{x}{2}}$$
(87)

and the direction of the wavevector for pressure is normal to the wavefronts of sound. The pressure wave amplitudes and entropy wave amplitudes are connected by the transfer function

$$d Z_{p} = P_{s} d Z_{s}$$
(88)

where P_s is the single-wave transfer function between entropy and pressure, which is wavenumber dependent.

The desired r.m.s. pressure fluctuation will be given by

$$\overline{p^2} = \int [p p] d \underline{k}$$
(89)

Through Equations (85) and (88),

$$\left[p p\right] d I = \left| P_{s} \right|^{2} \quad \overline{d Z_{s}^{*} d Z_{s}}$$
(90)

and

$$\overline{p^2} = \int \left| \frac{P_s}{s} \right|^2 [s s] d \underline{k}$$
(91)

This relates the r.m.s. pressure fluctuation to the spectral density of the oncoming entropy field and the wavenumber-dependent transfer function. For an isotropic field of oncoming entropy waves (i.e., a scalar field with spherical symmetry), the spectral density has the general form

$$[ss] = k^2 F(k)$$
(92)

where F(k) is an arbitrary function of k that will finally cancel cut in forming ratios.

Going over the spherical polar coordinates, the wavenumber components are

$$k_1 = -k \sin \delta$$

$$k_2 = k \cos \delta \cos \phi$$

$$k_3 = k \cos \delta \sin \phi$$

and

1

3

Ĩ

1

$$dk = \kappa^2 \cos \delta \, dk \, d\varphi \, d\delta \tag{93}$$

Then the r.m.s. pressure fluctuation becomes

$$\overline{p^{2}} = \int_{0}^{\infty} k^{2} F(k) dk \int_{0}^{2\pi} d\phi \int_{-\pi/2}^{+\pi/2} \left| \frac{P}{s} \right|^{2} \cos \delta d\delta$$
(94)

Also, the r.m.s. entropy fluctuation is

$$\overline{s^2} = \int [s s] d\underline{k} = \int_{0}^{\infty} k^2 F(k) dk \int_{0}^{2\pi} d\phi \int_{-\pi/2}^{+\pi/2} \cos \delta d\delta \qquad (95)$$

Therefore, the ratio of r.m.s. pressure fluctuation to r.m.s. entropy fluctuation produced by an isotropic field of entropy waves is

$$\overline{p^2}/\overline{s^2} = \int_0^{\pi/2} \left| \frac{P_s}{s} \right|^2 \cos \delta \, d\delta$$
(96)

including entropy waves of all wavelengths and orientations.

The required single wavenumber transfer function was defined, in Equation (88), as the ratio d $Z_p/d Z_s$, the ratio of the complex amplitude of c single harmonic pressure wave to the complex amplitude of the single harmonic entropy wave that produced it. Its absolute value $|P_s|$ will be obtained from section 4.1. The absolute value of the upstream entropy wave amplitude is obtained from Equation (69); and those of the downstream pressure fluctuation, from Equation (80) for the subsonic case, and from Equation (77) for the supersonic case. It must be remembered that the point of transition from subsonic to supersonic case is also a function of vector wavenumber k through the wave inclination δ .

For the supersonic case, $M_e > 1$, the transfer function is:

$$P_{s}|^{2} = \frac{|p|^{2}}{|s|^{2}} = \left(\frac{a_{p}}{R_{s}}\right)^{2}$$
 (97)

and for the subsonic case, $M_{e} < 1$, the transfer function is:

$$\left| \mathbf{P}_{s} \right|^{2} = \frac{\left| \mathbf{p} \right|^{2}}{\left| \mathbf{s} \right|^{2}} = \left(\frac{\mathbf{a}_{p}}{\mathbf{R}_{s}} \right)^{2} + \left(\frac{\mathbf{b}_{p}}{\mathbf{R}_{s}} \right)^{2}$$
(98)

where the amplitude components a_p/R_s and b_p/R_s are given for the supersonic case by:

$$\frac{\alpha}{R_{s}} = \frac{\left(\frac{C_{s}}{A}\right)\Omega_{1}\sin\alpha - \Omega_{2}\cos\alpha}{\left(\frac{C_{s}}{A}\right)\left(\widetilde{A}\sin\alpha - \cos\mu_{e}\right) - B\cos\alpha}$$
(99)

and for the subsonic case by:

ŧ

1

ŧ

ŧ

$$\frac{\alpha}{R_{s}} = \left\{ \widetilde{A} \quad \frac{C_{s}}{A} \quad \sin \alpha - B \cos \alpha \right\} \frac{\Omega_{1}}{\left\{ \widetilde{A} \quad \frac{S_{s}}{A} \quad \sin \alpha - B \cos \alpha \right\}^{2} + \frac{1 - M_{e}^{2}}{M_{e}^{2}} \left(\frac{C_{s}}{A} \right)^{2}}$$

$$\left\{ \widetilde{A} \quad \frac{S_{s}}{A} \quad \sin \alpha - B \cos \alpha \right\}^{2} + \frac{1 - M_{e}^{2}}{M_{e}^{2}} \left(\frac{C_{s}}{A} \right)^{2}$$
(100)

$$\frac{\frac{b}{P}}{\frac{R_{s}}{R_{s}}} = \frac{\frac{\Omega_{2}}{2} \cos \alpha - \left(\frac{C_{s}}{A}\right)\Omega_{2} \sin \alpha}{\left[\widetilde{A}\left(\frac{C_{s}}{A}\right)\sin \alpha - B\cos \alpha\right]^{2} + \frac{1 - M_{e}^{2}}{M_{e}^{2}}\left(\frac{C_{s}}{A}\right)^{2}} - \frac{\sqrt{1 - M_{e}^{2}}}{M_{e}^{2}}\left(\frac{C_{s}}{A}\right)^{2}}{\left(\frac{1 - M_{e}^{2}}{M_{e}}\right)^{2}}$$
(101)

From the complexity of the expressions for the transfer functions in both Mach number regions (mainly the form of their sependence on wave inclination δ), as well as the fact that the boundary of validity of the two expressions also depends on S, then a numerical integration of Equation (96) will be involved in applying these expressions

to obtain numerical results. Qualitative conclusions which may be drawn from the equations themselves include:

- 1) When $M_e > 1$, the waves generated downstream are in phase with the incoming disturbance, but when $M_e < 1$ there is a phase shift across the shock.
- 2) When $M_e > 1$, the pressure waves generated have a permanent waveform, but when $M_e < 1$ they decay with distance. At a fixed value of shock strength the absorption distance d is a function of the inclination of the oncoming disturbance δ , larger values of δ (or oncoming wave fronts more nearly normal to the shock) corresponding to shorter absorption distances. Increasing shock strengths also result in increasing decay rate with distance from the shock.

5.0 CONCLUSION AND RECOMMENDATIONS

The strength of the pressure disturbance generated by an entropy disturbance interacting with a shock wave depends strongly upon the inclination angles of the entropy wavefront and of the shock. For every flc v condition there is a region of entropy disturbance angles for which an "effective Mach number" in the flow is subsonic, and the pressure wave amplitudes decay with distance from the shock, part of the disturbance energy being fed back into the shock. For all other entropy disturbance angles, the "effective Mach number" is supersonic and the pressure disturbance propagates at constant amplitude. Entropy disturbance angles encountered in practice will depend upon the source of the disturbances, but will most often be a mixture of all angles, so that part of the generated pressure field will propagate as acoustic waves while the remainder decays with distance.

Example estimates, based on flight conditions typical for launch vehicles and supersonic cruise vehicles, and using entropy disturbance inputs typical for boundary layers, show pressure fluctuation magnitudes larger than for boundary layer noise and equal to those produced by shock-turbulence interactions. Therefore, the entropy-shock interaction can cause serious levels of fluctuating pressure and should be explored further.

The large density fluctuations measured in superscnic wakes, and the persistence of the density fluctuations over large downstream distances, make wakes of upstream protuberances on launch vehicles particularly suspect if there are standing shocks downstream. Since several of the trends and conclusions in Reference 2 are subject to revision, the possibility of resonant oscillations of standing shocks (driven by entropy-shock interactions and by acoustic reflections between the body and the shock) should be re-examined.

Regarding entropy fluctuations in jets, the citea data (for a subsonic, heated jet) showed maximum values almost an order of magnitude larger than those used in the sample predictions. In a hot, supersonic rocket exhaust with oblique shocks, the shock-entropy interaction could be a major source of noise. Typical entropy fluctuation magnitudes and shock conditions for rocket exhausts should be applied to estimate the importance of this interaction as a noise source, compared to the strengths of other sources present.

As foundation for further assessment of the pressure fields from shock-entropy interactions, the analysis methods should be based on improved models of the actual flows. The first step would be to complete the random entropy field case, since a random field of entropy spots could then be represented by a field synthesized from all wavelengths and orientations of harmonic components. Previous work has concentrated upon one of the three modes at a time (entropy, vorticity, sound) interacting with a shock, the present being no exception. Yet natural flows contain all three riodes, with one sometimes dominant; and in an experiment it is difficult to generate significant entropy or vorticity fluctuations without also generating the other. The four dation exists (in Reference 2) for obtaining the downstream perturbed flow field from an upstream flow containing all three modes, without superposing individual solutions. Experimental data suggest that temperature disturbances are negatively correlated with velocity disturbances. Then the combined effect of temperature and velocity fluctuations interacting with a shock would not be a simple addition of the results for each, but must consider the cross-terms arising in the interaction. The combined result for a spatially homogeneous field of temperature and vorticity discontinuities, plus sound waves, interacting with a shock should be determined.

REFERENCES

- Morkovin, M. V., "Note on the Assessment of Flow Disturbances at a Blunt Body Traveling at Superscrite Speeds Owing to Flow Disturbances in Free Stream," J. Applied Mech., ASME Trans. No 60-APM-10 (1960).
- Morkovin, M. V., "On Supersonic Wind Tunnels with Low Free-Stream Disturbances," J. Applied Mech., ASME Trans. No. 59-APM-10 (1959).
- Adams, M. C., "On Shock Waves in Inhomogeneous Flow," J. Aero. Sci. 16, 11, 685–690 (1949).
- Lighthill, M. J., "The Flow Behind a Stationary Shock," <u>Phil. Mag. 40</u>, Ser. 7, No. 301, 214–220 (1949).
- Chu, B. T., "On Weak Interaction of Strong Shock and Mach Waves Generated Downstream of a Shock," J. Aero. Sci. 19, 7 (1952).
- 6. Ribner, H. S., "Convection of a Pattern of Vorticity Through a Shock Wave," NACA Report 1164 (1954).
- 7. Ribner, H. S., "Shock-Turbulence Interaction and the Generation of Noise," NACA Report 1233 (1955).
- 8. Moore, F. K., "Unsteady Oblique Interaction of a Shock Wave with a Plane Disturbance," NACA Report 1165 (1954).
- 9. Lowson, M. V., "The Fluctuating Pressures Due to Shock Interactions with ⁷urbulence and Sound," NASA CR-77313 (June 1966).
- 10. Chang, C.-T., "On the Interaction of Weak Disturbances and a Plane Shock of Arbitrary Strength in a Perfect Gas," Ph.D. Thesis, Johns Hopkins University (1955).
- 11. Chang, C.-T., "Interaction of a Plane Shock and Oblique Plane Disturbances with Special Reference to Entropy Waves," J. Aero. Sci. 24, 675–682 (1957).
- 12. "Equations, Tables, and Charts for Compressible Flow," NACA Report 1135 (1953).
- 13. Personal Communication, E. Cuadra 10 M. V. Morkovin (August 3, 1967).
- Corrsin, S., and M. S. Uberoi, 'Further Experiments on the Flow and Heat Transfer in a Heated Turbulent Air Jet," NACA Report 998, 1950. (Supersedes NACA TN 1865, 1949).

- 15. Novasznay, L.S.G., "Turbulence in Supersonic Flow," Jour. Aero Sciences 20, 10 657–682, October 1953.
- 16. Kovasznay, L.S.G., "Interaction of a Shock Wave and Turbulence," Proc. Heat Transfer and Fluid Mechanics Inst., 1955.

Bellissianillet

- 17. Kistler, A. L., "Fluctuation Measurements in a Supersonic Turbulent Boundary Layer." Physics of Fluids 2, 3, 290–296, 1959.
- 18. Demetriades, A., "Turbulence Measurements in an Axisymptetric Compressible Wake," Philco-Ford Corporation Technical Report No. UG-4118, August 1, 1967.
- Clay, W. G., Heerman, J., and R. E. Slatterv, "Statistical Properties of the Turbulent Wake Behind Hypervelocity Spheres," Physics of Fluids 8, 10, 1792-1801, 1965.
- 20. Webb, W.H., "Self-Preserving Fluctuation and Scales for the Hypersonic Turbulent Wake," AIAA Journal 2, 11, 2031-2033, 1964.
- 21. Hamernik, B. P., "Interaction of an Advancing Shock Front with a Concentrated Heat (Entropy) Source, M.M.E. Thesis, Sy acuse University, January 1967.

ł

3

Figure 1. Basic Flow Coordinate Systems

Figure 2. Intrinsic Frame of Reference with Respect to Downstream Flow Field

Figure 3. Special Case of Parallel Shock and Entropy Wave, $(\delta - \epsilon) = \pi/2$

E

Ī

Į

Figure 5. Downstream Entropy Wave Amplitude, Normal Shock Case

Figure 6. Generated Pressure Disturbance, Normal Shock Case

E

I

ſ

 $\left[\right]$

ſ

C

C

[

Figure 8. Pressure Disturbance Referenced to Free-Stream Conditions, Normal Shock Case

Ī.

ſ

[]

BANKING AN

NING ... AND

Į

Transform 112

1

ļ

Ì

P

L

Ċ

Entropy Wave Inclination, δ - degrees

Figure 10. Effective Mach Number, Oblique Shock Case, Wedge Half-Angle $(\epsilon - \beta) = 4^{\circ}$

Entropy Wave Inclination, δ - degrees

Figure 11. Effective Mach Number, Oblique Shock Case, Wedge Half-Angle (ϵ - β) = 12°

Entropy Wave Inclination, δ – degrees

Figure 12. Effective Mach Number, Oblique Shock Case, Wedge Half-Angle $(\epsilon - \beta) = 30^{\circ}$

T

Contraction of the

-

Table 1

Tobal rate

ľ

Figure 13. Downstream Entropy Wave Amplitude, Oblique Shock Case, $\delta = 1^{\circ}$

Property 1

• 7

.

i

.1

Figure 14. Downstream Entropy Wave Amplitude, Oblique Shock Case, $\delta = 10^{\circ}$

Figure 15. Downstream Entropy Wave Amplitude, Oblique Shock Case, $\delta = 30^{\circ}$

Upstream Mach Number, M1

Figure 16. Downstream Entropy Wave Amplitude, Oblique Shock Case, $\delta = 50^{\circ}$

Figure 17. Downstream Entropy Wave Amplitude, Oblique Shock Case, $\delta = 80^{\circ}$

Figure 18. Downstream Entropy Wave Amplitude, Oblique Shock Case, $\delta = 89^{\circ}$

Figure 19. Downstream Entropy Wave Magnitude, Oblique Shock Case, M₁ = 3

l

I

Į

Į

ſ

Entropy Wave Inclination, 6 - degrees

Ĩ

Constantion of the second

Ĩ

I

Lander

Ľ

Managements.

ł

41.801.91.5

Sundafire Hires

I

1

in the second

Lingung

I

HERITARY

E

E

THE PARTY OF

Upstream Mach Number, M1

Figure 23. Generated Pressure Disturbance, Oblique Shock Case, $\delta = 10^{\circ}$

Upstream Mach Number, M1

Upstream Mach Number, M₁

Figure 25. Generated Pressure Disturbance, Oblique Shock Case, $\delta = 60^{\circ}$

Upstream Mach Number, M₁

Figure 26. Generated Pressure Disturbance, Oblique Shock Case, $\delta = 70^{\circ}$

Figure 27. Generated Pressure Disturbance, Oblique Shock Case, $\delta = 80^{\circ}$

Figure 29. Generated Pressure Disturbance, Oblique Shock Case, M₁ = 3

Figure 30. Generated Pressure Disturbance, Oblique Shock Case, M₁ = 6

Contract contract of the second se

Interior in the local date

Pursients

Γ

Figure 31. Generated Pressure Disturbance, Oblique Shock Case, M₁ = 10

Figure 32. Generated Vorticity, Oblique Shock Case, $\delta = 1^{\circ}$

i

And a state of the state of the

Figure 34. Generated Vorticity, Oblique Shock Case, $\delta = 80^{\circ}$

ſ.

Upstream Mach Number, M1

Figure 35. Generated Vorticity Oblique Shock Case, $\delta = 89^{\circ}$

Upstream Mach Number, M1

Figure 36. Pressure Disturbance Referenced to Free-Stream Conditions, Oblique Shock Case, $\delta = 1^{\circ}$

the debut

The Barry of Contract

L. L.F. William

Figure 37. Pressure Disturbance Referenced to Free-Stream Conditions, Oblique Shock Case, $\delta = 70^{\circ}$

Figure 38. Pressure Disturbance Referenced to Free–Stream Conditions, Oblique Shock Case, $\delta = 80^{\circ}$

Figure 39. Pressure Disturbance Referenced to Free–Stream Conditions, Oblique Shock Case, $\delta = 89^{\circ}$

Figure 40. Interpretation for Separation Shocks Before Conical Transitions

Figure 41. Shock Interaction Diagram For Simple Harmonic Entropy Waves

Ì

1

į

ĺ

APPENDIX A

. COMPUTER PROGRAM TO CALCULATE VARIOUS QUANTITIES ASSOCIATED WITH SHOCK ENTROPY INTERACTION

By

David M. Lister

APPENDIX A

COMPUTER PROGRAM TO CALCULATE VARIOUS QUANTITIES ASSOCIATED WITH SHOCK ENTROPY INTERACTION

Contents:

Definition of Input Formats

Definition of Output Alternatives

Diagrams of Coordinate Systems Used

Sections:

Servin 1

- coming

Sections!

Same and

-

ŝ.

- A.1 Definition of Mathematical Equations Used
- A.2 Definition of Symbols Used
- A.3 Flow Diagrams
- A.4 Fortran Listing of Program
- A.5 Example of Results

Definition of Input Format

Quantities input are:

- (1) The date of the run, e.g. 10/23/67, columns 1 through 8, format 2A4
- (2) $s_{,\epsilon,\beta}, M_{1}, \gamma, \delta, A_{1}, ISW, ISW2$ format 7F10.0, 215
- (3) Repeat: (2) for as many inputs as required.

Note that the quantities s_1 through A_1 are defined in Section A.2.

If $\gamma \leq 0$ then the run is terminated

If ISW > 1 then " δ^* " routine omitted

If ISW2 = 0 then full anotated output is obtained

If $ISW2 \neq 0$ then the results for this case will appear only in the summary tables.

Detinition of Output Alternatives

For each set of input data a full set of annotated results is output if ISW2 = 0 (see Section A.5).

At the end of each run or when the number of sets of input data equals a multiple of fifty, tables of the variable sets of input data with their calculated output quantities are printed (see Section A.5).

Note that all angles are quoted in degrees and radians.

A.1 SHOCK ENTROPY INTERACTION

The given input quantities to the program are:

$$M_1, \epsilon, \beta, \gamma, A_1, s_1$$

T

ĺ

Automatica.

£1

C

ſ

C

(International

E

ſ

[

And the state of t

l

The equations used to compute the various required quantities are:

(1)
$$\chi = -\frac{P_{m}}{P_{1m}} = -\frac{7 N_{1}^{2} - 1}{6}$$

(2) $M = \sqrt{\left(\frac{N_{1}^{2} + 5}{7 N_{1}^{2} - 1}\right) / \sin^{2}\beta}$
(3) $-\frac{A}{A_{1}} = \sqrt{-\frac{(7 N_{1}^{2} - 1) (N_{1}^{2} + 5)}{36 N_{1}^{2}}}$
(3.12) $\sqrt{A_{11}} = -\left(\frac{P_{m}}{P_{1m}}\right)^{2} \left(\frac{N}{N_{1}}\right)^{2} - (\gamma - 1) \left(1 - \frac{P_{m}}{P_{1m}}\right) N^{2}$ (19)
 $A_{21} = -\frac{N^{2}}{1 - N^{2}} \left\{ \left(1 - \frac{P_{m}}{P_{1m}}\right) \left[1 + (\gamma - 1) N^{2}\right] + \left[1 - \left(\frac{P_{m}}{P_{1m}}\right)^{2} \left(\frac{N}{N_{1}}\right)^{2}\right] \right\}$
 $A_{31} = -\frac{-N}{1 - N^{2}} \left\{ \left[1 - \left(\frac{P_{m}}{P_{1m}}\right)^{2} \left(\frac{N}{N_{1}}\right)^{2}\right] + \left(1 - \frac{P_{m}}{P_{1m}}\right) \gamma N^{2} \right\}$
 $A_{12} = -(\gamma - 1) \left(1 - \frac{P_{m}}{P_{1m}}\right) \left(1 - \frac{1}{N_{1}^{2}} - \frac{P_{m}}{P_{1m}}\right) N^{2}$

A5

$$\begin{array}{rcl} (3.14) & \mathsf{N} &= & \mathsf{M}\sin\beta & (20) \\ (3.18) & \frac{\mathsf{P}_{\mathsf{fm}}}{\mathsf{P}_{\mathsf{fm}}} &= & \frac{6\,x+1}{x+6} \\ (3.13) & \mathsf{N}_{\mathsf{I}} &= & \mathsf{M}_{\mathsf{I}}\sin\varepsilon & (20) \\ (4) & \mathsf{A} &= & \left(\frac{\mathsf{A}}{\mathsf{A}_{\mathsf{I}}}\right)\,\mathsf{A}_{\mathsf{I}} & (20) \\ (5) & \mathsf{U} &= & \mathsf{M}\mathsf{A} & (5.1) & \mathsf{U}_{\mathsf{I}} &= & \mathsf{M}_{\mathsf{I}}\mathsf{A}_{\mathsf{I}} & (24) \\ (5.1) & \mathsf{U}_{\mathsf{I}} &= & \mathsf{M}_{\mathsf{I}}\mathsf{A}_{\mathsf{I}} & (24) \\ (6.01) & \mathsf{C}_{\mathsf{S}} &= & \frac{\cos5}{\cos\left(6-\varepsilon\right)}\,\,\mathsf{U}_{\mathsf{I}} & (24) \\ (6.10) & \mu_{\mathsf{e}} &= & \arcsin\left(\frac{1}{\mathsf{M}_{\mathsf{e}}}\right) & (45$$

1

1-1-10-004

ľ

ľ

11 mmmm,

l

(6a,b) $O = C_s \sin(\alpha - \beta) - U \sin \alpha$ $O = U_e \sin(\alpha - \beta) - U \sin \beta$, simultaneous (27)

Annalisia in the

- -

A7

(10)
$$D = \frac{1}{2} \frac{M_e}{\sqrt{! - M_e^2}} \left\{ \widetilde{A} \cos (\alpha - \beta) - G \sin (\alpha - \beta) \right\}$$

(11)
$$C = \left\{ \begin{array}{l} \Omega_1 \cos (\alpha - \beta) - \Lambda_{21} G \sin (\alpha - \beta) \end{array} \right\} s_{-}$$

(12)
$$g(Y^*) = \frac{DC}{1+D^2}$$

Ţ

ļ

(13)
$$p \Big]_{x=0} = \frac{1}{2} \frac{M_e}{\sqrt{1 - M_e^2}} \left\{ g(Y^*) \right\}$$

(14)
$$\Psi_{Y} = \frac{p \int_{x^{\pm} 0} - \Lambda_{21} s}{\pi_{21} (M \cos \beta - C) / A_{1} \sin (\alpha - \beta)}$$

(15)
$$\left(\frac{d P_{+}}{\gamma d P_{m} M^{2}}\right) / \left(\frac{d T_{-}}{T_{m1}}\right) = \left(\frac{P_{+}}{s_{-}}\right) \frac{1}{M^{2}}$$

(16)
$$\left(\frac{d P_{+}}{\gamma P_{m1} M_{1}^{2}}\right) / \left(\frac{d T_{-}}{T_{m1}}\right) = \left(\frac{P_{+}}{s_{-}}\right) \frac{X}{M^{2}}$$

(20)
$$\theta' = \pi - \epsilon - (\alpha - \beta)$$

(21)
$$\tan(\delta^*) = \left[\frac{U_1}{C_s} - \cos\epsilon\right]/\sin\epsilon$$

(22)
$$\alpha = \arctan \left[\frac{C_s \sin \beta}{C_s \cos \beta - U} \right]$$

(23)
$$\theta'' = \arcsin\left[\frac{U\sin\beta}{A}\right]$$

(24)
$$AC^2 = U^2 + A^2 - 2U \left\{ U\sin^2\beta - \cos\beta \sqrt{A^2 - U^2\sin^2\beta^1} \right\} = C_{s_1}^2$$

(54)

(55)

(25) BC =
$$2 A \cos \theta'' = 2 \sqrt{A^2 - U^2 \sin^2 \beta}$$

(26) AB = AC - BC i.e., $C_{s_2} = C_{s_1} - BC$

Note that the equation numbers on the left hand side are those referred to by the flow charts (Section A.3) and those on the right hand side are those used by E. Cuadra in the report.

Derivation of Equations 23 through 26

Ċ

To findAB and ACi.e., CS2 and CS1Given
$$B\widehat{A}D = \beta$$
 $\widehat{AD} = U$ $BD = DC = A$ Let $D\widehat{B}C = D\widehat{C}B = \theta$ Consider ΔDBC then $\widehat{CDB} = 180 - 2\theta$ Consider ΔCDA then $\widehat{CDA} = 180 - \beta - \theta$

Apply the cosine rule to \triangle CDA

$$AC^2 = U^2 + A^2 - 2AU \cos(180 - \beta - \theta)$$

Apply the sine rule to ΔCDA

$$\therefore \frac{A}{\sin \beta} = \frac{U}{\sin \beta}$$

$$\therefore \sin \theta = \frac{U \sin \beta}{A}$$

$$\therefore \cos \theta = \sqrt{\frac{A^2 - U^2 \sin^2 \beta}{A}}$$

$$A C^2 = U^2 + A^2 - 2 U \left[U \sin^2 \beta - \cos \beta \sqrt{A^2 - U^2 \sin^2 \beta} \right]$$
From ΔDBC

$$BC = 2A \cos \theta = 2 \sqrt{\left[A^2 - U^2 \sin^2 \beta\right]} \quad \text{and}$$

$$AB = AC - BC$$

Now

(initial)

$$\theta = \sin^{-1} \left[\frac{U \sin \beta}{A} \right]$$

$$\alpha_1^* = 180 - C\widehat{D}A$$

$$= 180 - (180 - \beta - \theta)$$

$$= \beta + \theta$$

$$\alpha_2^* = \beta + 180 - \theta$$

A.2 TABLE OF SYMBOLS, THEIR COMPUTER CODE EQUIVALENTS AND DEFINITIONS

Symbol	Computer Code	Description
M	EM1	Upstream flow Mach number .
E	ETA EE EV(!C)	Shock wave angle, referenced to the x _i – axis.
β	BETA BB B∨(IC)	Angle between the shock wave and the downstream mean flow velocity vector.
*	GAMMA	Ratio of specific heats.
5	DELTA DV(ISW, IC) DD DDV(IC)	Inclinction of upstream entropy wave with respect to main flow direction.
A	A.1	Speed of sound in the flow field upstream of the shock.
s_	SM SMV(IC)	Dimensionless mcgnitude of the upstream entropy pertubation.
N	EN1 ENIV(IC)	Upstream Mach number corresponding to a normal shock of equivalent strength.
x	CHI CHIV(IC)	Shock strength in terms of the ratio of pressure of the unperturbed flow across the shock.
M	EM	Downstream flow Mach number.
N	٤N	Cownstream Mach number corresponding to a normal sheck of equivalent strength.
Pm/Pim	RORAT	Density ratio across the shock, downstream to upstream.
A/A _l	AR AT	Ratio of acoustic velocities across the shock, downstream to upstream.

A11

Symbol	Computer Code	Description
Uı	UI	Mean flow velocity dowristream of the shock.
A	Α	Speed of sound in the flow field upstream of the shock.
υ	U	Mean flow velocity downstream of the shock.
л _{іј} .	OMEGA(I, J)	Transfer coefficients for the interaction (see derivation in text).
πij	PI(I,J)	Transfer coefficients for the interaction (see derivation in text).
C s	CS CSV(ISW)	Drift speed of the upstream entropy wave along the shock
α	ALPHA AA AV(ISW,JC)	Inclination of U _e with respect to the downstream mean flow direction: U.
U _e	UE	Apparent mean flow velocity downstream of the shock with respect to an observer moving with $C_{\rm s}$.
M _e	EME EMEV(IC)	Effective Mach number corresponding to U _e .
۴e	EMEWE	Effective Mach angle corresponding to M _e .
Ã	ABAR	Ratio of transfer coefficients, π_{31}/π_{21} .
В	В	Ratio of transfer coefficients, $-\pi_{41}/\pi_{21}$
G	G	A nondimensional group in the solution for the Riemann invariants, case $M_g > 1$.
ລ	OMEG 1	A convenient grouping of transfer coefficients in the solution for the amplitude function $T_1(\delta)$.
Ω ₂	OMEG ?	A convenient grouping ot transfer coefficients in the solution for the amplitude function $T_2(\delta)$.

Symbol	Computer Code	Description
C s	CS 2 CSV(2) CS2V(IC)	Intersection of shock plane and sonic circle iying nearest the origin.
C s	CS 1 CSV(1) CS1V(IC)	Intersection of shock plane and sonic circle lying farthest from the origin.
T ₂ (8)	T 2D	An amplitude function required for the pressure perturbation solution, case $M_e > 1$ (s.a. report text).
Τ ₁ (δ)	TID	An amplitude function required for the pressure perturbation solution, case M _e >1 (s.a. report text).
q	Q	A dimensionless parameter related to the downstream pressure perturbation, one member of the pair making up the Riemann invariants (s.a. report text).
Ψ Υ	PSIY PSIYV(IC)	Local shock deflection owing to the interaction.
\$ +	SP SPV(IC)	Dimensionless magnitude of the downstream entropy perturbation.
P_+	PP PPV(IC)	Dimensionless magnitude of the (downstream) generated pressure perturbation.
U_+	UP UPV(IC)	Dimensionless magnitude of the (downstream) velocity perturbation component along downstream mean flow velocity vector.
V ₊	VP VPV(IC)	Dimensionless magnitude of the (downstream) velocity perturbation component normal to downstream mean flow velocity vector.
U*	US	Dimensionless magnitude of the (downstream) velocity perturbation, component along x * axis (along shock plane).
v *	VS	Dimensionless magnitude of the (downstream) velocity perturbation, component along y* axis (normal to shock plane).

î
Symbol	Computer Code	Description
υ _l	UL 1 UL1V(IC)	Dimensionless magnitude of the (downstream) velocity perturbation, component along x ₁ axis
٧ı	VL 1 VL1(IC)	Dimensionless magnitude of the (downstream) velocity perturbation, component along y ₁ axis.
f (Y)	FY FYV(IC)	Vorticity generating function (s.a. report text).
С	С	A convenient grouping in the solution for the equivalent source function g(Y*); s.a. report text.
g(Y*)	GYS	A function related to the strength of an equivalent source located on the shock plane (s.a. report text), case $M_e < 1$.
P(_x *=0)	PCS PCSV(IC)	Dimensionless pressure perturbation immediately behind the shock, for the case $M_e < 1$.
$\left(\frac{P_{+}}{s_{-}}\cdot\frac{1}{M^{2}}\right)$	ANG ANGV(IC)	Dimensionles: pressure perturbation referenced to local stream dynamic pressure.
$\left(\frac{P_{-}}{s_{-}}, \frac{X}{M^{2}}\right)$	ANC ANCV(IC)	Dimensionless pressure perturbation referenced to upstream (free stream) dynamic pressure.
θ'	TDD THETAD THDV(IC)	Enclosed angle between U _e and the x ₁ -axis.
D	D	A convenient grouping in the solution for the equivalent source function $g(Y^*)$, s.a. report text.
θ	THET	Enclosed angle between the shock plane and the radius vector of the sonic circle ending at the intersection of sonic circle and shock.
VORT	VORT VORTV(IC)	$\sqrt{u_1^2 + v_1^2}$

I

ł

Ì

Į

A!4

A.3 FLOW DIAGRAM

Read the date of the run Set the count of the number of cases equal to zero. (IC)

Ī

{]

E

allower and

A NUMBER OF

Constant of the

E

* Note that the value of ISW determines whether CS, CS1 or CS2 is being used to compute values of parameters in the latter part of the program.

Timmen of

1

Contraction of the local distribution of the

The second

S-Breaker

instanthier.

E

E

I

ſ

E

.

I

I

I

I

i ak ette

E

MUNESING)

E

Antonia anton

et de la companya

ſ

Ľ

E

ſ

ľ

A19

.1

Minister of

Ē

Ē

٦

r

Note that in the latest version of the program the δ^* routine is

1

- Alterity -

Flow Charts Continued

- Territory

1

ž

ĺ

Л

ŕ	A.4 FORTRAN LISTING OF PROGRAM
•	3200 FURIZAN (2.1.0)/(MIS) / /
	Marchan Murai
	UU = JUV = UFEGA(4,4), FI(4,4), CoV(2), CSI/(5U), CSZ/(2U), EV(5U), HV(5U),
	1 1.(20), EN1/(20), CHIV(20), D/(2.54), A/(2.50)
	ULA UN LUV(50). CHEV(50). SAV(50). SEV(50). PEV(50). VL1V(50). VL1V(50).
	1 * * (OU), ANGV (OU), AACV (OU), THUV (5), PSIVY (SU), PUS (OU), VUKIV (SU)
<u>.</u>	EJ11 (ALEOGE (US/(1),USL), (C:V(2),US2)
	201 r - 141 (244)
	· · · = U
- <u></u>	121 10=5.141242
	10=10+ <u>1</u>
	<u>1 (10-50) 400,400,/</u>
	400 - C+U (00,200) SM, HE, BM, E11, GAM4A, DD, A1 , ISW, ISW2
	(10 - 10.44) (7+10.0,215)
	1F (+5)/2.E8.0) 956,907
·	905 AMIIC(01,300)101, FE2
	SUP FUERAS (IUX) 2005HULK EFIKUPT INTERAUSIUN, 204, 244/)
	C N + C = M C / 1 C
· · · · · · · · · · · · · · · · · · ·	LELIA=UU+FIC/IOU.U
	ENTRY # 0 # ENT
	G = (10/-3)
1	22 LAND MUTRIAL TECHTECHTECH
 -	2C CALL TATILITY (0)
	LW1]F (69.400)
•	400 FURNAL (3X.1PHEND OF RUN)
7	CALL PFINITICIC)
	1C=1
	50 10 460
	123 SE=SIN(ETA)
	LE=GUS(ETA)
	SUSSIN(BETA)
	CH=COS(8+14)
<u> </u>	602 LURELIA-ETA)
	ir (AdS(CUME)-0.000001) 000,600,601
	EUN LU-UL+1.N
	LELIA=11+PIE/100.0
	Eu 11 662
	6,1 LU=CuS(DELIA)
	SU E=SIN(UELTA-ETA)
	SJ=SIN(UELTA)
	~~=U.U
	1=v.0
	1 NJ # CMI # 52
	UTL
	umiyulujaumi wum //
	<u> </u>
	27 (ビロナー40ピョ400) 400 400
	TUC TITE LOIDEUT
	UGU F.1998 - 1083 1080 1080 1080 1080 1080 1080 1080

State of the state

IJ

۲.

•	99 16 11
403	HT=SHRI(EM)
	e (20 1878)
	# <&(=((7,00+Ex1+Ex1-1,0)+(Ex1+Ex1+5.0))/(Ex1+Ex1+36.0)
	Ir (ARA1) 404.405.405
404	weile (61,321)
	CANAL (DX. 19MERAL IMALIVARY)
•	156 =1
	<u>et 14 11</u>
405	ARET=DERT(ARAI)
	A = NRA *A1
	U=n/1+4
	1 1 = 1.4
	U, 1 J=1,4
	2-3A((,J)=J,H
1	- ((1,J)=(0,0
-	1 3A(1,1)=(HJMAT+EV/C-1)++2-(GAMMA-1.0)+(1.0-HOHAL)+EN+EN
	L- SA(2,1)=(EV+EV/(1.0-EV+EN))+((1.0-R0(AT)+(1.0+(GAMMA-1.0)+EN+E.
1)+(1.U-(RUXAT#EN/E))++2))
1	
	$= (2.2) = -(EN + E \sqrt{(1.0 + E (1.0 + E \sqrt{(1.0 + E (1.0 + E \sqrt{(1.0 + E (1.0 + E \sqrt{(1.0 + E \sqrt{(1.0 + E (1.0 + E \sqrt{(1.0 + E (1.0 + E (1$
- 1	1.F+(_4AMAx-1,_0)+(1,0+dud4))+E_0+E_v))
-	(5,2) = (-5,2) = (-5,2) + (-5,2) = (-
1	HALLAND THE
4	- 1 (1, 3) = (1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +
	$= - \frac{1}{2} + $
	a seenemale at a construction of the second s
·	$(f_{1}, f_{2}, f_{2}) = (f_{1}, f_{2}) + (f_{2}, f_{2}) + (f_{2}, f_{2}) + (f_{1}, f_{2}) + (f_{1}, f_{2}) + (f_{2}, f_{2})$
	······································
	. ://A A)-J-1/A/A/A/
· · · · · · · · · · · · · · · · ·	
	на има има така така така или или или или или или или или или ил
_	
	· · · · · · · · · · · · · · · · · · ·
	A CAL THE LAND HAA
2	9. 1999 - 1977 - 1977 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199
	A 5+9 5(ALFMATOC)A/
	<u>. · · · · · · · · · · · · · · · · · · ·</u>
- <u> </u>	
	A HE FRANK CONSUMATION AND A CONSULT AND A CONSULT AND A CONSULT.
	<u></u>
	<u>1:,=2,0*A*CISTINEI/</u>
A	1. (MDD(FORTI))2. 10.0000000000000000000000000000000000
401	
4	# ************************************
	111E EVE 162,73,63
22	a (c Ar Friththat)
23	$\frac{\mu_{DNR}=\mu_{1}(S,1)/PI(2,1)}{2}$
•	Construct (Entrate) Privadel.07(CANd+CAdd)
	$- = - r_1 (4_1) / r_1 (2_1)$

•	(='/(b)+CH-Co/A)
	10 to 2= 1 MEGA (2,1) =H
	<u>1+1,5-1,51,10,9,9</u>
y	TINETVOLETIANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
15	
	estf(jt)=P(j)
	=+ ==+++++++++++++++++++++++++++++++
	<u>>+ v(v)=5t</u>
	->= ===================================
-	「「「「「「「「「」」」」)#SAMD#SK+(FILS)1)#(EM#UH=US/A)#SA(B+FIL4)1)#UAME)#SAM 10#(**))
······	1 = + + + + + + + + + + + + + + + + + +
	104 313
	5 Ut + 5410+ + + + CA1. +
····	=-U++LANB+/P+SAND
	1 1= S1+SH+VS1+CH
12	- 1 0 · 1 - 0 · + 0 · + 0 · + 0 · - 0 · · · 0 · · · 0 · · · · · · · ·
	r: (.u/=+Y
16	E TARRA CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONT
	- U (V () = HUS
	·····································
•	
<u>i0</u>	11 (05-052)12,13,15
13	
301	<u>, ternal(107,29h051 ch 0) ha CS2 - (10 MHAT),150,40MH =,620,107)</u>
561	- 10 ≠0 - :N ≠(5 +1
	Lo=LN(1SK)
	(AE) 196年月1月時(したまた長/しじきも19年は2)
	<u></u>
4 U ()	
<u>41</u>	
	$6_{2}(10K_{1})=A_{1}$
	-A=011.(FL+HF)
· · · · · · · · · · · · · · · · · · ·	
	UA = UF S(A) + HA = uF - A
	16 (nrt) à) 42, 43, 43
47	
4.	CUEURLIA+1AU.U/MIL
	57(156,1()=0).
	<u></u>
	SERVICE FOR STATE AND SERVICE
	анариана 1995 - Каранариана 1995 - Каранариана
······································	28 18 5 3
12	12 = (U) EOZALARA-OBELIA (2,1)= 3+ SARD)/ (ABARACANA-OBOAMB+UNE)
	1==1/0+1/ht+34
	<u>10115</u>

.ı

a statements

ासिम्बर में मन्द्रमीसिक्टन ब्रह्माल ने निर्देश किंग्रे मुनिस्त संस्कृति न - स्वयोगक -

•	3.3	/ H = 14 . U
		1×4 × 1)
		$\frac{1}{1} \frac{1}{1} \frac{1}$
		FF=U, ENA(2,1)+3M+F((2,1)+(U)+UB-03/R)+3AHB+(3)
·		C = C = C = C = C = C = C = C = C = C =
		11. ++ 5 + 1
		Constraints AMM
		1 × 1 = 0 + 0
		all the block
~ •		1.1V(1L)=L:1
· · ·	•	¥1.1=0.1
· · ·	· * _ ·	vi 1v(i()=Vi 1
		E Sur + P / P / P / P
<u> </u>	<u> </u>	
	٤	ABAP = F (S) LI / F (C) LI
		e=-r=(4,1)/P1(2,1)
		LIFUI=INFUA(2,1)+AEAH-LERUAS3,17
		==-/(c! +CH-CS/A)
		LERGERL SR (ARAR+CARD-USSARD) CSCHILL & But the Land
		1= -+(I)+61+(A+b+()+()+()+1)+5+3A25)
		()=()+(/(1, i+u+u))
		(1 + 1) = (1 +
		FSTIVILL/FST
	•	SF=UFENF(1,1)+SR+F(1)+1+*(E)=U3/A, 2007A, 2007A
		Star(1,C)=SP
		(F=UPE(F(0,1)*SAND*SP+(F)(0,1)*(E=057A)*SEND*F1(4/1)*(*E=2*A)
		15 ** S.T.
		er=0 E64(3,1)+CARE+5++(FI(3,1)+(E1+0H-0574)+64,00+(++,1)+SANE 120A1
		- 10 trail
		Character State Verstand
		=-UF+(AFIS+VF+SAMB
		1.1 = (1) 1 + (5) + (5) + (5)
		F · FUF+FPZE*E
		<u>+ · · (11) = + Y</u>
	:	11 IF (SP) 30,31,30
		30 Aug=++/(Su+co++EM)
		$A = \{x, y, (x, U)\} = A = A = A$
		μ. (± E E φ (E E) / (S ₂) φ E (1 φ E (1 γ E) 1)
		The CASAS'ENTRY AND ATEX
	<u>y</u>	00 .1111 (61,302) EN LE, ETA, HB, BETA
	3	02 FEFERAL (107,11HGIVEL DATA.//24X,4HM1 =,E20.10/23X,5HETA =,E20.10,1
		10x,E20.10/22),&FRETA =,E20.10,104,E20.10)
		+111 (61,311) UP, EEL 7-, ST, A1
	۲	11 FLE BAL (21), 706ELLA = 120.10.10x E20.10/24x, 4050 = 120.10/24x, 40AL
	<u> </u>	1 =. E/0.1(/)
		A THE REPORT OF
		(1, 1) = 1 + 0 $(1 + 1) = 0.1$ $(2, 1) = 0.1$ $(2, 1) = 0.1$ $(2, 1) = 0.1$

-

A29

n

l

S

<u> </u>	303 FURMAL (131, ANEESULIS, 2 248, CHAIL 2. 600 462268, SHE 2. 602 40226, SHE
Ì	1 =, E2U.10/23X, 5HCH] =, E2U.10/21X, 7HRORAT =, E2U.10/25X, 3HA =, E2U.1U
(2/27X, 3FU =, E2U.10)
í	304 - FURMAI(44X,12HUREGA MARKIX/)
	18 WRITE(61,305) (UMEGA(1,J),J=1,4)
. <u></u>	$\frac{305 + 0.001(10x, 4E20, 10)}{500}$
	306 FLAMAT (47X,9MP1 HATE, A/)
•	LU 19 1#1,4 19 - Maith(61.305)(PI(1.3),5=1.4)
(AA=A:+HA+1bu.U/FIE
	31° FURNAL (2X//21X,7HALFHA =,220.10,10X,220.10)
i ——-	HEILE(61, 307) CS, UE, EME, CSC, CS1, FS1Y
l.	$\frac{24x_{3}4H_{1}E}{1.10/23x_{3}5H_{2}H_{2}} = \frac{220.10}{23x_{3}5H_{2}S} = \frac{24x_{3}4H_{1}E}{1.10/23x_{3}5H_{2}S} = \frac{24x_{3}4H_{1}E}{1.10/23x_{3}S} = $
r.	2 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +
Ī	308 FURMAL (24x,4HSP =, E2U.10/24x,4HTP =, E20,10/24x,4HUP =, E20.10/24x,
·	$\frac{14444}{24} = \frac{120.10}{23} + \frac{10}{23} + \frac{10}{23}$
1 1 1	IÚJE (HETAL
	1867AU=TDU+150.0783E Artic (61.309) FY.625.ECS.ANG.ANG.THETAD.100
1	309 FURMAI (24), 4HFY =, E20.10/23x, 5HGYS =, E20.10/23x, 5HCS =, 10/23
ŧ	1x,5HANG =,E20,10/23x,5HANG =E20,10/20X,6HTHETAD =,E20,10,10,10,00 (0.1
	20)
ſ	20) <u>ARTIE (61,314) VCRTV(10)</u>
	20) <u>ARTIE (61,314) VCRTV(10)</u> ¹ 314 FURBAL (22x,6HVURT =,E20.10) <u>ARTIE (61,313)</u>
()	20) <u>ARTIE (61,314) VCRTV(10)</u> 314 EUREAT (22x,6HVURT =,E20.10) <u>ARTIE (61,313)</u> 313 EUREAT (1H1) EVEN 1 (1H1)
	20) <u>ARTIE (61,314) VCRIV(10)</u> 314 FURMAI (22x,6HVURT =,E20.10) <u>ARTIE (61,313)</u> 313 FURMAI (1H1) <u>UT 10</u> 121 E
	20) <u>ARTIE (61,314) VCRTV(10)</u> 314 FURMAI (22x,6HVURT =,E20.10) <u>ARTIE (61,313)</u> 313 FURMAI (1H1) <u>ETTIE 121</u> ETTIE 121 ETTIE 3200 FURTHAN DIAGNESTIC RESULTS - FOR HUND
	20) <u>ARTIE (61,314) VCRTV(10)</u> 314 FURMAI (22x,6HVURT =,E20.10) <u>ARTIE (61,313)</u> 313 FURMAI (1H1) <u>UT 10 121</u> EV. 3200 FURTRAN DIAGNESTIC RESULTS - FOR MUNICIPAL
	20) <u>ARTIE (61,314) VCRTV(10)</u> 314 FURMAT (22x,6HVURT =,E20.10) <u>ARTIE (01,313)</u> 313 FURMAT (1H1) <u>UT 10</u> ET 121 ET 121 ET 121 S200 FURTRAM DIAGNESTIC RESULTS - FOR MUNICIPAL
	20) <u>ARTIE (61,314) VCRTV(10)</u> 314 FURMAT (22x,6HVUFT =,E20.10) <u>ARTIE (61,313)</u> 313 FURMAT (1H1) <u>UTIE 121</u> EV. 3200 FURTRAN DIAGNESTIC RESULTS - FUR HUN JUL STATEMENT AND FRAN DIAGNESTIC RESULTS - FUR HUN
	20) <u>ARTIE (61,314) VCRTV(10)</u> 314 FURMAT (22x,6HVUET =,E20.10) <u>ARTIE (61,313)</u> 313 FURMAT (1H1) <u>UTIE 121</u> END 3200 FURTRAN DIAGNESTIC RESULTS - FUR HUND JUL STATEMENT AND HAGNESTIC RESULTS - FUR HUND JUL STATEMENT AND HAGNESTIC RESULTS - FUR HUND
	20) <u>ARTIE (61.314) VCRTV(10)</u> 314 FURMAT (22x,6HVURT =,E20.10) <u>ARTIE (61.313)</u> 313 FURMAT (1H1) <u>UTIE 121</u> E 3200 FURTHAN DIAGNESTIC RESULTS - FUR HUR JUL STATEME T JUMBERS 501
	20) <u>ARTIE (61.314) VCRTV(10)</u> 314 FURMAN (22x,6HVUFT =,E20.10) <u>ARTIE (61.313)</u> 313 FURMAN (1H1) <u>UNITED 121</u> E 3200 FURTHAN DIAGNESTIC RESULTS - FUR HUN JUL STATEME 1 ALMEERS 501
	20) ARTIE (61.314) VCRTV(10) 314 FURMAN (22%, GHVUFT =, E20.10) ARTIE (61.313) 313 FURMAN (1H1) USATE (1H1) USATE I 121 E 3200 FURTHAN DIAGNES(IC RESULTS - FUR HUNC) JUL STATEME T ALMEENS 501
	20) ARTIE (61.314) VCRTV(10) 314 FURMAN (22x,6HVUFT =,E20.10) ARTIE (61.315) 313 FURMAN (1H1) UNITED 121 EN. 3200 FURTHAN DIAGNOSTIC RESULTS - FUR HUR: 3200 FURTHAN DIAGNOSTIC RESULTS - FUR HUR: 3200 FURTHAN DIAGNOSTIC RESULTS - FUR HUR:
	20) <u>ARTIE (61.314) VCKIV(10)</u> 314 FURMAI (22X,0HVUFT =,E20.10) <u>ARTIE (61.313)</u> 313 FURMAI (1H1) <u>UNITED 121</u> EN. 3200 FURTHAN DIAGNESIIC RESULTS - FUR MUNITED 3200 FURTHAN DIAGNESIIC RESULTS - FUR MUNITED 5201
	20) ARTIE (61,314) VCKTV(10) ARTIE (01,313) 313 FUEMAL (1H1) C is 121 E 3200 FURTMAN DIAGNES(IC RESULTS - FUR MUNE) JLL STATEMENT SCHESSIC RESULTS - FUR MUNE
	20) ARTIE (61.314) VCRIV(IL) 314 FURMAT (22x,0HVURT =,E20.10) ARTIE (01.313) 313 FURMAT (1H1) USATIE (01.313) 314 FURMAT (1H1) USATIE (01.313) 315 FURMAT (1H1) USATIE (01.313) 316 FURMAT (1H1) USATIE (01.313) 317 FURMAT (1H1) USATIE (01.313) 318 FURMAT (1H1) USATIE (01.313) 319 FURMAT (1H1) USATIE (01.313) 310 FURMAT (1H1) USATIE (01.313) 310 FURMAT (1H1) USATIE (01.313) 310 FURMAT (1H1) USATIE (01.313) 311 FURMAT (1H1) USATIE (01.313) 312 FURMAT (1H1) USATIE (01.313) 313 FURMAT (1H1) USATIE (01.313) 313 FURMAT (1H1) USATIE (01.313) 314 FURMAT (1H1) USATIE (01.313) 315 FURMAT (1H1) USATIE (01.313) 316 FURMAT (1H1) USATIE (01.313) 317 FURMAT (1H1) USATIE (01.313) 318 FURMAT (1H1) USATIE (01.313) 318 FURMAT (1H1) USATIE (01.313) 319 FURMAT (1H1) USATIE (01.313) 319 FURMAT (1H1) USATIE (01.313) 310 FURMAT (1H1) STATE (01.313) STATE (0
	20)
	20)
	203 MILE (61,314) VCHIV(10) 314 HUHAH (22X,0HVUFT =,E20.10) ANIE (61,313) 313 HUHAH (1H1) UL 121 S200 FUNTHAN DIAGNOSTIC MESULIS - FUH HUM JUL STATEMET TOTAL HESS 501
	200 <u>skile (61.314) VCEIV(iL)</u> <u>314 FURBAL (222,00VUF) =,E20.10)</u> <u>skile (61.313)</u> <u>313 FURBAL (101)</u> <u>0 + i 121</u> E <u>3200 FURTMAN DIAGNESTIC RESULTS - FUR HUB</u> <u>3200 FURTMAN DIAGNESTIC RESULTS - FUR HUB</u>
	200 <u>skilt (61.314) VCEIV(iL)</u> 314 HURAAI (222,00VUFT =,E20.10) <u>rkilt (61.313)</u> 313 HURAAI (101) <u>t i 121</u> E 3200 FUNTKAN UTAGNESITC RESULTS - FUR HURC S200 FUNTKAN UTAGNESITC RESULTS - FUR HURC 501
	20) <u>skiit (61,314) VCKIV(iL)</u> <u>314 FURKAI (22,60000F1 =,E20,10)</u> <u>skiit (101,313)</u> <u>313 FURKAI (101)</u> <u>C i 1 121</u> <u>E i 121</u> <u>E i 121</u> <u>C i 1 121</u> <u>C i </u>

	3200 FURTHAN (2.1.0)/(HTS) / /
	SUBSUCTINE PRINTIT(R.)
	LUMMUN DMEGA(4,4), F1(4,4), CSV(2), CS1V(50), CS2V(50), EV(50), BV(50), E
	$1^{\mu}1^{\nu}(50)$, $E^{\mu}1^{\nu}(50)$, $U^{\mu}(50)$, $U^{\nu}(2,50)$, $A^{\mu}(2,50)$
	1Fiv(50), ANGV(50), ANGV(50), FHDV(50), ~SIYV(50), ruSv(50), VURIV(50)
	JF (N-1)1,1,2
•.	2 KRIIC(61,300)
	1r082)
	F=1-1
	LU 3 1=1,M
	301 FURNAL(10X,5E10,3.2,12,3.2E10,3.2E11,3)
	ABIT(61.302)
	302 FUREAT(1H1)
	KHIIF (61,303)
	303 F. MMAI (10X, 3MM1., 6X, 3MM1., 6X, 4HEIA., 5X, 5HEEIA., 5X, 6HUELIA., 5X, 3HM
	21./)
- C	L! 4 1=1,N
	4 xH11E(61,304) EM1V(1),EN1V(1),EV(1),HV(1),DUV(1),EMEV(1),SHV(1),SH
	304 FUDSAL (107, 2F9 3, 3F10 3, F9 3, F10 5, 2F9 4, 3F10 5, F10 4)
	while (61,302)
	AFTIE (01,305)
	365 FURMAI (12X, CHANC., 5X, /HINE AU., 54, 5HPSIY., 64, 4HPUS, 5X, 5HVUE ., 5X
	1,2501,8%,2601,7%,3601,4,0%,43601,4,5%,5800014/)
	5 WHILE (61,306) ANGV(1), THOV(1), PSIYV(1), FCSV(1), VOKIV(1), EM1(1),
	1ew1V(1), EV(j), EV(j), ED=(1)
	306 FURMAI (10X,F10.4,F11.3,3F10.5,2F9.3,3F10.3)
	Else
	SAUR ENDINES DIAGRES TO ALCOLIST PARTY FOR
	JZOU FOR HAN DIAGNESTIC RESULTS - FOR FRIGHT
O ERROR	S
0AD,56	
-	
-	
	431

SIVEY LATA	SHOCK ENTROPY INTE	RACTION		16/20/07	
n1 1.2200000000000000000000000000000000000	GIVEN DATA				
h1 = 1.200000000000 1.0021030111 h1 = 1.000000000000 1.000200000000 h1 = 1.000000000000000 1.000000000000000000000000000000000000	01.0 <u>2</u> 0.001.0			· · · · · · · · · · · · · · · · · · ·	
<pre>1 A = 6.2000000000000000000000000000000000000</pre>	h1 =	1.250000000	E UU		
hE(A = 1.99999999 1 1.012297929 00 h(A = 1.000000000000000000000000000000000000	L'A =	6.2000000000)E 01	1.00210391	11E UU
Intervent Intervent Intervent All Intervent Intervent Intervent Intervent Intervent <td>HEIA</td> <td>5.799999999</td> <td>2E 1</td> <td>1.012290/5</td> <td>50t UU</td>	HEIA	5.799999999	2E 1	1.012290/5	50t UU
A1 = 1.11/0000000 + 03 FESCUIS. 11 = (*.105003590 + 0) x = x (*.105003590 + 0) x = x (*.105003590 + 0) x = x (*.105003690 + 0) x = x (*.105003690 + 0) x = 1.15500943200 x = 1.15500942000 x = 1.25078000 x = 1.250780000 x = 1.250780000 x = 1.250780000 x = 2.257800000	LELIA -	. 1.6000000	E -U2	1./4:32000	096-02
PESULIS. i =	A1 =	1.11/0500000	E US		and the second
HESULIS. HI II. -1036083590E 00 N II. -117,32072E 00 UII. 1.1733097400 HI II. 1.173000000 HI II. 1.1730000000 HI II. 1.17300000000 HI II. 1.17300000000000000000000000000000000000					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RESULIS.				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.1036843591	E 00		
		4 4 4 15 15 15 955			
H(RA) = 1.1/03004941E 00 A = 1.1/03049441E 00 A = 1.1/03049441E 00 DA = 1.2307592430E 03 DA = 1.2307592430E 03 DA = 1.2307592430E 03 DA = 1.2307592430E 03 DA = 1.23075926925 01 V.9491/39060F-01 -2.0330415070E-03 9.2112490/10E-03 -2.09159027 2.925440/20055 -01 1.40033027727E 00 V V V 9.0/90076172E-0 V V V 9.0/90076172E-0 V V V 9.0/90076172E-0 V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V		1 2544/2358	E O		
A = 1.1539552436E 03 U = 1.235789099E 03 Orm GA NAINTS V.9491739666E-01 -2.0330415676E-03 9.21(2490/10E-03) -r.1918427355E-C - 7.7352407889E-01 -5.0007250166E-01 U 0 0 0 9.07250166E-01 V.30:50195687E-01 2.923407889E-01 -5.0007250166E-01 U 0 0 9.07250166E-01 9.50007250166E-01 V.1000000000000000000000000000000000000	RUNAL	1.1/53099841	UE 00		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A =	1.1239552436	E US	0.0	
0x+GA ×Ai×L> >	J =	1.2367890999	E 03	and the second second second	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			OMEGA NA	inla	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.9491739600F-	01 -2.03304156	785-03	9.2112490/102-05	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-8. UY16427385F-	. 1632629L	65 -01	1.4003367121E 00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.30301190876-	01 2.92344078	896-01	-5.0007250160t-01	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Ú	0		9.0/900/01/2E-1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			PI MA	16[)	(F-) -
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	->.5150468335E-	03	U	U	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.51405859925	00	<u> </u>		
ALPPA = 0.324/360347E 01 1.49249405/89E 00 0E = 2.6795566926E 03 0.149249405/89E 00 0E = 2.459660392E 03 0.149249405/89E 00 0E = 2.1309659479E 0 0.149249405/89E 00 0E = 2.1309659479E 0 0.149249405/89E 00 0E = 2.1309659479E 0 0.1492694720E 03 0E = 1.1365795948E 03 0.1492694720E 03 0E = 1.1365795948E 03 0.149269667E 03 FS1Y = 6.2554904720E 04 0.149269667E 03 FF = 9.5963940845E 04 0.119596607E 04 0E = -5.5563940845E 04 0.149269667E 04 0E = -4.54997/2554E 04 0.149269667E 04 0E = -4.54997/2554E 04 0.11055E 04 0E = -4.54997/2554E 04 0.11055E 04 0E = -7.3735203213E 04 0.111055E 04 0E = 0 0.111055E 04 0E = 0 0 0E = 0 <td>1.51/44612065</td> <td>00 </td> <td>U</td> <td>U</td> <td></td>	1.51/44612065	00 	U	U	
ALPHA = $e.324/360347E01$ $1.4224405/82E00$ UE = $2.6795566926E03$ 03 UE = $2.455606926E03$ 03 LPE = $2.1309693479E0$ 02 US = $1.421621546E02$ 02 SP = $5.594044720E-03$ 02 PP = $-3.0155960374247E-04$ 02 US = $-4.5459772254E-04$ 02 US = $-4.5459772254E-04$ 02 US = $-4.5459772254E-04$ 02 US = $-4.5459772254E-04$ 02 US = $-4.533162598E-4$ 02 VI = $-7.3735263213E-04$ 02 US = 0 02 HY = $-7.373526320221E-02$ 02	1.79414012416			•	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A1 44 A	- H 3247360345		1 4D-44.6/	Hot on
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.8/95566926	E US	1.43274037	572 00
ENE = 2.1309659479E 0 $C52 = 1.7421621546E 02$ $C51 = 1.1365795948E 03$ $FS1Y = 6.2554904720E-03$ $SP = 5.5963940845E-03$ $PP = -3.(155906087E-04)$ $PP = -5.5563940845E-04$ $PP = -2.6629374247E-04$ $U51 = -4.5459772554E-04$ $U51 = -2.3737182598E- 4$ $V11 = -2.3737182598E- 4$ $V11 = -7.3735263213E-04$ $FY = -7.3735263213E-04$ $FY = -7.3735263213E-04$ $FV = -2.622320221E-02$	UE =	2.4596006392	21. 03		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LPE =	2.1309659479	E D		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6-2 :	1.7421621546	bE U2		
FSIY = 6.2554904720E-03 $SP = 9.5961058585E-03$ $PP = -3.005906087E-04$ $PP = -5.5563940845E-04$ $PP = -2.6629374247E-04$ $US1 = -4.5459772254E-04$ $VS1 = 4.2534011055E-04$ $VS1 = 4.2534011055E-04$ $VI = -2.3737182598E-4$ $VI = -7.3735263213E-04$ $EY = 0$ $FUS = 0$ $FUS = 0$ $FUS = 0$ $FUS = 0$	651 =	1.1065795948	SE US	and the second second second	and an article section
Fr = -3.115596007E-04 $Fr = -3.115596007E-04$ $Fr = -2.6029374247E-04$ $U51 = -4.5499772254E-04$ $U51 = -4.5499772254E-04$ $U51 = -2.3737182598E- 4$ $V11 = -2.3737182598E- 4$ $V11 = -7.3735263213E-04$ $Fr = -7.3735263213E-04$ $Fr = 0$ $FLS = 0$ $FLS = 0$	+51Y =	6.2554904/20	E-03		
$\frac{1}{10} = -5.5583940845E - 04$ $\frac{1}{10} = -2.6529374247E - 04$ $\frac{1}{10} = -4.5495772254E - 04$ $\frac{1}{10} = -2.3737182598E - 4$ $\frac{1}{10} = -2.3737182598E - 4$ $\frac{1}{10} = -7.3735263213E - 04$		-3.[15596606	1		
	1.9	-5.9583940845	E-04		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 H 3	-2.6529574247	1 - U4		
VS1 = 4.2534011055E-04 $UL1 = -2.3737182598E- 4$ $VL1 = -7.3735263213E-04$ $EY = -7.3735263213E-04$ $FV = 0$ $FLS = 0$ $FLS = 0$ $ANG = -2.6252320221E-02$	US1 =	- 4. 54597/2254	1-64		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	vs1 =	4.2534011055	E-04	0	
V[1] = -2.6252320221E-02	VL1 =	-2.3/3/182598	- 4		
	VI.1 =	E. 0/94043601	16-04		
FLS = 0 ANG = -2.6252320221E-02 ANG = -2.625202200 ANG = -2.6252000 ANG = -2.6252000 ANG = -2.625200 ANG = -2.62500 ANG = -2.65000 ANG = -2.6500 ANG = -2.65000 ANG = -2.6500 ANG = -2.65000 ANG = -2.650000 ANG = -2.65000 ANG = -2.65000000000000000000000000000000000000	FY =	-/.3/35203213	0		terrer terrer terrer
ANG = -2.6252320221E-U2	FLS		0		
AND - 0 49111 84200 00	ANG =	-2.6252320221	E-02	0	
ACC = -2.421/204630E-02	ANC =	-2.4211104630	E-42		
INETAD = 9.2752619656E U1 1.6188382661E UU	INELAD =	9.2/52019650	E U1	1.01683826	61E UU

	10/20/6/	110V	SHICK ENTRUPY INTERAC
			GIVEA CATA.
		1./00000000E 00	AL =
	6.9010105550t Ul	4.0000000000000000000000000000000000000	EIA =
	0.20310399998 01	3.6000000000 01	BEIA =
	1.7453288896-02	1.0000000000 v0	SELIA =
		1.60000000002	31 -
		1.11/000000E V3	<i>P</i> 1 =
			RESULTS.
		1.092/307473E 00	31.=
		5.1/4/09/069E-01	v =
		1.56089514026 00	M =
		1.22642429826 00	UF1 =
-	والمروية بالمتعار وبالمتكفية فتتعقبهم	1.1566541321E 0	RUKAI =
		1.15019085978 03	A =
		1.7953273233E US	· · · · · · · · · · · · · · · · · · ·
	625353400F-03	-1 052/7529611-03	9 35565461725-01
		6 /5458166835=01	-# 11354582745-01
	5692496866-01	2 9624134405E-01	40603349725-01
7205+-	9.7114	0	1.4000047720 01
		A PLINA	· · · · ·
		U	-7.70/25171255-63
	a	9	-1 22911629796 00
	<u>,</u>	U	1.2312218/53E CU
	U	GU	1.43/34794646-01
	1.44531207256 00	E.2010299059F 01	ALPHA =
in a start		2.4431553140F 3	65 =
		1.44/37205658 03	5 B =
		1.2503/55507E 00	EPE =
		5.54900/1179E 2	652 =
	to show an ing show a surgery set of the state	1.9099988146E U3	051 =
		8.5620395307E-03	_P51V =
		1.0000490278-02	5P =
		1.20776557236- 4	
		-1.2021/003/00-03	UP =
		-8 45524636126-04	1.5.1 =
		8.59361904006-44	031 -
		1.45394136271-44	10 L =
		1.22208495135-03	VI1 =
		-1.13132903446-03	• Y =
		0	(i) > =
		ů	F(S =
		5.20345141326-03	4 Mis E
		5.3/999490241- 3	ANG E
state and the second state and state and state	1 526465/7205 111	9. (189705940F U1	Intial s
	1.020400//202 00		

4

ł

SHOCK FAINTERAL	11100	10/20/6/	
GIVE DATA.			
b1 =	2.40000000000 00		
FIA =	2.70000000000000000	4.052014011	0F-01
DELA =	2.3799999999E U1	4,103802705	5t-u1
· IFLIA =	1. 100000000000000000000000000000000000	1.745328888	YE-02
3M #	1.0000000000000000		Sector sector of
A1 =	1.11/00000000 03		
RESULIS.			
.1 =	1.11932/72258 00		
× ≠	E. 5706254739E-01		
	2.2229542290E VO	a company of the second second second	and the second
UH1 =	1.2950430421+ 00		
NUNAL =	1.2022219656E -U		
Α =	1.1593192367E 03		
	2.2//1230000E US	A IN I A	
Sec. 1.			
9.9341836930E-01	-2.63264425661-03	1.17599350238-02	
-c. 1021127950F-01	<u>F.//515468185-01</u>		
1.1/31/12/0501	2.00/2/131420-01		5. + 5446470690
¥	~1 ~	AIR1X	
1 11 11 10 10 10 10 10			
-1.22004/79742-02		in the second	
-1.4951042457E 00		U	
1 01445769531-01	Ŭ	U .	
1.01(0)/(0)/0			
() == ()	F 19928522361 ul	1.43104493	AVE US
05 =	3.1.29511047E 13	C C	
LF =	1.225/5/38618 3	and the second	
	1.15556274835 90		a strange and the second
C.2 =	1. +45047676767 - 5		
601 =	2. E/U2017204E 03	and the state of the second	
F51Y =	1.35/26154361-12		
· · · =	1.00125093186-02		
Pr =	1.5323231301E-03		
11r ÷	-3.1/6//4862563		
V 4 =	4.5067084483E-04		
US =	-2.44279107198-03	the second s	
V =	2. (y24017862E-03		
	7.11614002825-04		
	3.136/1467346-03		
VL1 =	-1.12/13//2076-03		
VL1 = + y =			
VL1 = + Y = - U(5 =	0		
VL1 = + Y = U(5 = FU5 =	0		
VL1 =	0 0 3.1009111)26E-02		
VL1 = FY = U/S = PUS = ANG = ANG =	0 0 3.1009111026E-02 3.4451828597E-02	1. 641.72400	75F 100
VL1 = FY = G(5 = PU5 = ANG = ANG = ANG = FT AU =	0 0 3.1009111026E-02 3.4451828597E-02 5.4007147762E-01	1.04073390	75t: 110

SHOUL WAR HY LVIERAUSIN

16/20/01

9178 - - - A.

	z land the state of the state of the		
· · · · · · · · · · · · · · · · ·	1 2 XI D. 200 KH H1	5 a1541 pg	// ====
	1 - X Station and a station - 1	2.32128/42	
		1 745 (244)	
		1174262300	
	- 「「「」」、「「」」、「」」」の「「」」、「」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「	•	
· · -	1111/030 00 00 00		
	1 11 46 442 31.41 (1)		
· · · · · · · · · · · · · · · · ·	E 42 / / 756 / 15E - 41		
· · · · · · · · · · · · · · · · · · ·	3 66954614438 00		
Unin ∓	1.40405757465 0		
E1 641 ≅	1.32339392101- 44		
ц =	1.10200269301 33		
. =	4.3642172433E U3		
	ONLUA MA	Trc] X	
A. 14901162268-61	-6.(2755908105-03	2.53365355376-02	U
-/.>456324416r-(1	6.021957.232E-01	1.33500104122 04	.
0.1150+360321-01	2.04/20055402-01	-3.70/076/7200-01	ن ن
ل ا	ú	L.	5.4431927251t-U1
	- 1 A	· · · · · ·	
-2.0004460202-02	u	U	Ú
-1.41-0252/05= (0	<u>U</u>	¥	v .
1.422245170+ 00	U	ن ن	ن ن
2.144095853401	Ŭ	ال:	ų
. <u> </u>			
トレドハム =	c.12/1033461H U1	1,41/5840	332E JU
	4.1544 1/4437 13		· · · · ·
÷ =			
	9.4 2375-47604 9.12994323153E-51		
F 3 (T =			
<u>الم الم الم الم الم الم الم الم الم الم </u>	-6 65001 50326-04		- · · · ·
1 F	2+12-0-26022712-00 3-557593444666-83		
i	-7.(3/643/3341-04		
 	4.1.29-509656-05		
	3.11002497638-03		
	1.61201041654-43		-
F Y =	-2.52147023416-03		
U18 =	-5.82192246276-14		
PC5 =	-6.15081050416-04		
A 5 =	-4.80575/3477t-15		
A ن ۲	-6.10/0/0/08083		
FrEIAL =	5.47 183005764 U1	1.6541942	1131 00
N U M (■	4.1440402043E-03		
		······································	·

							. VL1. VL1.	004 -0.00034 .00054	1005 -0.00024 .00061 041 .00001 .00091	C100. C1000. 100	002 100.50 00182	117 . 00194 . 00363	100. 1003/1 .00162		BELA DELTA	03./00 1.000	56.4L0 1.000	\$6.000 1.000	25.400 1.000	12.900 1.000	13.300 1.000	
	US2	174.216	/17.198	580.765 842.647	734.457	494.169		.0104 -4.0	1.010. 1.010.		0. 1010.	0. 010.	0.0- 010.		5 I S	20 01.100	02.000	40.000	101 55.400	45 22.400	00 17.300	
20102	CS1	1026.584	1602.620	2439.680 1	3042.425 2	7.394.599	ht. 5×.	0010. 540.5	2.151 .010 vc	UUUTO. 845.1	1010	1.010. Cav.	10010. 014.		14	1.210 1.1	1.1 042.1	1.100 1.0	2.000 1.1	1.1	4.000 1.1	0.100
3.9.5	CHI	1.254	1.226	1.247	1.356	1.739	bet IA.	1.000	000.1	1.000	1.000	1.000	1.000	400.1	. M. V	10000	C0000. 0	1 .06125		11500.	7 .00404	403377
	IN	1.120	1.086	1.1191	1 145	1:278	bë i A.	63.700	58.0-0	36.000	29.400	16.400	14.300		.دن.	3	•	0	2	1100. 7	-0.000 - 5	
1100	TH	1.250	1.200	2.400	3.000	0.000	EIA.	67.700	62.000 46.400	46.666	33.401	20.4.00	17.346	100.21	FSIY.		2000. 8	.6000	2011.	691A.	1910. 1	0676.
PY INTERAC	BETA	63.700 58.000	42.400	23.400	14.400	a. 500	.14	1.120	1.046	1.045	101.1	1.145	1.144	1.6/9	Irt [AU.	104.54	62.55	191.24	93.24	240.44	94.716	07.70
SHOCH ENTHU	EIA	67.700 62.000	46.400	33.400	22.400	12.300		1.410	092.1	1./00	C.000		4.100	201	· · · · · · · · · · · · · · · · · · ·	C46	N4N	4c0	0/11.	202.	-1062	212.12