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SUMMARY

Numerical results (based on the theory of C. T. Chang) are presented for use in prediction
of the perturbed downstream flow field resulting from the interaction of a planar entropy
discontinuity with an infinite planar shock. Downstream pressure, vorticity, and entropy
fluctuation values are presented in parametric form for normal shocks and for oblique shocks
generated by wedge flow: for wedge half-angles from 4 to 30 degrees, for upstream Mach
numbers from 1 .4 to 10, and over the entire range of orientations of the oncoming entropy
disturbance.

Discontinuous large values in the amplitudes of all flow perturbations occur at an "effective
Mach number, Me" value of unity in the flow. For M e > 1 the generated pressure distur-
bance radiates as sound, while for M e < 1 the pressure disturbance amplitude decays with
distance from the shock. These numerical results, when combined with typical entropy
fluctuation magnitudes, give sound pressure levels greater than those typical for boundary
layer noise, and equal to those produced by shock-turbulence interactions, for typical
aerospace applications.

For the case of a random field of entropy waves interacting with a shock, the required
relations for the harmonic components of all three downstream modes are presented, and
on expression is derived for the root-mean-square pressure amplitude caused by an isotropic
entropy field, but this study has not progressed to the point of numerical results.
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i .0	 INTRODUCTION

IWany of the important problems in gas dynamics are concerned with the effect of
small disturbances in a supersonic '` 'ow with shock waves present. The impetus to
study the resulting downstream perturbation field has come from such problems as
oscillating shocks ahead of blunt bodies, Reference 1, or flared sections on launch
vehicles, oscillating shocks in supersonic inlets and exit nozzles, and disturbances
in supersonic wind tunnels, Reference 2. The major interest in several current
investigations is in the pressure field generated by the interaction, since the fluc-
tuating pressure field associated with a shock is thought to have been the cause of
several catastrophic failures of launch vehicles; in any cose,the pressure field must
be predicted to enable minimum--weight design of such structures.

First-order perturbation theory indicates that the governing equations for a com-
pressible, viscous, and heat-conducting gas can have three distinctively different
types of disturbance fields: (a) entropy, (b) vorticity, (c) pressure and irrata-
tional velocity (sound). When the intensity of the fluctuations is small, the three
modes are independent. Non-linear coupling between the various modes can occur
if the intensity of the disturbances is large or if interactions at boundaries occur
(e.g., at a solid wall, a shock wave, or the boundary of a wake or a jet). Thus,
when a shock wove is perturbed from its equilibrium configuration (as by interaction
with any one of the three fundamental modes), the field downstream of the shock is
composed of the original field plus perturbation fields of all three modes (vorticity,
entropy and sound) generated by the interaction. When the perturbations are small,
the three resulting fields are computable from separate systems of linear partial
differental equations, connected only through the boundary conditions on the shock
wave and any solid boundaries present. Since the equations are linear, Fourier
synthesis can be applied, and so it is useful to consider the interaction of a single
simple disturbance with a shock wave.

Although the problem of interactions between weak disturbances and shock waves
in a uniform stream of perfect gas has received a good deal of attention, most of
it has been concentrated on interaction of a plane shock with sound waves or with
turbulence (vorticity) . Sound-shock interactions were dealt with in References 3,
4, and 5, and Chu (Reference 5) included the effect of reflection between a wal;
and the shock wave. Regarding vorticity-shock interactions, Ribner (Reference b)
studied the interaction a` a shear wave with a shock, and demonstrated the exist-
ence of sound waves and refracted shear-entropy waves in the flow behind the shock.
In Reference 7 this work was generalized to give the noise radiated by the inter-
action of a shock with turbulence. Moore (Reference 8) ana!yzed the interaction of
sound with an oblique shock wove. Lawson (Reference 9) extended the numerical
information available based on theory in References 7 and 8, including the motion
of the shock wave during the interaction, and showed that the fluctuating pressure
field 6 of significant magnitude in typical supersonic flow problems.
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The remaining mode, en'.ropy waves, are represented by either temperature or
density discontinuities (at constant pressure) in the gas and are carried along at
the local mean flow velocity of the gas. Entropy waves may be due to such causes
as temperature stratification in the medium, presence of an upstream shock wave
undergoing perturbations, or an unsteady upstream heat source as can occur in
combustors or in heated supersonic wind tunnels. Morkovin concluded in Refer-
ence 2, for example, that entropy wave interactions with shock waves can be the
largest source of noise in supersonic wind tunnels. The entropy fluctuation mode
has been analyzed by Chang, Reference 10, who gave the theory for ikiteraction
of a plane entropy wave with an obli que plane shock wave. In addition to giving
solutions for a number of specific cases involving a shock produced by an infinite
wedge (including reflections from the wedge) and several varieties of restriction
on the na+ure and relative orientation of the entropy wave, Chang also gave the
solution for the general case of the unsteady interaction of a single (step function)
plane entropy disturbance and an infiniirly extended oblique plane shock where
the body causing the shock is tacit ly assumed to be absent. It is Chong's solution
of this general case that has been used to obtain the numerical results given here.

While the theoretical foundation exists in Reference 10, the method is unwieldy
for routine_ engineering use, and only a few numerical results were previously
available: Reference - 1 for a sinusoidal entropy wave interacting with a normal
shock at an upstream Mach number of 1 .45 only, and Reference 1 * for the same
case over an extended range of Mach numbers up to Mach 10. It is the purpose
of the present report to provide parametric numerical results for the downstream
flow field, covering the range of flow conditions which eight be encountered in
practice, and to make order of magnitude estimates for the most extreme pressure
fields which might be generated, based on existing data for entropy fluctuation
magnitudes. The required equations for the _roct-mean-square pressure fluctuations
resulting from a random field of entropy waves are also presented, but the random
field case has not been carried to the point of numerical results.

* To be amended in a forthcoming corr:gendv.n by Dr. Morkovin .



	

2.0	 THE SHOCK-ENTROPY INTERACTION

	2.1	 Chang's Theory for the Shock-Entropy Interaction

Chang's analysis (Reference 10) begins with a unified treatment concerning
upstream disturbances of all three modes (vorticity, entropy, and sound) inter-
acting with a shock wave, and then specializes on the entropy mode. The medium
is taken to be a non-viscous ideal gas, and the analytical model is as follows: A
wedge is placed in a uniform flow field and an oblique shock is formed at the wedge.

' The shock divides the flow field into two regions: An upstream region with uniform
velocity U^ and a downstream region with uniform velocity U, Figure 1 . A plane
entropy disturbance (simple step function in temperature) is introduced upstream and
is convected with the main flow toward the shock. Since the main interest is the
interaction of the shock with the upstream disturbance and its effect on the down-
stream flow field, the presence of the wedge is now ignored (ruling out reflection
phenomena), and the shock is taken as infinitely extended.

Three sets of rectangular coordinate axes will be used, Figure 1: x * c y* , with
oy* taken along the shock plane; x t o y t , with o x

j
 taken along the velocity

vector U of the upstream main flow; and x o y, with o x taken along the velocity
vector U^ of the downstream main flow.

The flow parameters will be replaced by their corresponding nondimensionalized
ones. If A p, A p, As, and Au denote the perturbations of pressure, density,
entropy and velocity, their corresponding dimensionless parameters will be given
by:

	

_ Ap	 Ap	 As	 Au
=	 s=	 u =	 (1)

p	 Y pm	 p	 pm	 c p	 A

where subscript "m" refers to the unperturbed main flow. Whenever no number
subscript is attached, reference is to the region downstream of the shock; for rive
region upstream of the shock a subscript 1 wi i I be used.

The equations governing the flow field, both upstream and downstream of the shock,
are the three conservation laws of mass, momentum and energy. The equation of
state gives a relation among the three thermodynamic variables. After replacing
the independent time variable t by two reduced space variables

T= At, T, = A 
t 
t= (A ,/A) T	 (2)

* Chang's derivation is summarized here in some detail, since it is only
available in his thesis on a loan basis.
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the governing equations are:

Moss:

D + 	 d i v u = 0 (3)T

Momentum:

D u +	 grad p = 0 (4)
D,

Energy:

D s
=	 0 (5)

DT

State:

S = p - p (6)
where

=	 +as M x, (^)D T a

for flow in the upstream region, and

D
-	 a	 + M	 a (8)

D T a T a X

for flow in the downstream region.

The velocity field can be split into two harts, an irrotational part 	 and a
rotational part -U-"",,  such that

curl u = 0, div u = 0	 (9`,
s

Then two potential fields con be introduced, a scalar potential 1P and a vector
potential E, defined by

_ - grad 4p, u = curl E	 ('10)

The governing flow equations, in terms of the potentials, are:

4



V2 4 - CZ ( = 0	 01)
DT

DE = 0	 (I2)div E = 0.	 DT

D s = 0	 (13)DT

the three modes (sound, vorticity, and entropy) are clearly indicated by Equations
(5), (6), and (7) respectively. In terms of our non-dimensional parameters, the
vorticity i is given by

w= A curl u = A curl curl E	 (14)
s

The scalar potential (p represents the sound field, with pressure and velocity
perturbations

P	 - ( aT + M a x )It	 (15)

and

_ - grad 4p

The governing equation for 4p 04fers from the conventional wave equation only
by a convective term

M aax
and could be reduced to the conventional wave equation by a Galilean transformation
equivalent to using a frame of reference moving with the unperturbed mean flow:

X1 = x - MT

Y , = Y

T' =	 T	 (16)

With the coordinate system x * o y* (with the oy* axis along the mean position of
the shock) the shock configuration can be given as

u

	

5



To first order, the local perturbed velocity of the shock is AW ,r (= W t ), and the
deflection is W *, where this subscripting means partial differentiation. if one
isolates a small element of `he shock and superposes a velocity vector of the some
magnitude but opposite direction as AW T to the whole flow field fore and aft of
the shock, and then applies the Rankine-Hugoniot equations to the flow parameters
across the shock, the downstream perturbed flow parameters can be solved explicitly
in terms of the given upstream flow parameters and the local shock deflection and
velocity. This solution involves rewriting the conservation equations for mass,
energy, momentum normal to the shock and momentum along the shock in terms of
the sum of mean flow and perturbation quantities, retaining only the first order
terms, and then using the fact that the mean flow must obey the some conservation
laws. The result, shown in matrix notation for clarity, is:

s+	 A11	 Al2	 n13	 °	 s'

P+	 A 2 1	 A2 2	 A2 3	 °	 p' +

u+	 A31	 A32	 A33	 °	 u'

v+	 0	 0	 0	
a s	

v*

n	 M cos (3
11

n
11

n	 M cos n
21 21

+ W*	 + W
V	 M cos y n T

3) 31

IT 0
dl

(18)

The subscripts + refer to flow properties immediately behind the shock; and sub-
scripts -, to flow properties just ahead of the shock. The downstream perturbed
velocity has been resolved into components A u * and A v* normal and tangential
to the unperturbed shock plane respectively; u * and v* are their non -dimensional ized
forms: u* = A u* /A and v* = A v* /A

The coefficients occurring in Equations (18) are given by

I
t	 6



P N ' 2 	P
i =	

Pm	
N ) -
 

(Y-1) 1 - m
	

N2

Im 

2	

Pi 	 ,m )

N2 1 	 _ p 	 pr 2 N 22l =	 1 - N2 1 p [ 1 + (Y -1) N2, + 1	 --- Nim N Pm	 1

_ N (	 p 2 Np

Ail	 1- N2 i 1- 
P (N l'  	 y N2
im 	 Im

1

Al2 =	 (y - 1) , 1 - Pm	 1 - N2	 Pm	 N2

Qm	 i	 Pm

-N2 	 p	

1 PMA22	 1-N2 1p1^1 + (y-1) 1 - "' N2
1	 P 	 Pm

2

	 2(

p
32 =	 1 NN'	 1 -	 N	 + Y 1 - Pm 1 - N2 Pm

	
N2

P	 P	 Pim -	 i	 im	 1	 im	 1

p	 2 Nz
A13 =	 (y - 1) 1 - m	 N

Pm	 i

^ _ - 1 NN2 1 - Pm !1 2 + (y - 1) 1 - pm ' 
Np 

^ 

N
Pm `	 Pm /	 ^	 1

1	 N	 p	 2	 P	 2A 
3	 1- N2 N	 1- 

Pm 
N	 y 1- 

Pm	
N2

1	 im	 im

A	 pm
N

44 -
pi m	 N 1

(19)
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P	 2 

P (X 11 = - (y - 1) 1 - im	 m	 N )
Pm	 P m

•- N
Tr21	 1 - N2	

1 - Pim `2 + (y -1)	 1 - pn'	 N2

Pm L	 Pi m )	 I

1
X31	 1 - N2	

1 - P m—) 1 + NZ + (y -1) 1 - pm	 N2

Pm	 P m

_	 P(19)"	 = 	 - 1 N
41Cont.

(71m—m-

With N and N the Mach numbers upstream and downstream of an equivalent
normal shock:

N 1 = M 1 sin e,	 N = M sin	 (20)

Since all the coefficients A and n are functions only of N 	 N and the
density ratio p/p'm , then for any given value of y they are only functions of the

	

shock strength X :	 -

X = PM/ P.m	 (21)

Thus the obliqueness of the shock, or dependence on the shock angle P, enters
only in termsinvolving ^P * , the local shock inclination. It may also be noted
that the system of Equations (19), containing one more unknown than the number
of equations, is insoluble without the addition of another relation involving the
shock configuration.

From the governing equation of the entropy mode, it can be seen that an arbitrary
function in the form of a plane wave is a possible solution:

Al
s l = s l	 ,Q 1 

M 
	 A	 T - 1,G^ x  + m l y l )	 (22)

where 8 is the inclination of the normal to the entropy wave front with respect
to the main flow velocity U 1 upstream of the shock, and

8



A, =_ cos 6 , m l = sin 6	 (23)

This will be useful later on when the object is to synthesize a random field of
entropy disturbances from such inonochromaS;- spectral components.

The incoming disturbance drifts along the shock at a speed*

C =	 cos S	 U
s	 CCs (S — e )	 I

so that the flow pattern of the incoming disturbance appears stationary to an
observer moving along the shock at thin speed, and in such a reference frame the
downstream flow field appears time independent. That is, with respect to the
reference frame x' , y' , T' obtained from the following Galilean transformation,
the downstream flow solution is a function of x' and y' only:

,
x * = x

C
*	 , +	 s
y = y	 A T

T o
 

(25)

This transformation is equivalent to superposing on the whole flow field a velocity
- Cs ; to an observer affixed to this moving coordinate system the downstream main
flow has an apparent velocity Ue , which is the vectorial sum (Figure 2)

U  = U + (- Cs )	 (26)

and which has the magnitude and inclination a with respect to the main flow
given by

C	 U	 U
s_	 __ e--

sin a	 sin (a - R)	 sin R

One will note that this fails at 6 - e = n/2, i .e., where the oncoming
entropy wave is paralial to the shock, and this special case is treated below
in Section 2.1.4.

9
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*
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The vorticity and entropy trajectories are along the velocity vector U e , and the
system of governing equations can be simplified by rotating the coordinate axes
along and normal to this direction. The pr-,jlem has an effective Mach number
Me = Ue/A and its corresponding effective Mach angle He = aresin (1/Me).
This new reference frame X O Y is specified by

	

rX 	 [sin (a - P)	 - co: (a - j3)	 x'_

	

LY	 cos (a -R}	 sin (a-(i) 	 lyI

In the reference frame the system of governing Equations becomes

Mass:
a 	 a 	 a 

Me ax
+ aX + ay - 0

Momentum:

au	 ap _
Me ax
	 ax 0

av	 a
My ax + aY = o

Energy:

as = o
ax

for X sin(a-(3) + '{cos(a-(3)7 0

The components of perturbed velocity U and V in the X O Y reference frame
are related to the components u * and v* in the original shock - affixed co-
ordinate system by:

	

U*	 sin (a	 cos (a - (3)U
_	 (30)

	

v*	 - cos (a - (3)	 sin (a - ^i)	 V

In the coordinate frame X O Y and restricting our interest to the entropy mode as
the only upstream disturbance, the boundary conditions at the shock can je
written as

(28)

(29)

10
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S+
11

P+	 _ 2 1 	 s

U+	 A
31 

sin (a - )

V+	
A3 1 

COS (a - )

T It (M COS P - C/A)

F21 (M COs 0 - Cs/A)

+ riot cos - 1 : /A) sin (a - ^} - x COS (a 	 sin (a _01Py
31	 S	 i)

L W 3 
(/Vi cos - -Cs/A} Cos (a -}+ v41 sin (a 

(31)

at	 X sir. (a - P) + Y cos (a -	 0

From the Y-component of the momentum equation,

V = itY

P = - Me '0X
	 (32)

After the elimination of U, V, and p, a governing equation for the potential
+ results:

(Me - 1) 4	 - 4W = 0
	

(33)

which is hyperbolic or elliptic depending cn whether Me > 1 or Me < 1. Physi-
cally, hJs means that w'%en Me > 1 the sound field generated at a fixed point is
affected only by a localized distortion of the shock; but in the case Me < 1 it is
affected by the whole shock configuration, and we must expect the subsonic case
to involve or, integral equation. Analogous to the classical wavy wail problem.
the resulting pressure waves propagate downstream along a characteristic with
cc.istant amplitude for the supersonic regime (Me > 1); but in the subsonic case
(Me <_1) the pressure disturbance amplitude diminishes with distance from the
shock, part of the disturbance energy being fed bcck into the shock.



u

2.1.1	 The Supersonic Case, Me > 1

For Me > 1, the governing equation for qo in the X O Y reference frame reduces
to a simple wave equation, which is also obeyed by the flow parameters p and
V. By eliminating U between the equations of continui ►y and momentum, one
obtains a pair of wave equations in terms of V and q = -(Cos Pe ) P:

a X	 - tan ,ie a Y , 	q
0	 (34)

a_ a
tan Pe a Y	 a X	

V

for	 X sin (a-(i).+ Ycos(a - rR) > 0

and subject to the boundary condition at the shock:

q	 - Acos }i	 - n (M cos - Cs/A) cos Ne
21	

a	 21s	 +	 .

V	 A cos (a	 W (M cos p - Cs/A) cos (a - P) + n si n(a - P)
31	 i	 10

x	 sin ( a - P) 4'y 	(35)

ct	 Xsin(a - P) + Ycos (a - P) = 0.

The field of characteristics associated with these wave equations are given by
X - Y cot re = constant and X + Y cot µe = constant, since the Riemann
invariants along these lines are (q - V) and (q + V) . The solutions to the wave
equations (34), therefore, are:

q	 =	 F 1 (X - Y cot Me) + F2 (X + Y cot µe)

V = - F 1 (X - Y cot Pe) + F2 (X + Y cot µe)	 (36)

Only one of the two functions F 1 or F2 represents sound waves propcgating

downstream. In the case of o normal shock (P = n/2) it is F i , and in the case
of an oblique shock the choice depends on the magnitude of Cs , the trace velsacity

of the entropy wave along the shock. Referring to Figure 2, when C s is on the
lower segment (below the first intersection of the shock and the sonic circle), F2
is to be taken; when C is on ► ha upper segment (Cs ? Cs^ 

e

) then F i is to be
taken. Whenever C 

s	 s,	 s2
tails between C and C , then M < 1, a case considered

later.
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The boundary condition at the shock, after eliminating the shock inclination W
gives another relationship between q and V together with the given disturbanze
S - , allowing the function F 1 or F2 to be determined:

(a) When Cs < Cs :
z	 --

q = F2 = - T2 ( S) cos µe s -	 _	 (37)

(b) When Cs > Cs

q = F 1 = - T1 (S ) cos Ne s_	 (38)

wF:ere

02 cos (a	 A21 G sin (a-^)

T2 (S)	 A cos (a - ^) - G sin (a - P) + cos Ne	
(39)

Q cos (a - p) -.^z^ G sin (a - S)
T 1 (S)	 A cos (a - ^) - G sin (a ^} - cos Ne	

(40)

and

A = n /n	 B = - n /n ,
31	 21	 41	 2;

S2= A A - A	 Z = A B,
1	 21	 31	 2	 21

B
G = M cos - (Cs/A)

By determining q from the appropriate equations above, and substituting this value
of q back into the original equation relating the boundary conditions at the shock
(35), one can find the local shock inclination W . At this point, all the required
quantities are ovaiiable for the calculation of the downstream flow perturbot*.ons
through Equations (31). As vorticity is preserved along streamlines, the vorticity-
generating function f (Y), which is defined by:

w = -A d f
d 

can also be calculated.

(41)

13



2.1.2 The Subsonic Case, Me < 1

For M < 1, the potential equation for 40 reduces to the Laplace equation if the
Prandtt Glauert transformation is applied. Introduce a complex variable defined
by

t = X + i Y
where

Y =	 1 - Me Y	 (42)

and any analytic function ♦ Q) or W Q) = d 4/d t wi 11 be a solution.
W Q) is related to the physical parameters through

W(0 = V(X,Y)+i	 P (X . Y)
	

(43)
"'e

Again eliminating V between the continuity and momentum equations, one obtains
a pair of Cauchy-Riemann equations:

a v a fi --M, -
_	 e

a 	 a 	 M	 p

a V a	 1 - Me

a Y	 8X	 Me	 p

for the region

Xsin(a - ^) + 1 
Y
-Mz	 cos(a - P) > 0

e

The boundary cond;tions to be satisfied by W Q) are (a) to remain bounded at
infinity and (b) to zatisfy

[ 

[0, cen (a -	 A21 Gsin (a -^), s -	 (45)
Y

at the shock, i.e.,  at X sin (a - P) + 4 -1-1 -Me cos (a - ^) = 0

14



It is more convenient to work with a set of coordinate axes rotated into the shock
position, through the transformation

X* cos a	 sin	 X X
_ (4b)

Y* -sin a	 cos a Y

where A is defined by

2
cot X_

	

il - Me tan ;a -P)	 (47)

and the boundary condition at the shock is now specified along X* = 0.

A solution for W Q *) which satisfies the boundary condition at infinity is

W Q*) =	 9 ( rt )	 d n	 (48)
2 n 

^ 
^* -

- of

where

t*	 X * + i Y*

with g (rl) bounded and continuoo+s in the half-plane X *>_ 0.

Chang compares the conventional complex potential with W Q) : d ¢/dt and
notes that the function g (rl)/2 v can be interpreted as the strengih of a source
loccted on the shock plane at a distance ri from the origin, or can be interpreted
as a dipole moment with respect to the sound field (p and V) genervted downstream.

The real and imaginary parts of W Q *) are:

1 - MQ	 1	 °D	 X*

	

p=	 2	 2	 g (n) d rl	 (49a)
Me	2w	 X* + (Y* - ri )-m

1 aD	 (Y*

	

V =	 2	 2	 g (rt) dh

	

2 n f X* + (Y* - ►1)	 (49b)

'	 which one may substitute back into the shock boundary condition, Equation (45),
and obtain the following integral equation to be used in determining g (Y):

15



g (Y^
M̂e—t Acos (a-^) - G sin (a-^)

V 1 - Me 	2

OD

+ P ) 1	 g (q)	 d rl = i^^ cos (a -I3) - A G sin (a -p;  s-
l 2,r	 q

	

-Y* 21	!
'cc	 (.50)

To obtain (50) Chang has used the fact that

OD
*

lim	 1	 X 4 ( ►1)	 dr1	 =	 9 (Y*)	 (51)
X*-0 2 n	 X*2 + (Y* - n )2	2

-M

and the notation " P" for Cauchy's principal value for the improper integral.

At this point, for any given set of conditions, everthing in Equation (50) is known
numerically except g (Y ), which is to be found, and the principal value of the
integral. Compressing Equation (50) for convenience into the form

o0

D g (Y* ) + PI 1	 9 (rl) * d rl ^_ = C	 (52)
l2n f rl - Y

-CID

where
1	 Me

D = 2	
1 -MA cos (a-	 Gsin (a-^)

e
and	

(	 )
C = 

01 cos (a	 A
21 

G sin (a - ^) } s-
((	 )

let us find the principal value of the integral . Applying Picard's iteration method,
setting g (rl) = 0 in (52) requires the trivial result that g (Y *) = C. Setting
g (rl) equal to a constant, K , gives an integral of the form

aD
K	 d rl

2 n	 n - Y*
-OD

16



From residue theory, and based on the boundary condition at infinity giving a
closed contour, the value of the integral is 2w i, giving:

Kd rl	 _	 K

2w	 q- Y* 	2w

Inserting this into Equation (52), since D and C are real numbers, K is complex.
Equating real and imaginary parts gives two equations to solve for K i and Kr .
After -etaining only the real part, the solution for g (Y * ) is:

g (Y*
	 D C 2	

(54)
1+D

Next, one may solve for the pressure perturbation immediately downstream of the
shock (at X* = 0) from Equation (49a). Utilizing the limit value of the iuitegral
as X*— 0 as given by (51), Equation (49a) becomes:

Me	 g(Y*)

X =0	 1 -Me	2

Having the pressure perturbation at the shock, then the shock displacement W 
can be found from

C
p	 21 

s_ + n (M cos	 -	 s )sin (a - ^i) W. 	 (56)
21

Having W , all the remaining downstream flow perturbations and the vorticity
generating function can be calculated also.

2.1.3 The Case Me = 1

A t Me = 1, the governing equation for the potential 4p reduces to the parabolic
form

+ Y Y = 0	
(57)

As Me ---► l, the Mach angle µe--► n/2, and the two characteristics coalesce
into a single line r X = constant. The drift velocity in a sound wave being
normal to the wave front, then

4P Y = 0

17



In this case one can determine the pressure field p directly, from
I

p = - F (X) _
0 1 cos ( a - p) - A21 G sin (a - P )

A Cos (a-P)-G sin (a-P)
S_	 (58)

2.1.4	 Special Case of Parallel Entropy and Shock Waves

One may note from Equation ;24) that the foregoing derivation fails in the case of
parallel shock and oncoming entropy wave (that is, for (S - e ) = v/2), and so
this case is handled separately. The oncoming entropy wave can be expressed in
the form

V I

A
S = s	 M1 Al ( cos S) T - x*	 (59)

For an observer moving along the shock (along the y * axis, there is no transverse
disturbance. The entire shock is struck by the entropy wave instantaneously, and
the shock remains plane and simply oscillates along the x * axis. This is in contrast
to the case ( 8 - e ) / n/2, where a ripple moves aiong the shock at the trace
velocity Cs . Hence W y * = 0 in Equation (18), and it follows that v * = 0, so
that the flow field downstream of the shock is one-dimensional. Chang here make-
a substitution of variables:

X' = x* - N T

To = T

1

1
f

and rewrites the conservation equations for mass, momentum and energy accord-
ingly, from which it can be seen that ( -p) and u k form a pair of simple wave
equations. Since no disturbance can propagate upstream of the shock, only the
right-running wave is taken:

P+ = u+ = F ( T' - x' )	 (f.0)

When transformed back into the original x*, T coordinates, the downstream flow
field is completely determined by the two functions s + ( NT - x*) and
F I (1 + N ) T -x*	 From the boundary conditions at the shock (at x * = 0)
these functions are

F 	 p+	 u+ _ A31 y21 - A21 ^31^

s _	 (61)S _ 	 s -	 -	 X21	 X31

and

N



s + 	_ A	 +	 n n ( A
21 - 

/131 )	 (62)

s -	 11	 n21 - X31

If the shock displacement is also desired, it can be obtained from

X* = Y _	
131 - A21	 s (T) d T	 (63)
it
21 -	 X31

One may note that restriction to parallel waves, with the resulting one-aimensional
downstream flow field, gives an immensely simplified problem, involving only six of
the fourteen transfer coefficients, Equations (14).
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2.2	 Nvr`ierical Results

r

The computer program described in the appendix, ba-ed on the above analysis, has
been used to obtain values defining the perturbed downstream flow field reoulting
from the interaction of a single entropy discontinuity with a shock wave. While a
number of intermedi 7te quanti f ies (such as the transfer coefficients, vorticity
generating function, and local shock deflection) are available in the printout, only
those quantities useful for engineering esrimates or for understanding of the results
are presented here. They include the effective Mach number; the downstream
fluctuations of entropy , pressure, and vorticity; and an alternate presentation of
the pressure fluctuations referenced to free-stream dynamic pressure.

Th W results preserved are for two cases of practical interest: (1) Normal shocks,
and (2) Oblique shocks arising from wedge flow. While it is possible to calculate
a downstream oei tcrbed flow field for free combinations of a (the shock wave angle)
and P (the angle beh.te the shock wave and the downstream mean flow velocity
vector; see Figure P . ct each upstream Mach number there is only one value of
flow deflection angle or wedge half-angle (e - P ) which will produce the shock
angle P. For each wedge half-angle ( e - P), the lower limit of free stream Mach
number has been taken as the value at which the mean flow behind the shock remains
supersonic, Reference 12, ,end results are given from this lower limit to Mach 10.
The wedge half-angles ( e - P) covered in the numerical cases repo ted here range
from 4 degrees (corresponding to o flat plate with boundary layer) to 30 degrees.
This range should cover most cases of interest for external flows over high-speed
aircraft and separation shocks produced by conical flares on launch vehicles.

The value of the entropy discontinuity orientation, S, has been varied from one
degree (nearly normal to the free-stream flow direction, see Figure 2) to 89 degrees
(nearly parallel to the free-stream flow. For parallel shock and entropy waves,
(b - e ) = ar/2, the general method for oblique shocks fails and these results are
shown separately. For normal shocks, this is an important case, as it corresponds
to temperature discontinuities norma: to the flow. Because of the bulk of the data
involved, results are shown only for the extremes of the 8 range and for that region
of S's giving maximum flow perturbations.

Some of the results have been plotted as functions of S rather than M I ; these
graphs, in conjunc t ion with the graphs of effective Mach number M e , show how
the flow perturbation values reach anomalous maxima at values of 8 corresponding
to Mg = 1 . This trend agrees with the single published result of Chang in Refer-
ence 10. Referring to Figure 2, the occurrence of M = 1 corresponds to values
of t:is trace velocity, Cs , of the entropy disturbance #ront along the shock such
that the vector C s just intersects the sonic circle. For C s between the tvr . possible
intersection points, Me < 1, and for any other values of Cs , Me > i . As dis-
cussed above, when M e < 1 the generated pressure disturbance propagates with
constant amplitude, but when Me < 1 the amplitude decays with distance from
the shock. For any given combination of a and P ; there is a bounded region of
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the Mach number and entropy wave inclination plane where the effective Mach
number is subsonic, and energy can be fed back into the shock. As an example,
Figure 9 shows this boundary in terms of critical angle S * for e = 50 degrees,
P = 30 degrees, corresponding to a wedge angle of 20 degre,s. The two branches
of the boundary, 6 and 6* arise from values of C s corresponding to the two
intersections of the shock and the sonic circle, Figure 2. For more accuracy in the
perturbation values at M e = 1, it would be desirable either to use more closely
spaced input values for near the region of the peak, or to set M e = 1 and compute
the value of the peak directly. In the results shown here, the peak was sometimes
obtained by extrapolating the adjacent curves to intersect at the value of M t or S
known to correspond to Me = 1 ; however, the numbers are sufficiently accurate
for engineering predictions.

With S below used to indicate perturbation values (e.g., S p = p - p m , where
p is the mean value), and with subscripts 1 and ( - ) used to indicate the region
upstream of the shock, the perturbed flow quantities sh_ .rn in the figures are defined
as follows:

For the entropy fluctuations,

s + __ ( SS/C )- 	 I S T/Tm 1-
s -	 (S s	 (S T/Tm ) +	 (64)

For the pressure fluctuations,

p+	 (SP/YPm)+

In this form, the fluctuating pressure magnitudes are referenced to the local mean
_-	 pressure, but the upstream mean flow conditions are sometimes more conveniently

known. The dynamic pressure is given by

q = I p V2 = 2 p Mz

Hence, the downstream pressure fluctuation magnitude, referenced to twice the
upstream :!ynamic pressure is:

p+	Sp	 SST	 -	 Sp	 ST
•	 -	 1	 (66)

S	 M2	 M2 )/\ T 1	 \ 2 q	 T	 1
I Y Pi	 t	 t

ir
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where X is the shock strength (or static pressure ratio) and q, is the upstream
dynamic pressure.

The vorticity generation is shown here in terms of the ma g nitude of the vector sure
of ;'.a two velocity perturbation components:

VORT	 u i + v
s	 s

where
S u^	 5 v^

u ' =	
A	

and	 vl =	
A

measured along and normal to the x l axis (free-stream direction) respectively, and
A is the local sonic velocity behind the shor'c.

It should be noted that a single value of specific heat ratios,

Cp

y = -^ -
v

has been used in the calculations, y = 1 .40. For st r ong shocks (i.e., large
upstream normal Mach number components), molecular dissociation begins to
absorb part of the total energy of the flow, and the value of y decreases slightly,
affecting all the ratios of flow properties across the shock. However, this effect
is not significant in the present results, since (1) in the most extreme case for the
oblique shock results (Mach 10 cnd a flow deflection angle of 30 degrees) the error
in the present coefficient across the shock, for example, due to use of y = 1 .40
would only be 3 percent; and (2) the flow purtu:batio ,, results, shown up to Mach
20 for the normal shock case, are insensitive to Mach number for values above
Mach 8.

Reviewing the trends of the results, for the special case of parallel shock and
entropy wave inclination, Figure 3 shows the relative magnitude of the downstream
entropy wave decreasing steadily from unity for the lowest possib!e shock strength
to values below 0.03 for upstrecm normal components of Mach number N, > 10

.	 The downstream disturbances of pressure and velocity increase from zero at the
lowest possible shock strength to an asymptotic value of about -0.4 at high Mach
numbers. The generated pressure and velocity disturbances are of opposite sign to
the oncoming temperature discontinuity; that is, a positive step increase in tem-
perature will generate: a rarefaction; and q negative change in temperature, a
compression. The entire entropy wave strikes the shock wave simultaneously,
giving an infinite effect.ve Mach number Me.
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The reader should not attempt to compare the present numerical results for pressure
and velocity perturbation with those of Morkovin, Reference 1, as his resul t- are
being corrected in a forthcoming corrigendum, in accordonce with Reference 13.

Continuing to the normal shock cases (taken from the computer results) Figure 4
shows the variation of effective Mach number Me with entropy wave inclination
angle S, for upstream Mach numbers M t from 1 .1 to 110. As S approaches zero,
Me approaches infinity as described above. The effective Mach number decreases
through the critical Me = 1 within the range 600 < S < 700 for all these up-
stream Mach numbers. Judging from Chang's single numerical example, we should
expect discontinuous maxima of the flow perturbation Quantities to occur near
S = 700, and this is borne out in Fiai-res 5 through 8. The values shown for
b = 0 are take:i from the parallel _ e solution, above. For the pressure per-
.urbotion, the results lie too close to the curve for 5 0 5 S <_ 300 to be shown
separately. A;l the results become insensitive to Mach number for M t > 8.

In the oblique shock cases, for any given shock strength and shock angle P it is
possible to have two values of entropy wave inclination S which will result in a
critical effective Mach number Me = 1, corresponding to the two branches bounding
the subsonic region, Fiore 9. Depending on the wedge half-angle and upstream
Mach number, there may be either one or two values of S at which M e = 1 . This
is apparent in Figures 10 through 12, which show the variation of M e with S, with
upstream Mach number M t as a parameter, for three wedge half-angles (e - P) = 40
120, 300 . As the upstream Mach number increases, the critical values of 6 (cor-
responding to Me = 1) shift to lower values.

The effect of the shock interaction on the strength of the temperature discontinuity
is given in Figures 13 through 21 in terms of the ratio (s +/s_). Since s+ = (ST)/T
and s _ _ (ST) t/T t , where subscript 1 refers to the upstream conditions, then the
meaning of the ratio (s +/s_) in terms of temperature discontinuity magnitudes and
local mean static temperatures can also be expressed as:

s +	( S T)	 T 
s_	 (6T)t	 T

where T,/T is the inverse static temperature ratio across the shock and always has
a value less than unity.

Figures 13 through 18 show s_,. /s_ plotted versus upstream Mach number up to
M t = 4, wi+ a single value of o for each figure. The peaks in the curves
correspond to values of :., t at which the effective Mach number Me = I; and
the minima (as in Figure 16), to minima in :he corresponding curves of effective
Mach number. For those regions of S where the effective Mach number is super-
sonic for all values of wedge half-angle, the effect of the interaction on the
entropy discontinuity magnitude increases steadily with increasing wedge half-angle
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(that is, with increasing shock strength) for any given upstream Mach number.
When both subsonic and supersonic effective Mach numbers occur, as in Figure 14,
this, simple trend no longer occurs.

In Figures 19 through 21, the results for s +/s _ are plotted as a function of S ,
one figure for each upstream Mach number, for M t = 3, 6, 10. Here the occur-
rence of peak values at critical values of S is more readily apparent. As the
value of the wedge half-angle increases, the magnitude of the peak corresponding
to Me = 1 increases and occurs at higher values of S. For those values of (e - 0)
where the curve of Me crosses unity twice, there are two amplitude peaks; again,
the amplitude minima correspond to minima in the effective Mach number curves.

The amplitude of the pressure pulse generated by the interaction is given in Figures
22 through 31, in a sequence paralleling that for the presentation of s +/s_. The
results ore shown in terms of p+/s_, which is defined above in Equation (79).
The general trends are the some as discussed above for the entropy disturbance
magnitudes, with sharp maxima occurring where M e = 1. However, in the case

t	 of the pressure disturbances the minima (corresponding to minimc in the curves of
Me) also have discontinuous slopes. The range of p +/s_ encountered extends
from -0.8 to +3, with the largest value of the maximum occurring near M t = 3,
S	 80 degrees, (e 	 30 degrees.

These pressure magnitude values are also shown, in Figures 36 through 39, in a
form more convenient for calculations, since the pressure perturbation values arr
referenced entirely to upstream conditions, in accordance with Equation (66).
These results are shown only for the extremes of the range of S and for those values
of S corresponding to mwcimum pressure disturbance. It should be emphasized
that for M < 1 these pressure pulse magnitudes exist only immediately behind
the shock and decay thereafter.

The vorticity generation parameter, as defined above in Equation (67), is shown
in Figures 32 through 35. It shows maxima with discontinuous slopes, similar to
the other interaction results, with the magnitude of the peak increasing with up-
stream Mach number iA and with wedge half-angle (e - P). The largest values

#	 of the vorticity parameter (over the range 1 .1 L M L 10, 1 0 4 S L 890 , and
'40 5 (e	 5 300) occurs in the vicinity of M =t 3, S = 800 , (e - (3) = 300,
as did the largest peaks in the pressure perturbation :magnitude.

It would be useful next -o estimate the magnitudes of pressure perturbations which
might be experienced in practice. Two cases will be considered: (a) the separation
shock ahead of a conical flare on a cylindrical body, as on a launch vehicle, at a
low supersonic Mach number, and (b) oblique shocks on a supersonic aircraft at
cruise Mach number and altitude. On the bnsis of the scant experimental results
ovailab:e for temperature fluctuation magnitudes (discussed further in Section 2.3),
a value of 2 percent of :rhe total temperature is taken here.
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For a separation shock ;tonding ahead of a conical flare on a cylindrical body,
the shock angle P varies with free-stream Mach number only, and is nearly
independent of flare angle, Reference 9. Therefore, as a first estimote, the
wedge flow results given here can be used to predict the pressure perturbation,
simply by taking the cc -rect wedge half-angle to produce the equivalent shock
angle at any given Mach number, Figure 40. For Mach numbers from 1 to 4,
the required wedge half-angle varies from 0 to 14.6 degrees. Taking a flight
condition of M , = 1 .2, h = 25,000 ft. (corresponding to a dynamic pressure
of q t = 800 lb /ft 2 ), and with the appropriate wedge half-angle of (e 	 4C'
values of

( 2q a 
)/(- TT )1

as large as (-2) can occur.

When the temperature fluctuation magnitude is translated into a static temperature
reference at this Mach number, (6 T/T) = 0.0258. Hence the pressure pulse
would be 6p = 82.5 lb /ft 2 , or in terms 	 of sound pressure level, referenced
to 0.0002 dynes/cm 2 , SPL = 166 dB.

For a supersonic aircraft cruising at Mach 3, h = 70,000 ft., and again taking
extreme va l ues of (e - P) = 300 , an upstream temperature discontinuity of 0.01
referenced to the total temperature, and the value of 6 which gives the largest
pressure perturbation, a value of

1 2q / ^ 7
^^	 1

as high as ( + 2) can occur. The resulting pressure pulse has a magnitude of 144 dB,
substantially lower than that for the launch vehicle case, primariIy becouse the free
streom dynamic pressure is lower by an order of magnitude.

It should be emphasized that these numbers represent extreme values reached by
the selection of what are probably extreme vales for (6 T/T)

t 
and 8 , and that

most levels encountered in practice wi l; be lower. Further, these are instantaneous
pressure pulses and not a continuous level .
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3.0	 TYPICAL ENTROPY FLUCTUATION MAGNITUDES

In Section 2.2, an entropy fluctuation magnitude (step amplitude) of 2 percent of
the free stream (absolute) total temperature was used to make a first estimate of
the downstream pressure fluctuation to be expected from entropy-shock interactions.
A number of researchers have measured values of temperature or density fluctuation
intensity in jets, wakes, and boundary layers (References 14 through 20); maximum
values from some of these results are shown in Table 1. Caution musr be applied in
interpreting these values, as not the same reference conditions were given for all
the data. In general, the jet and boundary layer data are root mean square tempera-
ture fluctuations referenced to jet or free-stream total temperature, while the wake
data are mostly root mean square density fluctuations referenced to local mean density
in the wake, all taken by hot-wire onemometry. The data of Clay, etal ., are ampli-
tude values estimated from Schlieren photographs.

The data foil into two magnitude categories: (a) Maximum fluctuation intensities
between 15 and 40 percent for jets and wakes, and ('o) maximum fluctuation inten-
sities between 2 and 5 percent for boundary layers. There is no discernible trend
with Mach number, but aside from Kistler's boundary layer data there are too few
Mach number points to provide any conclusion about trends. It is difficult to
imagine a trend with Mach number, however, in which the tempC# `tire fluctuation
would not asymptotically approach Born,_ fraction of a typical driving temperature
difference in the flow, such as the difference between recovery temperature and
wall temperature in a boundary layer or the temperature defect in a wake.

Entropy fluctuations in wakes persist for long distances downstream of the boe.y,
still showing significant magni +udes at 1,000 diameters. For launch vehicles,
the wakes a$ upstream protuberances mc7y be the most important source of strong
entropy fluctuations *o interact with downstream standing shocks.

Attempts to obtain large but pure entropy fluctuations (without vorticity fluctuations
present) for expe, imental purposes were reported by Morkovin (Reference 2) and by
Homernik (Reference 21). Morkovin used eiectically heated rods in the Johns Hopkins
Supersonic Tunnel and produced entropy fluctuations domincnt over the vorticity and
sound signals, but only of about 0.2 percent intensity when referenced to the total
temperature. Homernik used an exploding wire to produce a temperature spot to
interact with a reflected normal shock in a shock tunnel and obtained a peak density
amplitude AP/Pref 	 4 percent, where the reference density was the local con-
dition after passage of the shock front, for a shock strength of 1 .8, corresponding
to a shock Mach number of 1 .3.

Typical temperature fluctuation values for the background in wind tunnels are less
than half a percent of the total temperature. For example, Reference 16 cites a
measured value of 0.04 percent in the Johns Hopkins 7" x 11" supersonic (Mach
i .75) tunnel . In the first few feet of the atmosphere, temperature fluctuations as
large as 3 to 4 percent sometimes occur near highly heated surfaces such as airport
runways.
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TABLE I

ENTROPY FLUCTUATION DATA (EXTREME VALUES)

f -

i
t

s-

Flow Mach Number Reference Entropy Data
Range (Extreme Values)

Free Jet, Round Subsonic 14 18 percent

Heated (r.m.s. fluct. temp.,
ref. to centerline
static temp.)

Boundary Layer, Mm = 1 .75 15 2.5 percent (fluct.
Flat Plate amplitude, ref. to

tunnel total temperature)

Boundary Layer, M	 = 1.72 17 4.8 percent

Flat Plate 3.56 3.6 percent
4.67 2.1 percent

(r.m.s. fluct. temp.
ref. to tunnel total
temperature)

Wake of Axisymmetric Mco = 1 .75 16 2-3 percent (r.m.s.

Rod temp. fluct. ref. to
tunnel total temperature)

Wake of Axisymmetric Moo = 3.0 !8 7 percent (r.m.s. fluct.

Rod temp. ref. to local center-
line total temperature)

Wake of Sphere Mm	 8 19 15 percent (density fluct.
amplitude ref. to local mea
density)

Wake of Sphere Mw =	 8.5	 20 30 percent (r .m .s . density
fluct. ref. to local mean
density)

Wake of 12-jegree MCC. = 22.8	 i	 20 40 percent (r.m.s. density

i	 Cone fluct.  ref . to local mean
density)

)

t^
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4.0	 RANDOM FIELD OF ENTROPY DISTURBANCES INTERACTING
WITH A SHOCK WAVE

According to the Fourier integral theorem, a random field can be represented as a
superposition or spectrum of elementary waves. A single spectrum -nave can be
interpreted physically as a plane sinusoidal wave of temperature or density variation,
being convected downstream at the local mean flow velocity. Before synthesizing
the random field, one must consider a single harmonic component. Again following
Chang, Reference 10, the description of the interaction of a single harmonic entropy
wave with a shock wave is given below.

	

4.1	 The Harmonic Components

The plane upstream entropy wave can be characterized by its amplitude Rs , its
wave number k t , and its inclination S with respect to the flow velocity Ut:

s t = Rs cos k t ^t Mt

where (see Figure 41)

A

A
I T- (^ x t + ml yt)	 (69)

t 

tt = cos 6, mt = sin 6

Initially, let us restrict attention •o the special case of a normal shock. Here,
some simplification occurs, since the three sets of coordinate axes x t oy t , xoy,
and x*oy* coincide, and the unperturbed shock plane can be taken along the
y axis. For the "supersonic" case Me > 1 the function F t becomes

sin 	 )
F , = - cos µ e ap cos k t m t cos (a+  µe) (X - Y cot µe) (l 	(70)

where

C

As )
	 sin a - ^2 cos a

a -	 Cp	 s	 ^•A ) (A sin a - cos µe ) - B cos a

a =	 arcton 1 -cot S U

µe -	 oresin 1	 Cos  a

• Rs
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The local displacemenr of tke shock is given by

W= i,W i n (k l I
II l y' )

where

^.• 	
N— ; -

/ 
sin a - ( X21 ) cos e

/	 21k l m l b	 2^ _ -	 y	 Rs
-p--) (A sin a - cos Pe) - B cos a

The vorticity - generating function f (Y) and the entropy are given by:

a
f (Y) = (OU+ M ) cos ( L- m 1 Y/cos a )

e

and

s (Y) = as cos (k 1 m 1 Y/cos a)

where

C
aU = ,A( A,cosa+B sina^ n21 

(k 1 m ^ bW )- 13l Rscosa

and

C
_	 s

as = 
X 11 Rs	 X11	 q	

(kI ml bW )

For the "subsonic" case Me < 1, the function g (n) is given by

g (n) - 1	 1- Me	 n	 n
^ap cos kl ml	

2 +
b sin k l m^	

22,r	 n	 Me	
y

1-M	 1-M j
(74)

where

(71)

(72)

(73)
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C
ap =' A A
	 sin a- B cos a j x

C
C2^ s

A	 sin a -	 0 cos a

x	 C C	 2-	 Bs2 1- M2

A'A Isina-Bcosa +	 e
2 A ;1 M
e

C
f22 cos a - ^^ A sin a

b =	 .
P	 _ C	 2 1- M2 	C 2

^A► 	 s	 sin 	 +	 e	 s
1	 A	 M	 x

t	 e	 A

—I-
 M2	 C

2	 s

	

x	 Me	 A	 Rs

and

The local shock displacement is

W = 0
W 

Cos (k
i m

l
y') + b

Y 
sin (kImIy')

where

C

	

1	 f2 2 Cosa 	 A sin a
k^m^ay	

net	 C	 2	 1 -Me C

	

A S  sina- Bcos a )
 y	 (A,

e
and

(75)

1 - Me 	
R

Me	 s
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C 1 - MI	 C

1	 A21	

s	
2 e + ,,3 

t sins A 
s 

sin a- B cos a

_	 A M	 Ak I m I b i f 
21	 _ C e

	
1	 1 - M2 C 1	 Rs

A s sina - Bcosa + _—e	 s

A	 Me A

Finally, the vorticity and entropy generating functions are given, respectively, by

a Y	 b	 Yi.
f (Y) = (au+ M cos k1m1 cos a - ^J M sin (k,mt cos a 	 (7^)

and

s (Y) = a cos ( k m	 Y) - b sin (k , m ,	
Y)

s	 1 t cos a	 s  	 cos a

where
C

as _ All Rs	 I ► 1 ^ A ^ ( k t m t bw )

sb s = ntt 

C 

A ) (k t m t aW )

By rewriting the solution in the original physical coordinates, i .e., the x, y, T
reference frame, the three modes can be expressed explicitly. For M e > 1,

p = a cock	 ( 1 +M Cos s )T- I x+m ;))	 (77)
P	 P(	 P	 P	 P

s = a s cos k i M T	 x	 m y) (	 (78)

A = i-k au; M ^psink I fMT-Qx+my) '	(79)
e

where

m

k = k	 t
p	 1 mp



lP
 = cos 9 

P 
= sin (a + tie)

k = k  (ml/m)

A = sin a

For Me < 1, the three modes are given by

e x/d a cosk Ir '+Moose )T - (^ x+m
p	 P	 P l	 P	 P	 P Y)l

	

+ by sin k  [(1 + M cos @p) T - (1p x + mp Y) IL	 I

s = as cosk [A M T - (Ix + my)] - b S s
i
n k It M r - (I x + m Y)l	 (81)

W = -k aU+ M sink[IMT -IX + my)] +
e )

by	 r	
1	

(82)

M+ (bU +

	

	 cosk r lMT-( ,fi x + m
Y)i i

e

where

k  = k l (m l/ mp)

2

( M	 tan a

1 - M2 )
'ep	 M2	 11/2

[1 + (M, tan a^ J

k = k, ( m,/M)

A = sin a

and

d =	 1 -M 2

k 1 M 1 O- Me )'/2
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4.2

The amplitudes of the wave generated at a given value of the shock strength are
functions of 8, the inclination of the incoming disturbance. For M e < i, the
amplitudes of the flow parameters refer to values immediately after the shock.

Now that the expressions are available for the downstream flow perturbations due
to the interact i on of a single Fourier component of entropy with a normal shock,
the corresponding random field can be constructed. The method follows that use6
by Ribner to treat the case of a convected field of vorticity interacting with a shock.
Just as Ribner used an aggregate of vorticity waves with a suitable distribution of
amplitudes among the various wave lengths and inclinations to represent a turbulent
field, so can an aggregate of entropy waves represent a random field of entropy spots.

The Random Fief

Following Ribner, (Reference 7), expressions are next derived for .'.,e root-mecAn-square
amplitude of the downstream pressure field generated by a random field of entropy woves
(of given r.rn.s. amplitude) interacting with a normal shock.

In general vector notation, and referring to any general physical quantity q, an ele-
mentary spectrum wave (harmonic component) is also expressible as:

dq = d Z 
q 

e
ik -A	

(83)

where k is the wavenumber vector directed normal to the wavefronts ono of magnitude
2 n/,\ (Figure 41), and d Zq is the complex amplitude of the wave. When q stands
for a scalar quantity (such as temperature, density, entropy, or pressure), thes- are
simple scales- waves.

The mean square level of a random disturbance rl is

q2 = J [q q] d k
	

(84)

where [q q] is the spectral density, and [q rl ] is in turn related to the complex
amplitude d Z  (n) and its complex conjugate by:

[q q] d 	 =	 d7_* (k) d7q (k:)
	

(85)

For the specific case cf random upstream entropy disturbances generating downstream
pressure disturbances, the oncoming entropy wave is expressible as

i k, • x
d s = d Z es

x

i

(86)
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and the downstream pressure disturbance as

d p = d Zp e i k - x	 (87)

and the direction of the wavevector for pressure is normal to the wavefronts of sound.
The pressure wave amplitudes and entropy wave amplitudes are connected by the transfer
function

d Z  = Ps d Zs	(88)

where Ps is the single-wave transfer function between entropy and pressure, which
is wavenumber dependent.

'ihe desired r.m.s. pressure fluctuation will be given by

p2 = f [ p p] d k	 (89)

Through Equations (85) and (88),

2

[ p p] dG = (Ps I	 d ZS d Zs	(90)

and

2	 r=	 2p	 J	 I 
P s 

1 	
Is s] d k	 (91)

This relates the r.m.s. pressure fluci jation to the spectral density of the oncoming
entropy field and the wavenumber-dependent transfer function. For an isotropic
field of oncoming entropy waves (i .e ., a scalar field with spherical symmetry),
the spectral density has the general form

Is s ] = k2 F ( k ) (92)

where F ( k) is an arbitrary function of k that will finally cancel cut in forming
ratios.

Going over the spherical polar coordinates, the wavenumber components are

k , = - ksinb

k 2 = k cos S cos

k3 z:-	 k cos 8 sin ¢
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and

d k = K2 cos S d k d 4p d S	 (93)

Then_ the r.m.s. pressure fluctuation becomes

_ j'ao 	W	 + it/2
P2 =/ k2 F (k) d k	 d 1 J j'

	 Ps 2 cos S d S	 (94)
0	 0	 - w/2

Also, the :.m.s. entropy fluctuation is

_	 OD	 ' ^	 +R/2
s2 =f& s) d k = j k2 F (k) d k	 d+	 cos S d6	 (95)

  f 
0	 0	 -A/2

Therefore, the ratio of r.m.s. pressure fluctuation to r.m.s. entropy fluctuation
produced by an '-sotropic field of entropy waves is

2

fp2/S2 =	 ! Ps ! cos S d6	 (96)
0

includin,, entropy waves of oil wavelengths and orientations.

Th, recruired si.igle wavenumber transfer function was defined, in Equation (i;a), as
the ratio d? /d Z , the ratio of the complex amplitude of c single harmonic pres-
sure w^^Le to a complex amplitude of the single Farmonic entropy wave that produced
it. Its absolute value I P I will be •,btoined from section 4.1. The absolute value
of the upstream entropy wave amplitude is obtained from Equation (69); and those of
the downstream pressure fluctuation, From Equation (80) for the subsonic case, and
from Equation (77) for the supersonic case. It must be remembered that the point of
transition from subsonic to supersonic case is also a func'ior± of vector wovenumber
k through the wove_ inc!inotion S .

For the supersonic case, Me > 1, the transfer function is:
2	

a
ps 1

2 =	 =P I _^ =	 P	 (97){2-	 I51	 R s

and for the subsonic case, Me < 1, the tronsfer function is:
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2
	 I PI 	

a 
2	

b T

P	 =	 =	 p	 +	 p	 (9$)s^	 s t	 R	 R
s	 s

where the amplitude components ap/R, and by/Rs ore given for the supersonic
case by:

C
sap	A) ^1 sin a - S^2 cos a

s
	 (

C
A ) (A sin a -COS µe) - 8 cos a

and for the subsonic case by:

C	 _ap	 j ," C s	 t	 A sin a- S2T cos a
R	 = IA A sins - Bcosa_'	

TS	 _ C	 T 1 _M2 	 ,T
jA A sina -$cos a`+ Me e ^A'

	

t	 e

(100)

C

P 2 cos a - ( A )	 sin a

Ps 	 _ C	 T	 1- MT	 C T

CA ( s )sina -E Cosa I +	 e / s
A r	 J	 MT	 ` A

e

r t -Me (i.
x	 Me	 \ A	 (101)

From the complex'ty of the expressions for the transfer functions in both Mach :number
-.:gions (rr ,3inl y t. • < form of meir .apendence on wave incl':nerion 6), as well as the
fact that the bcxmdary of validity of the two expressions also dep _nds r  5, then a
numerical intenrat : jn of Equation (96) will be involved in applying these expressions

(99)
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I
to obtain numerical results. Qualitative conclusions which may be drawn from the
equations themselves include:

1) When Me > 1, the waves generated downstream are in phase with the
incoming disturbance, but when Me < 1 there is a phase shift across
the shock.

2) When Me > I, &r pressure waves generated have a permanent waveform,
but when Me < 1 they decay with distance. At a fixed value of shock
strength the absorption distance d is a function of the inclinutic;,n of the
oncoming disturbance S, larger values of S (or oncominy wave fronts
more nearly normal to the shock) corresponding to shorter absorption
distances. Increasing shock strengths also result in increasing decay rate
with distance from the shock.

I
t
I
s
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5.0	 CONCLUSION AND RECOMMENDATIONS

The strength of the pressure disturbance gewooted by ar, entropy disturbance inter-
acting with a shock wave depends strongly upon the inclination angles of the entropy
wavefront and of the shock. 	 For every flc v condition there is a region of entropy
disturbance angles for which an "effective Mach number" in the flow is subsonic,
and the pressure wave amplitudes decay with distance from the shock, port of the
disturbance energy being fed back into the shock. 	 For all other entropy disturbancf
angles, the "effective Mach number" is supersonic and the pressure disturbance pro-
pagates at constant amplitude. 	 Entropy d'isturbar,ce angles encountered in practice
will depend upon :he source of the disturbances, but will most often be a mixture of
a!I angles, so that part of the generated pressure field 	 sill propagate as acoustic
waves while the remainder decays with distance.

Example estimates, based on flight conditions typical for launch vehicles and
supersonic cruise vehicles, and using entropy disturbance inputs typical for boundary
lagers, ;how pressure fluctuation magnitudes larger than for boundary layer noise and
equal to those produced wy shock-turbulence interactions. 	 Therefore, the entropy-
shock interaction can ccuse serious levels of fluctuating pressure and shcrild be
explored further.

The large density fluctuations measured in supersonic wakes, and the persistence of
the density fluctuctions over large downstream distances, make wakes of upstream
protuberances on launch vehicles particularly suspect if there are standing shocks
downstream.	 Since several of the trends and conclusions in Reference 2 are sukiect
to revision, the possibility of resonant osciliotions of standing shocks (driven by
entropy-shock interactions and by acoustic reflections between the body and the
shock) should be re-examined.

Regarding entropy fluctuations in jets, the citea data (for a subsonic, heated jet)
showed maximum values almost on order of magnitude larger than those used in the
sample predictions. 	 In a hot, supersonic rocket exhaust with oblique shocks, the
shock-entropy interaction could be a major source of noise. 	 Typical en`.ropy fluc-
tuation magnitudes and shoc k conditions for rocket exhausts should be applied to1 estimate the importance of this interaction as a noise source, compared to the
strengths of other sources present .

As fou-idation for further assessment of the pressure ' i::ds from shock-entropy inter-
actions, the analysis methods should be based on improved models of the actuvi
flows. The first step would be to complete the random entropy field case, since a
random field of entropy spots could then be represented by a fie!!' synthesized from
all wavelengths nod orientations of harmonic components.
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Previous work has concentrated upon c,ne of the three modes at a time (entropy,
vorticity, sound) interacting with a shock, the present being no exception. Yet
natural flows contain all three modes, with one sometimes dominant; and in an
experiment it is difficult to generate si gnificant entropy or vorticity fluctuations
without also generating the other. The foundation exists (in Reference 2) for
obtaining the downstream perturbed flow fieid from an upstream flow containing
all three modes, without superposing individual solutions. Experimental data
suggest that temperature disturbances are negatively correlated with velocity
disturbances. Then the combined effect of temperature and velocity fluctuations
interacting with a shock would not be a simple addition of -he results for each,
but must consider the cross-terms arising in the interaction. The combined result
for a spatially homogeneous field of temperature and vorticity discontinuities,
plus sound waves, interacting with shock should be determined.

I
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APPENDIX A

COMPUTER PROGRAM TO CALCULATE VARIOUS QUANTITIES
ASSOCIATED WITH SHOCK ENTROPY INTERACTION

Contents:

Definition of Input Formats	 =	 _ _-

Definition of Output Alternatives

Diagrams of Coordinate Systems Used

Sections:

A.1	 Definition of Mathematical Equations Used

A.2	 Definitior of Symbols Used

A.3	 Flow Diagrams

A.4	 Fortran Lis+ing of Program

A.5	 Example of Results

Definition of Input Format

Quantities input are:

(1) The date of the rvn, e.g. 10/23/67, columns 1 through 8, format 2A4

(2) S 	 M,, T, &, A l , ISW, ISW2 format 7F10.0, 2I5

(3) Repeat: (2) for as many inputs as required.

Note that the quantities s_ through A, are defined in Section A.2.

If Y 5 0 then the run is terminated

If IS W > 1 then "S* " routine omitted

If I S W 2 = 0 then full anotated output is obtained

If ISW 2	 0 then the results for this case will appear only in the summary tables.

Al



Doii , .ition of Outart Alternatives

For each set of input data a full set of annotated results is output if ISW 2 = 0 (see Section
A.5).

At #i a end of each run or when the number of sets of input data equals a multiple of fifty, tables
of the variable sets of input data with their calculated output quantities are printed (see Section
A.5).

Note t%at all angles are quoted in degrees and radians.
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A.I SHOCK ENTROPY INTERACTION

The given input quantities to the program are:

M 1 , e, p, y, A 1 , s_

The equations used to compute the various required quantities are:

PM
7N' -1

(1) X =	
Pim	 =	 6

7N

NI + 5
(2) M

^-1

A(7 Ni -1) (Ni + 5)
 V(3)	 _

(3.12)

A I	 36 N

2 N 2

`` I1 =	 Pm) (N ) - (y - 1) 1 - pm	 N2
im	 1	 im

N2	
Pm	 P 2 

N 2

1 - N2	
P,m	 L	 PIm	 NI

(19)

-N(	 p 2 N 2^	 p

1 - N l	
Pim NI J	 PIm )

Al2 = 	(y --1)	 1 - -
P

m_	
1	 P1 _ 	m	 N2
2

	

PIm	 NI PIm

A4
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_ N 2

A22 -	 1 - !-M- + 1 - 1	
Pm	

1 + (Y -1) 1 - Pm N2
21 - N2	 Pm	 Ni 

Pim	 Pm

N	 ("	 P 2
	 N 2	

P	 1 P
 (

A	 1- m	 +	 1- m	 1-- m )N2 1
32 =	 1- N2 l	 p	 1 ^`1	 Y	 p	 N2 p

P,m	 im	 i	 Im

P 2 N2
Aq =	 (y-1) 1 - 

m

	

Pim	 N1

-N	 p	 p	 N
A23 =	 1- m	 2t(y - 1) i- m N2

1 -N 	 pm ) I pm	 N1

1	 N 
A33= 	 ll - ( Pm N2

	
P

+Y 1_ "'	 N2

1- N2 N,	 P	 P^m	 ,m

A	
Pm N

44 _	

PIm	
N1

2

'^^ _	 - (Y -1) 1 - p m	 Pm	
N (

m P m

P
2	

-N	 p

1 =	 1 - 'm	 2+ (y-1) 1 - m 	 N 2 
)[1 - N2	

Pm	 P m

1
31 =	 2 1 - P m	 1 + N2 + (r -1) 1 - Pm	 N2

1 - N	 pm	 Pim

41
 	 ( 

P

	

=	 pm - 1	 N
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(3.14)	 N =	 M sin i3

Pm	6 X + 1

	

(3.18)	
P =	 X+6
P,m

(20)

(3.13) N 1 = M 1 sin E

(4) A	 = A—A ) A 1
1

(5) U	 = MA

(5.1) Ul	 = M l Al

(6.01) C	 =S
S

COs
cos

(S — E)	 U l 

1	 ^(6.10)	 p  =	 oresin 1 M
e

(20)

(24)

(6.09)
u* = sin (a - ^) cos (a - ^) U+

(Matrix Notation) (30)
v* - cos (a -P) sin (a - P)	 V

(6.17)
s+ All

11T

	 (M Cos	 - Cs /A)
1 t

P+
+

A n	 (M cosp - C /A)
s= 21 s-	 + 21 x

U+ A31	 sin (a n31	 (M cosp - Cs/A) sin (a -P) - n41 cos (a-^)

V+
A31	

cos (a n31	 (M cosp - C s /A) cos (a -p) - n sin (a-P)
41

x	 sin (a - P) 
Y

(31)

C
(6.17d)	 V+ = A31 

cos (a -P) s - + n (Mcosp - -A ) cos (u -P) + n sin (a -^) sin (a-0)Wy

	

3i	 41

(6c, b)	 O =	 Cs sin (a -	 U sin a

O =	 U  sin (a - (3) - U sin 	 simultaneous	 (27)

A6



(37)

(38)

U

C7)	 Me =	 eA

	

(7.05)	 q =	 - T2 (6) cos 
Ne s -

	

(7.06)	 q	 =	 - T i (6) cos P. S -

	

(7.07)	 A =	 'r31

n
21

it
41

B = _
n
21

G =	
B

S

S2 i	 1	 A _ A
2i	 31

^2 -	 Ali B

C

	

(7.03x)	 q	 -	 - A21 COs 
lie s - - ['21 (M cos (i -	

s ) '*as  N	 sin (a - ^) ^Y	 3 5Ae	 y ( )

	

(7.05a)	 T2 (6) _ ^2 cos (a - P) - A2i G sin (a -p)

ACos (a-0)-G sin (a-p)+ Cos
Ne

(39)

(7.060)	 T i (6) _	 1 cos (a - P) - A21 G sin (a - ^)

A cos (c,	 G sin (a -	 cos Ne

(8) u 1	 sin a	 cos a	 u*

v	 - cos a	 „in e	 vi

P
(9) f (Y) =	

U+ + m
e

(40)

(Matrix Notation)
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(10) D	 =
I	 M

—'	 -- 
e	

A cos (a -	 G sir. (a - ^)
2	 4T -M2

01) C	 = S(^I cos (a - P) -	 A 21 G sin (a - P)	 s -

(12) 9 (Y*) =
DC

1 + D2

(13) P]
1	 M

(^' )x A= O ^^
1- M̂̂22	 V e

P]x* 0	- X21	
s _

(14) I'Y
121 

(M cos p - C,/Al sin (a - p)

(15) Op +

( y d

 d T_	
=	

P+ 	1

 P M2
m

T	 s	 M2
-ml

d P+ d T _	 P+	 X

Y Pm M2,

I Tm	 s'	
M2

 I

(20) 9 	 = n - E -	 (a - ^)

U
(21) tan (S") = r- 1	-	 cos e

-
s	 i	 sin e

(22) a	 =
Cs sin

arctan  cos B- U-CS

(23) 0	 - aresin	 C U sin	 1
L	 A	 J

(24) A C2 = U2 + A2 -2U 
4 

U sin e R - cos	 vat - U2 sin l2p} =	 C2
sl

i

(54)

(55)

AB



A

(25) BC =	 2 A cos A l 0 = 2	 A2 - U^ sin2

(26) AB	 AC -  B C	 i .e .,	 C$2 	 C51 -  B C

Note that the equation numbers on the left hand side are those referred to by the flow charts
(Section A.3) and those on the right hand side are those used by E. Cuadra in the report.

Derivation of Equations 23 through 26

To find AB and AC

i.e., CS2 and CSI

Given
n

BAD =
--►
AD	 = U

BD	 = DC = A

Let DBC = DCB = 6

Consider A D B C then C D B= 180-20

Consider A C D A then C D A= 180-P-0

A9



Apply the cosine rule to A CD A

AC2 = U2 + A2 - 2A U cos (180 •- 	 - 0)

Apply the sine rule to A CDA

_A_  U
"	 sin sin 0

•	 sin 8 U sin
A

'42 — U2 sing
cos 8 = A

A C2 = U2 ^+ A2 - 2 U U sin 2p - cos p	 A2 - U2 sin2 p J

From A D B C

BC = 2 A cos 8 = 2 V IA2 - UZ sin e ^]	 and

AB=AC - BC

Now

8= sin -I [ Usin p 1
A J

a^ = 180 - CDA

180 - (180 - - 0)
_ P+8

a2 = P +180-0
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_ A.2

THEIR COMPUTER

TABLE OF SYMBOLS,

CODE EQUIVALENTS AND DEFINITIONS

Symbol
Com

 Copde
er

Description

M^ EMI Upstream flow Mach number.

= ETA
G EE Shock wave angle, referenced to the x . - axis .

EV(!C)

BETA Angle between the shock wave and the downstream mean
BB flow velocity vector.

BV(IC)

y GAMMA Ratio of specific heats.

DELTA
S DV(ISW,IC). I	 Inclinction of upstream entropy wave with respect to main

DD flow direction.
- DDV(IC)

A^ f'.1 Spe.id of sound in the flow field upstream of the shock.

_ 1 s SM Dimensionless mcgnitude of the upstream entropy
- SMV(IC) pertubation.

N t 1W. Upstream Mach number corresponding to a normal shock of
cNIV(IC) equivaler'- strength.

x	 I CHI Shock strength ; n terms of the ratio of pressure of thei CHIV(I0 un,,-rturbed flow across the shock.

i M EM Downstream flow Mach number.

N EN Downstream Mach number corresponding to a normal shock
- of equivalent strength.

p
m/p
,

 m
RORAT Dsnsity ratio across the shock, downstream to upstream.

A/A^ ".? kT Ratio of acoustic velocities across the shock, downstream to
L upstream.

All

fi



I	 Symbol! C mpu er
	 I	 Description	 I

U I U1 Mean flow velocity downstream of the shock.

A A Speed of sound 7 n the flow field upstream of the shock.

U U Mean flow velocity downstream of the shock.

1.. OMEGAM) Transfer coefficients for the interaction (see derivation
1) in text).

W.. PI(I,J) Transfer coefficients for the interaction (see derivation
Ij in text) .

C CS Drift speed of the upstream entropy wave along the -shock
S CSV(ISW)

ALPHA Inclination of U 	 with respect to the downstream mean

a
AA
AV(ISW,JC)

flow direction:	 U.

U UE Apparent mean flow velocity downsstream of the shock with
respect to an observer moving with C s .

EME
M EMEV(IC) Effective Mach number corresponding to U. .

e

µe EMEWE Effective Mach angle corresponding to Me .

A AGAR Ratio of transfer coefficients,	 w31/w21

B B Ratio of transfer coefficients,	 '41 /'21

G G	 1 A nondimensional group in the solution for the Rieioicnn
invariants, case	 M e > 1.

;21 OMEG 1 A convenient grouping of transfer coefficien ts in the solution
for the amplitude funct i on	 T1(S).

<< OMFG 2 A convenient grouping of transfer coefficients in the solution
i'or -he amplitude function 	 T2(6). 

j
I

Al2



Symbol
Computer

Code
7escriptior.

CS 2
C CSV(2) Intersection of shock plane and sonic circle Tying nearest the

S
C52V(IC) origin.

CS]
C CSVO) Intersection of shock plane and sonic circle lying farthest

S
CSIV(IC) from-the origin.

.2 (S) T 2D
An amplitude function required for the pressure perturbation

I solution, case Me > 1	 (s.a . report text) .

T 1 (6) T 1 D An amplitude function required for the pressure perturbation
solution, case Me > 1 (s.a. report text) .

A dimensionless parameter related to the downstream pressure
q Q perturbation, o!ie member of the pair making up the Riemann

invariants (s.a. report text).

W PSIY Local shock deflection owing to the interaction.
y PSIYV(IC)

S SP Dimensionless magnitude of the downstream entropy perturbation.
+ SPV(IC)

P + PP Dimensionless magnitude of the (downstream) generated pressure
PPV(IC) perturbation.

U+ UP Dimensionless magnitude of the (downstream) velocity
UPV(IC) perturbation component along downstream mean flow velocity

vector.

V+ VP Dimensionless magnitude of the (downstream) velocity
VPV(IC) perturbation component normal-to downstream mean flow

velocity vector.

U* US Dimensionless magnitude of the (downstream) velocity
perturbation, component along x * axis (along shock plane).

V* VS Dimensionless magnitude of the (downstream) velocity
perturbation, component along y* axis (normal to shock plane).

A13



A14

Symbol
Com
 
weer Description

u l UL 1 Dimensionless magnitude of the (downstream) velocity
UL1V(IC) perturbation, component along x  axis

V I VL 1 Dimensionless magnitude of the (downstream) velocity
AI(IC) perturbation, component elong y, axis.

f (Y) FYV(IC)
Vorticity generating function (s.o. report text).

C C A convenient grouping in the solution for the equivalent
source function g(Y* ); s.a. report text.

g(Y* ) GYS A function related to the strength of an equivalent source
located on the shock plane (s.o. report text), 	 case M < 1.e

P(X =0) PCs Dimensionless pressure perturbation immediately behind the
PCSV(IC) shock, for the case	 M < 1.e

p+	I ANG Dimensionless pressure perturbation referenced to Iota_ I
s ANGV(IC) stream-dynamic pressure.

_	 M2

p_	 X ANC Dimensionless pressure perturbation referenced to upstream
S ANCV(IC) (free stream) dynamic pressure.

_	 M2

TDD
8' THETAD Enclosed Ingle between U 	 and the x t - axis.

T HDV(IC)

D D A convenient grouping in the solution for the equivalent
fsourcefunction	 g(Y *_), s.a. report text.

8 THET Enclosed angle between the shock plane and the radius vector
of the sonic circle ending at the intersection of sonic circle
and shock.

VORT VORT 4u '—y
VORTV(II„)



A.3 FLOW DIAGRAM

Read the date of the run
Set the count of the number
of cases equal to zero. (IC)

14

Set PIE = 3.141592. Add one to
the count of cases in this run

i

Is
Print	 1	 Yes	 this ct
Sub	 > 50

Print

Set IC=1

Outfit heading and the
date. Read SM, EE, BB

EMI,GAMMA,DD,AI,ISW,ISW2

Convert EE, BB, DD to Radians
Place EMI , EE, BB, SM in

output area for print subroutine

10.19.67

Note that ISW2 determines
the output format of the
results.

Test
Print	 2	 Yes 

if GAMMA NO	 3Sub
<0

Output end of n n messages
on line printer and console
—	 typewriter --#	 Stop

A15
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. (1)

A16

Add 10 tc- 6
Convert to rod!

3

Compute the sines
and cosines of ETA,

and BETA

Compute cosine (E -E)

Note that the value of
ISW determines whether CS,
CSI or CS2 is being used to
compute values of parameters
in the latter part of the program.

Compute cos, sin S
and sin (6 -0. Place

DD in O/P area for print scab.

Set PP, VL1, ANC, ANG
Equal r Zero

1
Compute U 1= EM 1* A 1

Eta. (3.13)



A17

4)

Output message
on line printer

ISW=1

ISW=1

Output message
on the line print



I
^r

I

3.12)

;5.01)

b)

I

I 

EQ. (5)

-V

Zeroise the
I

storage

area for A

I'

ct + w

No

sin (a -

and cos(a - 0)

I

EQ. (7)

Me

7

A18
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. (26)

EQ. (23)

EQ . (24)

Place C s l in o/p area
for print subroutine

I E Q , (25)

I

ISW = 0

8

Place Cs 2 in ; he o/p area
for print subroutine

Yes	 Is No
M -1I<e —

10-6

9

<1

M > 1	 > 1	 10e

=1

A19



A20

ff

^I

^L

0,

Yes

K (7.06a)

,.(7.06)

I



).(20)

i

Set g(y*),p( X * 0),8l

ANG,ANC- = 0.
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ISW2

13
0 1 N

Yes	 I

n12	 Output the results.
1-1 -

10.9.67

Note that in the
latest version of
the program the
8* routine is
omitted.

II
	 a=a +n

	

f^	 *
S=5

c

Convert and store

S in degrees. Store

S = S + n	
Yes	

S< 0	
No	 also in subroutine

output field.

	

'	 4

	

I`	 15

^a

	t	 A22
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15

S?t M - 1,0. Compute
sin (S - fl,cos (S -e)

sin S and cos S

1

v+=u

EQ . (6, i 7d)

OEQ.(6.17 a,b,c)

s+•p+'U+

EQ . (0.09)

u * v' =

—T EQ . (8)

U  f v, =O1------.1VORT =V('JLV+ AV)

EQ . '%9)



I

11

i

s

F

l

r
1

f

r

9

EQ . (7.07)

B,ij

E^.(10)

[_D̂ I
i EQ.(11)

C

]:EQ,.02)

EQ.(1

PW = 0)

EQ.04)

w 

EQ.(-	 a,c,d)

U+' V+

EQ . (6.09)

u*,v*

EQ.(8)

U l 'VI

i



O/P MNii,Ei,^i,Si.Mei,S-i,
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