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ABSTRACT

This report presents some of the fesu]ts of the experimental
and theoretical studies on the fatigue crack propagation in cy-
lindrical shells subjected to fluctuating internal pressure.
Most of the fatigue tests are performed on 6063-T6 aluminum
alloys. Some 2024-T3 aluminum and mild steel specimens are also

tested. Plexiglas specimens are used for static experiments.

In the analysis of the experimental results, the stress in-
tensity factor is used as the correlation parameter. A modified
crack propagation model is developed to take into account the
effect of bending stresses, which are superimposed on membrane
loads around the crack in shells. To evaluate the stress inten-
sity factor, the integral equations obtained by Folias are solved
numerically after separating the singularities. Partly to ver-
ify the theoretical results, strain measurements were made
around the crack tip on the outside of the aluminum and inside
and outside of the plexiglas cylinders. The results indicate
that over the range of crack propagation data covering 10'7 to

3

107 in/cycle, the model adopted in this study seems to be

highly satisfactory.
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INTRODUCTION

The problem of fatigue crack propagation in thin plate and
shell structures is of considerable technological importance,
as it relates directly to the fail-safe design of aerospace ve-
hicles and some ship structures. In such structures, because
of the unavoidable existence of stress raisers,(e.g., holes,
various forms of joining, material imperfections), generally the
fatique crack nucleates after relatively small number of load
cycles compared to the total useful 1ife of the structure.
Hence, fatigue crack propagation studies become necessary for

rational design as well as maintenance procedures.

The main objective of the present study is to investigate
the effect of shell curvature, and to a lesser extent, that
of bending stresses superimposed on the membrane Toads on the
crack propagation rate in thin-walled structures. 1In published
literature there is a great wealth of data as well as the results
of studies on the crack propagation in a Targe variety of struc-
tural materials subjected to repeated uniaxial tension. Thus,
it becomes desirable to develop a method by which the fatigue
crack growth characteristics of thin-walled structures may be
predicted from the fatigue information on flat plates of the

same material subjected to uniaxial extension.



Experience with the fatigue crack propagation in flat
plates indicate that from an engineering view point the stress
intensity factor for the propagating crack is a very simple
and effective parameter in analyzing and correlating the
results of the fatigue tests. This will also be the view
point which will be adopted in this study, particularly in
the modification of the crack propagation model to take into
account the effect of the combined loads. It appears then
that there are two main probliems which should be considered.
One js the evaluation of the stress intensity factor through
the elastostatic analysis of an internally pressurized cylin-
drical shell containing a longitudinal crack, and the other
is the experimental verification of the crack growth model
by using the results of the elastic analysis and the fatigue

tests.

For the stress intensity factor an assymptotic solution
is given by Folias [1,2,3]. However this solution is
reliable only for very small crack lengths and a more refined
solution is needed for the crack dimensions or, more precisely
for the shell parameters which may be encountered in practice.
To obtain such a solution the integral equations governing
the problem is solved numerically after separating the

singularities.

Most of the fatigue crack propagation data in this study



are obtained by using 6063-T6 aluminum tubes. In the
subsequent serjes of tests 6061-T3 tubes and plates of the

same thickness are being used.



FATIGUE CRACK PROPAGATION MODEL

_ Almost all of the existing quantitative fatigue crack
propagation models deal with the thin plates with straight,
through cracks, which are subjected to uniaxial repeated
extensijonal loads [4-16]. A summary of various models as
well as the description of a crack propagation model based
on plastic deformations around the propagating crack were
given in an earlier report [17]. In this model the crack

propagation rate is expressed as

Q o
2
da _ 1 (1)

dn A Pmax Py

where a is the half crack length, n is the number of cycles
A,a], a, are positive constants, Pax
the maximum and range values of the plastic zone size around

the crack tip.

In flat plates, a reliable estimate of the plastic zone
size may be obtained by using Dugdale's technique [18],
which gives

[e o]

p = alsec(z7—) - 1] (2)
ys

where o~ is the uniaxial stress perpendicular to the plane of

and away from the crack and o is the yield stress.

ys

and P, are, respectively,
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For the so-called small scale yielding, that is, for

small values of p/a, (2) may be approximated by

N S (3)

1/2

where K = ¢"a is the stress intensity factor. By sub-

stituting from (3) into (1) and defining

Ky = a]/z(orﬁr:ax } °;in)/2
(4)
€ = (O;ax * ogin)/(agax B O;1'n)
we obtain
42 - B(1 + )% Krz(“1+“2) (5)

Similarly, in the case of cylindrical bending the fatigue

crack propagation rate may be expressed as [15,16,17]

o,

(g2, = B0+ 21 (k)2 (erter) (6)

where 0 and Krb are given by (4) with o~ as the bending stress
on the surface of the plate and y has a theoretical value of

0.5.

Another model, which accounts for the effect of mean



stress as well as stress range, is that given by Forman and

others [19]

oo

da/dn = C(Kr)m/[(1 _ 2 aX)KC - 2K,] (7)

0

“min

where C and m are material constants and KC is the critical
stress intensity factor. The crack growth models used in
this report to express the crack growth rate in cylindrical
shells will be of the same form as (5) and (6), subject to
the limitation that small scale yielding exists at the crack

tip.

In the neighborhood of the fatigue crack if the plate is
subjected to a combination extension and bending, because of
Tinearity, the resulting stress field would be the direct
addition of the two separate fields. This means that the
range component of the resultant stress intensity factor

would be Kr = K + Kr It is obvious that using this value

re b*
in the crack propagation models expressed in terms of K,
e.g., (5) or (7), would give erroneous results, since it
would not reduce to (6) as K., the extensional component of
the stress intensity factor goes to zero. Thus, one way of
superimposing the effects of extension and bending in fatigue

crack propagation is suggested by (5) and (6), namely,

replacing Kr in crack growth models by Kre + YKrb’ giving



da _ 2 2(ay+as,)
on = B(1 + @)%l (Kre + yKrb) bl ) (8)

In (8) it is assumed that mean-to-range stress ratios, i.e.,
the values of 2 in bending and extension are the same. This
is the case in shells. If © values in bending and extension

are not equal, (8) would have to be modified accordingly.

Note that (8) may be obtained by assuming that for small
scale yielding, the plastic zone size in the neighborhood of
a crack in a plate subjected to combined plane extension and

cylindrical bending loads may be estimated as

2 2
P =3 (20 ) (Ke + YKb) (9)
Due to the nonlinear nature of the phenomenon, methods of

superposition of the effects of combined loads based on the

addition of plastic zone sizes or crack growth rates are not

justifiable.

ELASTIC SOLUTION FOR CRACKED
CYLINDRICAL SHELLS

The details of the elastic solution for a cylindrical
shell containing a longitudinal crack are given in Appendix I.
This is an extension of the solution given by Folias [2]. It
is restricted to shallow shell theory of isotropic, homo-
geneous, elastic circular cylinders of constant thickness.

7
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In this case, the system of differential equations derived by

Marguerre [20] takes the form

~
[S8]
>
+
<
=
-n
I}
o

(10)

F_ q(X,Y)
2 D

where W is the displacement along the Z axis, F is the stress
function, X, Y, Z are the rectangular coordinates shown in

Figure 1, E is the modulus of elasticity, h is the shell wall
thickness, R is the shell radius, q is the internal pressure,

and D is the flexural rigidity defined by
D = Eh3/[12(1-v2)]

The bending moment components Mx’ My, and MX are given

y
by

My = - Dlgxz + v 5727
_ 32U 32U

My-— - D[B—sz'*'\)a—xz'] (]])
- 32W

Mxy = - D(1-v) x5y



where v is Poisson's ratio. The membrane forces Nx’ Ny, and ny

are given as

N = 2ZF
X aYZ
_ 9°%F
Ny = 57 (12)
_ _ 3%F
Xy aXsY

and the transverse shear forces QX and Qy are given as

= - 9_ (g2
Q D 3x (v2W)
(13)
= - D 3_ (y2
In view of equations (11), the bending stress components
become
- _ £z [BZW BZW:I
“xb (T-vZ) L3%xZ 7 Y 372
o, = - (Bl [2 MLy (14)
yb (1-v7) aY2 oX
_ 92W
Txyb T~ 267 Sxmy
9
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and from equations (12) the extensional stress components are

obtained as

. 1 23?%F

9%e T h 3Y?
_ 1 32F

9%%e T h 3XZ (15)
_ . 1 3%F

Txye = T h 3XaY

Introducing the dimensionless coordinates

X LY
X-a,.‘/"a (]6)

where a is the half crack length, the homogeneous parts of (10)

become

2 2
that 21 g - g

a2 32F

by - £ =
VW - g axz T 0
The solution for the internally pressurized cracked cylinder
is obtained by first evaluating the stresses in a cylinder with-
out a crack, obtaining the bending moments, membrane forces and
transverse shear Jpoadsat the location of the crack, and then ap-

plying equal and opposite of these moments and loads on the sur-

10



face of the crack in a cylinder with no other external loads.
Superposition of these two results gives the desired solution.
Since the first problem has no contribution to the singularity
at the crack tip, and since we are interested in evaluating the
stress intensity factor only, the main problem is the solution
of the homogeneous system (17) with nonvanishing Toads at the

crack surfaces.

In solving (17), additional requirements to be met are that
the displacement function W and stress function F with their
first derivatives must be finite far away from the crack and the
stresses and displacement for y = 0 and |x|>1 must be continuous
i.e., F and W and all their partial derivatives must be contin-
uous for all x and y except for points on the crack surface,

N

n
Tim [2—W") - 22—l =0
ly}TO ay" ay"

s (n=0,1,2,3) (18)

n n
Tim [2—(F%) - 2—(F7)] = 0
ly|-0 oy 3y

For the symmetric case, ny and the effective transverse

aM at Y=0
shear resultant, Vy = Qy + —g%l, are zeroAFnd the functions W

and F may be represented in terms of Fourier cosine integrals.
Then the boundary conditions and the continuity requirements

lead to a system of dual integral equations. These dual inte-

11



gral equations can be reduced to singular integral equations
with kernels L1, L2, L3 and L4. These singular integral equa-

tions have the form

1 2xN_a? 1
_{ e dx = _{ [u,(e) Lyle,x) + uy(e) Ly(g,x)] de
(19)
1 2 ]
2 = =
_{ aZnM, p dx _{ [u,(g) La(e,x) + uy(e) L,(g,x)] de
n Dmo
where Ny = E% and My = 37 (n0 and m, are chosen as constants).

The solutions u1(g) and uz(g) may then be expressed as

up(e) = VT =87 [A, + 22A(1 22) + ... 05 |g]<]
(20)
uy(g) = /T - g2 [B  + a2B;(1-82) + ...15 |e|<]

where Ap and Bp are complex constants and
» = [12(1-v2)1"%a/(rn)1/2

12



A
p

(19) and writing th

d B
an D

0<x<2, the resultin
The resulting value

powers of x of the

are generally functions of .

Substituting (20) into
e kernels in series form, good for the range
g integrals can be solved in closed form.
s of the integrals are polynomials in odd

following form

2mn _X m
0 - z CkX2k+]
ivEhD 0
(21)
m
2k+1
- 2nmox = g Dkx

where Ck and Dk are
coefficients of xn,

obtained and solved

The strength of
on the constants Ao

neighborhood of the

functions of 2, Ap and Bp. By comparing
a system of simultaneous equations can be
for A_ and B _.

p p

the singularities at the crack tips depend
and B0 only, and the stresses in a small

crack tip may be expressed as

tp! K
oyp = b . (3;3“ cos % - ];v cos %9)
Y173(1-v2) /2r
«p! K
b e 11+5v 0 1-v 56
O, = (— cos 5 * cos 5—)
oo A7ty ver o f 2 A 2
13



6 e 7+v . © 1-v _. _ 5s
o ( sin o + sin 5=) (22)
Xyb A73(T=2) /2r 4 2 q 2
o P Eg— (-:Ji cos 2 + 1 cos §3)
xe e /o7 4 2 4 2
o =~ P Eﬂ— (5 cos e _1 cos 59) (23)
ye e /5y 4 2 4 2
K
. - e (1 o8 1 .0 58
Txye ° Pe — (4 sin 5 7 sin 3 )

where PB and Pe are functions of A0 and Bo’ Ke is the stress in-
tensity factor for a plate under extensional Tloads (Ke = g»/a),
and r is the distance from the crack tip. The values +P6 and
-PB are used for stresses on the inner and outer surfaces of the
shell, respectively. As x>0 (i.e., Rs=), P6+0 and Pe+1 and the
stresses of a flat plate in extension and bending are recovered.
Thus the stresses in the crack tip region of the shell are ex-
pressed in terms of stresses in a flat sheet. The stress inten-

sity factors for a shell with a meridional crack due to bending

and extension become, respectively

~
1

bs = [-PB/V‘]-v2;/3| Ke (24)

es e e

14



Note that because of the Kirchhoff boundary conditions,
the bending shear stress does not vanish at the free edge of

the crack.

Since Ke is the stress intensity factor of a plate under

extensional loading, the combined stress intensity factor, Ks’

for a cylinder containing a meridional crack can be written as

~
1]

(p

o * Pb)Ke for the outer surface (26)

~
1]

(Py - PpIK, for the inner surface (27)
where Pb = - PB//(]-v25/3

Therefore, the values Pe and Pb combine to form the stress
intensity ratio of a shell under internal pressure to a plate

under extension, for a particular material.

Computed values of Pb and Pe are given in Table I for
values of » from 0.2 to 2.2 in increments of 0.2 and for num-
ber of terms of Ap and Bp in the series expansion (20). As
could be expected, the convergence becomes slower as A is in-
creased. For )>2, the convergence is not expected to be good
because of the limits imposed on XA in this particular series
form of the kernels. A minimum accuracy of three digits was

achieved for all Pa for .2<1<2.2. This was not the case for

15



PE. But, since Pe>>IPBI’ the accuracy achieved for PB was con-
sidered sufficient. Figures 3 and 4 are plots of Pe and PB;
and Pb for v = 1/3 obtained from the asymptotic solution [2],

a two term and an eight term expansion in (20). In the asymp-
totic solution, orders of A% and greater were neglected in the
kernels and the solution for A0 and Bo. Four simultaneous
equations were used in solving for A0 and Bo' Figures 3 and

4 compare this result with the two and eight term solutions,
which consisted of the solution of four and sixteen simulta-
neous equations. In the latter, the highest degree term in A
which is neglected is A28, The eight term solution shows that
the sign change in the bending stress intensity ratio PB (Fig-
ure 4) does not take place in the interval under consideration.

This means that for this A range, the maximum stress in the

crack region is on the outside of the shell.

A least squares curve fitting program was used to express

P 1

b and Pe as polynomials in A which are given below.

PB = - 5.6207 x 10_5 + .0016268) - .14611)2
+ .2501013 - .21721x% + .097711x° (28)
- .017632x6

16



Po = 1.0004 - .062432) + .67419x2 - 1.0367x83

+ 1.0184x"% - .49949x5 + .094455)°6 (29)

A comment is in order concerning the use of the Kirchhoff
theory in the above solution, according to which only the ef-

fective transverse shear rather than Qy and Mx is required to

y
vanish along the crack. While the stress distribution outside
the local region should be accurate, it might be expected that
near the crack boundary the same type of difference exists as
that found by Feridun [21], Knowles and Wang [22] and Hartranft
[23] in comparing the stress distributions due to bending using
Kirchhoff's and Reissner's theories. In this case, the order
of the stress singularity was the same for both theories but
the stress distribution in the crack region was different,
Reissner's theory, which accounts for all the physical boundary

conditions, giving the same angular dependence as the plane

stress solution.

The important fact is that the ratio of the stress inten-
sity of a cylinder to that of a plate, Pe + Pb’ is the desired
result for use in the crack growth model and that the ratio
will be the same no matter which one of the two theories is

used to establish the ratio in bending. In addition, the ef-

17
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fect of bending is small for 0<A<2.2 where P, varies from 0

to 10% that of Pe'

18
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EXPERIMENTAL PROCEDURE

The experiments were conducted to determine the crack
propagation rates and the stresses caused by the crack in
thin-walled, cylindrical shells under different loading con-
ditions. The loading employed in all tests produced various
applied mean and range stresses from one-eighth to one-quarter

of the yield stress.

Description of Test Specimens. - Three materials were

tested with varying degrees of success - 2024-T3 aluminum,
6063-T6 aluminum, and mild steel. The best results were ob-
tained from the tests of the 6063-T6 aluminum. Thin-walled
2024-T3 bare aluminum tubing could not be purchased commercial-
ly. So, these specimens were rolled into a cylinder from a
flat sheet. The rolled cylinder was 8 5/8 inches in diameter,
27 inches in length and 0.050 of an inch in wall thickness.

The mating edges as well as the ends of the shell were clamped
to a mount to form the pressure chamber. The only thin-walled
tubing that was commerically available was 6063-T6 extruded
aluminum cylinders. Eight test specimens were cut from one

20 foot long tube. The mechanical properties and dimensions

of the 6063-T6 aluminum specimens are given in Tabies II and
ITI. The steel shells were rolled from a 0.050 inch thick flat
plate into an 8 inch diameter cylinder and then seam welded.

Hence, only the ends of the 6063-T6 aluminum and the steel

19



shells needed to be clamped to a mount to form the pressure

chamber.

Experimental equipment. - The experimental set-up and a

schematic diagram of the hydraulic system are shown in Figures

5 and 6, respectively.

The pressurization control system basically consisted of
the control panel, control manifold, and hydraulic power sup-
ply. It maintained any desired pressure loading characteristics
in the specimen by means of a simple proportional feed back con-
trol system. The function generator, located in the control
panel, determined the shape of the pressure variation curve and
the rate and character of the pressure loading. The mean and
range pressures were established by the control panel's set

point and span controls.

A 50 power microscope, mounted on a 4 inch micrometer stage,
was used for crack readings. It had a smallest division reading
of 5x10_5 inches, which was actually more accurate than needed

since the crack tip was not definable to more than 10'4 inches.

The strain indicator, used for static strain measurements,
was accurate to 0.1% of the reading or 5 microinches/inch,
whichever was greater. The oscilloscope, used for dynamic
strain measurements had a smallest division reading of 4 micro-

inches/inch.

20



Specimen preparation. - A crack was initiated in the shell

by first drilling a 0.020 inch diameter hole at the point
representing the center of the crack, and then making a cut
that was symmetrical about the hole with a 0.011 inch wide
jewelers. saw. A notch was then formed at each end of the saw
cut by "sawing" with a razor blade. The minimum total Tength
of the manufactured crack was 0.200 inches. Next, the speci-
men was sanded and polished in the crack region to remove the

surface flaws and make the crack tip visible.

Since the shells were pressurized with oil, the crack had
to be sealed with a seal that had little or no effect on the
stress distribution of the shell in the crack region. This
was accomplished with a steel shim and vinyl patch. The shim
was .003 inch thick and about 2 inches by 3 inches in size, was
placed behind the crack on the inner portion of the shell, and
was coated with a thin lTayer of graphite to eliminate any pos-
sible effect of friction. The vinyl patch was .008 inch thick
and about 6 inches square, and was cemented to the shell and
to the center of the shim. Thus the shim was prevented from
shifting from behind the crack while still free to slide on
the shell and to conform to the shell contour in the crack

region.

Specimen mounting. - The shell was mounted on a machined

steel pipe. Figure 7 is a cross-sectional drawing of the

21



shell and mount for the 6063-T6 aluminum and the steel shells.
The mount for the 2024-T3 aluminum was basically the same ex-
cept for additional holes for clamping the edges of the shell.
A Tayer of cement was applied to the oil pressure side of all
contact surfaces of the shell, mount, and spacer to keep o0il
leakage to a workable minimum. The rest of the contact sur-
faces were bare so that when pressure was applied, the surfaces

would not slip and the strain in the x direction would be zero.

The end clamps were 1/2 inch wider than the inside contact
surface. This 1/2 inch overhang had a two degree chamber so
that, when the shell expanded under pressure, there would be
no high stress concentration in the shell at its ends. A soft
aluminum (1100-0) split ring was used between the outer surface
of the shell and end clamps to uniformly distribute the clamping
force. After the shell was clamped to the mount, strain gages
were cemented to the shell's outer surface. The gages were
BLH type A-5 with nominal resistance of 120 ohms and gage fac-

tor of 2.

Experimental procedure. - The test results of the 2024-T3

aluminum did not give reproducible crack growth results, either
due to the necessity of clamping down the edges as well as the
ends of the cylinder, or due to a large geometrical deviation
from a true cylinder. However, reproductible crack growth re-
sults were obtained for the 6063-T6 aluminum. No conclusions

could be reached on the steel because of the small amount of

22



data collected. Therefore, this report will use only the re-

sults from the 6063-T6 aluminum unless stated otherwise.

The pressure was calibrated with a dead weight tester to
insure the proper prediction of the internal pressure of the
shell from the control settings. The output was found to be
linear with the control settings. Maximum variation from lin-
earity was found to be 10 microinches/inch. Since the readings
were greater or less than a Tinear relationship, it was felt
that most of this was caused by small deviations in manually
setting the controls and that this error would be self-compen-

sating.

The pressurization unit was found to give a null or zero
shift in the pressure curve. Therefore, constant monitoring
of the unit to maintain the zero position was required during

the crack growth tests.

The mean stress and stress range varied from shell to
shell but were held constant for a given shell. The stress
varied sinusoidally with a cyclic speed of 8/9 cps and a var-
jation in peak to peak stress of less than 1%. No tests were
conducted with a maximum hoop stress, o; (applied stress),
greater than one-half the yield stress. The hoop stress is

found from the relation

c; = %—B- (30)

23



where q is pressure, R is internal radius, and h is wall thick-

ness.
For a cylinder with fixed ends, i.e., Ei = 0, we have the
following additional relations
= _ »qR 31
“x h (31)
= _ (1-v2) qR

where v is Poisson's ratio.

Strain gages were added to the outer surface of the shell
to measure the hoop strains. The gages were placed along the
prolongation of the crack where they would be unaffected by
the perturbed strains due to the end clamps or the crack.
Strain measurements were then calibrated with the internal
pressure through equation (32) and the calibration curve is
shown in Figure 8. The maximum static pressure used in cali-
bration was not greater than the maximum test pressure for
that shell. This prevented any unwarranted strain hardening

in the crack tip area.

The measured strain gage readings gave differences from
the theoretical of as much as 11% for the 6063-T6 aluminum,
and 25% for the 2024-T3 aluminum. To find an explanation for

this, an investigation of the change in geometry of the outer

24



et

surface of the shell due to a change in internal pressure was

conducted.

The outer surface displacement, AR, for a perfect cylinder

with uniform wall thickness should be
AR = ¢ R (33)

Substituting from (32) into (33), we find

2 2
AR = JEV %—- q (34)

The outer surface displacement of the test cylinders,
taken with a dial indicator, did not agree with the results
predicted by (34). The readings were taken at a position away
from the influence of the crack and end clamps. The readings
were very erratic as the pressure was increased. In some
places the displacement would decrease while at other places
it would increase more than predicted by (34). This was due
to the fact that initially the cylinder was not perfectly round

and straight.

Even though the strain gage readings were different from
the theoretical, they were useful in insuring constant range
and mean stress. A minimum of two gages at different Tocations

on the shell surface were used to measure the hoop strains

25



throughout the tests in case one gage failed. None of the
gages failed during the tests and the readings were found to

be very reproducible.

Foil strain gages with 1/16 inch square grids were used
to determine the strains ahead of the crack tip in plexiglas
G and in shells #12, #14 and #18 of 6063-T6 aluminum. Each
gage gave the average strain of the surface covered by the
grid. This average strain was assumed to be the strain at
the midpoint of the grid. The distance of the midpoint from
the crack tip varied from 0.041 to 0.294 inches at half crack
lengths ranging from 0.151 to 0.795 inches for the aluminum

and from 0.195 and 1.00 inches for the plexiglas.
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EXPERIMENTAL RESULTS

Physical observations of the crack. - There was an ob-

jectionable amount of surface roughening ahead of the crack
tip for the longer crack Tengths in the 6063-T6 aluminum
shells. This roughening made it difficult to find the exact
location of the crack tip. The surface roughening was worse
in the 6063-T6 aluminum than in the 2024-T3 aluminum. There
was a negligible amount of branching of the crack that took
place during its growth. What branching did occur quickly

disappeared.

Bulging. - Bulging here is defined as large outward normal
displacements of the shell in the crack region. Since the
elastic stress analysis used to correlate the crack propagation
results is based on the small deflection theory, excessive
bulging may reduce the reliability of the final results. Hence,
measurements of the shell surface ahead of the crack in shells
#9, #10 and #11 were taken with a dial indicator to see how
much, if any, bulging was present. Figures 9 and 10 are plots
of the radial displacement of the surface of the shell due to
the presence of the crack only. The displacements ahead of the
crack, caused by an increase in applied stress of 6,900 psi,
are given in Figure 9 for four different crack lengths. The
curves of the points can be thought of as profiles of the shell
surface ahead of the cracks, Figure 10 compares the radial dis-

placement at the crack tip of shells #9 and #10 with that of
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shell #11 due to pressure changes of 13,500 psi and 6,900 psi,
respectively. Since the maximum operating stresses involved
in the fétigue tests were in the range of 7,000 to 14,000 psi,
these curves were considered as the extremes of the radial
displacements for all specimens. For r<2.2, the radial dis-
placements of the shell surface can be seen to be less than
0.005 inches. For an 8 inch diameter shell, this may be con-
sidered as "small deflection" and hence for the stress range

under consideration, bulging does not appear to be a problem.

Analysis of crack growth data. - The proposed crack growth

model for combined loading is

Za] 2(a1+32)
da/dn = B(1+Q) [Kre + YKrb] (35)

Substituting from (24) and (25) into (35), we obtain

2a

2(a]+a2)
da/dn = B(1+gq)

1

[(P, + vP )K,,] (36)

re
In the experimental data given in Appendix II, o, 2a and
An are known. da/dn is obtained by differentiating the data
by means of a three point central difference technique (except
at the ends, where a forward or backward difference scheme is
used). Using (24), (25), (30) and (31), the stress intensity
factors may be evaluated. In the computer program, least

squares fit of log da/dn vs. log Kre was used to establish the
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values of B, Za] and 2(a]+a2) for y = 1 and y = 0.5. The re-~
sults are tabulated in Table V for‘_Kwe + 0.5 Krb and Kre + Krb
for the range of convergence of the theoretical solution
(r<2.2). The range of A for the experimental work exceeded

the range for the theoretical solution. However, this was no
great handicap since the growth rate for x>2.2 was very rapid
and only a small percentage of the total 1ife of the shell was
left. The term r in Table V is the coefficient of correlation
and is essentially equal for Ke + 0.5 Kb and Ke + Kb for each
shell. When ry is close to 1.0, as it is for the shells tested,
the assumption of a linear relationship for the data is valid.
The term Syx is the standard estimate of error and establishes

the scatter band that cover 95% of the population.

As can be seen in the table, the differences in A', B, 2a]
and 2(u]+a2), for twice the effect of bending, are too small
to be significant, meaning that the effect of bending has very
little influence on the crack growth for the geometry and load-
ing conditions considered. For the remainder of the analysis

of experimental results, y = 0.5 is used.

On the basis of combined experimental data, which is given
in Figure 19, the crack propagation rate for 6063-T6 aluminum

may be expressed as

]9(]+9)0'753K3'85

da/dn = 1.068 x 10 .
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Figures 11 through 18 show da/dn vs. K, = K + 0.5 Kr

r re b

for individual shells with their respective scatter bands.
In Figure (19), showing the combined data, the three basic
levels of @ are designated separately. For increasing @, the
shift of the data to the left is characteristic of flat plate

fatigue experiments.

Figure 20 shows the comparison of the crack growth rates
for @ = 1.07 in 6063-T6, 2024-T3 and 7075-T6 aluminums. The
crack growth rates for 2024-T3 and 7075-T6 aluminums used for

the figure were taken from [16]:

1.54( 3.62

da/dn = 2.68 x 10" 19(1+0) K )

P for 2024-T3

2.22 3.90
)2-22(x )

da/dn = 6.22 x 10°20(1+¢

for 7075-T6

The line for 6063-T6 aluminum falls between those of 2024-T3
and 7075-T6 aluminums for growth rates greater than 10_7
inches/cycle. The slope of the 1ine is almost the same for

6063-T6 and 7075-T6 aluminums.

Transition zone. - The transition zone of flat to shear

fracture gives another means of comparing the various types
of aluminums. According to Wilhem [24], the zone of transi-
tion from flat to shear fracture is dependent on the stress

intensity factor. It is stated in [24] that for 2024-T3 and
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7075-T6 clad aluminums, the transition takes place within the

range of K_ of 3540 : 1770 #/inch®/2.

To see if this range
also applies to 6063-T6 aluminum, the range stress intensity
factors at the beginning and end of transition of the fatigue
crack§ of five specimens were determined from the crack lengths
at these exfremes. For the purpose of‘calcu1ating the range
stress intensity factor, it was assumed that the shear frac-
ture was a function of the outer surface stress, hence

Kr = (Pb+Pe)Kre‘ The transition initiation and termination

are given in Table IV. The results for the 6063-T6 aluminum

3/2

fall within a range of Kr of 3440 = 1220 #/inch which is

within the acceptable range of 2024-T3 and 7075-T6 aluminums.

Strain measurements ahead of the crack. - For a partial

verification of theoretical results, static strain measure-
ments were made ahead of the fatigue crack for various crack
lengths and load levels. The measured strains are the cir-
cumferential strains in an internally pressurized cylinder

with fixed ends, which contains a longitudinal crack free of
edge loadings. Thus away from the crack, the principal strains

are

e® =0, & = 1vT (38)

In the shell loaded at the crack surface only, at y = 0 and
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*
and for small values of r = x - a, we have

Q
?
Q
—
]
<
o
Q
8
~
|

(39)

N
-

where P = Pb + Pe' Adding circumferential strains ey given
by (38) and (39), we obtain an approximate expression for
the strain ahead of the crack in terms of stress intensity

ratio P as follows:

e ™ (14 v (40)

The measured strains for three cylinders (#12, #14, and

#18) as well as that obtained from equation (40) for v = 1/3

are shown in Figures 21, 22, and 23. Even though the approxi-
mate strains given by (40) have the same trend as the measured
strains, the agreement is obviously unsatisfactory. The dif-
ference is due to finite gage 1ength*t partial plastic defor-
mations, and, perhaps most importantly, the fact that the stress
intensity factor (i.e., the singular term alone) does not cor-

rectly predict the perturbed strains caused by the crack in a

Here, for Syb the results of a higher order bending theory

(e.g., [22]) rather than equation (22) are used. In the
higher order theory, which satisfies all the physical boundary
conditions, ahead of the crack Syb = %xb and the angular dis-

tribution of stresses is the same as that in plane extension.

**In these measurements, 1/16 inch square foil gages were used.
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homogeneous strain field. 1In the shell, the details of the
evaluation of stresses away from the crack are very cumbersome
and difficult. However, a reasonable estimate of this far
field effect may be given by using an analogy with the flat

plate solution.

In the case of flat plate containing a crack of length
2a and subjected to uniform compressive tractions o on the
crack surfaces, the strain at y = 0 and a distance r from the

crack tip may be expressed as,

_ 1=y z
eyp— E GT/ZY‘
(41)
T =/ %‘ (—2tr 1)
/r(2a+r)

For small values of r, T = 1 and (41) gives the plate equiva-
lent of (39). Thus, if we assume that the perturbed stress
fields in plate and shell are similar up to distances r under
consideration, an approximate value of €y for the shell may
be obtained by multiplying (39) by factor T which is given in
(41). MWith this, (40) may be modified as

©
+
< i
~
S
-
S

(42)
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Again, for v = 1/3, the comparison of measured strains with
those obtained from (42) is seen in Figures 24, 25 and 26.
Since T is always less than unity, (40) gives a higher (theo-
retical) estimate for the strains - partly explaining the dis-
crepancy in Figures 21 to 23. However, differences also exist
in Figures 24 to 26. This, of course, is due partly to the
assumption concerning the similarity of stress fields in flat
plate and shell which leads to (42), and partly to inelastic
deformations around the crack tip. The fact that the differ-
ences are more noticeable at higher load levels (i.e., e;)

and larger a/r ratios substantiates the validity of the latter

contention.

The effects of a finite gage width can be estimated by ex-
amining the error involved in assuming the mean strain to be
at the center of the gage. As seen from Figure 27, the actual
mean strain is closer to the crack tip than the center of the
gage. The mean strain point is established when the shaded
areas are equal. This means that the data will be plotted
closer to the ordinate than it should be. This puts the data
above the prediction curve for the higher applied strain or
smaller distances r. For small applied strains or large dis-
tances r where the elastic strain curve is relatively flat,
the measured strain and the mean strain are essentially equal,
and the effect of the finite gage length is negligible (see
Figure 24).
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To obtain further knowledge of the stresses in the crack
tip area, static tests were conducted on Plexiglas G of a plate
under tension and a cylinder under pressure. Strains were
measured ahead of the crack at room temperature. Plexiglas was
chosen so that the distance of a strain gage ahead of the crack
tip could be measured when the gage was mounted on the inner
surface of the cylinder. The nominal dimensions were 12" x
24" x 1/8" for the plate and 9 1/2" diameter, 20" length and

1/8" thickness for the cylinder.

The pressure in the cylinder was measured with a dead
weight tester since the test pressures were too low to be ac-
curately controlled with the test set up described in this re-
port. Higher test pressures were not possible without risking

catastrophic failure.

The stress intensities on the inner and outer surfaces of
the shell were computed from the strain readings ahead of the
crack. They were then compared with the stress intensity com-
puted from the strain reading ahead of an equal length crack
and applied stress in a plate. The comparison was made for
three different crack Tengths. The ratio of the stress inten-
sities in the cylinder to that of the plate should equal Pe +
Pb and Pe - Pb on the outer and inner surface of the cylinder,

respectively.
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Figure 28 is a plot of the ratio of the stress intensity
factors vs. crack length for the test on the plexiglas and for
the eight terms and Folias' [2] solutions. These experimental
results are Targely qualitative. They were not pursued further
because of the steady drift in the gage readings caused by
creep and the fact that the creep compliance for the two mate-

rials were not quite the same.
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CONCLUSIONS

The results obtained in this study indicate that within
the practical range of fatigue crack propagation rates, i.e.,

10°7 to 1073

in/in/cycle, the stress intensity factor is an
effective correlation parameter in analyzing the fatigue data,
and provides a powerful means of predicting fatigue crack
growth characteristics of shells from that of flat plates.

With the exception of problems involving "low cycle fatigue",
from the design engineer's view point, essentially the problem
may be reduced to one of evaluating the stress intensity fac-
tor. After this, one may use the flat plate results correlated

against the stress intensity factor to predict the proper

growth rates.

For the "low cycle fatigue", it is suggested that a crack
propagation model based on the plastic deformations around the
crack tip mentioned in this report may prove to be more effec-

tive.
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APPENDIX I

Details Of Elastic Solution

The coupled differential equations to be solved are

2 2
Eha 3% + v4F = 0 (1.1)
by a? 32F=

subject to the following boundary conditions on the crack sur-

face
M, (x,0) = - 27 [§§¥ + v gig] = :20 (1.
v, (x,0) = - L [%5% ¥ (2 - v) S%E%y] = g;ﬂ (1.
N, (x,0) = - %;é - ;% (1
ny(x,O) =T %7 gigy - ;% (.
and the continuity requirements
1im (32— utoo 2l W) =0, n=0,1,2,3 (1.
ly|=o ay" ay"
im (e F* - 2 ey -0, n=0,1,2,3 (1.
ly|+0 ay" ay"

4)

.5)

6)

7)

8)



-

along the prolongation of the crack. Also W and F and their
first derivatives must be finite far away from the crack.
For the symmetric case, i.e., Vo = 0 and to = 0, Wand F
can be represented as
W(x,y) = [ w(s,y) cos xs ds (1.9)
0
F(x,y) [ f(s,y) cos xs ds (1.10)
0

If uniform convergence is assumed, then the order o

and differentiation can be interchanged. Therefore

y d2f , d4f
BE = b 2
VHF é[Sf 2s Wz"*‘d—y—E]COSXSdS
F d2w , d'w
by = by - 2
VW é [s“w - 2s a7 * HYE] cos xs ds
2 (oo
%;; = [ - s2f cos xs ds
0
2 oe]
%;§ = [ - s2w cos xs ds
0

Equations (I.1) and (I.2) can now be written as

" Eha?2 _, L o d2f . dif

g [- =g~ s?w + s*f - 2s ayz * 377] cos xs ds
e 2 L 2g2

[ [s*w - 2s2 gyg + gyﬁ + HRS f] cos xs ds = 0
0
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For the integrals to be zero, the integrandsmust vanish. There-

fore, we have

202 2 L
) Eh; S2 & sif - 22 %y; + %YE =0 (1.13)
4 2 242
gyg - 2s? gyg +ostu + Spp f = 0 (1.14)

the solution of which may be written as

(I.15)

where Q. and Rj are arbitrary constants and Fj are

F2 = VS‘S - OL)\)
R X CEC 7S]

= - ¥/s(s + ar)
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I'6 = - S\S - Bl
(1.16)
1"7 = 4+ VS(S + BA;
= - /s(s + 8x)
I‘8 sS{s + BAx
Cu2Yal
o = /'T, g = /-_—_i-, AL} = ]2(}]22]’\:2)3
For |y|»«, w and f must vanish; therefore, Qj = Rj = 0 for odd

j. The remaining constants are not_]inear]y independent. Thus,

substituting equations (I.15) into, say (I.13), we obtain

- EhaZs?2 1
R v r§)2] 0, (1.17)

Now substituting the values for Pj from equations (I.16) into

(1.17), we find

Ré’4 = - i YEhD Q2’4
(1.18)
Ré,8 = i VEhD Q6,8

Letting 02,4,6,8 become P]’2,3’4 from equations (I.9), (I.10),
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(I1.15) and (I.18), we obtain

? (P]e‘VS(S - ar) ly| + Pze-VS(S + ar) |yl

0

W(x,y")

+ P3e-/sls - 8A) |yl

ATE T AT
+ P4e sis + Ba |3"') cos xs ds (1.19)

and

- i VERD | (P]e"s(s - ar) |yl

0

F(xayi)
+ Pze-/s(s + ar) |yl _ P3e-/sis - BA) |yl

-/s (s )
- P4e S T BA ly!) cos xs ds (1.20)

where # sign refers to y>0 and y<0, respectively. Equations
(I.19) and (I.20) are the same as those obtained by Folias [2].
The procedure to be followed to arrive at the corresponding

singular integral equations is then given in [2]. Thus defining

u](x) = é [Vs(s - ax) Py + /s(s + ar) Py
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+ %A (V/s(s - ar) P] - /s(s + ar) P2)] cos xs ds
(1.21)
u2(x) = £ [/s(s - axr) P1 + /s(s + ar) Py
- %l (/s(s - ax) P1 - V/s(s * ar) P2)] cos XS ds
(Ix[<1, y = 0) (I1.22)
we obtain
! ru(e) (6)L,] Mo gy fxl<ls lel<l (1.23)
u(g)Ly + u,(g)L dg = ——— x5 |[x|<1, lg|«< 1.23
(. 1 2 =7"2 i JERD
1
{ [u](g)L3 + uz(g)L4] dg = - 2mm x;3 |x|<1, |&|<1 (1.24)

where the kernels Lys L2, L3, and L, are (z = x - &)

-
—
1
Q
>
[7,}
—
=
—
g%

a)\c)Ko (Bléﬂ) + ?2? cos (-OL;‘?—E)K] (QJZLL)

AG
. BAL ar|z] Vo¢ BAL ar|z]
+ \)OB)\ s1n (‘—2 )KO ( 2 ) + IE! cos ( ] )K'l ( 7 )

- Zater sin (500K (B
2v +1)a
) fﬂ—‘[’%‘—)— sin (838K, (22lel) (1.25)
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= (v, - 1) B2 sin (Q%E-)K0 (EA%EL)
+ vy - 1) $2F cos (835K, (22fely
B

by st (o3, (834l

(2v_-1)

= (v - ) ar [sin (2E)k, (£2)el);
* (vg - 3) $2F [oos (5)k, (BAlel)]

- 3) [sin (235K, (22[eh)

+ %) [cos (E%A)K] (gjzc )]

o ey Dein (30, (242D

+ (ZvS + vo) ?E%ET Lsin (E%Q)K] (EA%QL)]

- BXZ [cos (déC)K] (ﬁiiﬁl)]

T 27c] 2
+ 5% (v - 3 - 202) [sin (B)5)k  (erfel)g
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¢ HEr (v - 292 - 1) [eos (835K, (2fel)]

% 2 _ in (BAZ arlz]
+ 281c] (2“0 “o) [sin ( 5 )K] ( 5 )]
Bv N BAlz|
+ Zalc] [sin ( 5 )K] (=5=)1
_ aX . alz BAlz
> [sin ( 5 )K0 ( 5 )] (1.28)
In the foregoing equations, Vo = 1 - v and Kn is a Bessel

function of the third kind of order n.

The solutions u](x) and u2(x) must be Holder continuous
for some positive Holder indices Hys and Ho for all x in the
closed interval (-1,1), and u](x) and u2(x) are bounded near

the ends of the crack. These details are discussed in [1].

The kernels can now be written in series form. Folias
eliminates all terms of order A“ and greater in his series ex-
pansions which puts a severe limitation on the useful range of
X. In this report, polynomial approximations of the Bessel
functions are used which contain terms up to A2%, and are good
for A<2. The sine and cosine series are expanded up to terms

8 and 3.2 x 107?

of 126 with corresponding errors of 2.5 x 10~
respectively, for Ar<2. This is in the range of error for the
Bessel functions. The Bessel functions are regqgular throughout

the (x-¢) plane, cut along the negative real axis. Multiplying
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all series together that are now present in the kernel and
collecting terms, the integral equations can now be written in

the form

i2wn x } (T+v Jup(e) + (v -1)uy(e)
T (EnDy2 4 (x-¢)

deg

+
-
<
i
—r
g
|
N
—
Y
g
—_
i
[~
o
>
n
3
+
-—
—
x
1
[at
g
N
3
+
—

13
+ilug(e) + up(e)] L0-vg) (] EaCM T (x-g) 2
6
+ ) Ln)\4b+](x-g)4b+1 log AliiéL]
0
13
* v [g GmA2m+](x—g)2m+]
6
+ 7 w80 (ko) #0FT qoq AlX2ELYT g (1.29)
0
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and

1 (v -v3)[uy(e) + uy(g)] )

- 2nm0x = X-E

£

13
{Luy(g) + uy(g)] [g [(2v -v2-2)N

+
>
—y

m

+ (ZVO'VS)Qm + ngm] >\2!’""‘1(X__E)ZITH'T

6
+ ) [l2v -v2-2)vy + (2v -v2)Wy
0

+ vng] >\4b+3(x—g)4b+3 log liﬁiél]

+ L(vE-Duy(e) + (1-2v +vZ)u,(g) ]

13

'[Z Em12m+](X-E)2m+]
0
6
+ ) be4b+](x—g)4b+] Tog Ailiél]
0

+ [(-v2-vduqgle) + (v-v2)uy(e)]e

13
2m+1 2m+1
-[g G2 (x-¢)
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0T (x-g) #0¥T1 1og 2X2ELYyy g, (1.30)

where the constants Dm’ Hb’ etc., are listed in Appendix III.
These constants are independent of the shell parameters and

materials constants.

The unique solution of (1.29) and (I1.30) are of the form

uple) = T= €% ] AnPP(1-e2)Ps5 fef< (1.31)
p=o0

uy(g) = /T - €2 ] Bpx2p(]—gz)p; le] <1 (1.32)
p=o

where Ap and Bp are, generally, complex functions of ).

Substitution of (I.31) and (I.32) into (I.29) and (I.30)

leads to the following integrals which have to be evaluated:

1
- (1-¢2 d
L(x) = c.pove e
1
L(x) = [ (1 £2)P* /8 (x-g)"de (1.33)
1
Jpn(x) = { (1-£2)P* /20 6)" 10g |x-2] de

where n is an odd integer.
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Through contour integration and using a table of integrals,

we obtain

I (x) = »0s § 12 5 (2pe3-2b)x2P1-2s (1.34)

(X) = E (2 +]-25) [xn

T (2b-1) .n-2
2] (n- 2Y‘)|(2r)l b . z_p+2+2bT x"" Y‘] (1.35)

where q = (n-1)/2 for odd n and q = n/2 for even n. Jpn(x)

can be determined by first considering, for n = 0,

1
3 (x) = {(1-a2)p”/2 log |x-g| de
Differentiating with respect to x, we have

3! (x) = C.P.V. (1-g2)P¥1/2 de_ _ (%)

X=-g

[T —

where Ip(x) is known. Integrating Ip(x) in x gives Jpo(x) plus

a constant of integration, or
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J__(0)

m (-1)°

S
T (2p+3-2b) 2p+2-2s
Zp+3 E oo, (2pr2-25)" +9,,(0)

s=o s!2°
(1.36)
! p+1/2_n
[ -e2) ¢ log |g| de
- p!(-1)"(2r+n-1)! 1
r=o ri(p-r) 124N/ 2 (in o4y 2TENY2
2r+n (_])k
+ log 2 + - for n even (1.37)

k=1

J_(0) = 0, for n odd.

pn

Letting now n = 1 in J__(x) and differentiating with re-

pn

spect to x, we find

1
/ (]-52)p+]/2dg +
-1

(1-62)P*1/2 109 |x-¢| ds

—_——

But from (I.35)

1
[ (1-e2)P* /24 = 1 (x) = «
-1

Hence,

3" (x)
pl

L=y =]

(2p+1-2s)
o 2p+2-2s

po S

(x) + 39 ,(x)

I
po p
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Jp](x) = [ Ipo(x)dx + Jpo(x)dx + Jp1(0)

Or, in general, we obtain

J_(x) = | Ip(n_l)(x)dx +nfJd

pn )(x)dx

p(n-1

+ Jpn(o) (1.38)

- Therefore, n(x) can be reduced to a combination of Ip(x),

Ip
(x) and Jpn(O).

et

pn
With the integrals given by (33) known, (I.29) and (I.30)

can be written in series form in odd powers of x. The contri-

butions of Ip(x), I (x) and J n(x) to each coefficient of

pn p
x2m+], where m = 0,1,..., 13, are given below.

For I (X
p( )

< > o L=DP P (2pe3-25)
pt2P s=o 2p+3

g3 -y A=1P71 Pl (2pr3-2s)
(p-1)12P~1 s=o  2P*3

2mE (-1)P°M pim (2p+3-2s)
(p-m)12P™™ 5=¢ 2p+3
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For I_ (x)

P (2p+1-25) 13 N (2n+1-2b)
x> L toor7-2sT [Co * nZ] Cn(2”+])'bE] (2p+2+2b)1

P (2p+1-25) 3 (2n+1)(2n)(2n-1) ™ (2n+1-2b
3 n )
X} oow I {eprz-zs) Gt L G 31 I, “(zprzp) !

P (2p+1-2s)
5
X% > I (gpra-2s) L2 *

§ ¢ (2n+1)°"(2n-3) % (2n+1-2b)4
=3 n 5! b=3 (ZP—2+2b;

2m+1 P (2p+1-25s)
X >r T (zprz-2s) Lon
2m+1(
m (2n+r-2m)
. ]g o _rel P _(2n+1-2p) 4
n=m=1 " (2m+#1)!  bem+] (2P+2+2b-2m)

where Cn are appropriate constants Dm, Em, etc.
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X - - E . lg c p!(-1)° (2s+2n-1)11(2n+1) 1
T (p-
sfo  ngo N stlp-s)l —os+n+l gy, 2s¥2n+2
2s+2n k p
-1 +7-
+ log 2 + J L_El_} + 1 I gp+;_§: [c,
- =0
13 n 13
2n+1-2b
+ ] [S5sell= ] C A
n='| b='| n 2p+2+2b n=o n np
']
letting C A B
n=1 n"(n-1)p 1p

p P p
3, nr (2p+3-25) s +1-25s)
X P1p T 7 ! Co (2p¥372.3 E (2p+2 257 (3¢,

p'2p $=0
13 n
(2n-1)(2n+1-2b)
* nzz Cn(2"+]) bfz 2p+2b ]
13 n
(2p+1-2s) (2n)(2n-1) (2n+1-2b)

t3 T?%?z sy Lt LG I “T2p+2b) 4

13
= + C

n‘Z] Cn np np
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13
letting )

n=2

x> > B +

CnD(n-1)p = Ba2p

P-1 P-T (2p+3-25) (-1)P P (2p+3-25)2.3
¢ —ml=1) nz—L)—( £S) 4oL oo MU g p+3-2s)2.
0 (p-1)12P"1 g (2p¥3)8.5 ° 1. 7 Jop o, (2p#3)5!

P (2p+1-25)
= 1 [5¢C
4.5 _, (2p+2-2s 2
"2 (2me1) 2n=D)(2n-2)(2n-3)
ngom 1.2.3

n p
(2n+1-2b) T (2p+1-2s)
bf3 (2p+2b-25] 5 SEO 2p+2-2s [c,

3 n
I, ¢ (2n)(2n-1)(2n-2)(2n-3) T (g;:;;gg)]
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B

13

letting nZB CnF(n-l)p = B3p
g e e T PR e
vet F, R U
+ 154 C,(2n+1) (2n—1)'é;'(2n-5) "4 (§;+l+§g)
oy b BEER gy ] o o) G (e

etc., where Cn are appropriate constants Hb’ Lb’ etc.

By comparing coefficients of x in the resultant series form
of (I.29) and (1.30), a system of 2p + 2 simultaneous equations
can be formed to solve for Ap and Bp. As the number of simul-
taneous equations increases, the value for a particular Ap or
Bp converges to its exact value. Since the stresses at the crack
tip are desired, it is necessary only to compute the coefficients

A0 and B0

The computer programs for comparing coefficients are given

in Appendix IV. For the first program (coefficients of X) the
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range and increment of A must be established along with the
maximum number of simultaneous equations desired. The card out-
put of the first program becomes the input of the second program.
For the second program (solution for Pe and Pé) the values of

v and m, must first be established. This way, the output of the
first program can be used for various values of v. The output

of the second program gives the values of Ao’ Bo’ PB and Pe’

Pb
the program.

and Pe are designated as P10A and RP20A, respectively, in

From (21-24) and

J s7"3 (gs)cos xs ds =
o b
/i(29) P Lr(ur1/2) 17 (g2-x2) 1/ 2 0exeg
{ 3 Reu>- 1/21}
0 3 g<X<o
we obtain

J](s) AO+B0 AO—B

4P (s) = [ + 97 + (1.39)
Vs(s-axr) S aA
J A _+B A -B

4P, (s) = (s [ o'0 _ "o °1 + ... (1.40)

/s(s+axr) S oA
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Vs (s-A8) P3(s) =

Vs (s+xg) P4(s)

The stresses may then

0
- (ex - ?) 2 s
A _-B J (s)
o 0 0o 1
- 55 (%5 ——t ... (1.47)
v_S A +B J,(s)
0 1 1
(BA * ?) ( 2 s
AO-Bo J](s)

—;—B_ ( 2 ) ai (I.42)

be obtained by a) substituting equations

{39) through (142) into equations (19) and (20); b) substituting

the result into the boundary conditions,equations (3) through

(6); and c¢) changing

tion.

the order of integration and differentia-
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APPENDIX II

Ccrack growth pata

shell #9 - 6063-T6 Shell #10 - 6063~-T6

Mean stress = 6850 psi Mean stress = 7220 psi

Stress range = 6300 psi Stress range = 6770 psi
2a An 2a An

0.28620 0,000 0.31280 0,000

0.30610 3,000 0.34320 3,000

0.32310 2,000 0.36270 2,000

0.33470 2,000 0.38400 2,000

0.35820 2,000 0.41310 2,000

0.38300 2,000 0.44970 2,000

0.40640 1,500 0.49010 1,000

0.42420 1,000 0.52250 1,000

0.43060 1,000 0.55050 1,000

0.44905 1,000 0.60010 1,000

0.46365 1,000 0.63720 600

0.47835 1,000 0.69000 600

0.49540 1,000 0.75670 600

0.51085 1,000 0.82720 600

0.53320 1,000 0.89240 300

0.55655 1,000 0.94890 200

0.58300 1,000 1.03220 200

0.62025 1,000 1.11260 100

0.64550 600 1.17960 100

0.67170 600 1.21130 100

0.69660 600

0.74250 600

0.76110 300

0.79300 300

0.83430 300

0.87125 360

0.91830 300

0.96850 300

1.00325 200

1.05730 200

1.08470 100

1.12240 100

1.15820 100

1.20280 100

1.26430 100

1.32980 75

1.38800 45

1.42360 30

1.46950 30

1.49250 30

1.56720 30

1.64260 30
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shell #11 - 6063-T6

Mean stress
Stress range = 3370 psi

2a

0.28900

0.29320
0.29850
0.29960
0.30280
0.30560
0.30800
0.31280
0.31620
0.32330
0.32530
0.32610
0.33040
0.33700
0.34010
0.34440
0.34630
0.34910
0.35320
0.35370
0.36630
0.36980
0.37010
0.37450
0.37600
0.38270
0.38400
0.38810
0.39470
0.40090
0.40440
0.40860
0.41380
0.42080
0.42720
0.43770
0.45300
0.46310
0.47300
0.47910
0.48430
0.49510
0.50460

= 3590 psi

An
0,000
6,000
6,000
6,000
&,000
6,000
6,000
6,000
6,000
6,000
6,000
6,000
6,000
6,000
6,000
6,000

12,000
6,000
6,000

12,000
6,000
6,000
6,000
6,000
6,000
6,000
G, 000
6,000
6,000
6,000
6,000
6,000
6,000
6,000
6,000
6,000

12,000
6,000
6,000
6,000
6,000
6,000
6,000

61

shell #11 cont.

2a

0.51730

0.52220
0.54410
0.55770
0.56610
0.57430
0.58610
0.59560
0.60380
0.62840
0.64720
0.66160
0.68450
0.70430
0.72880
0.75840
0.83490
0.87040
0.92110
0.94750
0.97910
1.02800
1.05350
1.10690
1.15780
1.22710
1.25570
1.28530
1.32240
1.35580
1.39430
1.44950
1.53580
1.58210
1.65430
1.75300
1.88270
2.00240

AN
6,000
6,000
6,000
6,000
6,000
6,000
6,000
6,000
6,000
6,000
6,000
6,000
6,000
6,000
6,000
6,000
6,000
6,000
6,000
3,000
3,000
3,000
3,000
3,000
3,000
3,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000

600
600
600
600
312



shell #12 - 6063-T6

Mean stress
Stress range = 5040 psi

2a

0.33450

0.34220
0.34420
0.35240
0.35480
0.36340
0.37090
0.37300
0.38740
0.39510
0.40070
0.41290
0.41620
0.41750
0.42060
0.42300
0.42520
0.42560
0.42850
0.42930
0.429380
0.43320
0.43690
0.44070
0.44270
0.44640
0.44710
0.44860
0.45370
0.45730
0.45940
0.46560
0.46940
0.47580
0.47880
0.48920
0.497°0
0.50750
0.51480
0.52130
0.53130
0.53970
0.55170

= 5370 psi

an
0,000
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
3,000
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
3,000
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
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shell #12 cont,

2a

0.56040

0.56770
0.57930
0.59360
0.60710
0.62290
0.65300
0.65980
0.66890
0.68900
0.69620
0.70560
0.72300
0.78370
0.79750
0.81930
0.85630
0.88090
0.91360
0.94950
1.00120
1.09680
1.18510
1.21030
1.24630
1.30530
1.38350
1.44970
1.48700
1.55740
1.67910

An
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000

600
150
150
150
150
100
100
100
100



.~

shell #13 -~ 6063-T6 Shell #14 - 6063-T6

Mean stress = 11080 psi Mean stress = 5460 psi
Stress range = 3400 psi Stress range = 5070 psi
2a an 2a An
0.51790 0,000 0.28800 0,000
0.52680 2,000 0.30380 3,000
0.53760 2,000 0.31530 3,000
0.54700 2,000 0.32990 3,000
0.55740 2,000 0.34250 3,000
0.58920 2,000 0.35640 3,000
0.59870 2,000 0.37450 3,000
0.60770 2,000 0.39010 3,000
0.61640 2,000 0.43630 3,000
0.62810 2,000 0.46130 3,000
0.64240 2,000 0.48830 3,000
0.65850 2,000 0.31920 3,000
0.67170 2,000 0.55080 3,000
0.68820 2,000 0.59870 3,000
0.70370 2,000 0.66260 3,000
0.72050 2,000 0.74190 1,500
0.73160 2,000 0.80430 1,500
0.74890 2,000 0.84530 1,000
0.76630 2,000 0.89250 1,000
0.78440 2,000 0.93310 1,000
0.81170 2,000 1.02590 900
0.83320 2,000 1.11490 600
0.85840 2,000 1.21180 600
0.88040 1,500 1.32390 600
0.90100 1,500 1.43850 100
0.92500 1,500 1.51110 100
0.95730 1,500 1.61260 60
0.98810 1,500
1.02400 1,500
1.05530 1,000
1.08860 1,000 shell #15 - 6063-T6
1.13280 1,000
1.17450 1,000 Mean stress =8420 psi
1.24830 1,000 Stress range = 5120 psi
1.30170 600
1.40980 300 2a AN
1.44390 300 0.28130 0,000
1.48710 300 0.29500 3,000
1.53030 300 0.30880 3,000
1.56740 200 0.32070 3,000
1.60530 200 0.33390 3,000
1.62170 100 0.35100 3,000
1.64340 100 0.36650 3,000
1.67250 100 0.39070 3,000
1.69460 100 0.41720 3,000
63



Shell #15 cont. shell #1838 cont.

2a An 2a an
0.44460 3,000 0.56170 3,000
0.47680 3,000 0.58920 3,000
0.51440 3,000 0.62890 3,000
0.55910 3,000 0.67040 3,000
0.61560 3,000 0.72020 3,000
0.64430 1,500 0.75680 1,500
0.68910 1,500 0.80430 1,500
0.72560 1,500 0.85100 1,500
0.79160 1,500 0.93120 1,500
0.85290 1,500 1.02170 1,000
0.91370 1,000 1.17970 1,000
0.97620 1,000 1.37290 600
1.08060 1.000 1.59050 150
1.15850 600
1.24910 600
1.33480 300
1.42010 200 shell #19 - sas 1018 steel
1.45870 100
1.48930 60 Mean stress = 7000 psi
1.50910 60 Stress range = 7000 psi
2a An
0.32575 0,000
shell #18 - 6063-T6 0.32635 6,000
0.32645 6,000
Mean stress = 5350 psi 0.32720 6,000
stress range = 5070 psi 0.32755 12,000
0.32300 6,000
2a A0 0.32830 6,000
0.23820 0,000 0.33080 6,000
0.30200 3,000 0.33455 12,000
0.30970 3,000 0.33655 6,000
0.32320 3,000 0.33925 4,000
0.33930 3.000
0.35550 3,000 Mean stress= 7500 psi
0.37220 3,000 Stress range= 7500 psi
0.38340 3,000
0.39370 3,000 2a An
0.40900 3,000 0.33925 00,000
0.42080 3,000 0.34070 12,000
0.43850 3,000 0.34395 12,000
0.45520 3,000 0.34425 12,000
0.47400 3,000 0.34660 12,000
0.45440 3,000 0.34915 6,000
0.51450 3,000 0.35880 6,000
0.53510 3,000
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-APPENDIX TII

D = Np+Om=Rm
H = Vp+Wn-Yp

Gm

Np

~5.1318632x10~2
7.1585759%10~3
-1.4570399%10~%
~-3.4002697x10~5
4.4362985x10~8
2.4395960x10~10
-2.1138323x10712
-4,9414796x%10~13
2.8896248x10~ 17
3.6827901x10~20
~1.0961288x1022
~9.0371123x%10~26
0.0
0.0

Rm

R
0  -5.5791176x10 T
1 7.1585753x1072
2 -1.5027655x103
3 -6.1278490x10™>
4 8.8787107x10~7
5 6.3429898x10~2
6 -6.0045804x10~ 11
7 -1.6814260x10"13
8 1.1431171x10~1>
9 1.5924912x10"18
10 -7.4005562x10-21
11 -5.2590588x10~2%4
12 1.2557491x1072°
13 2.8131237x10~30
‘m - —_ N — N ,Qm

) 1.9634954x101
1 -2.3651856x10"3
2 1.3422335x%10™3
3 -2.4743023x1072
4 -3.6127755%10"/
5 4,2211942x%10™2
6 1.8149490x10-11
7 ~1.4354576x10~13
8 -2.8357870x10~L°
9 1.4685126x10~18
10 1.7197282x10~21
11  -4.3214861x10-24
12 -3.5201050x10~27
13 0.0

=

~3.8174770x10™2
-1.7050709%10~3
2.1092260x10~4
~3.4€79912x%10~°
-3.4668622x10"8
3.6464548x10710
1.2562638x10~ 12
-9.0591396x10~ 1>
-1.5243436%10~ 17
6.7308017x10~<0
6.7792208x10~23

~1.0959706x10~253

-7.8767464x10~29
0.0
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-3.9269908x10~1
1.1866800x10™3
1.6106839x10"3

-2.9019260x10~>

-4.0143251x10"7

-1.8654274x10~10
1.9537601x10" 11

-1.5540472x10-13

-3.0005865x%10"16
1.8927971x10~18
1.6359083x10~21

-7.4051638x%10" 24

~2.2267587x10~27
0.0



Ln

Mn

Vn

oOnNhWNHO

-7.5000000x10~1
3.7597711x10™3
-9.7111261x10~7
4.7984694x10~11
-7.4311015x10~16
4.2725291x1021
-7.3171341x10~27

~1.2500000x10~1
2.6855499x10~%
-4.4141460x10~8
1.5995248x10~12
-1.9408545x10~17
8.6315720x10™23
-1.0028985x10~28

"n

Yn

OOV WNFO

-3.9062497x10~2
-3.8625199x10~2
~3.8571553x10™2
1.0354265x10~13
-1.0007218x10~18
3.6710074x10~23
-3.5817803x10~30

-9.1145820x103
4.3293579x10™°

-3.1061901x10~10
6.2916872x10~15

-4.6890740x10~20
1.1506409x10~25
0.0

66

-5.2083315x10™2
4.1561584x10™>
-4.2136356x10~2
1.1054316x10

13

-1.0269010x10~18

3.0250342x107
0.0

24
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FIGURE 2

superposition Principle
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FIGURE 3

stress Intensity Ratio in Tension vs. A
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FIGURE 4

Stress Intensity Ratio in Bending vs. A
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FIGURE 5

Experimental
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FIGURE 6

Schematic piagram of Pressurization System
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FIGURE 7

Cross section of Mounted Specimen

it

77777777777 777777 1777774 b

H
1

Z A

O1i |
intets

F .z
|
Il

progtaing

T

177
‘drain

il

[

T

L

25 12"



1000
€ >

Hin.
(—Iﬁf)

500

FIGURE 8

Measured Hoop Strain vs. Pressure
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FIGURE 9

Surface Displacements Ahead of Crack
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FIGURE 10

Radial pDisplacements at cCcrack Tip
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FIGURE 11
da/dn vs. K,
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FIGURE 12

da/dn vs. K.
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FIGURE 13

da/dn vs. Ke
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FIGURE 14

da/dn vs. K,

Shell #12
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FIGURE 15

da/dn vs. K.
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da/dn vs. K

FIGURE 16
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FIGURE 18

da/dn vs. K
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FIGURE 19

da/dn vs. K.
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da/dn vs. Ky
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FIGURE 21

Measured and Theoretical Strain aAhead of Crack
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FIGURE 22

Measured and Theoretical Strain Ahead of Crack

Approximate Elastic Stress pistribution
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FIGURE 23
Measured and Theoretical Strain ahead of Crack

Approximate Elastic Stress pistribution

3000

€y (M in./in.)

2000

Hydrostatic
Stress rield

&y=876K in./in.

£o0
1000 0°B §° L !
0.5 1 2 3




86

Ey(/‘ in./in.).

1000

FIGURE 24

Measured and Theoretical strain Ahead of Crack
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FIGURE 25

Measured and Theoretical Strain Ahead of Crack

Exact Elastic Stress Distribution
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FIGURE 26
Measured and Theoretical Strain Ahead of cCrack

Exact Elastic Stress Distribution
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FIGURL 27
Comparison of Exact and Apprcximate Elastic Stress

Distribution Ahead of Crack Tip of a Plate
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FIGURE 28
Strain Gage Measurement of Elastic

Strain Distribution Ahead of Crack Tip
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FIGURE 29
Ratio of Stress Intensity Factors

vs. Crack Length
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Ratio of Bending and Extension Stress Intensity Factors
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TABLE I

Pp

-.0051019192
-.0041031887
-.0041033655
-.0041033621
-.0041033620

-.015236659
-.011216673
-.011225325
-.011225110
-.011225111

-.028057980
-.018787392
-.018868454
-.018866012
-.018866060

-.042834541
-.025568961
-.025954295
-.025940092
-.025940806

-.059402877
-.030603158
-.031862534
-.031803183
-.031808820

-.077912602
-.033109799
-.036358222
-.036151880
~-.036181704

-.098740334
-.032583775
-.039741104
-.039103933
-.039224727
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Pe

1.0098910
1.0096026
1.0096165
1.0096165
1.0096165

1.0400153
1.0365794
1.0368121
1.0368120
1.0368120

1.0914843
1.0770401
1.0783070
1.0783040
1.0783044

1.1662898
1.1262195
1.1305623
1.1305323
1.1305365

1.2676320
1.1788943
1.1903994
1.1902133
1.1902435

1.4002587
1,2299395
1.2557787
1.2549311
1.2550822

1.5709013
1.2749862
1.3269937
1.3238708
1.3244645



|8

Lambda Number
of Terms
1.6 1
2
3
4
5
6
7
8
1.8 1l
2
3
4
5
6
7
8
2.0 1l
2
3
4
5
6
7
8
2.2 1
2
3
4
5
6
7
8
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Pp
.12246910
.028898230
.043134074
.041332584
.041742601
.041794437
.041820487
.041824244

.14989761
.022320944
.049097614
.044323031
.045575215
. 045875596
.046006773
.046040097

.18205641

.013448964
.063462692
.051162538
.054819958
.056320724
.056919967
.057171478

.22020109

.003138382
.10295845

.069631625
.080504750
.087935212
.090599756
.092476415

Pe

1.7888593
1.3108542
1.4087889
1.3988892
1.4008612
1.4009645
1.4010472
1.4010507

2.0667491
1.3355743
1.5152988
1.4869035
1.4927968
1.4936068
1.4940039
1.4940656

2.4213584
1.3482143
1.6848021
1.6069464
1.6237831
1.6288229
1.6305416
1.6312284

2.8743619
1.3491155
2.0391259
1.8161060
1.8654519
1.8963699
1.9035743
1,9106433



TABLE TI

MECHANICAL PROPERTIES OF 6063-T6 ALUMINUM

Property Typical Average Value for Shell #10

value
Meridional Circumferential

Strength (psi)

Tensile 35,000 29,260 31,450
vield 31,000 27,790 27.850
Elongation
in 2% (%) 12 - 18 5.5 6.5
E (psi) 107 1.030x10’ .907x107
) 1/3 — —_—
TABLE III

DIMENSIONS OF 6063~T6 ALUMINUM SHELLS

Nominal Average Values
Size (in.)
(in.) Shell Shell Shell shell Shell
9 10 12 13 15
Diameter
outside 8.00
Inside 3.7880 —_ 3.7881 3.7881 3.7879
variation +.0008 . +.0003 +.0005 +.0006
-.0006 -.0005 -~.0008 -.0011
wall Thickness .072 S .0745 —_— _— _—
variation — —_— +.0006 —_— —_ —_
-.0010
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LOT

Shell

11
12
13
18

.360
.285

.149

TABLE IV

Flat to shear Fracture

Transition Zone

Initiation
Ky da/dn
2610 l.8x10'g
3240 4.2x10"
2100 1.6x10"°

.293
.550
.449
.465
.422

Termination
Ky da/dn
4140 1.75x1072
3910 8.00x107¢
4760 1.75x10‘6
3300 9.70x10"
4520 1.4x10™3



TABLE V

Crack Growth constants of

- 6063~-T6 Aluminum

Kre + 0'5K£b
9 1.087 2.69x10'§g 3.82 0.994 0.153
10 1.066 6.99x10727 3.99 0.980 0.284
11 1.065 2.82x10'18 3.46 0.970 0.303
12 1.065 1.97x1071 3.54 0.965 0.339
13 3.259 2.54x10'l; 3.29 0.979 0.171
14 1.077 1.16x10t 3.37 0.994 0.127
15 1.644 5.05x10'1; 3.19 0.998 0.069
18 1.055 4.21x1071 3.46 0.965 0.276
_ .753 3.85
da/dn - 1.068x107 1% (1+ ) K,
A' = B(l+ ) 753
Shell Q A' 2(°<l+°< ) ry log Syx
9 1.087 4.05x%10~12 3.76 0.994 0.156
10 1.066 1.00x10"12 3.93 0.979 0.284
11 1.065 4.07x10"18 3.40 0.970 0.304
12 1.065 2.87x10~18 3.48 0.964 0.341
13 3.259 3.20x10"17 3.25 0.978 0.171
14 1.077 1.61x10~17 3.32 0.994 0.130
15 1.644 6.86x10"17 3.15 0.998 0.069
18 1.055 6.09x10~18 3.41 0.965 0.280
- .80
da/dn = 1.39x10°1% (1+ ﬂ)'729Kr3

Al - B(1+ Q)'729
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