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ABSTRACT

It is shown that the equations for the motion of a tagged fluid

particle in a random wave field define a singular perturbation problem,

characterized by a non-uniformity at large times. The uniformly

valid asymptotic expansion to this problem, the Euler . - Lagrange

relationship for random dispersive waves, is obtained. As an

application of these general results, an integral representation of the

solution is worked out for the case of vertically propagating random

acoustic waves in an isothermal atmosphere. It is shown that the

non-uniformity of mediums leads to a wave genera red diffusion process.

The time and length scales over which the proceee ks diffusive are

determined, and a formula for the diffusion coefficient is presented.
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CHAPTER I

INTRODUCTION

From the earliest studies of Taylor (l) and Richardson(Z) , it has

been known that the statistics of the motion of tagged fluid particles in

a turbulent velocity field are of central importance in theories of turbulent

diffusion. Unless similarity considerations may be brought to bear

(Batchelor (3) ), or mixing length theory used (Taylor (4) ), little can be

said about the process of turbulent diffusion without understanding this

problem. One way to phrase the problem is to ask for the relationship

between the Eulerian statistics of the turbulent velocity field (which are

measured at a fixed spatial point), and the Lagrangian statistics of the

tagged particle (which is moving with the fluid). This question is known

as the Euler - Lagrange problem. Recent contributions to the literature

are due to Lumley(5) , who gave a clear and general formulation to the

problem, and Lumley and Corrsin (6) , who studied a simple model of the

problem as it applies to homogeneous isotropic turbulence.

This paper presents a general solution to the problem, when the

velocity field may be considered composed of random dispersive waves.

It might seem remarkable that such a general solution exists. However,

there is a growing literature of very general results for flows which may

be considered (to some approximation) as composed of randorn dispersive

waves. Among these results are those of Benny and Saffmann (7) , who

showed that if the wave modes were weakly coupled to each other, there
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always exists a uniformly valid Gaussian closure scheme. This

scheme, applied to water waves, leads to a Boltzmann-like equation

when the waves are viewed as particles (8) , Hoult(9) has given a simple

rule for distinguishing random dispersive waves from strongly coupled

turbulence (that is, a turbulence in which each eddy scatters on another

before it travels one eddy length scale). Hasselmann (10) has shown

that in dealing with the various weak nonlinear wave-wave interactions,

one is led to a formalism very similar to that of quantum electro-

dynamics. That is not surprising, because, in quantum electrodynamics,

the waves (electrons) are weakly coupled to the photons with which

they interact.

It is typical that these results are all based on some form of

perturbation theory, where the small parameter measures the departures

from a linear theory. For water waves,_ the srnall parameter is the

mean slope of the surface; for quantum electrodynamics, it is the fine

structure constant. The present problem is also a problem in singular

perturbation theory. However, the method used here differs signifi-

cantly from past approaches. The present approach night be called

the method of realizations. For each realization of a r;.ndom wave

field, the actual trajectory of the tagged particle is calculated. In ene

simple case, presented in section V, an integral representation of one

such solution is derived. This representation relates the particle

position to the statistics of the random sources of the wave field. Using

the present method, one must derive, as an intermediate step,

r
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what amounts to a complete solution to kthe problem, before such physically

useful results as diffusion coefficients can be obtained. We believe that

it is the nonergodic property of random dispersive waves which leads to

such an approach.

In the next section (See Sec.. III the problem is put in non-

dimensional form, and the appropriate small parameter is defined. A

naive attack on the problem fails because the results are not uniformly

valid for large times. In Section III, the exact solution to a simple

one-dimensional example is presented. This result, properly interpreted,

shows that the difficulty is due to a streaming motion generated by the

wave field. Section IV gives the general theory for arbitrary random

wave fields. The general theory reduces to the simple example. Section V

gives a one -dimensional example of the general theory. It is shown that

random internal waves in an isothermal atmosphere are diffusive over

certain length and time scales. A formula is obtained for the diffusion

coefficient of this wave field.

W
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CHAPTER U

DISCUSSION OF THE PROB1,EM

Let times be measured by a characteristic period of the wave

field, To and lengths by a characteristic wave length X If the wave

field has a characteristic velocity A. then

AT

is supposed to ba a small larameter. If this were not so, then each

mode would be strongly scattered by other modes of the wave field, and

it would not be possible to physically distinguish random dispersive

waves - In short, the problem is physically consistent only if E is

small, (9)

Thus the problem to be bclved is a nonlinear, stochastic set of

total differential equations, which h:xs the form

Here x is the nondimensional position of the fluid particle, t is time,

and u is the nondimensional velocity field, which has a zero mean value.

The simplest approach, which may be called linear theory, is to

suppose the departures of x from an equilibrium position x(t=0) are

small. The asymptotic expansion corresponding to this idea is

x (t)	 x(0) + E x	 21 (t) + E x2 (t) + ...	 ( 2 )
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Substitution into equation ( 1) yiel -!,

dxl
Ft- _ (x O). Of

dx2 = (

x ^ 8
Irx

le

--W
(x, t),

x=;( 0)

The difficulty with this approach is that the time average of

(x l	 8 ) u (x t)
8x	 x=x(0) ( 3 )

is non zero for anisotropic wave fields. (A simple example of this

fact is discussed in the next section.) This implies that x 2 will

oscillate about some mean value which grows with time, the rate of

growth being proportional to the time average of (3).

Thus, as t	 CD, x2 is not bounded. The expansion (Eq. 2) is

not valid for large times. It can be shown, by the methods which

follow, that the method of linearizing the equation (1) of motion

leads to correct results only when the wave field is isotropic. This

is a serious disadvantage, because most physical systems which

consist of weakly coupled random waves are anisotropic, and tend

towards isotropy very slowly, if at all.

-.	 . ,.
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CHAPTER III

A SIMPLE EXAMPLE

The simplest example which exhibits the difficulties discussed in

the previous section is that of the displacement due to a wave with a

single frequency. The equation to be solved is

9

Ura c cos(t - x), x(t = 0) = 0
	

(4)

This equation has an exact solution which results from the quadrature;

t - x

dt	 ---	 t.
S	 l - c cos
0

Evaluation of the integral gives

1	 -1	 ^ 1 -^ sin(t-x)
tan	

^ t	 (5 r
------ 

	

1 - 
c	

cost-x) - c

To understand what this result implies, we expand the result in the limit

c — 0, with t and x arbitrary. The result, after a rather long

calculation, is

2

	

x ti 1 c 2t 	 + c sin(t - 7 c 2 t}-	 - sin 2(t - y c2 t) + 0(c3)

( 6 )

The most remarkable feature 
a 

of this expansion is the steady drift,

with nondimensional velocity, 1/2  c 2 , in the positive x direction. We

e

e In the theory of water waves, this strearhing motion is known as the
mass transport effect. It was discovered by G. G. Stokes (1847) Trans.
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Camb. Phil. Soc. , 8, pp. 441 and has recently been studied by Lcnguet-
k`	 Higgins, MS (1953) 15hil. Trans. A., 245, pp. 535 and (1964) J. Fluid

Mach. , 8, pp. 293. These investigations are significantly different, in
method, "7rom present analysis. Stokes discovered the drift while
analysing non-random finite amplitude waves, and Longuet-Higgins s!' ►owed
that near the free surface of the water, viscous forces ignored by Stokes,
must be taken into account. None of the extensive literature on this effect
is concerned explicitly with the effects of random waves, or the Euler-
Lagrange problem.

may understand this drift in the following way. If x is increasing, the

period of cost-x) (in Eq. 4) is slightly greater than 27r. Likewise, if x is

decreasing, the period of cost-x) is slightly less than 2w. Hence the

particle spends slightly more time moving in. the direction of increasing x

than in the direction of decreasing x. This results in a drift in the

direction of increasing x.

If the wave had the form cost + x), the drift would be in the

negative x di,z- ection. The drift is caused by small changes in phase due

to changes in x; it is in the direction of the phase velocity of the wave,

in this simple example.

Now consider a to be a small random number, with zero mean.

Then equation (6) represents the result of one realization et the random

process. Considering the ensemble of all e, the motion can be described

as a drift with mean velocity	 < C2 > superimposed upon random

oscillations with amplitude t. Here, < > denotes an ensembles average.

The non uniformity which invalidates the use of linear theory is

simply due to the streaming motion generated by the wave field.

Perhaps a physical discussion of these results is warranted here.

Suppose that the velocity field described by equation (4) is the -velocity

of a water wave at the surface of the water. Suppose that the wave is

generated by the oscillatory motion of a wave maker at the end of a long
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wave tank. Then, assuming that the motion is exactly one dimensional,

according to equation (F j, the wave maker would slowly drift, with a

velocity of magnitude c times the wave maker velocity, in the positive

x direction. In a real wave tank, the wave maker is fixed, but	 f
observations we have made in the M. I. T. random wave tank (11 ) show

that away from the tank walls there is, in fact, a streaming motion of

the correct magnitude and direction, as predicted in equation (6), on the

free surface of the tank. There is a counterflow in the boundary layers

on the walls of the tank. The real point of our discussion is not that a

simple, one dimensional theory can accurately predict the drift

velocity observed, but rather that such streaming motions are a general

feature of random dispersive wave fields.

9
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CHAPTER IV

THE GENERAL THEORY

The basic idea needed to solve equation (1) is a method of

separating the drift motion from the oscillatory motion. To do tl--iR.

we first noU,.ri that drift occurs on a time scale T = e t, whereas

'. the oscillations occur on a time scale of t.	 This suggests that a

two variable expansion is required (12) . Notice also that the
Q

oscillatory terms in equation ( 6) have a slow modulation, on a time

t scale r .	 Finally, the solution, x(t,	 T), viewed as a function of two

variables, has the following properties: a) it is expandable in a

power series in e, b) x(t, T) remains bounded in the limit t -gym ,

T fixed.

These general features may be clarified by realizing that the

position of a tagged particle in a velocity field compo&ed of a sum of

oscillatory modes will certainly oscillate with a time scale of a

typical period of a typical mode. This oscillation will occur about

some mean position, which, according to equation (6), may drift with

time. However, each individual oscillation has an amplitude of order

e, according to equation (1). If drift is ignored (T fixed), the

oscillations (at a fixed mean position) are bounded in time. This

is the same as statement b. The amplitude corrections to oscillations

of amplitude a are of order e 2 . This is the justification of statement

I

i
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These remarks serve to specify the form of the asymptotic

expansion:

(t) ^' 0 (t, T) ♦ E 1 (t i T) ♦ E Z X2 (t, T) ♦ 	 ( 7 )

Let the velocity field be expanded in a Taylor series about 0 (t, •r):

_.	 -. -.,.	 --&--W au (x, t) = u ( x0 , t) + (x - x0) 8 x u (x, t) +	 .

X=X0

Substituting these expansions into equation (1) and collecting like

powers of a produces a hierarchy of equations, the first three of which

are given below:

ONO

at

Ox 

St-= ( 0 , t)	 ,I Owl

ax  
♦ Ox  = x	 a tX t)	 , 10(c z )]^"	 tS— 1 aX

x=xo

The 0(1) and the 0(a) equations yield

0(t, T) = xo( T),	 ( 8 )

t

1 =	 u(x0, t) dt + f (ir) .	 ( 9 )
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Hence the mean position of the particle, x0 , depends only on 'r, the

time scale for drift.	 f(-r) is a higher order correction to the mean

position of the particle.

To determine x 0 , the 0(c 2 ) equation must be solved. Let gr be

the t ave rage of g(t, 'r):

t
= lim	 1	 g ( t, -r) dt	 (10 )

t -*- w	 t Y
'r f ixed	 0

Now, using (8), (9), and (10), the equation for x 0 becomes

tdx0 =
	 (x , t) dt	 E—„^ u(x , t)	 (11 )0	 8x	 0

0

The remaining terms in equation (11), which are,

WX-2 and f(T) = u(x , t) ,^t	
8x	

0
0

are zero by virtue of the boundness of x2 in the t	 cc, t fixed, limit,

and because u (x 0 , t) has zero mean value.

Equation ( 9) and the solution to equation ( 11) are in fact the

general solution to the problem. An elementary calculation shows

that if

u(x, t) = cos(t - x),

9
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then	 x0 : 7̂r. and x  z sin(t . 72 t)

in agreement with equation (b).

Op
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CHAPTER V

INTERNAL WAVES IN AN ISOTHERMAL ATMOSPHERE

Before applying these results (Eq. 9, 11) to a specific

case, it is necessary to consider if any 0(r 2 ) effects due to the

interaction between various modes of the velocity field are likely

to change the general method. If such an interaction lead: to a

change in the power spectrum of the wave field (rather than coupled

oscillations with a time scale T), then it would be necessary to

include this slow variation in the velocity field. This effect may

be taken account of, if, in the formulae of Section IV, the velocity
r

field u(x0 , t) is replaced by u(x 0 , t, r). Then the equations of

Section IV would remain valid. However, it is known (13) that the

interaction which results in a slow modification of the power

spectrum of deep water waves with no surface tension is 0(c3).

We shall assume here that the same to be true for internal wave F

in an isothermal atmosphere.

For simplicity, we consider acoustic-gravity waves (14)

propagating vertically upward in an isothermal atmosphere. Non-

dimensionalize with the scale height of the atmosphere, and the

speed of sound. Then the velocity field has the form (15) (z being

positive upward)

dz
cT`
t = e u(z, t) = E

k=	 -*wA .

co

dAM ez/2 ei(kz - cat)

WA
( 12 )
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In equation ( 12), w  is the acoustic cutoff frequency, which has a

value of 1/2 with the present nondimensionalization (times are measured

by the time it takes a sound wave to propagate one scale height). The

small parameter c is the ratio of the fluid velocity in the wave to the

speed of sound. For waves in the upper atmosphere c is about 1/10.

The solution for z 1 is, assuming z(0) = 0,

0z (t, T) M -	 e z 0/2 
ddA w e ikz0 

[e-'
wt - 1 1 + f(T)	 ( 13 )1	 ica

IA

Letting ( ) denote complex conjugate, equation (11) takes the

following form:

t
dz 0	lim	 1	 z0 ( + ik) i (k-k')z 0	,

= t	 --	 dt	 e	 e	 dA (w)dA (w )

r fixed	 t	 0	 'OA wA
	iw

+ e i(w' - w)t a-iwt)

Now the time average of

+ ei(w' - w)t a -iwt

has the following properties. It is zero if w 0 w'. If w = w', the nonzero

term arises from +e i(W w)t, and has a value of + 1. In this way we

a
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obtain, (since dz 0 /dT is real).

W	 2
dz0 : e z 0	 k dA(w)	 ( 14 )

TcT— 	w
wA

The vertical bars, + ()	 , denote the absolute value of ().

The solution to equation (14) is

z 0(T) z log ( 1 T T)	
( 15a )

0

where the time for a particle to drift from z : 0 to z = co is

T x
1

CD
00	 2

YVFW dA(w)	 ( 15b)

WA

Now, from equation (13) and (15), the uniformly valid expansion for

the motion of a single tagged particle, for one realization, is

Z(t) I'-
log (	 1	 )+	

CO	
wc	 dA	 e ikz0 C e -iwt -11

	

• T T,,	 l - ,r / ,rte 	 iW

A

( lba)

	

+	 c f -r) 2 + 0(s2).
(1 - T/T,,)

Clearly, times of physical interest are much shorter than T,,.

This equation becomes, for T/T,, small, and ignoring the second order

00



I )

•

- 16 -

effects in the drift (the term in f( ,r) ),

z(t) -- T/9, + t(l + T /2T.)

+ O(T /Tm)Z

m
dA w ikz0 f 

e -iwt 1( )e	 -
W

WA 	( 16b )

Physically, the particle drifts upward with a random drift

velocity. As the particle drifts upward, the amplitude of the particle

oscillations increase, due to the exponentially increasing amplitude

of the acoustic wave. As time increases, the position of a particle

becomes more uncertain, due to the random drift, and to the growing

amplitude of the oscillatory motion. This means that the probability

distribution of the particle becomes broader as time increases. Hence

the process has a dispersive character.

If one models this dispersive process by a diffusion equation,

the diffusion coefficient will in general vary with time. To calculate

a diffusion coefficient, some assumptions about the statistics of

random amplitudes, A(W), are required. For the present, we suppose,

consistent with a Gaussian approximation, that the ensemble average

of triple products of A(W) are identically zero. Then the mean square

amplitude of z grows as

< Z 2 (t) > = < ('r/Tm)2 > +	 ( 16c)

ao

9 2 < (1 + 'r/ Ir.) ( 4dA W dA W sing ) ) >
A	 w

f

4
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Inspection of equation (16c) shows that < z 2 (t) > for short times

increases as t2 , with oscillations on a time scale of t. It is

physically plausible that the diffusive character of wave field

should be the result of many such oscillations. On the other hand,

in a physically meaningful process, the particle only drifts a finite

distance. These remarks serve to define the diffusion limit of the

wave field described by equation (12): r/-r. 	 0, t -o m. Diffusion

occurs on a time scale such that 0(1) < t < 0(- :r). On this time

scale, < z2 (t) > grows linearly with time,

m

< z2 (ti > ti t2
	

MAW dA * M + Dt + . . . ,

WA

with a diffusion coefficient D. which has a value

ao	 ao	 Co	 Co

D= < c 2 c 2	 kdA(w) dA * (w)	 2dA w dAe w >
W

WwA 'OA	 wA wA

D is simply the mean drift velocity (the term in square brackets)

times the mean square amplitude of the oscillations at r : 0 divided by

the scale height. The non-uniform medium causes the streaming motion

to have a diffusive character over length scales of a scale height, and

time scales of 0(1) < t < 0(1/c2).

This example serves to show h p-	 ffusion due to random dispersive

waves may occur when the medium is non-uniform. U the medium were

uniform, the exponential factor in equation (12) would be suppressed,
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there would be only a random drift with velocity equal to

ao

` 2	 ^^^^	 k
c^

WA

The motion would still be dispersive, but .10 diffusion limit would

exist in this case.

The expression obtained for D, when put into dimensional units,

gives a simple estimate of the order of magnitude of wave diffusiun:

D 2—A –=
X 

Here H is the scale height. For the vertical diffusion coefficient in the

atmosphere around 80 - 100 km-, put

X vertical as 5 xm, H = 8km.

A	 20 crr./sec

T ti 104 sec

Then D P-7x  10 5 cm2 /sec. This calculation may give a simple

explanation of the turbopause, for the ratio of D to the molecular

diffusion coefficient is one at about 110 km-, and is about 10 at 90 km.

Thus, upon this mechanism, sodium vapor trails released from rockets

would be diffused by waves below 110 km-, and by molecular effects

above 110 km. It should be carefully noted, howevew, that, as most of

the random waves beliewid to exist in the 80 - 110 km region are

internal gravity waves whose group velocity is upward, but whose phase

velocity is downward, a fid-1 3 dimensional calculation is required to find

the diffusivity of the wave field. Nothing in our simple model would

2
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indicate that for all types of waves, D need always be positive, or proves

that the order of magnitude es0mate for D associated with acoustic

waves is the same as for other random wave fields. The point is rather

that one would in general expect random wave fields in a tson-uniforrh

media to have non sero diffusion coefficients, and that the present simple

example indicates that such diffusion coefficients may be large eno '.gh to

be geophysically important .

40



r	 -

i	 - 20 -

f
•

J

ACKNOWLEDGEMENTS

This research was supported in part by AFOSR contract number

AF49(638)-1708 and in part by NSF Grant K554, and in part by the

Department of Mechanical Engineering, Massachusetts Institute of

Technology. I wish to thank Professor J. Fay for helpful discussions

of this problem.

e=
r," .'



..

:.tai ... ,k< .. .	 .... ..

r

-21 -

REFERENCES

1. Taylor, G. I. , 1921 Proc. London Math. Soc. sè r._2 , 20, 196.
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