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ABSTRACT

,o

In conjunction with the use of luminescence for the

identification-of lunar materials, a basic laboratory study

has demonstrated strhe tfeasibility of obtaining useful

correlations of mineral luminescent phenomena. Two

monochromator-photomultiplier attachments to an electron

microprobe have been developed which permit the study of

cathodoluminescence phenomena on a micron scale. The

attachments extend the analytical capabilities of the

instrument and facilitate: 1, recording of 'luminescence

spectra; 2, obtaining the distribution of luminescent

phases in micro.. and bulk specimens; 3, evaluating and

recording the relationships between optical fluorescence

patterns and conventional X-ray analyses of an area scan;

4, studying the effects of electron beam dosages on

cathodoluminescence intensity and 5, relating luminescence

intensity to composition within-a phase. This information

provides a-more reasonable basis for interpreting recent-

observations of lunar luminescence.

Under 30 keV electron bombardment, enstatite

chondritic and achondritic meteorite specimens were found

to display large variation in fluorescence characteristics

within what appeared to be homogeneous, single phase

'material. Enstatite subsamples, 10 to 200 ^t in diameter,
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were selected from 13 different meteorite specimens for

examination by electron microprobe techniques and new

oscillographic luminescence display systems, and relationships

between fluorescence spectral data and elemental composition

were sought.

High concentrations of iron and calcium tend to suppress

optical fluorescence whereas manganese acts as an activator.

The concentrations of both iron and calcium, however, are

positively correlated with the concentrations of manganese,	 1
and the quenching effect of iron and calcium is in some cases

sufficiently large to cancel the contribution of manganese to

the visible emission spectrum. These observations are consistent

with the'influence of differences in crystal structure,-host,

activator concentration, impurity level, and history of the

meteorite specimen.

Relationships between minor and trace element chemical

composition-and both the intensity and wavelength of the optical

fluorescence are shown by comparing photographs of the optical

fluorescence color patterns generated by the microprobe electron

beam raster and photographs of the cation oscillographic displays

of the same sample area (200 x 200 	 These relationships,

however, are much more apparent from elemental and fluorescence

data obtained from a series of points, each one micron in

" -	 diameter, because the element concentration detection limit is
_I

lowered by two orders of magnitude,	 -
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I. INTRODUCTION

A.	 Introduction

Optical Mlorescence spectra from many of the

rock-forming minerals contain information of value to a

'variety of investigations of both macroscopic and microscopic

polymineralic assemblages.	 Spectral analysis is nondostruative

and can be used along w-1th other techniques to study valuable

extraterrestrial samples. 	 Specific applications to the types

and sizes of lunar and planetary materials anticipated, both

on the surface and eventually available to the terrestrial

laboratory, have been chosen to represent and to demonstrate

x	 how t:, a complexities of the luminescent pheno,aena can be

beneficial.	 The variations in color and intensity of the
}

--luminescent response_ can facilitatepositive identification

of mineral grains, singly or in bulk rock specimens, Veen a

particular color (single or multiple emission band) is

associated with the mineral or phase whose luminescent

properties have been evaluated.

The sensitivity of a luminescent inorganic solid to

changes of composition, structure and atomic interactions

can be an advantage in preliminary surveys for lunar

resources.

B.	 Experimental Relations Concerned With Predicting, theoar '
Nature of Luminescent Emission

The criteria for the effective utilization of optical
^h

w

fluorescence are based on laboratory research on both natural
v_

i

:..	 ...
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and synthetic inorganic solids.	 The majority of natural
t	

minerals exhibit luminescent response that has been highly

characterized by synthetic materials; the exceptions are

few, and of , m nor importance here.	 Luminescent minerals

can be considered natural phosphors, their analogues being

the synthetic luminescent preparations utilized in the lamp

'	 industry.	 Hv,,euer, the natural solids usually exhibit zone

fluorescence instead of the uiriform fluorescence displayed

by the synthetics, 'which is the effect of nonuniformity of

the crystallization environment and of the trace element

distribution.	 This color distribution and emission intensity

variation constitutes an immediate analytical application

for demonstrating compositional zoning, studying exsolution

f	 phenomena, or allowing the investigation of very small

specimens.	 Conventional separation in such cases and

analysis by other techniques is difficult, and in many-

'	 cases, not possible. 	 Other potentialities of the techuique

include the qualitative identification of inclusions and the

study of the segregation of impurities 4, the precise

determination of phase equilibria and diffusion mechanisms; . -

or the alteration by oxidation or reduction, and vacmicy

formation.

Oorrespondingly, investigating the luminescent
^w

response of phase assemblages comprising meteorites,

establishes a representative basis to extrapolate present
r

laboratory analyses, and the demonstrated interrelations`

s	 of crystal hosts and luminescence activators, to the

Y

r
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observations that can be recordod for other extraterrestrial

specimens.

Although the nature of the activating; electromagnetic

or charged particle radiation necessary to stimulate luminescent

emission can be critical (Blair and Edgington, 1 968 DeMent,

1945; laverenx, 1940; Meadows, 1967 Nash, 1966) ( for
0

silicates are efficiently excited by 2S37 A radiation

the major absorption band for a silicate'is near 3000
0

whereas sulfides are responsive to 3650 A radiation),

example,,

since
0
At

moderate

energy electron beams are preferred as proving more efficient

and less damaging to sensitive specimens, than for example

proton bombardment. In addition, many of the unique

applications and experimental techniques described conveniently

provide quantitative analytical information when the specimens

are bombarded by electrons.

Photons and charged particles excite phosphors to

different degrees of luminescence because of differences in

penetration ranges, available energy per particle and particle

densities, and excitation intensities. ,Photons transfer

energy immediately, and charged particles transfer energy*

in small quantities. When the predominant anions in a crystal

are oxygen, both the specific host crystal and the activator

can be important in determining if optical fluorescence will

be excited by X-rays or by photons of lower energy.

It is also important tq emphasize ageneral concept
s

that the simple emission band locations and shapes of

luminescent materials are determined by chemical composition

r
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and crystal structure, and are essentially invariant concerning

the type or intensity of excitation. Tho spectral emission

of both natural and synthetic phosphors is a function of the

system paramef---- (Garlick, 1949; Ka ck, 1955; Klick and

Schulman, 19S7; Johnson, 1939; Leverenz, 1950; Williams, 1966)

listed in Table I.

Table I. Factors Influencing Spectral Distribution
in Natural and Synthetic Inorganic
Luminescent Solids

1. Chemical composition, crystal structure, host
crystal perfection

2. - Impurity concentrations, bond types, effective
valences, coordination numbers, and locutions
in the solid

3.	 Temperature of the solid during luminescence

These factors permit the effective use of luminescence as a

diagnostic tool, in conjunction with other analytical methods,

for purposes of identification as well as enhancing and

contrasting sy,,'.11 differences in such variables as

composition.

A selection of typical silicates has demonstrated the
I

potential lunar analytical applications; however, the
=w

f
principles and intricacies are valid for a large nuTzber

t	
of natural and synthetic phosphors.	 Correlations and contrasts

will be indicated for the bulk specimens, powders and individual

.	 grains.	 All three forms of the specimens can be studied in

,. f	
detail utilizing a modified electron microprobe X-ray analyzer

r

a
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as a precisely controlled source of moderate energy electrons

(30 keV), as well as applying the inherent analytical

capabilities of the instrument.

The emissions from luminescent solids that are of

immediate interest are X-ray fluorescence, conventional

luminescence, and thermal radiation. The source of X-ray

fluorescence is the electronic transitions in inner

completed shells of atoms, yielding X-ray line spectra

which are utilized in conventional, electron microprobe

X-ray analysAs. The phenomenon of primary interest for the

lunar surface studies is conventional-luminescence which

arises from two sources: 1. electronic transitions in

inner incompleted shells of atoms, yielding the visible

and near-infrared line spectra (typically the result of

rare earth impurities in the solid), and 2. electronic	 L

transitions in outer shells of atoms, yielding visible

and near-infrared band spectra (typical for the silicates

that will be discussed) The thermal radiation is of minor

interest here; the source is the transitions of atoms

vibrating and rotating, and electrons undergoing similar

transitions mentioned above, yielding infrared band spectra,

Cathodoluminescence denotes the process of generating

radiation during and after 'cathode-ray excitation. Luminescent

systems can have energy absorption and emission at the same
w

center. energy transfer between an absorption center and an

emission center without the movement of charge carriers, or

energy transport by charge carriers between these centers.

AM

,,	
a



W
	 I	 _

I

b

The notation of atomic spectroscopy can be used to describe

the specific sites in luminescent centers. For solids, the

luminescence spectra consists of bands 0.1 to 1 eV wide

(Klick and Schulman, 1957; Leverenz, 1950),

Most luminescent inorganic sys. ,,ms consist of a matrix

or host material into which a small concentration of

foreign atoms or ions is incorporated (Fonda and Seitz, 1948,

Johnson, 1939; Kroger, 1948). In such cases, defect

stoichiometry or the addition or deletion of 1 ppm of

impurity can change luminescent properties considerably.

The optimum concentration of the activator is not critical

for visual observation of luminescence. Impurities, such

as iron, can alter and quench luminescence both by occupying

,.	 lattice sites suitable for activators and by absorbing

energy and then emitting radiation beyond the visible region 	 a'

of the spectrum. When host absorption is in a convenient

spectral range, pure, presumably unactvated, crystals
I luminesce, Under cathode ray bombardment, luminescence

is observed in a wide variety, of materials (Leverenz, 1940;

Prizbram, 1956)..

C. CEystal Host and Activator

Numerous references provide compilations of the

influence of activator ions in a variety of host crystals
i

(Fonda and Seitz, 1948; Kroger 1948; Leverenz, 1950;

Pringsheim, 1949). Of primary selenologic importance

are the large number of oxygen-dominated host crystals,

r
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such as the silicates of the Group II elements (Mg, Ca, Sr,

Ha, Zn and Cd) These exhibit a characteristic ultraviolet

and blue emission band of the complex host crystal i^.hiop

(radical). This ultraviolet and blue host crystal, emission

originates in the anion radicals (for example, J n the SiO4

tetrahedra in sue& nrthosilicates as Mg2SiO4). When the

silicates crystallize with about 0,01 whight % Mn, the

longer wavelength green-to-red emission band is produced,.

The Mn-produced emission originates in cation sites (for

example, Mn substituting for Mg in magnesium silicate

crystals).

Leverenz (1950) explains the host crystal luminescence

process as an excitation transition involving electron

M

	

	 transfer within an SiO4 group from one of the four oxygen

atoms to the central Si atom. The resultant electron

deficiency (positive hole) may then be exchanged among

tetrahedrally arranged oxygen atoms, until the excited

electron on the Si atom makes a radiative return to one of

is the ligand oxygen atoms. By this model, the principal

emitting atom would be oxygen, although the entire SO

group should be involved in the excitation process,

Manganese in, for example, MgSi43 (the magnesium

metasilicate, enstatite) produces new emission bands at

the expense of -the original bands of the host crystal,

C

Incorporation of increasing proportions of Mn activator

l'.

in MgSiO3 steadily reduces the luminescence efficiency

of the original 4200 A band of the host crystal, and

_.t
r.

m
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produces a new emission band peaked near 6700 A. Also,

higher Mn concentrations (0.15 to 6.2 weight % Mn) shift
0

the red band to slightly longer wavelengths. The 6700 A

(peak) emission band of (Mg,Mn)SiO3 is attributed to

transitions within Mn atoms (ions) in regular lattice
0

sites. Similarly, -the 6420 A (peak) band arises in the

orthosilicate, (Mg,Mn)2Sia4. The original host crystal

emission band in Mn activated silicates can be restored

by incorporating Group IVB dioxides (for example, 'Ti02,

Lr020 Hf02 .and ThOd. The subsequent intensification of

the original host crystal emission bandrepresents an

increase in cathodoluminescence efficiency. This
4

intensification would be associated with about 1 weight

of the , impurities mentioned; otherwise the SiO4 groups

((S10 3 )n chains for the metasilicate mentioned) are

adequate to explain the shoat wavelength band.

The broad emission bands can be affected by

temperature. In general, above 297 OK, the emission

band will broaden without displacing its peak. Below

this temperature range, the emission band will broaden

and the peak will be displaced to longer wavelongths.

For example, the luminescence spectrum of Mn-activated

magnesium metasilicate at .180 PC consists of diffuser	 o
bands at 4450 and 5250 A amd a number of relatively narrow

w	 o
i	 lines in the red between '610a and 7000 A, with a very

c
strong line at 6410 A. At room temperature (Mg,Mn)SiO3



Q
exhibits a red luminescence which peaks near 6700 A

(Pringsheim and Vogel, 1943), Low temperature studies of

the spectra and magnetic properties of excited and unexcited

luminescent solids can provide information on bond types,

effective valencies, and coordination numbers of the

emitting atoms and the symmetries of the perturbed crystal

fields surrounding the emitting atoms.

When impurities such as Fe or Ca are substituted in

part for Mg in MgS 0 3 the luminescence efficiency of the
I

system decreases, and a larger portion of the energy of

the incident excitant beam is manifested as heat, rather

than optical fluorescence. In addition, the presence of

impurity atoms can displace the original emission band.

All pyroxene structures link 5104 tetrahedra by

sharing two of the foul= corners, forming continuous (S 03)n
0

chains. The 3.3 A repeat distance along the length of the

chain defines the c parameter of the unit cell. The cations

(ca, Fe, Mg, etc.) link the chains laterally. The pyroxene

subdivisions, clino.. and orthopyroxene, depend on the

arrangements of the chains. The :clinopyroxenes are

monoclinic, and the orthopyroxenes are orthorhombic. In

enstatite (MgS103). Mg or (Mg,Fe) atoms laterally link the

(S03) chains. The three polymorphs with the structure of

enstatite (protoenstatite, rhombic enstatite and clinoenstatite)

contain less than 30 gaol. % FeSiO3 and less than 15 mol. 6

CaSiO as defined by the structural grouping for pyroxw es3
^y.	 in the ,field CaMgSi. 06-CaFes 2P6-MgSiO3-FeS'03 The majority

4
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of pyroxenes can be considered to bo mombars of this four

component system,	
M

The two cation sites, designated M1 (coordinated by

oxygens, each linked to one silicon) and-M2 (surrounded by

oxlgens shared by neighboring tetrahedra in the chains),

in the clinoonstatite structure both have six-fold

coordination and,this causes some distortion of the (Si0)

chains. Both sites are occupied by Mg.

Ions other than Mg and Fe can be-present in

orthopyroxene s and commonly include Ca, Mn, Ni, Cr, Al

and Ti; usually the sum of th'-1.se constituents is less

than 10 mop.,;, For orthopyroxenes, there is evidence
E

	

	
to indicate the distribution  of Fe2+ between the M1 and

M2 sites tho Fe2+ is foutd on the Ml site in six-fold

coordination. Fe2+ substitution for Mg results in a

regular increase in. the a b and c cell parameters.

Cat+ substitutes for Mg, and gives an increase in a and c

but no effect on b. The temperature of crystallization

and the Cad content in orthopyroxenes are generally related;

the amount of Cat+ that can be accomodated in the

orthopyroxene structure decreases with decreasing

temperature (Door, et al., 1965).

Because of the high purity and low Fe content, rhombic

enstatite from the Bishopwille enstatite achondrite meteorite

has become an X-ray diffraction standard, and has been listed

in the X-ray Powder Data File for some time. For similar

"`	 reasons, Mormoto and co-workers (1960) chose the same



meteorite to obtain subsamplos of rhombic onstatite, to convert

the rhombic onstatite to clinoonstat to by heating at 1400 oC

for 24 hrs. , and then to date mine the crystal structure of

the monoclinic pyroxone clinoonstatite. It was established

than the metal Atoms in the cl+inoenstatite occupy the M1

sites preferentially, and that the coordination number of

the Ml and M2 sites is six (the Ml and M2 sites in the rhombic

onstatite structure both have six-fold coordination, also).

Brown (1960) also confirmed that the common clinopyroxenes

vary chiefly in the relative proportions of Cat+ , Mg 2+ and	 +

Fe2+ ; that Mn2+ and Fe2*, having almost identical ionic
0	 0

radii (0.80 A and 0.74 A, respectively), occupy the same

structural site; and that the Mgt+ and Cat+ (0.66 A and
f

O
0.99 A. respectively) are in six-fold coordination. As

predicted frcm, 'the crystal chemistry, for both the rhombic

and clin.oenstatte, the substitution of Fe 2+ for Mg 2+ increases

the b cell dimension linearly, and a linear relationship is

also indicated for the a dimension; his work indicates no similar

Pattern for the c dimension., The larger Ca 2+ substituting

for Mg2+ in cl.inoonstatite increases the b cell dimension

and also the a dimension regularly.

These relationships are important in accounting for

the observations obtained in the present study of meteorite

fluorescence. Tn both the etwtat te- chondrite aril

achondrite specimens,'many of the metals which commonly

substitute for the Mg cation in the pyroxene structure are

.41

i
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pi,esent in low concentrations, or below detection limits,
^	 a

k or reasons to be discussed.	 Therefore, the disposition

of the Fe, Mn and Ca cations /And their structural,

accomodation are of primary interest.

Meteorites can be classified into four groups:

Chondrites, Achondrites, St pny-irons, and Irons.	 Within

each group there are several classes. 	 The specimens

utilized in this investigation are.representatives of the

Enstatite class within the, , .Chondr to go° :ap and the Aubrite

Glass within the Achondr °te group. 	 The distinction between

the two groups, the chondrites and the achondrtes, is the

common occurrence of chondrules (spherical to ovoid bodies

comprised of either individual grains or polycrystalline

and sometimes pol,ymineralic) in the chondrite meteorites,

as compared with the absence of chondrules in the achondrito

meteorites.	 However, chondritic structure is usually not

well developed in the enstatite chondrites, and marry of the

! so-called enstatite chondrites actually contain no chondrules

Thus textural 	 mineralogical and chemical characteristics

are required to clearly define the groups.

The chondrites are subdivided ticcording to their
j

mineralogy, and the achondrites are subdivided into

Ca-poor (0 - 3% Cao) and Ca-rich (5 - 25% Cao)- achondr tes,	 ?

The Ca-poor achondrtes are representatives of the Aubrite

".; class.	 In the enstatite chondrites the essential minerals 	 -

include pyroxene (rhombic enstatite and/or olinoenstatite,



ligsio3), 40 - 600% nickel-iron, 19 - 26%; troilite (FoS),

7 - 15% plagioclase (in some meteori tes An14 to An20,

CaAl2Si208 with some Na-plagioclase intergrowths), 5 - 100oo.

Accessory minerals (0,1 to 1%) include daubreelite (Fe%S4),

oldhamite (CaS), alabardite (MnS), schreibersite ((Fe,Ni)3P),

and• graphite (C). In addition, cohenite (Fe 3C), sphalerite

(ZnS), sinoite (Si2N20), and cristobalite, tridymite or

quartz (S102) have been reported (Mason, 1962, 1966).

The enstatite achondrites consist largely of rhombic

enstatite (with some c l noenstatite) . Only minor amounts

of other minerals are present. These include forsterte

y (M92SO4) diopside (CaMgSi20 6), plagioclase, kamacite

(Fe-Ni alloy. Ni: 5 6%). troilite, MgS. oldhamite,

alabandite, osbornite (TiN), and schreibersite (Reid and

Cohen, 1967)

For the Adhi Kot, Abee and Jajh deh Kot Lalu chordrites,

where tridymite or cr-istobalite have been identified, the
_. E

pressure atwhich crystallization occurred was low, These

phases are themodynamirally, stable at high temperature and

low pressure (trld,mnite 876 1470 °C. cristobal tes 1470 -

1715 °C at 1 atm. ), but can crystallize at a much lower

temperature. By analogy with terrestrial rocks, the enstatite

chondrites represent an assemblage in thermodynamic equilibrium

in the range 500 - 1000 oC (Mason, 1966. :967).

Saven;of the eleven enstatite chondrites (Adhi Kot, Abee'

Atlanta, Hvittis, Khairpdr, Jajh deh Kot Lalu, and Blithfield)''	 J

I

i
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and six of the nine enstatite achondrites (Bishopville,

Cumberland Falls, Khor Temiki, Norton County, Pesyanoe.

and Shallowater) which have been identified as meteorites

are included in this irork. The dominant mineral in the

Adhi Kot and Abee chondrites is clinoenstatite, in the

other lI specimens the mineral is rhombic enstatite.

Clinognstatite is the dominant phase in the high iron

enstatite chondr^,tos, and rhombic enstatite is the

dominant phase in the moderate to low Ve enstatite chondrites.

Of the accessory minerals in the 7 chondrites, daubreelte

has been identified in all but the Adhi Kot, oldhamite in

all but the Atlanta, alaba.ndite in all but the Blithfield,

and schreibersite in all but the Adhi, Kot and Blithfield.

The common accessory minerals for the achondrites include

daubreelite and alabandite identified in the Cumberland

Falls and Norton County, schreibersite in the Bishopville

and Norton County, forsterite in the Cumberland Falls,

diopside	 n the Cumberland Falls and Norton County, plagioclase

in the Cumberland Falls, osbornite, in the Bishopville axul

Norton County, and troilite in the Norton County.
a

The enstatite chondrites 'are characterized by a high

degree of reduction.	 Compared Frith the other stony and

N stony-iron-meteorites, the enstatite chondrites appear-to

have crystallized under significantly higher reducing

conditions, except for the enstatite achondrites which

indicate even higher reducing conditions on the basis of

t	

1

K i,.r
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grain size, chemical composition, and partitioning of

impurities. Numerous investigations have demonstrated

that the total iron content of the enstatite chondrites

(usually less than 4.5% FeO) is higher than that for

other chondrite groups. The iron is partitioned among

the metal, sulfide and silicate phases. Most of what Fe

is present appears as the metal or in the sulfides. Sulfur

is positively correlated with Fe. In addition, Ca,. Mn and.

Cr may be present in the sulfides, and some Si has been

identified in the metal phase.

The transition metal elements Ti V, Cr and Mn are 	 r

depleted in these meteorites as compared with members from

other meteorite classes. The rare earths are associated

with Ca, and presumably they occur in the Ca minerals of

f; both chondrites and achondrites. The concentration of

any rare earth element is usually less than 1 ppm in

representat,we bulk enstatite meteorite analyses. The
l

specificfic relations described for the chondrites hold for

the achondrites as wells the achondrites being an even

higher purity assemblage.

Increasing grain size of the enstatite is associated with

the disappearance of chondrules-in the chondrites. Thus the

Adhi Kot and Abee exhibit obvious chondriles, the Hvitt s to a
W	 lesser extent, and no recognizable chondriles for the remaining

#?	 specimens. This is indicative of the degree of recrystallization,
z

and the concomitant minor chemical changes.

15



D. C :star Fiald Thoaxry^

An abbroviatod discussion of the influonce of th©

presencA of divalent man^anose in tho sil^,cato host crystals

will clarify the parnmetors which determine the wavelength
0

of the. emission maximum in the 6000 _ 7000 A range, and..

w3.11 indicate how this can bo use^'ul in contrasting the

crystal structure and polymorphism of MgS^0 3, The emission

spectral dsplacemen^cs represent a sens^.tvo indicator of
o

structural variations since easily detectable 10 A

displacements correspond to appracimatoly ^.Ol eV, or less

than l^ ^of' the energy difference botw^en the typical excited

states invobred ^.n the radiative transitions.

lgand field thaozy (Ba^.lhausen, 1962; Keester

x.96$; McClure, 1959) can be productively applied

tk^e obsorued absorption and emission spectra,

^, _ it .has ,been indicated that Mn s®ryes as- the

primary activator ;lon in many axygon-dominated. host crystals

-of selenologic importance. The characteristic v^r'iation Yn

color emission .from one phosphor to another depends upon the

value o^ Dq (the crystal fic^'1d spli^;,tirtg parameter), and

the 6S - 4G energy 1©velseparation ,surrounding the divalent

Mn ion and the do^ra© of distorti^^n of ^^h© coordination

po],yhedron, The chief color changes are due' to changes in

Dq. Tho emitting level of divalent Mn is the ^'Th(^'G) state. i
F	 _
.'	 ^ When the space within the crystal available to the ion is

decreased, the value of Dq increas ®s , and the ^'T state
..	 ^

{

.,
_.	 ^.	 _,. ,.^,	 M,^.u._^	 _..

^k...

r^
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moves to lowbx energy (McClure, 1959). Ilirther modifications

of the color of the omitted light ur© produced by the band

w3.dth in absorpt^.on and emission.

'4Pube and ^Caestor ( . 1966.) hav© conca.sely summarized.

the .cogent terms and established. concepts. of crysta]. head

theory as ^'ol^.ows

The d^eloctrons of` trz^►sit^,on .metal ions
are subjected to two sots of forces when.^,he lens
ire incorporated in a crystal, First thorn is ^n
interelec^ranic repulsion between. the various
electrons in the orbital,. Thsnteraction is
described by the. Raeah ^-pwramo er, The
interelectronic repulsion c auses a splitting . of
'£h© d-energy level into a ,equenco of levels in
the gas©ous free ion. Secondly, the .ion in a
latt^.ce situ is subjected to an electrostatic
field from th© coordinating anions, This

,^	 electrostatic int©racoon, the 'crystal field^^,
',	 causes a further splitting of the free ion levels._
`^	 Th© number :and arra.ngemant of crystal . field levels

is determined by the electronic symmetry. of the

f
parnntfree-ion. level and the geometrical site
symmetry of the coordinating. anions, The degxee of

}

	

	 splitting of the crystal fold :.levelsfor each
free-ion level is cha-ractarized 'by the crystal.

i,
field. splitting param©tor,. Dq. The observed

.;

	

	 electronic spectra o^ transition metal.. ions arfae
from transitions bot^roen the various. crystal field
levels subj®ct t® cer°fain. selection rules,;

- Since there are tiro forces on the d.electrons
there oxsts. :the possibility for either the :^__

..interelectronic repulsion or the cryrstal field to
be the dominant Farce, Respectvoly, these are the 	 `;
weak hold ar:d strong; field cases. In the weak	 ^`
field case., the ground state has the same electronic	

,>!

symmetry and spin multiplicity as the free an while 	 _'^:;^
at the. strong field boundary there is a ernes-over
of levels and a different levo^. bocamesthe ground '^

.^	 state usually' _ace ompanod by a .change in spin

^^	 rulespand1thushactotal.uvtdiffeaont se 
Cts . ctA n	 .

7,.	 P
r ,	 weak field, usually implies tightly bound d-.electrons
^,,	 with relatively little interaction with the
,,' . 	 coordinating. anions-while strong fields imply a
...,

`	 _-

w	 ,:

^^

w.....^^...^.



^"	
-	 ^	

^	 ^!

high degree o£ interaction and thus covalent
bonding, Togs of low charge coordinated by oxide
a»ions. ara usually described by the weak fo],d

	

j	 diagram,. Tho anorgy luvol schemes described above
card be computed ire a gen4ral waY for each d-.ohectro»
confguraton.in terms of ^ and Dq the calculated.
levels for oetahedralcoordinaton are known as

	

'	 Tanabe-Sugano dagr^xrts (Tanabe and Sugat^o, ^.^5w)
and have been wa.do^,}r reprinted, being given. i»
both general refox©ncos cited.. above and. in many
other review articles,

E. Statement of the Research Invosti^ation

The use of .luminescence to characterize lunar surface

materials was- .prompted by observations of lunar luminescence

report©d by Kopal {1965), Rackham {1967), and. Cameron and

Gilh^aany (^.96'T), An investigation of terrestrial minerals,

r
likely to occur on the moon, has demons^txated the feasibility

of obtaining quanttativo measuramonts of mineral lunrinescence ► ^
M

It has also indicated str^.i.king variations of spectral enez 7^gy '

distributions and excitation efficiencies within. tha individual

specimen grains, thus emphasizing .the importance of precise

	

^	 localized investigation of phase assemblages and. the ^rthn

phase variations to provide an understanding of the bull

luminescent response- of the material,. Previous work has not

acheved_^ignifcant quanttatveanalytical advances due to

the: lack of systematic study, and the`poor structural ar^d

	

I'	
y

compositional control of materials on which measuremaY^ts had

	

^	 ^	 ^	
^	

been .made.:

`^	 To achieve the level of precision and discrimination	 ;
_..

necessary for evaluating he interrelations of wavelength and

,.
,'	 ^,

^:
.:

.^.

._ ...._	 ...	 ^	 ^.n
a
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x

ntonsity with. the minor and tr^^ce olemant content, chemical

composition. of th© host crystal., crystal structure, and

.. history of crystal.lizaton, twa equipment maiifcatons

were developed for use firth an electron microprobe X-.ray

analyzer. 'The work reportod here describes the development

and application of two basic. cathodolumnescence detector

units:: 1, an electron microprobo interference .filter

attachment, and 2, an electron microprobe light-wire

`	 grating mQnochromator assembly,. Although other equipment

units arei available .for observing luminescence. phenomena

'(Gallup,. 1936:; Greer,: t al,, 19E^7a; Hardy, 194?; Korda,

t 1 196; Lillcrap., :1967; Sippel and Glover,. 1965;

Wieblen, 1965), a microprobe with the proper cathodolurninescence

Y	 detector units offers a comprehensive analytical system _for

E	 detailed investigations..
x^_,^,,

'	 Some of the electron-excited luminescence information;;
^;

•^	 obtained in this study may be used to pr^adct the physical,
^;

;I .and to some extent the chemical, properties of minerals whicb^

may be present on th® lunar surface and which have been

exposed to various forms of radiation, This-maythen lead

`;	 to the determination of the spa^tialdistributionox°

availability of specific indigenous lunar or planetary 	
.^'

surface resources,

r

G
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Z1. APFARATUS AND NROCEDUR^

A, Lu^ cent isplay Systams

During the research, emphasis has. been: on the.. design

and assombl,^r of specialized .equipment for an investigation

of luminescence of probable lunar surface mn9ral phase
. ^., ^^.

assemblages, The work reported hero doscribes tho

days opment and application of throe basic. cathodoluminescence

detector units 1, a Tesla coil unit, 2, an olectron microprobe

interference filter attachment. and 3, alight-wire grating.

monochromator assombly ^'or use with an electron microprobe

(or optical microscope),

A simple cathodoluaninescence unit, a Tesla-coil unit,

was const,ucted and used for rapid identification aril

distinction of phase assemblages, for t^ia daterrminatan of

the distribution o£ re action_ products, .and :for the evaluation

of the luminescence. properties. of bulk specimens prior to

'

	

	 thin-sectioning of these specimens thus permitting a 	 -

rapid preliminary examination, The principle of operation

is a cold ^cath,ode discharge whereby the: specimen is irradiated

with electrons and positive ions,.. The vacuum chamber will

i	 accomodate specimens up to approxmate],y ^ 0 mm in diameter:

,, This technique used in conjunction with-other 'analytical
a.

taethods provides a sensitive tool for studying . reaction	 j	 j`	
M	 i

mechanisms at `interfaces and in bu1.k ^ aterial (Greer,. ^ nl...

1967a), '1'n addition, this 'device ..obviates extensive- sample

preparation such as that necessary for microprobe analysis .and l

__^

._. —_.a—._._..	 r 	 .^ „ _.......–.^r..,	 ..v .. a.r w^ .rw	 ..r. nv..	
'̂2' '̂ 	 .  ^	 .w v^^lx..(^ "	 ..	 .^.	 ^	 . . _. -.r ..:	 ..	
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_	
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^^rovid©s a conuoniont ^.^r^d immodiatn sourco of information

from an Qxtromo^,y portablo ^ ►nax,^}rbica^, uzat,

The cathodaluminascenc© speca.man chamber shown iz^

Figure l consists o:f ^ long, k►orzonta7,ly mounted glass

vacuum chamber ., covered with blac^t tapo oxcept e'er a

horizontal wa.ndow running tho length of tho tube. One end

of the ^,;ube is connected ^^a a rotary oil pump; the .other

end is fitted. with a romovab^.o cap w^.th ground glass vacuum..

joint. The cap supports a glass tray' on w^k► ch specimens or

thin-sections can, be placed.. Luminescence is affected by

means of a Tessa coil of the type commonly used as a

"vaeu^am foster" Man; specimens can be positioned on the
k

r	 tray, the field off` viow is changod by moving the 'resla

coil .and. binocular microscope along the ength of the

vacu^im aharnber.	
_-_

For use. with a petrographic microscope,. preferably

.one with an :objective. having as long a working distance as 	 w,

possible., a change in the geom©try'of the vacuum chamber

is required, This chamber,. which replaces the stage of

the microscope, consists of two pieces -af plate glass ^^r

y inch thick Lucite separated h3 an "Q" rin;^. Z'he vacuum

pump is connectr^^d through: one of the plates. The lumn^se^nce

is excited by positioning th© Tessa coil on one... of tl^ ►e :glass

plates, or by placing the tip of the Tessa coil on a ware	 -

mesh'or metal ring en the upper glass plate to .obtain a' 	 ^,

more uniform discharge, The sandwich assembly is sufficiently

.
r	

^
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thin to mako ^+ovomont of tho thin^.socton in the vacuum

chzm'ber unnocos Ary; othor th^a micro; copo or tho vacuum

chambor .can be easzl.y moved to chango tha field. of view,

'	 luminaseencs bogi,ns within. l0 to 30 seconds aft©r

Î	 the sam to has been lacod w^,thin tho ch,axab4r and the _ ressure 	 _p	 p	 P

lowered key tho rotary .pump.. the ^traltag4 applied to the Te sla

coil is adauste^i to provide optimum a.ntensity off' luminascence

for- n. g^,v®n spocmatx. Although. prolonged excitation of

samp^.e may rosult in a moderato tomparature increase, this

^s ^^^ot a problem. for most appl.^.e atons, .Should. log:=

temparatures be rc^quirod, howU w'C^r a coil of lj8-inch	 r

F,
copper or glass tubing in contact with the lower ' ,data caxi

'	 be ^asod to c3.rculate water or other cooling fluid.,
.^

Color photographs can be obtained for example with.

l	 Ektachrome X ..color f Z.m ASA 6^ usi.n a r imn sin la lens^	 ^	 ^	 g 3^

i, reflex cameras The stray light i elimnated_by taping..a
,.

'	 tube of black paper to the luminescence dev^.ce. Typical

exposure times can ra»go from. '1 to ^0 seconds with an f/4,0

aperture setting,	 }.

the second.. and thirdcathodolum^ne conce units are

used. for . the identification and ds^^nct.on of phase 	 ;; `

assembl^agos, f.c„M ► the determination of th© dist^but3=on of _t

reaction products:, and fer the quantitative evaluat-ion df

	

f	 j

the lumnescencepropert^:ias for specimens of microscopic.

	

.^	 ,.	 ..

size, The two units facliti:ate the study of cathodoluminescence
_z;.

phenomena on a }^ scale of the spocmon without . disturbing	 ^. ^,;̂
i,,:£.

r	 ^'=:..,
^.

•`

-,-	
j

r
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the normal function of the m^.croprobo. Either dQtector unit

replac©s the ocular t^^b4 on the microscope of an Applied

Ftosearch Labora^^oz-^.os Model II^SX microprobe as indicated to

Figure 2, riost non^rotallic matax^.als luminesce in the visible.

region when ?^ontbardod by rc^latvoly high. on©rgy electrons

(5 to ,^0 koV) , Since the ntonsit3^r a.nd spectral distribution

of the lum^.nescenco can vary oven with. sznaly changes ixt impurity

contorit, thc^ luminescence ch^ractox^i,s^tcs give. important

infozhnator. concerning the trace composition and growth

characteristic; of a given phase, and; with these detection

units quanti^i:atvo m©asuramants of the luminescence spectra

are obtained without impeding the inherent use of the rn^.aropsrebe
,:

k as an X.ray ana]yiccal tool:,

The. monochromator (nterf©ronce filter) attachment

r
i ccnSists of a hous^.ng, a monochromator, an ocular tube, a

r,
selection of intex^hangeable	 lts and interchangeable

}	 '	 ^^^' photomultiplier detectors.	 A diagram oi' thin. att:^.chment is

`E shotirn in F^. • -^_^ 3.	 The ..attachment replaces the ocu^.ar tube

^ of th.o optical mic-roscop© on the micropr^"iao	 the	 ntezehangeable
_.

`' campoi.o^^ts ..are ..readily permzted s© that ^"^^^ operator aan

perf^^rm a variety of ©xperments or use the microscope ^.n -

th^ normal manner, without having to remove the attachment,

For visua]. microscopic examination, the ocular is inserted

in the attachment,	 Then the spoc^.men can bo viewed sitrier
^^^

^,^	 t thr^•?^ugh the :monochromator, in which case the specimen 	 s	 .}
^^^

^^_ seen in a given colored light, or a3ternativ^►ly, the
^.

,;.

YY no^s;Ghromator can ba bypassed for normal microscopic

Y

...	 ..,_.

,.	 _	 i
..	 J

.,._w..r...r.....a^.^..rw.yuM'22x5	 •.	 wsw..4.V. `ir_c	 n •^ ..• ^	 a Y	 ^	 ni"!s ^	 r.'	 x...	 .n..	 aT..^.w,.	 ,e^uta .^	 z	 ^s •	.•	 -.X	 .,,	 n	 - ^
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observation. Defining slits for the monochromator are

inserted in place of the ocular, and then ,photomultiplier

M
	 tubes in light-tight housings are slipped onto the attachment

for electronic detection of light intensities.

The monochromator within the attachment is a Bausch

and Lomb wedge interference filter of narrow band width

(10 nm) and 35% transmission. The linaar dispersion is

5.5 nm per mm with a useful wavelength range of 400 to 700 nm,

An-odometer is used to read wavelength directly to the

nearest 1.0 nm. The visible spectrum is scanned by use of

a synchronous motor drive on the monochromator with strip

chart reco: .̂Aing of the signal. In this manner the complete

visible emission spectrum of a luminescent area on the surface

of the sample can be obtained. The amplified photomultiplier

signal can also be displayed on an oscilloscope in a way

analogous to the conventional electron backscatter image or

X-ray images as described earlier by Heinrich (1967a, 'i967b).

Recently, infrared microprobe display capabilities (K,yser

and Wittry, 1966; Wittry, 1966; Wittry and Kyser, 1964, 1965)

have been developed however, with this attachment light

intensity displays at a particular wavelength in the visible

can be photographically recorded.,

The third cathodoluminescence detection unit is a light-

wire and grating monochromator assembly. The light generated
,,	 r
	

by the action of the electron beam (typically 30 keV, 0.03

<	 ampere s) on the specimen is collected by replacing the

ocular of the electron microprobe optical microscope with a
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flexible 1/8 inch Bausch and Lomb non-coherent light,-wire.
N

Typical incident light gathering efficiency of the fiber

optic rod is 60% at the receiving end, with a,light transmitting

efficiency of 5% absorbance loss per foot and a transmittance

capability in the visible and near infrared range. A variety

of signal readouts is available such as teletype printout,

strip chart recording, and oscillographic display.

A Bausch and Lomb 500 mm focal length monochromator

with two interchangeable diffraction gratings, one blazed
0
	

0

at 7500 A 'with 600 grooves/mm anti one 9 blazed at 3000 A with

1200 grooves/mm, permits narrow band spectra to be obtained

when necessary,

By coupling the standard analytical capabilities of

a microprobe (local X-ray emission spectrographic analysis),

the associated electronic display and recording systems, and

monochromator-photomultipl er units, several specific types

of information can be obtained; these are listed in Table II,

Table II. Microprobe Optical Fluorescence Analytical
r	 Capabilities

1 Recordings of optical fluorescence spectra;
simultaneous monitoring of an element and
the luminescence intensity with the
monochromator set at a wavelength of interest

2. Distribution of luminescent phases in specimens
i

3. Relationships between fluorescence patterns and
conventional X''' racy representation of an area
so an

4 ,	 k. - Relation of luminescence intensity to composition
within a phase
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B. Ex erimental Procedure for Specimen Phase Identificati
and Analysis

As one- part of a systematic study of luminescence of

natural materials likely to occur on lunar and planetary

surfaces, a variety of meteorite specimens were examined

under electron bombardment. Detailed examination of what

appeared at first to be homogeneous material, free from

obvious inclusions of extraneous phases, revealed striking

variation in. fluorescence and chemical composition, To

characterize the extent of such variation, an electron

microprobe was utilized to exav=e enstatite grains derived

from the following meteorite specimens: 1. Enstatite

Chondrites Abee, Adhi Kot, Atlanta, Blithfield, Khairpur,

Jajh deh Kot Lalu, and Hvittis; and 2. Enstatite Achondrites

B shopv lle, Cumberland Falls, Khor Temik , Norton Cou zalty,

Pesyanoe, and Shallowater.

Enstatite grains (less than 0.01 = for the clinoenstat to

specimens to greater than l mm for the rhombic enstatite

achondrte specimens) were chosen for the study._ They were 	 -

shown to be of high quality and purity, and there was

sufficient variability in the element concentrations, structure, 	 q

And history_ exhibited by the specimens to permit an evaluation

of the interrelations as they influence optical fluorescence

emission, and to demonstrate the capabilities of the system

for luminescence analysis of solids.

The enstatite subspecimens were examined by an optical

microscope, X-ray diffraction, cathodoluminescence and an
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electron microprobe. An optica., microscope was utilised for

identifying the characteristic parallel extinction of the

orthorhombic enstatite and nonparallel extinction for the

clinoenstatte. In any specimen it is difficult to Identify

rhombic enstatite in the presence of large Amounts of

clinoenstatite, and vise versa, Consequently,, the type of

pyroxene listed in Tables III to V applies to the major part
i

of the meteorite specimen. X-ray diffraction data were also
i

used to classify the enstatites in terms of the two

polymorphs, clinoenstatite and rhombic enstatite.

By careful microprobe analysis, most inclusions in

the enstatite grains can be avoided. The concentrations

^ 	 of Fe; Ca, Mn and , Cr, the only elements likely to influence

{	 the luminescence spectrum and which occur in detectable

concentrations, were determined. The abundance of silicon

was simultaneously measured in order to eliminate the effects

of possible variations in counting rates that would result

from differences in grain thickness or by encountering a

different phase in the sample. This was accomplished by

calculating X:Si ratios, where _X represents Fe, Ca, Mn or Cr.

For these high purity specimens, standard corrections for

absorption, fluorescence and atomic number effects are not

t	 required for the microprobe determination of the trace elements.

Individual grains. 10 to 200 la in diameter were selected

for analysis, and these samples were embedded in inch diameter

q plastic rods. Polishing was done by sequential use of 6-, 3-,

and 1 diamond paste, and w )i "Gamol" polishing'suspension.

a
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The. samples worn carbon-coatad to g, thcicne s of about 200
0

400 A to provido a conducting bath far a^asorbod electrons, and

wore placod in a brass holder in the microprobe chamber^Por

analysis,

Intensity of luminescence was racorded an n Varian dual

pen. strip recorder. The wavelength range from X00 to 700 r ►m

was iz►vestgatea in two ways; at monochromator settings to

Monitor and compare the blu © and red portion of thA spectr►u»

(for er^statte-, the host crystal luminescence _is in the blue,

and the activator nducdd ltiuninesc,enc^a emission is in tha

•	 red portion of the spectrum) , ` and.. at a var^.ety o,£ settings

to obtain oseillographic displays of the luminescence for

•	 comparison with conventional a]sctron backscatter and.X-ray

images,

All the X-ray measurom©nts were made on an App`liad

Research. Laboratories Model EtiLC microprobe equipped with

i 	 three d^ .spersve channdls, X-ray ntensit^ .es were read from

three. Hamner six-decade scalers on the basis of preset time

or printedby a teletype machine. The .probe was•^operated

with a 1 ^ spot size. The majority of the intensities were

measured on a ^ inch LiF spectrometer using a sealed . 0.001 nch	 `.

beryllium^wndow :argon detector ( argc►n r..xatrony; silicon

intensities were measured using a 4 inch ADF (ammonium
f

^ •^	 di-hydrogen phosphate) spectrometer with a 0 . 004• mm thick,
f.:	 .^

':'	 carbon coated, nonsupported, n^ylar window, and g flow
^	 ::'	 (,

proportional counter with P-10 gas: at atmospheric pressure,` 	 i

^	 The LiP spoc trometer bras used ; to scan for the K ^ X-ray^.

_.,

., ,,

,.	 r.....	
-	 •



..

^	 ,

df	 _	 ... ..	 .

t

r

emission lines of t^^e ,glemants Ca Fe, Mn and Cr; the ADPn	 k

spectrometer was used to dent3.fy the ^ d ^-ray omission

``	 lines for Si.

The procedure for making X-ray intensity measurements

was to sel©ct each grs.n by use. of the re^'lected light

miez^oscopo, and then simultaneously record the :luminescence

signal from the instant the electron boam impinged on the

specmon, and the X-ray ;signals, For the ndiv3.dua^^ grains

derived from. the larger samples, Fe, Mn, Cr, Ca and Si were

determined, The ,^°^'^^x{ ►ity of the Si K^ X-ray emission

line signal teas utilized to monitor the phase (n this

`	 case , enstatite , r7gSiQ ^) , The. Fe , C a and. Cr were monitored

so as to- determine their influence_ on .the optical fluorescence

responso of tY^e enstatit9 host, Although Group IVB oxides

can 'yncrease the l^,ost .luminescence... (3n th9 blue.} , they

wore clot monitored since their presence in these .meteorites•

fs wtal^. below the: oneweight ^ necessary to enhance the

enstatite blue emission band..•:.

Operational technique ws;^s as f^,llows a 1. to obtain.

the. luminescence intensity aieasuremPnts, 2. to record five

replications at each element odometer :setting an3 at the

backgro^ ,nd odometer setting for that element fox a series

of points within a granor grains, and 3, to phate^rapri
i

';,	 luminescence _ oscllographic displays, and the corwent3^ona^1
^,	 ,.

cathode < ray tubo electron t^ac^scatter ma^^a and: X-ray images.

Several review articles detail, the standard analytca ".i

.procedures in microprobe ana^,ysis (Campbel̀l, t 1,, 1966;

,



Heinrich,, 1962b; Kol, ^,9^7a Long, x.963).

Fox purposos of corrolaton .studies, ^th4 quanti.tatv+s

data. are ob anQd by examining a number of ^. ^ diameter

positions on the spocimen surface,: Thc^ oxc^ â :aton of lo^sal

X-ray and optical f^,uorescence emission. is produced by meaner

of a focused electron beam .Sipco a 3o keV beam can penetrate

several mlarons of matora^., the excitation volume can be a

f©w cubza m^.arons, The character3.st^c X-ray ^.i^es for various

elements are ana^yxed by means. of thx*^ee curved crystal.

spectrometers, and the composition of the sample is

determined from the wavelength and ntonsty of these

charact9ri.stc lines. The information. is assembled by

simultaneously rocordin^ the intensities for th® chosen

elements and the luminoscdnca ntensit^r (the photomultipler tube

output) fir each monochromator sett3.ng .

Multivariate statistical.. analytical tech»iques

(Dixon and Massey .,. 1957: Snodecor and Cochrsn, 1962:) were

utilized to process -the ,c^3ta. From this ;Y:nformaton ^.t was

pos ible to dstexrminv to . :'what extent.. optical fluorescox^{^e

- sp®ctra of the meteorites. vary from sample to sample and to ,,
correlate the intensity and wavelength of optical fluorescence

with chemical composition.. Since some zero concentration 	 ^ ^

^,	 values for_the elements: were measured corresponding to the_ i

}
pro'ba analysSs detection limit for the.. element..), the data

transformation og (X + 1) was appropriate. for the statistical

analysis, 'where X was the element count rate.

	

^..	 8y scaxining 'of the el®ctron beam, the d3,otribution of

tx

	

,,	 _ d ...	 ^,, .^N...^..^^..^^	 ;^_.,^
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2^

4 gi^ren e^,omant ovor the surfuaa of the samp^,o Qun bn obtained

by monitor3,n^ thQ ^x^tensty of a particular aharacteristio

X-ray line, The. standard mothod u^sod for produc^.ng X-ray

ur^d eloctxon {backscattered electron and b4am current) ima^©s

f^ hor^.zontal linear scanning (rester spot ,^aar^ning), The

various dotectar outputs are amplified to control the intensity

of the s^rnchronizod olectraz^ beam in a cathode ray' tube, The

mr^ga olements carz^ect^,y roproduca the entiro image on an

oscllaseape ^^th a long porsa.stonce phosphor (p-7 phosphor

with a deG ay timo of hbout 20 sec .)

Tho AC pu15e amplifar accept$ negatxvo pulses frost

the standaxxi A, R, ^ X-ray dotector preamplifiers; these

do not include tho backseattorod el.©ctron detector or sample

curreht or optical fluorescence, -The A^ p+xlse amp7.f^.®r

kproduces approximately° a 30 voli pulse of 1 ^ spec, duration

The DC amplifier is used with theample current..	 ,

backscattered-electron, and optical fluorescence detectors,

The rise time of the: ^ amp^.xf^.er is 10 }^ sec.

The advantage of forming an image from the high energy

backscat^hered :electrons is".high contrast and resolution.

This image has approximately ^X better resolution than the'

X-ray image,.. As the backseattering increases,.. the image nn

the .:cathode ray tube nc;^^asos in intensity, Tha.s increased

i^tensi^ty indicates an inc:reaso in camp"le mass density,..

	

	 ^

^i'he use of` the backscattered ele^etron image gives increased...

resolution over the optical microscope,: The image formed
I

is similar to the optical image obtained in oblique illumination. 	 3

.,
.^„ n..^^.....,,,^.^.,.^...s. _^...^.. ; . , ...^ti. .
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lnformatian ran ba photographa.cally rer^nrded as ^.n

th® case of an apt3^.ca1 fluorescence aisp^,ay on ^ oscilloscope.

The oscilloscope displays correspond to bzightnes pattern ►e^

over a narrow tirr^ve^ength range of int prc^st, generated by the

e1ec^,xan beam raster over the ^tuaple Fuca r detected artd

disarmir^atad 'by the monochroma^tor-photomultplzo^ ► unit,

and pro^^actea on the oscl^.oscopo sarean. 	 ' restating the:

electron beam over a specimox^ sur mice and.rocordi»g dith ®r

the X-ra^r fluorosct^nce or the opt^.cal fluorosceru:e signal,

an ^.mage can be constructed on a synchronxxed c+^thod9 ray

tube, end photograph©d in 1pss than ono second, The ax^oa

scanned ranges from about ^5 x 45 ^ to X00 x 200 ^. The

atterns hoto ra hical^y recorded selactive^,^}r delineatep	 , p	 g	 p	 ^
.^

the emitting area of the specimen a»d permit .comparisons of

'	 a particular color, inic^nsty of that color, and ar,}r .obvious
^^

.associations with specific element distributions,

Oscllographc reaordn^ was done on Polaroid Type ^7

film (ASA 3000)	 2^ha ima;e from: the_ Type ^6l Tektronix.

oscilloscope teas recor3ed with. an Oscillo;raph record camera.

at an f/5,b aperture, setting with ono. Type 6? Time-$use set
s

at 0.^ sec,ld^.0 and. the other Type 67 Tame-Base set ^t

2 msoc, 9div,	 The number of h.^nes that reproduce the image `	 ^	 '

on the oscilloscope is obtained by davidng_the frame rage

(0,5) by the line rate (0.002) -end in th^.s example equals

2^0 lines.	 The alectron beam scanned a 200 x 204 ^t area 	 tz

a to 5 seconds,.	 T'ho problem of ^aossble deterioration of

,-
r,

^

^,	 -_
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the matera.ra. undor the action of tha ©^.octron beam. was

recognized, end consequont7^y ar^^ az-ea was exposod to the

beam for as short a tamo as possible to successfully obtain

a complete set Af the luminescence display photographs and

not approcAb^,y alter th©	 uminoscence output for that area.

Typacal^,y^ theelectron bea3n would . scan a part^.cular 1 ^
i

d^.ameter spot x.n 10"5 seconds,

i^' Th9 luma.nescQnce photographs wor© obtained usit^^ the

assemb'1,y described prov^:i,ously, with aM .RCA lPZB photomultipler

tube ref' the type c ommon7.y^ used an a Beckman DK-2A

.' spectrophotometer for the visible region of the spectrum,	 ^

_ The signals from the weakly luminescent silicates are. adequate
,^

'^; and do- not . require phatomultipler-differential current

,- amplifier circuits for their detection and quantitative .l^,
:`
;^^ measurement:,

>`
^;

The recording of optical fluorescence spectra is

accomplished by positioning the l ^ diameter electron. beam

{30 keV^ 0,03 }z amperes).. at a position of interest on an 	 I

individual	 rain or bulk s ecimen,` Theo tical fluorescence^	 P	 -	 P

r' is then :detected at the'monochromator-photomultiplier unit.	 2f^

By varyir^ the monochromator settings,. a complPt^ ^^rnission

spectrum of th©' fluorescence can be displayed on a strip e	' 
J
'
iI

chart recorder.	 In adda.tson, the.. optx^on exists to
,,

'^_	 ^-

,	 ;

simultaneously record the luminescence intensity (at a,,,^,.	 -

4.^,, particular wavelength) axul ,the presence of a particular
^	 ^^

^^, el©merit of interest on a dual pen strip chart recorder. 	 in	 +
l

^-^,--;
^.

..
...	 ,,

^^^ M
^^^

---	 - --
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this case ^ the specimen ^.s translated under the fi yc®d e^.actron

beams so that `both thy optical flu©rescence and X —ray fluorescence

sigmal earn be compared .directly.
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T1'Z. ^'R^S^YVTATTON AND DI5CU5S:CON OF RF^SULTS

ex A, C
ot^sarvat^.ons

4lhen the ssnznples were obs^rvec^ microscopically during

electron bombarrlmont, ^,arga ,^a fforencos in both the intensity

and wavelength of the xesulti^ng luminescence ware: evident..

D3,#'ferent portio^^ ^ of a sin^l,e mineral sample emitted at

wavelengths rar; ►gn^ 'to both Brits of the visible spectrutrs

Fluorescence was most intense in the red portion of the

spectrum, Almost all of the strong luminescent samples

contained very little iron or calcium, ana the achondrite

enstati^e meteorites lum p©seed. stronger than the.chonc^rites

	

' ^	 throughout the visible spectrum,

	

I'	 Fluorescence spectral data and the Mn, Fe, Ga, Si
_	 ^

and_Cr content of the meteorite samples are given in

	

'^	 Table III. Selected. grains examined by the electron

microprobe revealed teat the dispersion of the concentrations

	

r	 of these elements in the samples is large.. 'This variability

^;
indicates why a variety of intens3,ty and wavelength responses

;,
may be possible within a specimen.

As is cotmnon with trace-element data, the:.conaentrations 1

are not .normally distributoa, that is they cannot be adequately•

'`	 represented by a normal or^gaussian frequency distribution

curve. Points on the cumulative frequency curve can be

	

^'	 reasonably fitted with a freight; line when plotted on log
,'

	

,. ^ r
	 probability paper, indicating hat. the distribution ^ of the	 ^	 ''^

^^

	

^,,;	 ;,

r.;

.. _	 r. ,.	 .^	 ^ _ ^ . e^	 ,::



^.

	
e

^1

data is hotter described oy a 1og..normal ^r4quoncy distribution

curve than by on© which is :normal. Accordnghy for statistical

analys3.s of the data. they hav® been transform ®d by converting.

concentrations to log aonaentrations in order to norma`iize

th® distribution. Tho tat^stcs representing the ^^averagc^"

concentration. and the spread, of values around the '^average^^

ar© then the geometric mean and the geom^^trc^standvrd

deviation respective],,y,

^iigher ^ concentration is :indicated for the , achondrite

specimens ^,^rhen compared with the chondrt^ specimens. Iron is

higher, and Ca p Si and Cr axe slghly .hgher in the chorxrites

than. in the achondrites Comparison of the types of ^enstatite
^.

chews. that Mn, Fa and Cr are more concentrated in °the...

clinoenstatte than in the orthorhombic form, The.., C a

concentration for thes9 specimens appears slightly higher

in the. rhombic 'enstatte than. for the cl •.inoenstatite. These

measurements clearly demonstrate the h^ .gh variability in the ^:
},

Fe concantratiort and. the more uniform. Ca concentrations	 ';:

when thy, _specimens are compared on both ..thebasis ;of chorsdrites	 ;^

at^d achondrites and of 'clinoenstatite and rhombic enstatte. 	 ;
^:	 - 	 i ^:	

A

Plots of the geometric means taken-from Table N show this	 ^`

clear3,y in =Figure ^, Similar relations would ^be indicated 	 ^^`,,
if the geometric means from Table V ^rero plotted pnstead.

^^	 The values alsc^ demonstrate the trend of cnncentr_ation 	
t

^,

of Fe and of Cr 3.n the pyroxen^ that would be expected for 	 'I
Ii

more reducing condtions.(h^her purity pyroxene} Thus,
3,,I

is

_	
^::

_.	
I^i

^"'1
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the amount, of Fe is highost in the c^ ,inoenstatite chcndritas,

lass in -the rhombic onstatte ohondrites, and least in the

rhombic enstatte achondrtes, 2ha same tr®nd is shown by

C r.

4Jhen tho intensity of optical fluorescence at a

particular wavelength,. represented by the photomult3.plier

tube output, is compared with. e^,ther the type or c^,ass

of meteorte, important relationships can^be seen Tabl® VI

contains both the. arithm®tic and geometric moans of :intensity

i

	 values for the red.. and blue portions of the visible pectr^m.

i

	

	
The short wavelength intensity value is ^'ighor for the.

achondrtes than for the chondrtes, and for rhombic enstat^.te

than for-clinoonstatite, The -same trend is indicated in the

red region £or both grouping comparisons, Also,. the long

wavelength values are. considerably greaten than the short

wavelength values fox y the chondrites and the. achondrites,

and for clnoenstatte and rhombic enst^^tite,

Figure ^ re ►presents the variation of the geometric

means of the short wavelength optical flu+^re^cence output

for individual meteorite specimens with resp©ctto the ^'e
•	 _	 [

and Caconcentratondfferences for thesa , specmens. -Similar

re^.atonships are evident when the long wavelength outputs

are plotted. A considerable number of significant relationships

are featured ^n this diagram, The trend of the positions

of the specirr►ens on the :diagram, considered from. the: upper	 i

left corner -to the lowar right cot-ra,or is in ogre ©merit with

the following relata^,r^nships: change of meteorite class;

;;4

.^;^,9d,,a.
^^;.	 ^ ^_:	 .,	 rr._..	 -
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monochramator set at X35 nm
9.0
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Figure 5. Meteorite Optical Fluorescence Intensities Comparison 	 ^
With Chemical CAmposi^tior^ ^:
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^.	 puxaty; docrQasing total rc^, raur ►c^ decreasing ^'o in the. pyxaxene

structura; change in chondx^,caty age ^ phase presents dQgree

of recrystallzaton inc^reasix^q coarseness o£ crysta^,linty,

.arid increase ire lumine^acence output. The c^arreenstatite

chondrites, rhombic enstatite chandritea► , end rhombic enstatite

achondrtes ore pasitaaned in this fashion, The al,rsoon: tatte

chondrite specimens are ehondrtic, have the 'Highest Fe

concentrations in the series, and represent rapid crystallization.

smallest gra^,n size,. arid. shortest. cosmic .ray exposure ages

{ap^roxiMately 1Q6 years). in the ferias, The rhombic enstatite

chondrite specimens can be described. as poorly ahondr3.tc, 	 ^

having a lower Fe concentration, slower crystallizaion,

-1arE;er .grain s3.ze, and longer cosmic r$y exposure ages

(approximately 2 x 107 years; ..Mason, 1966 ire the series..
^:

i
ThEi rhombic. anstat^.te achondrtes are nonahondritic, have the	 '^

^-	 lowest ^'e concentrations, _ slowest crystal^axaton history,

usually 3arger grain site., and the longest cosmic ray

s	 exposure ages (.approximately ►^ x 107 years, a representative

^, value for all. of the enstatite achondrtes Urey, 167) in
the series,

9

As discussed prerrimusly an increase in lumnesce:^ce 	 ' ;

''	 dutput for a particular wavelength region might be expected

;^ if one enstatite specimen compared- with another specirr^en had

, j	 higher . purity and lower cone ntratons of elements succY^. as Fe
^_

which wou:^d tend..to suppress optical fluorescence; 'high^^ir

e	 hombic enst^i^.itej , symmetry and less lattice distortion (i. ., r 	 3,

^r
.	 compared; with clinoen5tatte^ and a history of slower

).	
+

;'	 r
__ __,... ^;	 } ,^
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aryatallixation wh^.ch wot^lrl roult ^.n higher purity mr►ter:{.al

and 1,arg©r grain size, That. the relatAns are consistent is

clearly demonstrated,

Consequent^,y, although previou3l^r unexplained, it is

not surprising the+w the luminesaenre of terrestrial enstatitos

ia , lower than. that for tho higher p^^rty extraterrestrial

enstatites z^epresented by these anstatite chondrite and

achondrte speci^rens Only the orthorhombic polytnorph is

:known to occur ire terrestrial racks.
1

Multivariate stut^.stical ana^tiytical techniques were:	 ^

uti]:.izec^ to . process the transformed data so as t4 evaluate

th© significance of the relatonshi^rs that are indicate°<^ by

w the measurements, 	 fihe tort of a hypothesis that the vas-3^ables

X and Y a7,^e independent 	 made using: the	 ample correlation

^,^ coefficient, r.	 If this hypothesis is rejected, than 	 here

,,
is suffci^ ►rit reason. to beliove	 at tho s ecified level ofp

is
significance., that X and Y are correlated,

'
I#

Table ^ UII and. VIII contain correlation statist^.cs for

the ^.ndividual meteorite specimens:; rhombic enstatiae and
..,i

c^.noenstattegroupngs	 and ahondrite and achondrite

groupings.	 The corresponding_values 	 n the two tables are	 y'

similar, and. the-statistics in Table VIYI demotlstrate the	 ,,
^:

va^.ue of using the element to Si ratios to take info account

l'
Ii

irr^gularit3 ,es of the sample surface xnd variations in {
^

t̀
thickness.	 The si ►̂nficance of the correlations improvQs

slightly compared to the corresponding values in Table VII
^^

^' that were not dividod by Si, 	 .

_	 _	 _	 -^
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^^.ghly a^,gn^,.fl^ant po: itiv^► corrQ^.nt^.ons mrn evident

for t^tn and. ^+'a, re ^^,c^ Ca, T'Q and Cr, Ga and Gx, Nln ar^d Ca, and

Mn and Cr. This is consistent with tha crystal chomicAl

relata.ons discussed provaus^,y for the pyroxene structure.

Where Mn, Fo and. Ca are present ^,n .relatively l^.rgo amounts,

such as 3.n the clinocsnstatite spoc^imons or in the chdndrite

specimen c1.as, compared with the high purity achondrte

members, there are h^.^h].,y significant negative corrolatior ►s

with Si, as Zarge concentrations of impurities tend to

depress the Si count rate from the pyroxene phas©,

^rithin an ndvi^^iva1 meteorite s acmon the variationp

in intensity axed/or wavelength of -optical. fluorescence can. be

explained by the corresponding variation in chemical composition,

''	 Higher concentrations of re and Ca tend to supprass fluorescence...
-- l

Because of structural dnd other differences, .such as the.

history of the specimen, a given trace ele^aont pattern.. wi11 not

quantitatively produce the same effect in different mateorte	 `

h pecimons. .The concentration of Mn may `be too low,. for example, I

to exert an obvious enhancement of^lon wavelen th visibleg	 g

,'	 luminescence,.. Manganese^Fo and r1n-Ca are positively correlat©d

Frith a .high degra© of statistical significance, and since both

^e and Ca effectrre:%y rc^duco the optical fluorescence emission

in both the blue and red region of the visible spectrum, it is

} to' be expected that the 'influence of Mn would ba minor,.... However, '

- :in the Abee specimen,- Mn is' present in a xolatvr^ly' hYgh

concentration for the n2eteor^a^© specimens ►̂nd the influence

of Mn in depressing=the short°wav©length host emission band:, is
4

^.
.;	 . 	

{1II
-	

II

d_e,.^ 	 . ^	 ....m	 .^,	 ._w.	 -	 , .....
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shown. to bQ highly signifa.oant.

Definite relations ura present for a particular specimor^,

wav^^.ength-intensity ro^ponse, ^znd mstaor^ .te class,. Tho high

purity' cf the ^,chondritns favors a highor intensity of r®sponse

in tha vi^s^10 ^az^go than a.s the ca^o w^.th the chondrit^s

Fl^amogQneous dist^.^ibut^.an of trice element arr.^ low concentration

of impurities is refl^,oted xn th4 highly sz,gnfcant positive

corr^la;:^.ans for Yx^oansa,ty ;end wavelength for ^^.1. of the

achandrto specim.^ns, ` ;for a1^. ^.ndvidu^. specimens `(e'^copt the.

Abee meteorite, whore the b^,ue lumino:^conce override$ any red

contribution), for clinaen stat^k^a, for . rhom^:^.,c onsta^^ite, for

f	 c^i,osxlrites and for achondrtos there. .?ra ^ig21:.'^.cant positive
^^ H	

correlations for intensity and wavelength (i. e, the c, ^ssi^n

in the red region of the visible spectrum is greater than t:^at 	 1
.^

^^	 for the blue region)

I^ To convert the microprobe data in Table ITZ to concent^^ct^.^ns
ti

a reliable chemical. analysis for the enstatito from the Khairpur
I'

meteor^.te is included at this point (M3son, 1966) s Sio2 ' 58, 92
f

weYght ^: .^.2^a 3 , 1. a.^;^: Mao. 39.62: coo, o; 3	 Tot , o, ooh;
I,

I^Ino, 0 . 02',b; FeO, 0,04^,^; from neutron activation. analysis, Mnc 66

PPm, Cr;: 5 ppm, Other analyses for the meteorites used in this
nvestigation ` aro reported by Wiik ( 1956), Mormoto t al,, (1960),`

and Keil (1967b) The counts per second above .:background an	 ^'
a.	 ;.

,,

standards uses"c ^'or compiling Table III (for a l ^ diameter bear^^

spot, 30_keV, and adaustod count rata to 0,03 ^ amp©r6s) are as

' '	 follows : C airJO^,, 2, 238: Fe , 39.126 Si, ^2, 27? : Mn, , 39, 288 ; and
4	 ^	

-

Cr, 31, 653, .The ^-ray intensity from a given elemon't, compared
i

,.
.;	

,
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^^.

	
r

t

SJMr

to the. standard ^.^ n stra^.ght ^.na funct^,on for tho^^e^ sp4cimet^

values where all 3^mpurit^.as (t^:n, ^'o, Cu cued Cry are ^ro:^ent

the pyroxona ^,n an .mount loss than ^^ Freight ^, For, ©xample,

tY►e Mn metAl standard s^.gna^. was ^^,288 ,counts/ -sec. which..

reprosonts 1Q0^ Mn or ^.0^ ppm of Mn. Thus, ^ co^xnts/sac, above

background would represent A.41p tin ^.r :100 ppm, rar orio

count/sec , above background for each 2,^ ppm of Mn. This

compa^.^os favorably with tho ro^. yab^.o chemical ana^,'^rsis value..

'or the TChaiz^pur mQteor^.to enstatto of 66 ppm Mn and. the mic^oprobo

geome^^►3.a mean value listed in Table ZtJ` of 2 counts/soc, which

would ba equival4nt to 50 ppm on the basis of tho adjusted motal

standard valuo, The ar3.thmetic mean and standard deviation can 	 I

bc^ improved by applying a counting correction,. smear _ ^-"
"Y '^

whAre s is tho standard. deviation of the arithmetic :moan

	

'	 ,-
equals 2 counts/sec., in this. ease} and N z the number 	 ^ 1

^	 of readings for that position and olemont (equals 5 in this

	

f	
cas©) (^^thte, 1967). Therefore the adjusted value is 2 ± 1

	

°h	 counts/sec. er ,^Gl ± 25 ppm, for T^In, Good agreement is also

^;
obtanod for the Ca, Fe and Cr concontratons for this method:

,.
compared with the cheimcal analysis values fax the Khairpur

For homo^en©ous samplos and s'c:andards, count rates of

the order of 1000 per socond have a standard deviation of ± 2qb

i and represent measuromonts of high precision, For typical
^;

	

i'	 ^^-,:

	

. }	 low count .rates for Mn and Cr tho standard deviation is less•,
^,.

I;

	

^:	 -	 than. ± 7a for five replications- for e an element at a position on
^;

	'^	 the pyroxene sp6cimr^n, This varianco is strongly influenced,.

	

I
^ ^	

'

	^^	 by the geochemcal variance, and by sampling errors, sampleE
;:,;

_- _	
^;^._	 ..

^v^r



.^ - _ ^

E

^ ,f

^,:^

^^

roducton Qrrors., and axia;l^rt^,cal c^rxar,

the accuracy of tha tnothod can bo ova^,uatc^d by compat^.z ►g

tho Grua mean amid. the: maan off' tho mo lt urod values, Thu true

valuo	 .^.^. dopond on tho dogrea to wh^.^h th4 d^x^a Far- the

grains z^present the subs gmplo and th,a d®groo to which thane data	 ,'

ropresont thca pyrc^xona ^,Yi tho oz^ta.ro motoax^,te, 	 To a high: degree,

this ^.s ^ o.nfxrmad by c ^«^par^.x^^ the trends t nda,a ated by the

various osc^.11ographa.c display, raprosonta.n,^ much ^.argor

sampling aroz^s. 	 Tho mcroprQba traea values agree within ^,^°^

of the traco rralues quoted for tho chom3.cal trace olemont analysis;. 	 ^

the moan microprobe trac4 element datoctian 1eve1 is of the order

"l 1 of ^0 ppm for a particular ^,racc^ elemont.	 Thus:, the: measuremerit^	 '^
•	

1
^:

`^	 ^ are. suffe^,entJ.y procse and accurate .:for. the purpose of comparing.
i

^t
,_

optical fluores^enco spoctr^:l data and chemical composition. for
,s

'	 ^
..

^	 specimens of microscopic, sire,

B,	 ^7iscussxon of Osca.11o^raphs

photographs of the 200 x 2QQ ^^ aroa displays (corresponding

to approximately 28,^X magmxficatian} for each specimen are r,

` presented in Figures 6 .^ 18 for cathadolumnesconce and

c orventonal ^-ray oscll.o^raphic displays," :;
Depondn^ on rho m©toor^ae specimen, some. of th©

^ uminosconco photographs mho more rovoalin^ than other

concarnzg obvious correlations t^rth the element distribution 	 -

^':

indicated dy the X-ray detector displ^:ys.	 This `variation

'^.'	 ^ is mirrored and c onfirmod in the correlation statistics: fo'r
-^
``^ E

." the individual specimen, 	 to scmo of the photographs,-the ^:_

t'11:	 I	 x
j

..

^	 :.t,....

_.	 _	 _.

,._.	 __. ^.v ^_	 ._ . ,...,.a.._	 _.._	 .	 .,	 ,...,^	 ; ..^ .	 «.	 ...;»w.,-.._..,. ^ a.,^.^s.^m^r..2.r 	 ^xaa	 ^	 _:	 u .: .. .	 ......:.^._:.,	 ....,:.	 .:rma	 . T.,..,..,. +:
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luminescence disp^,ay onhuxices the outlnas of cracks, flews

and grain laoundax^,as, or may pra.ma^,l^r snow as a color and

:intensity gradation froze the outer to tho ^.nn^r portion of thr^

gra^;n. ^'I'4^.5 dlfferenc0 may ^^ causod by reactions betweon

the surface Layers and tho atr^aspho^^^ or onva;,ronmont during

' heading and ccao],n^, coup^.ed with slow rags of diffusion

of reaction prc^l.ucts into interiors of tho crystals.

^xaznplos of sovoral ^£ thc^ efz" gets ^r^ clsplay^d :for ^^

tho chondr3to s in ^"i^ura s ^i - 1.^ and far the achondxte s in

Figures ^.^ - ].$, s^.tG^ as tho quenchin	 effect of Fe and Ca
^^

' - on luminescent ezni^sQn, Mza as an activator, and exsoluton

` lamellae,	 Previous attdznpt5 to record.. visible cathodoluminescence ^

{Korda,	 t zl,, l96?; ^a11er^ 19b?) did not utilize wavelength I^>

^' discrimination	 such as	 rovi^.cd b	 the micro robe attachmentsr	 P	 y	 p
-{
:-^

described in this ^rork, and consoquent^.y the capab^ity for	 - -^

detailed ana^.yss and correl.atan .studies ha,^d been absent.

If nocessary, the wavelength of th© visual fluorescence

,, colors can be determined by using the MunseLl (1929) color
,:.,^,

^;
'	 _`•« syst+azn.	 For example, a purplo lumi^;nescence cohr fora

;.,
metes^rita observed ardor a gectron c^ctation z^,ight be

designated: 5.0 RP 5/6; the notation.5.^:^tP 5/6 indicates a

^^
I^iunseh hue of 5.0 rod-pur^plo, a Munsel'1 valuo of 5/ ` (-wh3.ch

...^ ^^

^' is equally separated from black and white), and a Munseh 	 -

:^	 . ehrozna of ` / 6 (r^nich means six stops away froze gray (N5/) of
#,-^

^-,.;	 ^:..:
the same: 2^unsell value,	 Tne Mansell torms can be identified , ,^

.	 ,

^'^!
,	 .-

as follows:	 value-indicates how colors vary in lightness,
,

^s and chrome indcat3s how colors. vary' in- sat'urat;on.^
--,
x	 ^

^
^.

,^,,:.,	 .̂

^..	 ^
, ._

;

_
:^;.^.
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Howe^vo^r, c.lthough color perception can hQ assaciated
_^

with scales of constant hue, saturation and. lightness, thc^

^' chemical 'variability and. the associated. color variability

for the specimens limit the application and usefulness oth

this system, Tht^ color patterns for the various speeimens

clear],y demonstrate why tho-e was confusion in the xt,erat^;^e

i
when interpretations. of fluorescence colors from. bulk

Materials wore attempted, With an analytical procedure

and capability of obtaining paint analyses, such as

presented ^.n the .preceding. section, and vrth the oscllographc
(r i

•	 displays, present- .3d in this section,:. meaningful explanations	 '

have been mr^e,
,. ;

^^	 Oscllographc d^aplay: s for the Acil Kot met©orite .are
;; i
' f	 shown in Figur::e 6, From th®se photographs, minor inclusions

,,_^

' can be i.aontifea and Jelin©ated. The quenching effect of --
,t

both. Fe and Ca is demonstrated by comparing 'the cation displays

^'}	 with the series. of optical fluorescence phctitographs. For

example, in the low^r3r right corner of Figure 6b a large Fe
^,	 ;	 i

concentration is ind^.cated; the :outline of this feature

`	 appears on_all of the optical fluorescence phots^graphs as a

black area since the c^l.or emission: is suppressed, S.rtilarZ<}r;

in Figure 6e a large Ca edncertretion is indicated in the far
^	 .

!
!,.	
Iright-center of the photograph. In each fluorescence display

• ^^ ^	 thin area remains dark, The. Mn' display 'is use^'ul to demonstrate,.:
i_	

that Mn quenches the blue response. (Figure 6n^ ^, For 'example,
`a

`	 there is a Mn concentration in the upper left . portion`.of -the
,,
^,

:^

_,	
.

.';	 ;^

.^ .	 _.^

w ...	 ^;:^.^.. __ r	 ___.___::.... 	 ^.._
;^

.. __.^_:..^.. 	 _	 . . ......:.... n._ :...
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Figure 6, Adhi Kot Chondrite Oscillographic Displays
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Y^ 621 nm	 h. 664 nm

Figure 6. Adhi Kot Chondrite Oscillographic Displays
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photograph that exhibits the corresponding influence on the

color displays, The blue luminescence overrides the red

contribution and the specimen appears to luminesce blue

Figure 7 pictures a specimen obtained from the Abee

chondrite.	 Again the quenching influence of Fe, Ca and/or Mn

in attenuating the short wavelength visible emission is

clearly demonstrated for a large number of positions on the

optical- fluorescence photographs. 	 The dark areas on Figures

7e and 7f can each he explained in terms of the prosence of

high Fe, Ca or Mn concentrations.	 This fine-grained specimen

luminesces blue in areas of lower impur ty concentrations.

In Figure 8, special attention is devoted to the Ca

distribution and its effect on the various luminescence

photographs for the Blithfield chondrite specimen. 	 The 621 nra
'r

display represents areas where the higher-Ca pyroxene and

the lower-Ca pyroxene areas are contrasted by the lack of

luminescent response for the higher-Ca areas. 	 The areas

r of lowest Ca rim the grain and clearly luminesce red. 	 These

^r lumWescont rims can also be visually observed, and they

surround areas that luminesce blue.	 Subsolidus exsolutian

of a more calcic pyroxene isprobably responsible for the

heterogeneities in the Ca patterns.	 In.the slowly cooled

pyroxeres, a high degree of ordoaring is possible, and in

such crystals unmixing of the Ca-rich phase generally occurs.

-A more rapid cooling`situation may prevent exsoluton of theP 	 P

Ca-rich phase.

 Careful examination of Figure 9 reveals a considerable
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Figure 9. Khairpur Chondrite Oscillographic Displays
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amount of information, and permits an explanation of the ,apparent

i.
blue ,and red visual luminescence.	 In Figure 9a, the specimen

-^ current image outlines the specimen grain obtained from the

Khairpur enstatite chondrite meteorite.	 Figure 9f indicates

the blue, 491 nm, color distribution for the same grain.

Figure 9h represenil.,s the 686 nm display, and emphasizes

exsolution lamellae which would be difficult to detect for

this specimen using other methods, 	 In this sample, the

higher-0a pyroxene luminesces in the blue region of the

spectrum, but not in the red.	 The lour-Ca pyroxene is

activated by Mn.	 The rhombic enstatite (low-Ca) and Ca-rich

j pyroxene solid solution are sharply contrasted, and establish

a frozen in record of the temperature (Atlas, 1952; Boyd. t al.,

l 1964a, 1964b) of equilibrium crystallization (in this case,

below 700 oC)

The ratio between the length and thickness of the
4
i exsolution lamellae may be useful as an index of elongation

to provide a rough index to the intensity of recrystallization.

For the Khairpur chondrite in Figure 9, this ratio is

approximately 10 : 1 and, for a pyroxene, would be indicative

of a dynamothermal origin or strong dynamic metamorphismY^

(Tyrrell, 1958),- The least pressure direction would run

parallel to the banding. 	 The cleavage planes are parallel
_

to- ,, the banding ( ( 110) cleav age  for pyroxene) ',	 . e .

perpendicular to the direction of greatest pressure. 	 It
G^

is of interest to comment that the Fe concentration trend

also parallels = the cleavage.

i
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A similar effect of Ca depressing the optical fluorescence

output is shown in Figure 10 for the Hvittis chondr te. An

area of high Mn concontration is indicated in the left-central

region of the Mn K a photograph. Again, the high Mn region

suppresses the blue luminescence as indicated by the

corresponding dark area for the 415 nm display and enhances

the red luminescence as indicated by the corresponding

white area of the 700 nm display. Within the specimen a rim

caused by a higher intensity fluorescence signal for the

optical fluorescence displays is apparent, and this is

associated with the corresponding lower impurity concentrations

for these regions. The blue luminescence overrides the aced

	

'	 contribution and the specimen appears to luminesce blue to

	p	 a viewer.

Figure 11 presents displays for a number of various
i

size grains from the Atlant, chondrite. A series of optical

fluorescence displays rjr different wavelength settings of

the monochromator-photomultipliear detection unit demonstrates

the discrimination capability of the system, as indicated by

the various dolor patterns and =absence of any color pattern	 J

for the 425- nu ►r- setting,, The specimen luminescence appears

as blue and rear various hues-of purple are possible when the

colors due to the host and activator bands mix. The chemical

variability within grains is responsible for the variation

and pattern of optical flaorescence emission. In general,

the central portions of a grain luminesce blue, and the

outer portions luminesce rec; the luminescing regions tend
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c. Fe K o<	 d. Ca K oc

Figure 10„ Hvittis Chondrite Oscillographic Displays
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Figure 11. Atlanta Chondrite Oscillographic Displays
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A

to appear elongated and parallel to the (110) cleavage,

The Jajh deh Kot Lalu chondrite luminesces a dark blue.

Prom Figure 12, the uniform distribution of impurities (Fe and

Ca) appears to be associated with the predominance of the

blue fluorescence band when the Pi and Ca concentrations are

not too high. No additional obvious associations are

indicated.

The Bishopville achondrite in Figure 13 legins the

photographic series for the achondrite specimens. The same

general, associations of the influence of the impurities 'present

on the corresponding optical fluorescence pattern are present

for tho achondrites. The influence of Ca in depressing the

fluorescent response is more apparent than are correlations

•	 for the other cation displays. Both the Ca pattern and the

associated color patternp, tend to parallel the (110) cleavage.

An example of this is demonstrated by a Ca concentration that

is identified from the top-center of the Ca K,, photograph

and trending for a distance of approximately 35 y toward

r`	 the lower-right corner of the photograph. However, the

pattern associations are not' as well develop^,,d as for some
Y

of the specimens already discussed. The visual fluorescence

is 'blue and red, as determined primarily by the presence and

r concentrations of Ca.

In Figure 14, the optical fluorescence patterns tend

to parallel, the (11,0) cleavage, as in other specimens. The

visual color patterns seen under conditions of direct electron

excitation are red luminescence with occasional blue areas;

I

1
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^6

1

^• .

;" til
., ;i^,	 ^v

...	 . _ ^

•lei	 ^ , .^i

e, 409 run

,^

^', 491 ntn

;:

^-_
	

_^

g, 57a run	 h . 700 nor

Figure 13. aishc^^ville Achondrite Oscillogra^^tiic Di^plsy^



T r	 - ^ ---- --^

1^

b. Si K ^

.^

^^ ' _	 ^^

•	 ^	 ` ^^•^ `

	

— ^ . ^	 , s, _,_._

^'^^ =:^ r

^	 _-	 _	 ^	 ^

•^« '^^=r t^	 s
i^	 ,	 • _

	

^,

	

s	
^ _ ^

^^..3^^;^' sue-

1 ^ :	 =T; '^	 v . - ; 'sue	 ^

_.wsi • ti i asst r- f ^ a

a. Spec imon
Currant In^cu,e

c. Ca K ^	 d. Fe K ,,,,^

Fi^uro 14. Khor Toiniki l4;?zonclrite Oscillographic Displays



•^ 405 run

98

f , 450 nc,

g, 650 rn.^
	 h. X00 nm

^Y^ure 14, Khor Temiki A,chondrito Oseillographic 0lspleye



.^

77

m^oro prec^.se color discraxAnation ^.s sho•^n by tho optical

fluorescencd patterns. in Figuros l4e - 14h. Th©se rows,

flattenod blebs,. or :lamellae are. daterrnnod to a high degree

by the prQSenao and. ralata.ve concentrat^.ons of Ca, For 	 ^

example:, this is indicated an the 650 nm and 700 nm color
a

'.	 displays in the upper-.eft area of the: photographs,
i

i
As the specimen pur3.ty incra^ses, color pattern	 {

associations with impurities became less distinct;. however,.

.general relations can still be described, Tn Figure 15^ ^^
^;

the. Norton County achondrite oscillographic displays

substantiate this, The grain raprosentad by Figure 15

is-centered in the photograph and extends slightly. beyond

the 200.x 200 ^ bound.aras of tha various displays. 	 The
.^

central portion,.ofthe grain luminesces blue, and the outer .`)

ports>on of the grain 1,^^minosaes . red as indicated by the

'	 410 nm and '^75 nm and . the 600 nm .and 700 nm displays,

resp.^ctively, ..Visual observation of the grain during

excitation detects the blue. lumnescence..emssion in the

?^^	 central portion. of the grain, and a pink luminescence for `^

the outer portion of the grain resulting. from the zn^xture

of the blue and red color emission bands that - the. eye •^

{	 detects;

Slow recr^ystallization for the Shallowater achondrite ^ ^_^

spec^.imen rasulted in high purity, and especially s^.a.ghtly
w	 higher purity for the outer portions of the grain shown in	 ^ ^^

^^^;

^	 Figure 16.	 This manifests itself as a greater optical

"^	 fluorescence out ut in the blue ,for the outer portions- ofa,	 Ptt

^;,,

-^	 ,,.
,	 ;

1.
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c. Si K o<	 d. Fo KE>4

Figure 16. Shallo, rator Achondrite Oscillographic Displays
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the grain, However, impurity inhomogeneit n r, have also

resulted in just distinguishable rows of Ca concentration
Y'

blebs which parallel the (110) oleavage, This specimen

fluoresces a blue color.

The Cumberland Falls achondrite exhibits a red rim

around the periphery of the grain. As in the case for the

Norton County achondrite specimen, the grain is large and

slightly exceeds the field of view represented in the

ovdillographs for Figure 17 The central portion of the

grain luminesces blue, and the outer portion luminesces red;

this luminescence is associated with the high degree of

recrystallixation represented by the Cumberland Falls

meteorite, There is a tendency for the color patterns to

parallel the (no) cleavage. As is the case for all of the

achondrite specimens, the impurities, when detectable, are

uniformly distributed. In this example, Fe. Mn and Cr

concentrations were not detectable in the respective

I_
c	 oscilloscope displays.

The final, specimen to be described is the Pesyanoe

j	 achondrite. The two primary features of Figure lei are the
i

higher intensity blue fluorescent rim that the grain exhibits 	 ;y
r^

and the higher intensity color response for areas of low Ca

, and Fe concentrations. The outer portion of the grain

^	 a luminesces brighter than the inner portion as is characteristic
t

j	 for the recryst allization history of the achondrite& where

E`	 the outer portions of a'pyroxene grain would have relitivel'y

lower impurity concentrations -than the inr r portions. In the

i'	 I

r
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Figure 17. Camberland Falls lk hondrite Oscil.lographic Displays
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upper-left section of the blue and red optical fluorescencu

displays,, there is an area-that luminesces strongly. , A

comparison of these photographs with those for the Fe and -Ca

distribution displays indicates that the luminescing areas

are areas of lower Fe and Ca than areas which do not exhibit

luminescence. Again, there is a general trend for the color and Ca

patterns to parallel the (110) cleavage.

I	 ^

jC. Summary of Results

In the case of.bulk specimens, the luminescence anal7ical

technique is especially suitable for studying coexisting

phase assemblages, their reaction interfaces, and the reaction

mechanisms. It has been demonstrated that the phase boundaries

coincide exactly with those displayed by c-athodoluminescence

stimulation (Brindley and Hayami, 1965; Greer, et al;, 1967a;'

Ldng and Agrell, 1965).
„

Individual enstatite grains were separated from meteorites,

and quantities of these grains from the individual specimens

were grouped side by side and stimulated to demonstrate the

variation in color response from specimen to specimen. The
I

blue to red and the varying shades of purple are consistent

with the relative position and intensity of the host crystal
0	 0

band (near 4200 A) and the Mn-activated •band (near 6700A) as

discussed previous'hy,.

Studying individual grains appears to be the most .

promising in terms of quantity and quality of information`

that can be obtained by the luminescence analysis techniques,



s

Under the electro; bombardment, separate grains display

Large variation in fluorescence characteristics which are

A	 interpreted by the numerous relations presented in the

previous sections. These variations are primarily attributed

to differences in crystal structure, host, activator

concentration, and impurity level; in most cases, the

influence of one of the variables overrides the others so that

the differences are interpretable, and the contrasts

useful in characterizing the particular specimen. For example,

the trend of I-aminescence intensity for enstatite specimens

separated from achondritic meteorites was usually greater

throughout the visible portion of the spectrum as compared

to that for enstatite specimens separated from chondritic

meteorites This general trend is associated with the greater

purity of the achondrites, thus allowing a more efficient i

energy conversion to optical_ fluorescence. Also, the red
luminescence observed is in agreement with both the concept of,

incroasi.ng the manganese concentration in the host

crystal increases the intensity in the red emission region,

while simultaneously decreasing the host crystal emission in

the blue. The observed decrease in luminescent efficiency

in oin from an orthorhombic enstatite to a monoclinic'g	 6_	 .

enstatite specimen is consistent with the crystal field

theory explanation concerning the environment of the atoms
y

when the lattice spacing is altered, and also when there is

a reduction in tha site symmetry. In favorable cases, this

type of information could be used to rapidly isolate high
6`

c

,f

113
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pressure phases in a mixture, and consoquently aid in

establishing the prossuro rangos experienced by the sample.

Thus, the luminescence response for several representative

natural terrestrial, extraterrestrial (separated from meteorites)

and synthetic silicates has been investigated by studying

the interrelationships of crystal host, activator, and impurity

as they influence the wavelength and intensity of the emission

colors. The effect on luminescent: response of impurities,

polymorph present, and conditions of formation of the solid

can ^^a precisely evaluated both on a paint by point basis

(one micron diameter) and by two dimensional color raster

patterns at different wavelengths for the specimen surface

r	 as was demonstrated by the measurements on the enstatite specimens,

I
A modified Applied Research Laboratories DIX microprobe X-ray

ana;hyzer (Greer and 'Aite, 1967b) facilitated the investigation 1

F_ of a number of cathodoluminescence phenomena. and permitted the

assembly of quantitative information for bulk specimens and

powders, and detailed determinations of optical fluorescence

emission and chemical composition -for individual grains. The

observed correlations and contrasts provide a reasonable basis

to expect useful information from studying the luminescent

response and patterns that can be obtained from lunar surface

specimens.

D. Comp.ari on With Othe^,r Investigations

Using proton irradiation in their investigations, Gaeke

;;	 and Wdlker (1966, 1967) have reported luminescence spectra of



stony meteorites, and Nash (1966) has examined some of V:%e

common rock-forming silicate minerals. Many notes appear

on the subJect (Buddhue, 1940, 1941 9 1942; Derham, t al.,

1964a, 1964b; Garlick, 1964; Reid and Cohen, 1967) ; however,

no systematic work has begun as yet. The majority of the

meteorite spectra available in the literature (Derham, et al.,

1964a, 1964b; Gaeke and Walker, 1966, 1967; Garlick, 1964)

are misleading representations of the luminescent response.

Useful data listings could have been accomplished by

categorizing their observed wavelengths and intensities

or using standard description techniques (Wyszecki and

Stiles, 1967) as well as including chemical analyses,

This investigation, however, has quantitatively

115

demonstrated relationships between *•ravelength, intensity,

color distribution, element composition, sensi tivity of

henpmena to s ecmen ur=itP	 P	 p	 Y^ and rptc^oriluminescent	 te ,-

class. In addition, for the first time, oscillographic
A

i

displays for optical and X-ray fluorescence emissions,

supported by essential statistical correlations for the

specimens, have been tabulated and discussed.

Constant exposure of the specimen point to the electron

beam causes a fatigue of the phosphor which is found to be

-	 described by a power-lawn decay relating intensity and time:

I t-n , where I is the measured photoinultiplior tube output
s

at a given time, n is a, constant evaluated for the particular

j+	 curve, and t is the time in seconds. Under the conditions
{

of operation of this r d79stigition, the power to be

_^	 ' 
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dissipated for a 1 p spot exceeds 25,000'watts/cm2 , and it

must be emphasized that most phosphors will exhibit detectable

g

	

	 permanent changes in efficiency on prolonged steady excitation

at this level. This type of decay is also consistent with,
lie

and to a lesser extent influenced by, the strain and fracturing

that is associated with the history of the meteorites.

Masse and Burho 1,932 , Leverenz (1940 1950) 9Young 0 1953) ^	 Y	 p l'	 "^

and others (Burton, 1947 Ehrenberg and King, 1963; NAS-NRC

Pub. 1133, 1964) provide appropriatci discussions of electronic

and ionic impact, penetration, and reaction phenomena. Usually,

any mention of these phenomena has been erroneously omitted

and/or igwrecL in resent literature describing luminescence

spectra for meteorites (see for example, Gaeke and Walker,
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I
IV. C014CLUSIONS

A. Significance and ScoRe oofthStuIrr ^r  r.wi rrr rrrr^ rrr'

Although luminescent emission from most materials is

complex, the application of optical fluorescence as a

complementary tool for the chara-terization of lunar and

planetary materials has been advanced by newly developed,

quantitative, nondestructive analytical techniques. Several

specimens of minerals likely to occur on the lunar surface

have been selected to demonstrate , the variety of information

that can be obtained. Variations in the intensity and

wavelength in the fluorescence spectra of natural materials

can be correlated with chemical c omposition, and the

distribution of individual mineral components in a multi.

phase assemblage is readily made apparent. An advantage

of exploiting optical fluorescence lies in its ability to

provide quantitative data for specimens of microscopic size.

Cle.ssificaton of materials through remote Sensing

analysis or by laboratory application of luminescence

analysis can be of considerable utility in the evaluation

and eventual exploitation of indigenous resources. Such

information may be applied in an effort to broadly- classify

the mineralogical composition of lunar surface material

and possibly ayd the understand3mg of the .topographic

conditions, under which the 7;anar soil series (soils having

horizons of similar- origin, character, and arrangement in

the soil profile which wero derived from similar parent material);.
^ t	 ,

f
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f)

and catenas (groups of soils wi..hin 'a particular region

which%'developed from sim lar / arent material but differ ^n
N

the characteristics of that profiles because of the varying

topographic and erosion cmiditions under which they formed;

Thornbury, 1954) develop,

B.	 Findings

y Wheny the samples were observed microscopically during

electron bombardment, largo differences in both intensity

and wavelength of the resulting luminescence were evident.

Different portions of a single mineral sample emitted at'
0

wavelengths ranging to both limits of the visible spectrum.

Within an individual specimen the variation in intensity'r r

and/or wavelength of fluorescence appears to be accounted for
, r

by corresponding variation in chemical, composition. 	 Higher

concentrations of Fe, Ca, and Cr tend to suppress fluorescence.

In many cases, exsolution phenomena representing areas of

high Ca and low Ca pyroxene are sharply contrasted by

monitoring the optical fluorescent , emission intensity	 ^'

r` Frith the monoehromator set in the red portion of the visible

spectrum.	 Both the high a
n
d low Ca pyroxene liunsc^e in

the blue	 howwer, the hi gh Ca	 wenches strop	 luminescence
;	

,^	 g	 q	 g

in the red and consequent lyq	 1y the oscillographc d^rplays
1

{
clearly show the location of each type.

i

Fluorescence is most intense in the red portion of
r	 ,

the spectrum.	 Almost - all of the strong luminescent samples

contain very little Fe or Ca, and the achondrite enstatite

R,

c. ^ r	 r

'	 o

F
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specimens luminesce sironga!^ than the chondrites throughout

the visible spectrum.

> This behavior is also observed for the clinoanstatite
b

specimens which luminesce with^^relatively low efficiency

and primarily in the blue, slid for the orthorhombic enstatite

specimens which,1uminesce with relatively higher efficiency

both in the blue and in the red part of the visible spectrum.

Iron `readily substitutes for Mg in enstatite and diopside,

and is in larger concentrations in the clinoeinstatite. 	 The

r b presence of Fe quenches luminescence and also can effectively

reduce the Mn luminescent emission contribution to red
a	 .

emission.	 In numerous measurements the Mn and Fe indicated

r a significant positive correlation, and this association

usually decreased,;the red contribution to the luminescent

response for the specimens. 	 In addition, the observed
I

decrease in luminescent efficiency in going from an

:orthorhombic enstatite to a monoclinic enstatite'specimen

is consistent with the crystal field theory explanation

concerning the environment of the atoms when the lattice {
i

+4 spacing is altered	 and also when	
,.

p	 g	 therF^ is a reduction in

site symmetry.

Selected mineral grains examined by the,electron

microprobe revealed that the dispersion of concentrations

o f Fe	 Mn	 CrC r and C a in these samplesle s x.0	 'lso large.,	 This p	 ^ s ^^	 g,.

variability indicates why a variety of intensity and
i

wavelength responses maybe possible within a specimen.

' These chemical pecularities effectively define the two
J
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T r,,aps (Keil, 1967b; Larimer, 1967	 Larimer and Anders , 1967;-

Mason, 1862; Reid and Cohen, 1967,; Van Schmus and Wood, 1967;

a W ik, 1956) as well as tend to delineate: the enstatite po23rmorph 	 ((

present,	 The enstatite chondrites are characterized by a high

degree of reduction.	 The principal mineral is pure or nearly 	 Ile

pure MgSiO3 as rhombic enstatite,,or clinoenstatite in` art.

Some chondrules show well-developed chondritic structuOt

t,
I^

others are	 rZmarl 	 ranular a	 re aces of enstatite. 	 Theprimarily g	 aggregates

luminescence efficiency tends to follow the textural 	 r

relationships in terms of this sample 	 up	 p	 purity represented by

coarse grains and consequently the slow crystallization of

the granular aggregates (poor chondrules) compared with the

} lower intensity registered for the good chondrule types. 	 Also,
ov^

-: the degree of recrystallization results in minor chemical and

mineralogical changes which can influence unique luminescent

response.	 For example, the Blithfield specimen lacks

chondritic structure, and the recrystallization is clearly

.=E indicated by red luminescent rings corresponding to areas

depleted in impurities by the recrystallization process,
ut

The enstatite achondrites_:represent an even higher degree of

reduction than the ch6hdrites, and the achondrite pyroxene .(,

r, is essentially Fe-free.	 This purity is'mirrored~by the

greater luminescence intensity shown by the enstatite

achond:rites, for both the range of 400-500 nm and $00x700 nm,
b	 r

C.	 Applic ations

<I

Electron luminescence studies of minerals or other 	 l
;a

i

_ `iC:i7^"'a5F"tn4YA^^^`^'d^ 	
w.. ,. .'v4t^	 ar ...«r	 +wc	 .e.. i'r.
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solid phases have important applications to problems irn the

study of natural and synthetic materials (Brindley and Hayami,,

1965;	 Colby and Wise, 1964; Gallup, 1936; Hamiter, 1967;

Tong; and Agrell, 1965; Sippe 1 and Glover, 19654, Weber, 1963;

14eber, et al,, 1967; Weiblen	 196,, ).	 The low cost and

flexibility of the three devices ^o produce y	 p	 and observe	 =-`

electron lumindiiabnce (the Tesla -coil unit and the two,

monochromator- hotomulti Tier luminescence detection units)p	 p
may encourage routine use of cathodoluminescence investigations.-

Although the attachments hav 	 been used primarily in

conjunction with the microprobe, they can, in principle, be

used on any light microscope by preparing the appropriate

'	 microscope adapter.	 In this application the'monochromator

,._.. a -P- 4, +a+o measurements .nf index of refraction and

dispersion as well as t^.	 p	 help-_evaluate optical absorption

and fluorescenc® spectra.

In other investigations, the cathodoluminescence pattern.,

t	 has been used as a "marker" to establish the original

reaction interface in solid sta ,(e reactions of oxide

materials.	 The nondestructive analysis can be applied,to

soil samples, and is of particular interest when the quantity

of specimens available for analysis is; limited (Greer, et al.,

1967a, 1968)d
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V.	 SUMMARY 

The use of luminescence to characterize lunar surface materials

was prompted by the observations of lunar luminescence reported by

Kopal (1965) and Kbpal and Rackham (1963, 1964).	 Cameron (1967).

McCord (1967) , Grainger and Ring (196?), Ra.ckham ' (1967) , and others

(Operation Moon-Blink:	 Trident Engineering Associates Report, 1966)

continue to report observations of transient luminescence phenomena

I occuring on the lunar surface, 	 During the last two decades there

has been over 450 sightings`6f these phenomena (Cameron, 1967).	 They,

occur at approximately 90 locations as summarized in Figure 19.

By demonstrating the influence and interrelations of such
1

variables as crystal host, activator, purity and chemical composition,

' luminescence may eventually be used as a satisfactory remote sensing

y
tech	 .gi3e similar to the statistical air survey evaluations of various_

...E

sand deposits accomplished by Romanova (1964), to the mZd:.infrared

^I

spectrLir6 matching technique of Hunt and coworkers (1967), and to a

variety of natural resources by Colwell (1968) .

A basic laboratory study of the Iuminescence of minerals likely

to occur on the moon has demonstrated the feasibility of obtaining

co^,^relations of mineral luminescent phenomena. 	 A complex example is
I

it

an," explanation of the effect of increasing Ca concentration on

optical fluorescence intensity. 	 Intensity (at 686 nm) and Ca are

inversely correlated at the one per cent level of significance for

the chondrite enstatite,specimens.	 Although the intensity and Mn

correlation coefficient is positively (directly) correlated, it is
1

not significant even at the 10 ° per cent level of significance.

However, Mn and Ca,are also correlated and the value of the sample
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correlation coefficient ; r 1 , ip stgnif (mnt at the one per cent

level. Theartial sam'1e corp	 r ^.	 'a'lation oocffichient r 	 which.Nn,I/Ca°
expresses the correlation of intensity oand Mn independent of (rather

than ignoring) the effect of Ca, is both positiv® and significant at

one per cent, confirming an observed and presumed causal, relationship

between these variables. In addition r 	 which express^,^sa 
Mn, Z/C a, Fe °	 ,

the correlation of intensity and Mn independent of both the effect of

Ca an(.^ of Fe, is both positive and significant at an even higher levels

At higher impurity concentrations (about 0.5 weight If the

possibility of an impurity ion occupying an M l site adjaceY't to a Mn

ion at an M1 site in enstatite becomes sufficiently large and may

result in a distortion of the oxygen octahedra at the Mn activator

y	 site which could possibly cause a detectable decrease of the

luminescence output since more nonradiative transitions could occur

at these sites even though the overall Mn concentration increased.

Quantitative optical fluorescence spectra and color pattern

displays have application in the characterization of inorganic solids

as demonstrated by newly developed, nondestructive analytical

techniques, In most 'cases it is necessary to obtain point analyses

for interpretation of color patterns since the X-ray detection level

for point analyses is lower than the cation concentration displays. 	 I
1

By conveniently utilizing the analytical capabilities of an electron

microprob© X.-ray analyzer , and cathodoluminescence detection units,

spectral data of micron size particles and of preselected micron size

	

w	 areas of larger mineral grains can be collected, and the variations

in the fluorescence response of the specimens can be correlated with

	

e	 ,

chemical composition and structure,	 ^''
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