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A NUMERICAL  SOLUTION FOR THE MINIMUM 
INDUCED DRAG, AND THE CORRESPONDING  LOADING, 

OF NONPLANAR WINGS - FINAL REPORT 

By 3 .  L .  Lundry 

The  McDonnell Douglas Corporation 

ABSTRACT 

A numerical  procedure has  been developed for  the 
accurate computation o f  the minimum induced d r a g ,  
and the  associated l o a d i n g ,  of nonplanar  wings. 
The min imum induced d r a g  and  the  loading  are 
determined by the  solution of a potential problem 
a b o u t  the shed vortex wake in  the  Trefftz  plane. 
The potential problem l's analyzed  in an auxiliary 
mapping plane t h a t  i s   re la ted t o  the  physical 
plane by the  Schwarz-Christoffel  transformation; 
the  procedure can therefore be applied t o  configu- 
rations  with  front views t h a t  can be approximated 
by s t ra ight   l ine  segments. The success of the 
method depends on an i t e ra t ion  t h a t  converges 
sa t i s f ac to r i ly   fo r  most cases. Comparisons  of 
resul ts  of the method with resul ts  of  known t e s t  
cases show that  errors  in  the minimum induced 
d rag  and i n  the  corresponding  loading  are o f  the 
order of 10-4 when the method i s  programmed i n  
single  precision  arithmetic  for an IBM 7094. 
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A NUMERICAL  SOLUTION FOR THE MINIMUM 
INDUCED DRAG, AND THE CORRESPONDING  LOADING, 

OF NONPLANAR WINGS - FINAL REPORT 

by J. L. Lundry 

The McDonnell Douglas Corporation 

SUMMARY 

A numerical  procedure has been developed for  the  accurate computa- 
t i o n  of the m i n i m u m  induced d r a g ,  and the  associated  loading, of nonplanar 
wings.  The m i n i m u m  induced drag and the  loading  are determined by the 
solution of a potential problem abou t  the shed vortex wake i n  the  Trefftz 
plane. The potential problem i s  analyzed i n  an auxiliary mapping plane 
t h a t  i s   re la ted  t o  the  physical  plane by the  Schwarz-Christoffel  trans- 
formation;  the  procedure can therefore be applied t o  configurations  with 
f ront  views t h a t  can be approximated by s t ra ight   l ine  segments. Previously, 
the main computational d i f f icu l ty  with th i s  approach was the  determination 
of the mapping constants. Two methods t o  o b t a i n  these  constants  are  pre- 
sented. By means  of the  rheoelectric analogy to  potential  flow,  the 
mapping constants can be measured with an analocj f ie ld   p lo t te r .  The 
measured values  contain small experimental e r rors ,  and are used as i n i t i a l  
values fo r  an i t e ra t ion  t h a t  determines  the mapping constants  accurately. 
The  mapping derivative is  integrated  numerically t o  o b t a i n  an approximate 
Trefftz-plane geometry; deviations of t h i s  geometry  from the  desired 
Trefftz-plane geometry are used t o  calculate  corrections t o  the mapping 
cons t a n  t s  . 

A1 ternati  vely,  the mapping constants can be determined  without  re- 
sorting t o  analog  experimentation by evaluating them f o r  a se r ies  of 
geometrically  related  configurations t h a t  ends w i t h  the  desired  configu- 
ration. The mapping constants  for each member of the  series  are used as 
the  equivalent of experimental  values for   the next member of the  ser ies ,  
whose mapping  constants can then be determined w i t h  the   i terat ion scheme 
employed in  the  experimental method. The s e r i e s   s t a r t s  w i t h  the mono- 
plane  degenerate  equivalent of the  desired  configuration,  for which the 
mapping constants  are known. This  procedure i s  successful i f  each member 
of the  series  differs  geometrically from i t s  neighbors by a small amount. 

Once the mapping constants  are known,  the min imum induced d rag  and 
the  associated  loading  are determined by quadrature. 

The procedure has been applied  to seven nonplanar l i f t i n g  configura- 
t ions.   result inq i n  the development of Computer  Program 55VD i n  the 
FORTRAN IV language fo r  use on an IBM 7094. Program 55VD has been  con- 
verted  to FORTRAN 2.0 fo r  use on the Langley Research Center's CDC 6000 
ser ies   d ig i ta l  computers.  This report summarizes the development of 
Computer  Program 55VD. 
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INTRODUCTION 

To increase  aircraft   efficiency,  the use of ex is t ing   a i rc raf t  com- 
ponents t o  lower  induced drag  i s  being considered. Such components 
include  pylons,  engines,  fences, and other  surfaces t h a t  can support  the 
aerodynamic loads  required  for m i n i m u m  induced drag. Nonplanar 1 i f t i ng  
configurations t h a t  produce minimum induced drag  can be studied i n  three 
steps : 

( 1 )  For a given  configuration (wing alone, wing  w i t h  end plates ,  
e t c . ) ,  determine  the shed vort ic i ty   dis t r ibut ion t o  minimize 
induced drag  for  a spec i f i ed   l i f t .  

( 2 )  Given ( l ) ,  compute the minimum induced drag. 

( 3 )  Given (1  ) , compute the geometry (camber and/or  twis t )  t o  
produce the minimum induced drag  loading. 

This report  deals w i t h  steps ( 1 )  and ( 2 )  fo r  a ser ies  of  nonplanar 
wings w i t h  varying  arrangements of auxiliary  l if t ing  surfaces ( i  . e . ,  
pylons , fences , and end plates)  by applying Munkls theory of minimum 
induced d r a g .  

Munk's  Theory 

In  Reference 1 ,  Munk develops a theory  for  the minimum induced d r a g ,  
a n d  the  associated  loading, of arbitrary  l if t ing  configurations.  All load-  
ings  are assumed l igh t ,  so that  velocity  perturbations  are small and the 
vortex wake i n  the  Trefftz plane may  be assumed undistorted. The loadings 
can  be projected on to  a plane normal t o  the  free-stream  velocity  without 
changing the induced drag  of the   l i f t ing  system (Stagger Theorem). Munk's 
cr i ter ion  for  minimum induced drag  i s   i l l u s t r a t ed  in  Figure 1 ,  and requires 
the induced velocity normal t o  the  projected  loadings t o  be proportional 
t o  the  cosine of the  angle of la teral   incl inat ion of the  projected  load- 
ings. Munk fur ther  demonstrates t h a t  the  loading t o  sa t i s fy   th i s   c r i te r ion  
can be found by solving a potential flow problem a b o u t  the  vortex wake in 
the  Trefftz  plane, i n  which the undisturbed flow i s  para1 le1 t o  the down- 
wash. The required  loading is  locally  proportional t o  the  potential 
difference  across  the wake and i s  normal t o  the wake. 

Applications of Munk's  Theory 

Munk applies  his  theory t o  the monoplane, and  obtains  the  classic 
resul t  t h a t  a constant downwash across  the span produces the minimum in- 
duced drag 

L2 D =  2 (1) 4 71 qs 

and i s  given by an e l l ip t ica l   d i s t r ibu t ion  of l o a d .  In References 2-6,  
the  theory i s  applied  analytically t o  nonplanar configurations  consisting 
of e i ther  combinations of a monoplane w i t h  vertical  fences or a wing  w i t h  
part-span or fu l l  -span dihedral. In Reference 7 , the  rheoelectric analogy 
t o  potential flow is  exploited t o  determine  experimentally  loadings t h a t  
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sa t i s fy  M u n k ' s  cr i ter ion for complex nonplanar l if t ing  configurations;   the 
l i f t  and the m i n i m u m  induced drag are then evaluated  numerically. Unfor- 
tunately,  the numerical resul ts  of th i s  method  can contal'n significant  errors 
as shown  by Reference  8. 

Reference  8 obtains a solution t o  the  potential problem i n  an auxiliary 
mapping plane related t o  the  real  (Trefftz)  plane by the  Schwarz-Christoffel 
transformation for configurations w i t h  f ron t  views t h a t  may  be approximated 
by s t ra ight   l ine  segments.  Previously,  the main computational d i f f icu l ty  
with this  approach was the  determination of the mapping constants. By means 
o f  the  rheoelectric analogy t o  potential  flow,  the mapping constants can 
be measured w i t h  an analog f ie ld   p lo t te r .  The measured values of the map- 
p i n g  constants  contain  small  experimental  errors, and are used as- i n i t i a l  
values for an i terat ion t h a t  determines  the mapping constants  accurately. 
An approximate Trefftz-plane geometry i s  obtained by numerical integration 
of the mapping derivative;  deviations of this  geometry from the  desired 
Trefftz-plane geometry are used t o  calculate  corrections t o  the mapping 
constants. Once the mapping constants  are known, the minimum induced d rag  
i s  determined by quadrature. A d igi ta l  computer program was required t o  
o b t a i n  the numerical results o f  Reference  8. 

This report  incorporates  the work o f  Reference  8 and describes  the 
following  extensions: 

(1  ) Calcu la t ion  o f  the  loading on a1 1 surfaces t o  produce minimum 
induced drag  for  Configurations 1-7 (See  Figure 2 ) .  

( 2 )  Application of the numerical scheme  of Reference  8 t o  the ca l -  
culation of the m i n i m u m  induced  drag o f  Configurations 6 and 7. 
(The resul ts  of Reference 8 for  Configurations 1-5 are  included 
in  this  report) .  

( 3 )  Development of an alternative method t o  determine  the mapping 
constants so t h a t  the  analog  experiments could be eliminated 
from the method o f  Reference 8. 

The extensions were funded  under NASA cont rac t  NAS1-7484. A user 's  
manual for the  extended computer program a d  a detailed program description 
are provided  as  supplements t o  this   report ,  and may be obtained upon re- 
quest. 1 

The author  wishes t o  acknowledge the  contributions t o  this  study of 
Prof. P.B.S. Lissaman o f  the  California  Insti tute of Technology. Prof. 
Lissaman  has consulted  frequently w i t h  the author  since  the  start  of this  
s tudy . 

_ " " " "  
'See request form at  the  back of this paper. 
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SYMBOLS 

R 

n 

potentials i n  the  real  or  physical  plane  (See  Figure 3)  

the i - t h  required geometry condition i n  the  real  plane 

error  i n  C i  

min imum induced drag  

the imaginary part of 

1 i f t  

freestream  velocity 

potentials i n  the auxi  

the  muare root  of the 

1 iary  plane  (See  Figure 3 )  

sum o f  the  squares o f  the  errors 
i n  the  required geometry conditions: 

abscissa  spacing  parameter [See Eauations ( 7 )  and (8)]  

induced drag  eff ic iency  a t  m i n i m u m  induced  drag 

nondimensional length o f  auxiliary  surface 

number of required geometry conditions C i  

the j - t h  mapping constant or potential. The potentials 
are numbered i n  alphabetical  order. 

correction t o  P j  

dynamic pressure 

semi span 

arc  length 

crossfl ow veloci t.v 

spanwise coordinate 

complex variable i n  the  real  plane 

dihedral  angle i n  degrees 

angle o f  lateral   inclination (See Figure 1 )  
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c i r c u l a t i o n  (mean v a l u e   i s  7 f o r  each  load-bearing  surface) 

complex v a r i a b l e  i n  t h e   a u x i l i a r y  mapping  plane 

nondimensional  semispan  coordinate 

d e n s i t y  

poten ti a1 

n o r m a l   d e r i v a t i v e  o f  4 

ANALY S I S  

The b a s i c   t h e o r y   f o r   t h e  minimum i n d u c e d   d r a g   o f   n o n p l a n a r   l i f t i n g  
c o n f i g u r a t i o n s   i s   g i v e n   i n   R e f e r e n c e  1 and i s  d e s c r i b e d   i n   t h e  INTRODUCTION. 
A p o t e n t i a l   p r o b l e m   i s   f o r m u l a t e d   a b o u t   t h e   v o r t e x  wake i n  t h e   T r e f f t z  
plane. The problem i s  analyzed  numerical  1 Y by  the  method  of  Reference 8 
i n  an a u x i l i a r y  mapp ing   p lane   re la ted   t o   t he   T re f f t z   p lane  b.y t h e  Schwarz- 
C h r i s t o f f e l   t r a n s f o r m a t i o n .   F i r s t ,   t h e   c o n s t a n t s   o f   t h e   S c h w a r z - C h r i s t o f f e l  
mapping  must be determined. The minimum induced  drag  can  then  be  obtained 
by   quadra tu re .   F ina l l y ,   t he   requ i red   l oad   d i s t r i bu t i on   can  be ob ta ined  by  
i n t e r p o l a t i o n .  The seven  genera l   con f igura t ions   ske tched  in   F igure  2 a re  
analyzed  by  Computer  Program 55VD. 

The Mapping  Constants 

Two methods to  determine  the  mapping  constants  have been i n c l u d e d   i n  
Program 55VD and are  descr ibed  here.  

"_ Rheoe lec t r i  " c A n a l o g i   t h   I t e r a t i v e   C o r r e c t i o n .  By means o f  t he  
r h e o e l e c t r i c   a n a l o g y   t o   p o t e n t i a l   f l o w ,   t h e  mapping  constants  can be 
measured e x p e r i m e n t a l l y   w i t h  an a n a l o g   f i e l d   p l o t t e r .  The measured  values 
o f   p o t e n t i a l   c o n t a i n   e x p e r i m e n t a l   e r r o r s ,  and are   cor rec ted   by  an i t e r a -  
t i v e  scheme t h a t  will be e x p l a i n e d   f o r   C o n f i g u r a t i o n  5. F igu re  3 shows 
the   T re f f t z   p lane   (a1  so c a l l e d   r e a l   o r   p h y s i c a l   p l a n e )  and the   aux i  1 i a r y  
mapping  plane  for   Conf igurat ion 5. The Schwarz-Chr is to f fe l   t ransforma- 
t i c n  between  these  planes i s  

Given  the  exper imenta l   va lues  o f   potent ia l  a, . . . , g?  the  geometry  i n  
t h e   p h y s i c a l   p l a n e   i s   e v a l u a t e d   b y   n u m e r i c a l l y  integrating Equat ion ( 2 ) .  
For  example,   the  length i s  

5 



Each o f  the  distances AB, E, m, DE, s, and i n  Figure 3 can be evalu- 
ated i n  this way,  and each o f  the  integrals has one o r  two integrable 
s ingu la r i t i e s   a t   t he  end or  ends of the  integration  interval.  I f  an inte- 
gral has two s ingular i t ies ,  i t  is evaluated i n  two par ts  o f  equal range so 
tha t  each numerical integral  has a t  most one singularity.  For example, 
the  integral  for  the  length AB has s ingular i t ies  a t  a  and b ,  and is  evalu- 
ated  as 

The f i r s t   i n t e g r a l  i s  s ingular   a t  a i n  the form 

and can  be rewritten i n  the  standard way as 

The integrand [ Z ( < )  - Z(a)]/[s - a]' is  evaluated on the  integration i n -  
terval a t  u p  t o  f if ty  points  that   are spaced more closely  near  the  singu- 
l a r i t y ,  and a modified Simpson rule i s  used to  perform the  quadrature. 
If   the  singularity  is   located a t  the lower end of the  integration  interval,  
the  abscissa  spacing  is given by 

- 1  

m - i + l  

where m i s   the  number o f  intervals ,  7 i s  given by 

- 
f i + l  = 2 f i  

subject t o  the  limitation Fi 5 1 with 71 = 0.01, and  c u  a n d  <e  are  the 
upper and lower l imits  o f  the numerical integral .  An analogous  spacing 
of abscissae  relative t o  the  singularity  is  used i f  the  singularity i s  
located a t  the upper l imit .  
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For the example  of Configuration 5,  the mapping derivative  contains 
seven unknown constants. S i x  of these  constants  are independent  (one 

AB , E, m, DE, w, and i n  Figure 3. For practical  reasons , the ex- 
perimental  values of the mapping constants  are  scaled  linearly  before  they 
are used to  evaluate the geometry i n  the  real  plane; this l inear  scaling 
changes only  the  absolute  scale i n  the  real  plane and i s  equivalent  to. 
f i x i n g  one of the  s ix  independent  mapping constants. For Configuration 5 ,  
the coordinate  origin and the linear  scaling  are  defined by setting b = 0 
and  e = 1. Five  of the unknown mapping constants  are used as  the inde-  
pendent variables i n  a l inear   i terat ion scheme tha t  i s  designed t o   s a t i s f y  
the f ive required geometry conditions: 

- must be f i x e d  to  define a coordinate  origin) and determine the six lengths 

1)  The 

2)  The 

3)  The 

4 )  The 
(BC 

5 )  The 

fence must close (E = CD) . 
inboard w i n g  must close ( A B  = E). 
outboard w i n g  must close (E = m) . 
fence must have the proper  length 
= % [ A B  + DE COS r]) .  

fence must have t h g r o E r  semi - 
span location ( A B  = q[AB + DE cos r]) . 

The i n i t i a l  values o f  the mapping constants  are measured experimentally 
w i t h  an analog f i e ld .p lo t t e r .  The corrections  to  the mapping constant 
A P j  are computed  from 

where A C ~  i s  the e r ror  i n  C i  . the i - t h  geometry requirement. The  5x5 
correction  matrix a C i / a p -  i s  evaluated  numericallv by perturbing p j  
s l igh t ly ,   sca l ing   the   po th t ia l s   l inear ly   i f  p j  i s   e i t h e r  b o r  e ,  
and calculating  the  derivative  as though Ci varies  l inearly with p j .  
For Configuration 5 ,  the potent ia ls   a ,  b y  d .  e ,  and g were selected from 
the seven unknown values of potential  as  the independent variables  for 
the  iteration.  This  simple  iteration scheme converges rapidly  for pro- 
perly chosen independent variables. For some of the seven configurations, 
the   se t  of  mapping constants  selected  init iallv  as independent variables 
d i d  not  give convergence, and other   sets  were chosen. However, conver- 
gence of the i terat ion scheme has been achieved fo r  each of the seven 
configurations  considered  to  date. 

The preceding  paragraphs  describe  the  iteration  that  determines accu- 
rately  the mapping constants  for  Configuration 5. Similar   i terat ive schemes 
determine the mapping constants  for  Configurations 1 -4 ,  6 ,  and 7. Listed  in 
Tables I and I 1  are  the  parameters  of  significance  to  the  iteration  that 
vary w i t h  configuration. Table I presents  the  Schwarz-Christoffel mapping 
derivative, a definit ion of the l inear  scaling i n  the  auxiliary mapping 
plane, and  a l i s t  of the mapping constants used as independent variables  in 
the i terat ion.  Table  I1  presents the required geometry conditions i n  the 
real  plane  for each  of the seven configurations. 
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Table I 

Mapping Der i va t i ve ,   De f in i t i on   o f   L inea r   Sca l i ng ,  

and  Independent  Variables i n   I t e r a t i o n  Scheme 

~~ 

Con f igura t ion  
Number 

(See F igure  2 )  

Schwarz - C h r i s t o f f e l  

Mapping Der i va t i ve  - dz 
d< 

D e f i n i t i o n  
o f   L i n e a r  
Scal i ng 

Independent 
Var iab les 

7 ( 5  - b ) ( <  - e )  

l 4  
c 

(5 - c ) ( <  - e ) ( <  - d)’ ( c  - f)  r 

, I ( <  - d ) ( <  - e ) ( <  - g)% 1 a = o , e = l  , 
! 

7 ! b,c,d,f,g,h 
[ ( <  - a ) ( <  - b ) ( <  - c ) ( <  - f ) ( c  - h)p , 



Table I1 

Required Geometry Condit ions i n   T r e f f t z  P1 ane 

Re fe r   t o   F igu re  2 

i Required  Condition Ci I 
i = 5   i = 6  i = 7  

1 BC=CD  ABtDE=EF 
" "- 

2 I E=CD j EF=m 

4 BC=CD E = m  " 

I 

5 
" 1 AB=FG E=CD 

- 
AB = (ABtDEcos r ) 

6 ABtDE=GH E=CD 

7 
- 
" 

AB=GH m=FG 



Successive  Solution Scheme. A numerical method has been developed 
t o  determine  the unknown constants of the  Schwarz-Christoffel mapping 
without  resorting  to  rheoelectric  analog  experimentation. The  mapping 
constants  are determined for a ser ies  of geometrically  related  configura- 
tions  thatendswith  the  desired  configuration. The final  values of the 
mapping constants  for each member o f  the  series  are used as  initial  values 
f o r  the  next member o f  the  series,  whose  mapping constants can t h e n  be 
determined w i t h  the  iteration scheme developed for  the  rheoelectric analog 
method. The ser ies   i s   s ta r ted  w i t h  the monoplane degenerate  equivalent 
of  the  desired  configuration,  for which the mapping constants can  be 
determined from the  solution for potential  about a monoplane t h a t  i s  
given  in  Reference 9.  

The successive  solution scheme has been applied  to  Configurations 
1-7 o f  Figure 2, and operates  successfully for  Configurations 1-6 if  each 
member of the  series o f  related  configurations  differs  geometrically from 
i t s  neighbors by a small amount. However, the  i teration for the mapp ing  
constants  usually does n o t  converge for Configuration 7 i f  the  parameters 
R ,  R i  and to of  Figure 2 are  small.  Therefore,  the monoplane s tar t ing 
solution  is  replaced i n  the  successive  solution scheme by a solution  for 
Conf igura t ion  7 w i t h  R = 0.04 and ~i = = 0.01. The successive  solution 
scheme operates  successfully for Configuration 7 i f  values of the  desired 
geometry are  larger than those of the  starting  solution  configuration;  the 
scheme is usually  unsuccessful i f  the  desired geometry parameters  are 
significantly  smaller than  those of the  start ing  solution. The supple- 
ments t o  this report  describe i n  detail  the known l imitations of the 
successive  solution scheme for Configurations 1-7. 

The  Minimum Induced Drag 

Once the mapping constants  are known, the min imum induced drag  is 
calculated i n  the terms of the  efficiency k ,  where 

L2 D =  
4 n s 2 q k  

In terms o f  the  crossflow  potential i n  the  Trefftz  plane, 

L = p u b  vdy (11 1 
and 

the  appropriate  integrals being  taken  about  the wake.  Munk's cri terion for 
minimum induced  drag i s  

so the minimum induced  drag efficiency becomes 
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I f  the  expression f o r  k i s  transformed i n t o  the  auxiliary mapping plane 
for  Configuration 5, 

-" where I means "the imaginary p a r t  o f " .  The integration is performed 
numerically w i t h  the  technique used t o  evaluate  the geometry integrals 
similar t o  the  integral of Equation ( 3 ) .  However, Equat ion (15) does 
n o t  need t o  be integrated  numerically  over  the  entire  interval from a t o  
g t o  evaluate k for Configuration 5. The interval is divided  into  regions 
identical t o  those used t o  evaluate geometry i n  the  real  plane. The inte- 
grals for regions t h a t  correspond t o  vertical  sections of the  vortex wake 
are  zero,  since Munk's criterion  (Figure 1 )  specifies zero  velocity normal 
t o  such sections.  Similar  regions occur i n  the  integrals t h a t  evaluate k 
for the  other  configurations of Figure 2. 

The Loading t o  Produce Minimum Induced Drag 

Once the mapping constants  are known,  the  potential may  be computed 
i n  the  physical  plane  as a function of geometric  location. The required 
loading is  proportional t o  the  potential  difference  across  the  Trefftz- 
plane  vortex wake. 

Since  the complex potential   is  conserved between the  real  plane and 
the  auxiliary mapping plane,  the  potential  is  identical a t  corresponding 
points o f  the mapping.  In the example o f  Figure 3 ,  A = a ,  B = b y  e tc .  
When the  distances  in  the  real  plane  are  calculated d u r i n g  the 1 ast  cycle 
of the i terat ion t h a t  determines  the mapping constants, the  numerical parts 
o f  the  integrals  are  stored i n  tabular form as a funct ion o f  abscissa  for 
the  integration  regions. The t abu la r  results of the numerical integra- 
tions  are modified t o  o b t a i n  a quantity  proportional t o  potential  in  the 
real  plane. For the f i r s t  p a r t  of the  interval A t o  B i n  the example o f  
Figure 3 ,  5' 

Z i ' Z A  = 1 d c  
a 

I (16) 
- - zO-z(a) dg  + 2 Z(a)  d z  

a 

where 5'5 %(a + b ) .  The f i r s t  term on the r i g h t  side of Equation (16) 
is the  quantity computed and stored  during  the  calculation of the f i r s t  
p a r t  of the  distance AB [See Equations (2 )  - (6)l. To th i s  term must 
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be added o n l y   t h e  second  term o f   t h e   r i g h t   s i d e  of E q u a t i o n   ( 1 6 )   t o   o b t a i n  
c o o r d i n a t e s   i n   t h e   r e a l   p l a n e  as a f u n c t i o n   o f   c o r r e s p o n d i n g  r .  A q u a n t i t y  
p r o p o r t i o n a l   t o   t h e   p o t e n t i a l   d i f f e r e n c e   a c r o s s   t h e   v o r t e x  wake i n   t h e   r e a l  
p lane i s   o b t a i n e d   b y   i n t e r p o l a t i o n   i n   t h e   t a b l e s   o f  Z as a f u n c t i o n  of 5. 
F o r   e a c h   s u r f a c e ,   t h e   l o c a l   l o a d i n g   i s   n o n d i m e n s i o n a l i z e d   w i t h   r e s p e c t   t o  
the  gross  load.  

COMPUTER PROGRAM 55VD 

Computer  Program 55VD has  been w r i t t e n   i n   t h e  FORTRAN IV language f o r  
use  on  an I B M  7094 d i g i t a l  computer,  and  has  been  converted t o  FORTRAN 2.0 
f o r  use  on  the  Langley  Research  Center 's CDC 6000 ser ies  computers.   F igure 
4 p r e s e n t s   t h e   o v e r a l l   l o g i c   o f  Program 55VD. I n   s e v e r a l   s u b r o u t i n e s ,  
i n t e r n a l   l o g i c  i s  used t o   t r a n s f e r   t o   c o d i n g   a s s o c i a t e d   w i t h   t h e   c o n f i g u r a -  
t i o n   b e i n g   c o n s i d e r e d ;   s u c h   l o g i c   i s   n o t  shown i n   F i g u r e  4.  Computing  time 
per   case  var ies   f rom 0.1 m i n u t e   t o  3 minu tes   w i th  an IBM 7094,  depending  on 
which o f  seven  conf igurat ions i s  being  analyzed,  the number o r   o r d i n a t e s  
used i n   t h e   e v a l u a t i o n   o f   t h e  geometry  and  drag  numerical  integrals,  and 
t h e   r a t e   o f  convergence o f   t h e   i t e r a t i o n   f o r   t h e  mapping  constants. The 
main  program  and  the  twenty-four  subrout ines  of   Program 55VD a r e   w r i t t e n  
on rough ly  3700 FORTRAN source  cards.  

NUMERICAL  RESULTS 

To date,  Computer  Program 55VD has  been  used p r i n c i p a l l y   t o   s u b s t a n -  
i a t e   t h e  method  and t o   d e t e r m i n e   i t s   i m p o r t a n t   l i m i t a t i o n s .  The parameter 
k i s  presented i n  F igures  5-10 f o r  a modest  range o f   t he   geomet r i c   pa ra -  
meters o f   C o n f i g u r a t i o n s  1-5.  Examples o f   l o a d   d i s t r i b u t i o n s   f o r  minimum 
induced  drag  are  presented i n  Figures  11-19.  For  wings  wi th  end  plates , 
Figures  11 and  12  compare exact   loadings  f rom  Reference 4 w i t h  1 oadings 
from  Computer  Program 55VD f o r   C o n f i g u r a t i o n s  1 and 4, r e s p e c t i v e l y .  
S im i la r   compar i sons   w i th   resu l t s   o f   Re fe rence  6 a re  made i n  F igures  13 
and 14 f o r   C o n f i g u r a t i o n  4. I n  each  compar ison,   the  resul ts   agree  c losely ,  
a l though  the  geometry  analyzed  by Computer  Program 55VD f o r  each  compari- 
son i s   n o t   i d e n t i c a l   t o   t h e  geometry  analyzed  by  the  referenced  methods. 
A precise  comparison  cannot  be  presented  because o f   t h e   l i m i t a t i o n s   o f  
Computer  Program 55VD t h a t   a r e   d i s c u s s e d   i n   t h e   s u p p l e m e n t s   t o   t h i s   r e p o r t .  

Another  example o f   t h e   l o a d i n g   f o r  minimum induced  drag i s  presented 
i n   F i g u r e  15 f o r   C o n f i g u r a t i o n  2. W i t h   t h e   p l o t t i n g   s c a l e   o f   F i g u r e  15, t he  
load ings  on the  inboard  fence and the   ou tboard   fence  co inc ide .   In   F igures  
16, 17, 18, and 19, examples o f   t h e   l o a d i n g   c o r r e s p o n d i n g   t o  minimum i n -  
duced  d rag   a re   p resented   fo r   Conf igura t ions  3, 5,  6,  and 7, r e s p e c t i v e l y .  
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DISCUSSION OF EXPERIMENTS ON NONPLANAR WINGS 

References 10-21 re ort the  results  of  experiments  designed t o  determine 
the induced drag  and s t a   i l i t y   cha rac t e r i s t i c s  of nonplanar  wings. Most 
of the models are wings  w i t h  end plates.  These experiments are uniformly 
disappointing  as m i n i m u m  induced  drag i s  n o t  obtained. None of the models 
are designed  properly for  m i n i m u m  induced  drag even though induced  drag 
i s  the  principal concern o f  most of the  experiments. None of the model 
wings of References 10-21 are  twisted or cambered t o  produce the  proper 
loading for  m i n i m u m  induced drag, a1 though Reference 10 reports  experiments 
w i t h  varying wing twist. Only References 15  and 21 report  experiments on 
models w i t h  cambered  end plates ,  and the  loading f o r  minimum induced  drag 
is  not  described  as  the  reason  for choosing the camber i n  either  reference. 
None of the end plates  are  twisted. Only the  authors o f  References 10 and 
18 specifically  recognize t h a t  the i r  models are n o t  designed to  carry  the 
loading f o r  m i n i m u m  induced drag. The absence of such data i n  the   l i t e ra -  
ture  is  possibly due to  incorrect  extensions of the  crossflow  barrier ex- 
planation of end plate   effects .  In a two-dimensional a i r fo i l   t e s t ,   t he  wind 
tunnel  walls  act  as  fully  effective  barriers t o  the  crossflow  about  the w i n g  
t ips ,  and induced d rag  i s  eliminated  as a resul t .  I n  an analogous way, end 
plates  function  as  partially  effective  barriers t o  the  crossflow, and reduce 
induced drag. The barr ier  concept  apparently  leads t o  the  supposition t h a t  
end plate Dlanform i s  of prime importance t o  end plate  effectiveness. Ref- 
erences 10 , 11 , 13-16 , 19 , and 21 each contain  experimental d a t a  for  more 
than  one  end plate planform, and Reference 16 reports  results of t e s t s  on 
f i f teen end plate planforms.  Reference 21 presents an "optimum" end plate 
planform design that  attempts t o  minimize end plate   f r ic t ion drag for  a 
given end plate  effectiveness;  the  crossflow  barrier  explanation is  the  basis 
of the  analysis. To be sure, a change of end plate planform is 1 i kely t o  
produce a change of induced d rag  because the planform change al ters   the load- 
i n g  on both the end plate and the w i n g .  Nevertheless,  the end plate planform 
has no significance t o  m i n i m u m  induced drag  as long as  the end plate and the 
wing  can develop the  loading  for minimum induced drag. To reduce end plate 
f r ic t ion  d r a g ,  the end plate chord can  be minimized, subject t o  the  loading 
constraint. Once the  loading and the planform geometry are known, the  twist 
and/or  camber t o  produce the  loading must be calculated  for b o t h  the w i n g  
and the end plates. For the  general  nonplanar l if t ing  configuration,  the 
proper  loading and the twist and/or camber must be calculated  for  al l  load- 
bearing  surfaces. In References 22 and 23, methods are  discussed  for  calcu- 
lating  the twist of nonplanar configurations i f  the  loading is  specified. 

Described i n  Reference 18 is  an interesting use of end plates t o  improve 
overal l   a i rcraf t  performance. End plates  are  usually  considered  to be a means 
of reducing the d rag  of 1 i f t i ng   a i r c ra f t ,  and thereby improving  a i r c r a f t  per- 
formance i n  takeoff,  climb,  cruise, and lo i te r .  However,  some a i rc raf t  per- 
formance characterist ics improve with increasing drag - for  example, landing 
distance and equilibrium  rate of descent. A variable geometry end p l a t e   i s  
suggested i n  Reference 18 as a means of either  decreasing o r  increasing  the 
drag of a given wing.  The  end plate would  be designed t o  produce minimum 
induced drag i n  the  basic  configuration. In the  alternative  configuration, 
t r a i  1 i n g  edge flaps on the end plate  or a p i v o t  for  the  enti   re end plate 
would  be used t o  change substantially  the  loading on the end plate and the 
w i n g ,  and thereby  greatly  increase  the drag  of the  aircraft .  Experimental 
evidence i s  presented i n  Reference 18 to  support  this  idea. 
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CONCLUSIONS 

A numerical  method  has  been  developed t o   d e t e r m i n e   a c c u r a t e l y   t h e  
minimum induced  drag,   and  the  corresponding  loading,   o f   nonplanar   wings.  
The method  can  be a p p l i e d   t o   c o n f i g u r a t i o n s   w i t h   f r o n t   v i e w s   t h a t  can  be 
a p p r o x i m a t e d   b y   s t r a i g h t   l i n e  segments. The success o f  t h e  method  depends 
on  an i t e r a t i o n   t h a t  converges s a t i s f a c t o r i l y   f o r  most  cases.  Comparisons 
o f   r e s u l t s   o f   t h e  method w i t h   r e s u l t s  o f  known t e s t  cases show t h a t   e r r o r s  
i n   t h e  minimum induced  drag  and i n   t h e   c o r r e s p o n d i n g   l o a d i n g   a r e   o f   t h e  
o r d e r   o f  10-4 when t h e  method i s  programmed i n   s i n g l e   p r e c i s i o n   a r i t h m e t i c  
f o r  an I B M  7094. 

One f u l l - s c a l e   f l i g h t   t e s t  and seve ra l   w ind   t unne l   t es ts  on nonplanar 
l i f t i n g  wings  have  been  reviewed. None o f   the   exper iments   p roduced minimum 
induced  drag  because none o f  the  models  were  designed t o   c a r r y   t h e   l o a d i n g  
f o r  minimum induced  d rag .   Proper   des ign   must   inc lude  the   ca lcu la t ion   o f  
t w i s t   a n d / o r  camber o f   t h e   w i n g  and o f   t h e   a u x i l i a r y   l o a d - b e a r i n g   s u r f a c e s  
a f t e r   t h e   n e c e s s a r y   l o a d i n g   i s   d e t e r m i n e d .  
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Figure  11. Loading  for  Minimum Induced  Drag on  a  Wing w i t h  End P la tes  
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Figure 13. Loading for  Minimum Induced Drag on a Wing w i t h  Vertical Fences 
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Figure 14. Loading f o r  Minimum Induced Drag  on a Wing w i t h  Vert ical   Fences 
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Figure 15. Loading  for  Minimum  Induced  Drag  on  a  Wing w i t h  Two Vertical  Fences 
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Figure 16. Loading f o r  P.linirnum Induced  Drag on a  Bip I ane 

33 



1.4 

1.2 

1 .o 

0.8 

- - Y 
Y 

0.6 

0.4 

0.2 

CONFIGURATION 5 

15 INTEGRATION  ORDINATES 
k = 1.0604 

\ 

I-/& 
I I t  

0.2 0.4 0.6 
SPANWISE  COORDINATE 

0.8 I .O 0 0.1 
FENCE 

COORDINATE 
1 

Figure 17 .  Loading f o r  M i n i m u m  Induced Drag  on  a Wing 
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Figure   18 .   Loadinq   for  Minimum Induced Drag  on a  Wing w i t h  an 
Inboard  Vertical   Fence  and  Outboard  Dihedral 
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