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ABSTRACT

The equation of heat conduction is solved for the early part of the meteor

trajectory of a homogeneous spherical blackbody meteoroid; both radiation

and heat conductivity are considered. It is possible to compute the air

density at which a given surface temperature of the meteoroid is reached.

RESUME

LL'équation de la coanduction de la chaleur est résolue pour la premie-
re phase de la trajectnire météorique d'un métdore qui serait un corps

noir sphérique et homogéne; nous considérons a la fois la radiation et

la conductibilite thermiquc. I1 est possible de calculer la densité de

1'air a laquelle est atteinte une tempcrature de surface donnée du mé-
téore.

KOHCIEKT

PemeHO ypaBrHeHNe TeMNONPOBORHOCTH NAA HavansHo# wacTx:
MeTeopHO! TPAeKTOPHMM ORHOPORHOTO CHEPHUECKOTO METEOPHOTrO
YEepHOTO Teja; PACCMATPUBANTCH OCOM MINYUEHHE ¥ TONNONpPOBOL-

HOCTh., BO3MOXeH pacueT NJAOTHOCTH BO3NYXaA MpPY KOTOPO# nocTH-
raeTcs INAHHAs TEMNEDATYP& METEOPHOTO Teja.

iii



CONSIDERATIONS OF CONDUCTION AND RADIATION
ON THE PREABLATION HEATING OF METEOROIDS

Z. Ceplecha and A. Posen
1. INTRODUCTION

The rate of heating of a meteor body during the early stage of its
penetration into the atmosphere will determine the height at which ablation
becomes significant, The complete solution of the heating problem is related
to the observed beginning heights of meteors, This problem was solved by
Levin (1961) and by Ceplecha and Padevet (1961). In the latter paper, the
two cases of heat conductivity and radiation cooling of the surface were
computed separately, 7Tle present solution considers the two processes

together for spherical meteoroids,

This work was supported in part by grant NsG 291-62 frum the National
Aeronautics and Space Administration. One of the authors (ZC) held a
National Research Council Postdoctoral Visiting Research Associateship
supported by the Smithsonian Institution.



2, FORMULATION OF THE PROBLEM

The rurface temperature at which ablation begins should fall somewhere
between the melting and the boiling points for the body. At what height, then,
is this temperature reached for a homogencous sphere with radius T
density 6, specific heat ¢, and heat conductivity A\, radiating as a blackbody?
We shall assume a randomly oriented, rapidly rotating nieteoroid whose
kinetic energy is converted to heat wuiformly distributed on its surface. Then
the following differential equation of heat conduction applies:*

where

pt = 2 (2)
and

T=w(r,t)=T - Ty . (3)

The initial condition can be written

™(r,-o) = 0 . (4)

The boundary conditions are

7(0, t) = finite value (5)

“The list of mathematical symbols used in thie paper is presented in the
Appendix.
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Equations (1) and (4) assume a more suitable form under the transformation

u=Tr . (7)
Then
du .2 8%y
3t - ) F: 0 (8)
r
and
u(r, -0y = 0, (9)

with the relative temperature of the meteoroid surface ™® at the time t = 0,
Then

u(rg, 0) = TyTp (10)
thus,

u = exp (wr+$32w2t) (11)

is a solution of equation (8) but is not consistent with equation (9). This sug-

gests a general solution of the form

2 2 2 2
u= klexp(wlr-f-ﬁ Wy t)+k2 exp(wzr-i-ﬁ wzt) , (12)
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where

Wyt W, . (13)
Equation (5) can be satisfied by

woxwe (14)
this implies

w) = -w, (= w) (15)
and

kl = -k2 (= k) . (16)

Then we can write

u=k[exp (wr) - exp (-wr)] exp (62 w2 t) (17)

and, from equation (10),

_ *0'B
exp (wro) - exp (-wro)

. (18)

Consequently, the general solution of equation (1) has the form

el L e oal e

_To"p [exp (wr) - exp (-wr)]

2 2
T = “exp (wrg) - ewp (-wigl P (Fwt) (19) ]
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and is to be combined with equation (6), in which p and v are functions of
time only. The drag equation

dv 3r 2
T ';,.-65 pv (20)

yields the expression for velocity

Ve v, o (- 4roairé’o.§;) (1)
if we use

I (22)
and

o= -vocosZy . (23)

Then, substituting equations (19) and (21) into equation (6), we have

3
M’B 4 Nepve

Yo

B Trp
+ O’(TB+T0) = exp(- 4rofbcol Z;) .

M‘Bw coth (wro) -
(24)

The solution of equation (24) for w is p‘3 at time t = 0, The solution appropriate
to this problem should be valid from t = =0 to t just beyond t = 0. To approxi-
mate this condition, we solve equation (24) sirmultaneously with the first time
derivative of equation (6), substituting equations (19) and (21), evaluated at

t =0;



2 3 A7 sl w 2.2 3
X*Bﬂ w™ coth (wro) - 5 + 40""35 w ‘TB + TO)
Ap, v 9Tp 9T p
B o B B
R (b cos Zp - n;'r) xp (- Tr 5bcos z;) - (29)

£quations (24) and (25) express the solution of equation (1) with initial and
boundary conditions from equations (4), (5), and (6) at time t = 0 when

TE rp and p = PR’ They can be solved numerically for the two unknowns
PR and w, That is, for a given meteoroid (\,6,c, Tor Voo # £OS ZR)' we can
compute for any surface temperature ™ the corresponding air density PR
at which this temperature is reached, The whole set of solutions for one

meteoroid will give ns the temperature as a function of time at meteoroid

penctration into the atmosphere,



3. NUMERICAL SOLUTION OF EQUATIONS (24) AND (25)

Solving explicitly for w from equations (24) and (25), we get

2. (v,, /8%) [b cos Zp - (9Tp/arH)] - (26)
exp (9I‘p8/4r06b cos ZRH(SU/Ava:) {TB+TO)3(3?B - ’I‘o)exp (9I‘pB/2r06b cos ZR)
for Pp We get
b cos ZR
P = ™ ’ (27)
B~ F(w) + (9r/4r057
where
2 2 2 3
ATBO WV A w coth (wro) - (x/ro) +4cr(-rB + To)

F(w) = s ~3 . (28)

4
B W coth (wro) - M‘B/ro'i' O'(TB"'TO) J

8 [h‘r
Beginning with some chosen value of Pp We get w from eyuation (26) and a
new pp from equation (27); then we proceed iteratively to a solution w, Py
Starting values of pg Were chosen according to the predominant cooling effect:
either by conddctivity or by radiation. The meteoroid radius is a good

criterion. Thus, we use for log r, 2 - 1.5 the starting value of

1/2
8\T (bv _cos Z_) r
rpm— 2 {2 B comn[ P v con 2] Lo
- ]

(Ceplecha and Padev&t, 1961), and for log r, < -1.5,

0




3
Ap.v 9I'p
4 B B
tTo) =—g— exp (' 4r05b cos ZR) ' (30)

cr(-rB

We solved equation (30) iteratively, beginning with

8o ('1'B + T0)4
voo
and computing
, Teg
PR~ Pp °*P 4xg5b cofz-; ) (32)

Convergence is rapid in both stages of the computation.




4. NUMERICAL RESULTS

We chose meteoroids with three different hypothetical compositions
(iron, stone, and porous meteoroids), three initial velocities (15, 30, and
60 km sec'l), and two surface temperatures (-rB = 1900°and 2300°; i, e.,
’I‘B = 2180°K and 2580 °K). Some of the results from rather extensive tables
are given in Figure 1. The iogarithm of the air density (and height, taken
from the U.S. Standard Atmosphere 1962 (1962)) is plotted against the
logarithm of the radius of the meteoroid. The curves follow constant surface

temperature,

We used the following constants throughout the computation:

A=1,

'=0,7,
c=567x 1072,
T, = 280°K,

b=1/6x%10">,
and

cos Z_=1.
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Figure 1. The air density and the height in the atriosphere, where a given
surface temperature of a meteoroid is reached, are plotted against
the radius of thf meteoroid (in cgs units). Three velocities (15, 30,
and 60 km sec™') are used. Two curves belong to each velocity and

composition; the upper one is for temperature Tg = 1900°
(Tg = 2180°K), and the lower one is for Tg = 2380° (TB = 2580°K).
w=ee====-- iron composition (6 = 7.6, A =3 X 106,

c=17x 106)

stony composition (6 = 3.5, A = 3.5 X 105,

c=107)

4 7

veeseese.. porous body (6 =1, A\=2x 10", c=10")
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APPENDIX

LIST OF MATHEMATICAL SYMBOLS USED

O

N~ >

air-density gradient

specific heat of the meteoroid

function defined by equation (28)

height above sea level

integration constants

distance from the center of the meteoroid
radius of the meteoroid

time

absolute temperature

preatmospheric temperature of the body
function defined by equation (7)

velocity of the meteoroid

initial velocity of the meteoroid
integration constants

zenith distance of the radiant

defined by equation (2)

drag coefficient

density of the meteoroid

heat conductivity of the meteoroid
heat-transfer coefficient

Stefan- Boltzmann constant

A-l

P N

bt 1554

4
#
>
g
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air density

air density at the height where the surface
temperature Tp is attained (t = 0)

temperature relative to T, as defined by
equation (3)

surface temperature of the meteoroid,

relative to TO
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