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This report summarizes the results of the study of the dynamic response
of inflatable‘shells for the period June 15, 1967 to November L, 1068,

The equations of motion were derived for an isotropic inflatable shell
with a general configuration and a solution procedure was developed to deter-
mine the natural frequencies and modes of free vibrations of shells of revo-
lution with arbitrary meridional contours. A computer program to implement
this solution procedure was developed and tested on several sample problems,

The forced response pf inflatable shells of revolution was studied by
means of a modal method of ;nalysis. This general solution technique was
tested using the same sample problems used to illustrate the free vibration
solution technique.

The detailed results of this project are describea in the attached paper,
submitted for review by the American Society of Civil Engineers for publication
in the qurnal of the Engineering Mechanics Division. Reprints of this paper
and of agprevious paper based in part on the resuits of ;his grant will be

transmitted when available.
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DYNAMIC RESPONSE OF INITIALLY~STRESSED MEMBRANE SHELLS

by John W. Leonard A.M. ASCE1

INTRODUCTION

This study is concerned with the dynamic behavior of extremely thin shells

~“,ﬂwhich have attained a given stress state due to previous loads, The responsel

-

--of these structural components to the action of further in-service dynamic
*\Jloads will be studied and the effects of the initial‘stress state determined.
Initially-stressed thin shells have of late been used as temporary enclosures

17at expositions, as prefabricated warehouses and fuel tanks, and as inflatable

"Ca.concrete forms for dome construction. They have been considered for use in the

- erection of space and lunar structures. TFor example, certain space-structures

" proposed for Saturn-Apollo applications can be optimized using such components:

"' "their in-service structural rigidity being obtained via pressurization. Possible

‘.\~”applications in the near future for such light?weight'structures include space

V'v¢61c1e antennas and‘connecting tunnels between stages of manned orbiting stations
‘Exorvlunar.modules.ﬂ? “ ‘ o ' - | ]
An important espect of the behavior of initiallyestre§sed thin shells isﬂ

| W%their action under in-service dynamic loads. For example, the behavior of an

;\inflated satellite is influenced by the dynamic nature of ‘the inflation process

" "in that the shell arrives at,its desired final configuration with & finite

s velocity field. It is also influenced by control_forces, external forces such

‘ ”":as gravity and solar pressures, and forces caused by movement of personnel :

' ﬁf(,;of New Ybrk at Buffalo, Buffalo, New York. . S
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'e'end’propellant; Two other dynamics probiems are 1) the effect on inrlated

’? concrete forms of the 1arge impact forces which result when shotcrete is ap-
:;plied, and 2) the effect of winds and earth tremors on shells used as temporary

| Jshelters, warehouses; and fuel tenks.

" The behavior of extremely thin. initially-stressed membrane shells is such

"\:that classical methods are inadequate for their proper analysis. In recent

" years considerable attention has been given to the derivation of consistent shell

E - 'theories (2, 16, 23;I28, 32)2 and to the development of solutions for nonlinear
) ' /

KRS ;ﬁembrane,shell problems (6, 10, 14, 18, 29), Another erea.of recent research

+is the representation of nonlinear problems as a sequence of superpositions of

:"‘linear problems, static and dynamic, on previously solved linear or.nonlinear

‘-i.problems, e.g. prestressed membranes (1, 19, 20, 22).  The classical dynamic be-

'~fhavior of thin shells of revolutions has been studied, and solution methods for

the symmetric and asymmetric modes of free vibrations have been presented (3, 8,

[

li‘o‘11,‘22, 24, 26, 27, 31).

/In the following etudy, the equations of motion for a thin shell with a
J‘ngeneral configuration and a prescribed initial stress state are derived. For

:jcohvenience; tensor:calculus has been used to derive the equations of motion.

"e,j'fThis,was done in order to arrive at a compact formulation which could then be

5‘:checked for consistency. The general tensor equations are then.specialized for
‘}oa shell of revolutioo with an arbitrary meridional configuration and are also
"ieast into physical forms in order to obtain solutions to specific problems,

. An approximate formulation of the equations of motion is discussed and a
\jsolution procedure for the asymmetric modes of freeﬂzlbration isiderived. The

"solution'procedurevis illustrated by means of several sample problems. The forced,

: 2Numbers in parentheses refer to entries in the list of references in
“,prpendix II.
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\QL _tionally deformed shell. Given a function f(xa) defined on the initially-

-3.

‘:;iresponse of these same shell problems is also\studied.

‘EQUATIONS OF MOTION

The following assumptions were made in the derivation of the equations of
motion for the superpositions of small oscillations about the initially-stressed
configuration of a general shell

"‘1) The reference surface for the added deformations is taken as the
initially-stressed middle surface.

2) The shell has negligible bending stiffness.

hﬂ ©3) The thickness ratio = )\ = *h/L is small compared to unity,‘mhere
' *h = one-half the shell thickness, and L = smallest characteristic
length of the middle surface.
¢

L h)l The shell material is perfectly elastic, homogenious and isotropic.

'5) The additional oscillations are infinitesimal.

A special notation has been used to denote'quantities defined on the addi- -

LR

, :}‘stressed middle surface, the corresponding function on the additionally deformed o

L T X
.. 'middle surface is denoted by [£(x¥) + ¢'£'(x,% )], vhere ¢'f'(x%t) = amount by

'*f?ﬁsuperposed additional load vector.

" which [£(x") + '€ (x%,t)] differs from £(x%t), x¥a = 1,2) = middle surface

" coordinates, and where ¢' = small non-dimensional parameter defined by the

The equations of equilibrium for the additionally deformed surface, here-
;after denoted by M'; are formed by replacing the stresses acting on a shell

element by their resultants acting on the corresponding element of M'. When

L hthis_is done, the forces acting on M' are summed-and-are found to have the form

' ) 2
, £.(x")(e')° + £ (x%)(e')” + E,(xe)(e')" + ==~- = 0
: L where the f,(x”) terms correspond to the equations of equilibrium for the in-
itially-stressed middle -surface ‘and are therefore identically zero. According

~

, “7 to assumption 5 above, all terms multiplied by (g ) and higher are neglected
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”“(L(Eﬁg'f(t)) = load vector on M' per unit area of M'
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v<'?conpared to fe(x" tQ(g')1 The equations of motion are found to be (for a more

'\..'detailed derivation see References 19 and 20):

-;y:;f‘f;:[n'wlaJ«F'V —Agﬁa 0. [0 su®r? oo o | (1)
’j{i‘[ 'Gybay + F'3 f _Ag%i 52 ] [noqhu ] - “6’:, “ L v"» j~r (1b)

where covariant differentiation is denoted by a vertical line used as a subscript

"'jandr

Co 0y €'n'? = force resultant tensor on M'

mass density of ehell

no

L ' + .= largest characteristic force on-the-initiélly-streseed middle surface.

(e PO re'a' ) + (Fre'r3) (@)

‘A + ¢'A' = base vectors of M'
PR ¢ S ¢ 4 . :
LN+ N = unit normal vector to M'

(4

p_ Be BA' + oA I
=1/2 A ..[ g+ g axgz ‘ aPP 5 50*125

‘tﬁ’f;nA + ¢'A' = metric tensor of M'

of | e

‘ op
( “'fff:'irzy = Christoffel symbols of the initially-stressed shell
B+ ¢€'B' = curvature tensor of M' o e o -
o Py T et . T
,“"ngﬂVL (t) = superposed displacement vector . '

e'(LV!,yK,y# W'N)

The effects of the initiallstrees state can be observed in Eqs. 1. They

: ;u;"consist of the streas resultants n® of the initially-stressed middle surface

multiplied by functions of the added displacement vector. These terms have

x;been grouped together within the second pairs of brackets in each equation.

Equation 1 can be expressed entirely in terms of displacement functions
by substituting into Eqs. 1 the relations between the force resultants and the -

diSplacements.

Ty
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| ":j’;;’.(*pn""” oo [A%"’ + APyl B AWU"’] - *an'U'p 2)
?ﬁ:whe:e | . \
“ = Young's modulus | v = Poiﬁooh;o'ratio
U= VA - A L - (32)
? }"1;?ﬂ U'3d = S%H (gl) +.v,'7b7& | ) | - (3b)

Z‘f_if‘To:complete the substitutions, the expressions for the additions to the metric

'fﬁ.jtensor and the curvature tensor in terms of the added displacements are needed:

CA' =A U4 gt (ba)
o T oy T e v Ty a

R '3 3 10 P ' V
B oy = 1/2 |U °‘|'>’ + U a|y + BopU y +”Byp U o | (4b)

Once tensor forms of the equations of motion (Eqs. 1) have been expressed

”K3: completely in terms of the additions to the displacement vector, it is necessary

TR PRI
N

to cast them into physical forms in order to solve particular problems of

.

"5, interest. This is done via substitutions of the physical components for the

ﬂ“,f various vectors on M'.

‘MW“‘V'iz! = V"Vh (no sum) L§3Z %}' " (5a) .
- *pn OV 4 AM' '
N (o) = B0 VR ot 12N () [—ﬂ ] (po om) )
. . W w
A (5¢)
ot . Al .
' - 3 - '
LP (3) = *¥PF'7. LP'(a) *PF ./zr" +1/2 I.P( )A (no sum) | (5c)

,’Q‘5where subscripts enclosed in parentheses denote physical components, and where

N( ) and P( ) are' the physical components of the”initial stress resultants

f" n® and of the loads FY required to obtain N( )*

Shells of Revolution - The general equations of motion can be Speciallzed

'\””for a shell of revolution with an arbitrafy meridional contour (Fig. 1). The

- middle surface coordinates are defined as follows: xl = regular meridional
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coordinate, e.g. arc lengfh; and‘x2 = azimuth angle 6.

_ . Asymmetric oscillations about an axially-synmetfic initial stress state

- ffhave been considereo. Therefore, derivatives with respect to 8 of all quanti-

i ofties associated with the initially-stressed she11 of revolution. are identically

tﬂglfzero. For quantities associated with the additional deformations af(x ,e)lbx is

; denoted by f(x ,0), and Bf(x ,6)/69 by f(x ,6) ‘Also, it is convenient to make
a change ‘'of notation: let | |

eV vevign CoEEnEyr (6
The physical forms of Eqs. 1 specialized for a general shell of. revolution

' are ' : !

:": [1 + Kl} + v[lﬂ’ ‘/A_:; + U ]-4%- + [} -J-L- + x -

+ vR K2 A A |
2 1 AL \
] [ == . == ,,/K' + u[}\ =V : : o
Ay Rl R2 11 r 3
a ‘
X A2 A A A A2 LP
£ _£. 11 _r r. 11 r (1) 7
tv r ;2 v 2A11,r K2 ( r + ;2 - 2A11 r) + /xil r]
A
R R, RotiRy 1, A RyRy R 2r 1 Ry

o ,‘ Lp' 3 R o
-2 - UYm, + —L —A-‘LA a“ 0, (1) 7,

A A
2 2 1-y r AL
E ] [ +K1:I‘/r11 [1+l(2 }\"'r
- A A A
1-p A _ r 11 r r
+K, 2|+ v .._2( ——-+-)-l( + K, =
] [ AT tE R 2A11 ‘fzr B
A 2 AA AR
R b VRS S S 5 S s r
v[ FGrEe it rm v G gt >+r<2:z]ﬂ—n
G 7 S T A LP' 3. 2 ,
) 1 I -} 2). _ 2L v
. RR, lengjlﬁn TTx YRt Tk r‘“_nfé't?f-o ' (70)
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' the initial stress components should be retained in order to adequately des-

If Eqs. (7) aﬁe rearranged it is possible to segregate the effects of the
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surface from the axis of revolution

R, = 3on-dimensiona1 radii of curvature of the initially-stressed

hell

‘ :f‘#nitial'stress state as follows;

0= {...classical membraneé equations of motion...}

An approximate formulation of Eds. 7 is discussed in Reference 20.

‘i of mdtion,

¢

Ry “2]R1

K2 !22}

perpendicular distance of a point on the initially-stressed middle

: ' ' |
+ N(ll) {...func;ions of the added diSplacements...J

+ N(22) ++ofunctions of the added diSplacements..;}

Eqs. 7aéand Tb.

.. type boundaries,

'f general shéllvof rgvélution is

r

lig_/le wl [ A
2

!

e p————*

_] [,,(X 3_14 r]

a0

r

r

In

 TL:j>that approximate tﬂeory for initially-stressed shells, it was shown that the

However, in the third equation of motion,Eq. Tc,

(7c)

;‘éffects of the initial stress can be neglected in the first two of the equations

"ﬁ]cribe the shell behavior in the neighborhood of discontinuities and non-membrane

?Be'approximate formulation of the equations of motion for a



' A A «‘ A
R +UR A A AL A A2 R R, 4 R#R
A2 71 [. AX . r 11 ¢ r.] { 1 A2 1
-w VA, +ulp(B =t = e =) s w2y = - & ——
R1R2 11 ‘ AT r 2A11 r T R1 R2 A §1R2
R, -R Lp' 3
l-pa 1 2] 1 _ 2oL Ty _
YT RR, Bat T An Ay 5 = O (8a)
N ~ ' ‘/K- - N '\ N
Alyy 7l r sl 11l A~ l-p) X "l:_v.& 4
USSRV /Kil f Vo tu L v st + 3
n . ! A A ,
e 1w £+i§+£'i_£“11] r N
2A,, 4 /AL o2 le et ira e, IVE,, T O RR T
Lp' 3 2 ' :
(2) - 2AoL Oy _ . (8b
v WAy SR VA 5 = O o (ew)
LN L P L
VA, r o RiRy "Ry Ry RRy Ry
. fg] 11w [K i -’xé _f_]+ u[_ﬁ Ry, Ky ( &y
sd T /Zil 12444 rdd lr R1R2 'Ry Ry
R N T i W i - W VAL -
VRS si-1 e o el e s R VI N e : '
: 2 M1 2 12
Lp' ‘. 3 2 .
‘3) W 2\ oL o w _ : J, i
oAy SV A e = O : (8)

It was shown in Reference 20 that the approximate static equations equiv-

~alent to Eqs. 8 gave solutions in close agreement with the-solutions to the

fkjmore'exact formulation. Also, both of those solutions were significantly

w 5:different from the solutions to the equivalent classical membrane equations

. ‘ . . !

,:whefe the effects of initial stress are ignored.) 1In a succeeding section, the

solutions to both the approximate and the exact 'equations, Eqs. 8 and 7 re-

spectively, will be comﬁared for several sample dynamic problems.

]

SOLUTION TECHNIQUE: FREE VIBRATION

In the cénsideration of the natural frqquencies and:assbciated mode shapeé )

¥

) _fqr the gsymmétricQSUperposed eqﬁations of motion, all the forcing, functions
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:P'(l)’

" harmonic functions

u(xl, 0, t) = ux(x', o) et
v(xl, 6, t) = v*(xl, g) eltF
w(xl.v 6, t) = W*(xly 0) eiw:

o > gt W ook o et dn @ U bkt Uk e 300G earihi

P'(2)’ and P_'(3) are assumed i:o‘ be zero and the displacements to be

(9a)

(9b)
(9¢)

If in addition, the functions u¥%, v¥*, w¥, are 'expanded"in Fourier Series, it

“ . can be seen that Eqs. 7 and 8 admit solutions of the form (torsional vibrations

' -are ignored):

A AN '{‘.' . .
RSN Y -y . B

| A u*(xl, ) =§ nn(xl)‘cos né . . (10a)
- n=0 ‘ o o
1 n, 1 : '
v¥(x~, 8) =) v (x ) sin no (10b)
. . n=\ )
BRI | n, 1 | |
wt(x", 8) =) w (x ) cos no (10¢)
: n=( | e
If Eqs. 9 and 10 are substituted into Eqs. 7, an infinite set of ordinary
K differential equatidns results, each set of which has the form
. : ' +vR
—*“[1+x]+u|} Klzp K 5] - et
BR Ry
K /‘ 2 A 2 A, ~ a2 A
_ .2 an 14+p Y11 11 nf A x r _ 11 r _zx . 2'1-p_ 11
R],/K'u+nv 2 r u[”)\r"'vr Voaa . r. ¢ "™ 2 2 ;
2 t 11 r
A, » .2 w A a 2 A
' 11 r r = 211 3 n" A _ 3-pyr '
+K, (=< -+ -n"=5)+6=+pA ]+nv[v - =
2 2An r,r 1__2 r2 T i1 A 2 r
) A A A
A _ /AT R R A R +1R, - R, -
t 11 1 o ARMR 1A RRy R
-2K.—+G1, +w[——-z+v—-z = r —= + K, =~z
2'r R R, Ry A R1R2 r RiR, 1 R,
R A
A R, - R - - ' . .
r 1 2 ¢ . '
+ &, (2E4=E - B)- &) vm, (11a) |
1 2 2 N
. b », . . . n |
| Anflep . . 1- ( Ay :’:‘) A f
«?f0=v[—-u+‘l(] [—” +E) -k +R, T m—
ote o /511 »' AT By, v, Pewlay
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S An l+p _ 'P[ =y 3-pr . n[ l-px x_ _Axr _r_1ll_
BERE e R e N A el - Rl r2Au)
," “ ' {. ”n ' ¢ t
D A AA a2 AL
A 2 711 T 11 ¢ T 21 r
et dlbg Bl ety
L A BT WAL A 2 11 V&,
o R,+LR K K ‘
| g - & _g] -
TR [ RE, IR + R, /A . (11b)
. Lt ' ! . A ‘
o o A fe arRetRy Ky . L A1 o & RfRs
)= W +u[ —--—-:] [ --K——-—+u[—————
/B RE, 'R ”‘11 r 12, r KRy
| ﬁ ‘ R, K Kye VA +UR, R+
1‘_1_(_ r)+2r]+v[1v ____1_+_2_] 11_wn[R2 e
"R, R R, R r R Ro
1 1 ® R1R2 1 2 1
L e
(1- -———- n p] —_— ‘ A - (11c
"% R1R2P IR R, R .
where . ' , ,
. LP,y WA, - 2 2
'G=—('1'1)<“—11'! L p =2k “E ”?we (11d)
‘ i ' -
, t )
1f the approximate equations of motion, Eqs. 8, are considered, the set
'of ordinary differeptial equations equivalent to;the exact theory, Eqs. 11, are
-as follows: -
e A A R i ‘ 2
. AN
\0 _ An + Gni} +E. 11 dn Rt 1 T+ it l14+p ‘/rll + n[v(A r. t
‘ Y 2A11 R1R2 11 2 r Ar r
~
A, A a2 A a A /A
81 2 21711 2 A_3wE ] 11
A r) 5 5 —-'2+G +pA11:l+nv[u)\ 5 r+G T
11 r r
R R, 2 RHR © R,-R '
ST e | 2 A2V 1-paiT2 @ S
: +w[—e+u = - + r -‘--]/AT (12a)
R “ RZ T X RR, r RE, p2lv |
i n
_falwir Salpfdofu ,,’ri] r_ - oaliy n[l_-gLs;ui]
= 2 /K. 2 L)X 2 rl /A, M2 TM{T Nt
1 LA 11 ;
‘ - A
. R.+R. - A A2 A~ A A
n_1 "2 nfl-p ,r AL _r 11 2 _11 r
+ nw VA, -v[ (Z+—s+56=- -) + n° =5+ pA ]-———- (12b)
| R R, VOl 2 &t ETNT rea’ 2 11177
M A
| Zn. Ko aprRotiRy K Kpq o oon 2 Ay are Rtiko
0=V 7 [R TR, T ] [K r - X2 ] “[‘ R
- 11 1Re Ry Ry 2r 11 * RRo
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A
R +vR2 K14 K2 /KII " R2+uR1 R1+vR2
<"+ )+'“ M el T YR R
Rifp Ry Rpd T 1 2
' RR .
1% |
-Kl-Ke(l-;rz n® P]R - | (12¢)

{ |
‘ ! ' ) ,
Determination 'of Eigenvalues -~ The method used to determine the natural

;frequencies and mode shapes for the asymmetric vibrations of initially-stressed
‘\‘shells is (1) to sélect a trial value for the naturai frequency ¢, and to check
if the trial value ;rovides an unique solution which satisfies the equations of
motion (Eqs, 11 or%12) and their associated homogenious boundary conditions.
_ If the trial valuegof - were a'natural,frequency, a non-trivial family of solu-
| . tions which differionly by a multiplicative constant would have been found.
| When the trial (yis substituted into the equations of motion, the combined
initial-value and éoundary-value problem is converted into an equivalent boundary-
value problem for which one method of solution has been discussed previously (20).
ﬁ This solution method is reuiewed below. The trial frequencies are tested by "
vcalculating a detetrminant associated with the eouivalent static solution. Since
the elements of this determinant (described below) are continuous functions of
: ahya change in sign of the determinant for two different trial values of ¢y implies
L the existence of awnatural frequency between those two trial values. Then using
binary search techniques, one can obtain better approximations to the natural
- frequency. ! ' .

i

Boundary Conditions - The solutions to the combined initial-<value and

| boundary-value problem posed by either of Eqs. 11 or 12 can be obtained if the
initial conditions and six boundary conditions for-each value of n are correctly

‘fhprescribed. . The three houndary conditions at an edge of the shell can in most

Jl'oases be readily obtained using Fourier exoansions.'

The”eriteria &or establishment df boundaryiconditions in the particular

case of a shell cohtinuous at the apex‘are such,thgt there exists no singularity

~

W4

r .

e < ey e
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; at the aﬁéx (20, 31). 'Since the solutions un, vn, W' are analytic functions at.
. the apex, it is possible to obtain solutions to éither Eqs.'ll or 12 in the

, neighborhood of xl'e 0 (regular single point) by means of series expansions.

~ When the series expansions of un, vn, w" are substituted into the equations of
“motion evaluated at‘}x1 = 0, certain relations be#ween the constants of the series
' expansions are obtained which must be satisfied in order to satisfy equilibrium
at the apex. ‘These relations can be considered as apex boundary conditions for
< the numerical -integration of the bouﬁdary-value problem equivalent to Eqs. 11 or 12.
Let X be’ ¢, the angle that the normal to the shell makes'with_the axis of

revolution. The Taylor ‘series expansions of u®, v® and w" about the point ¢ = O are

e R
~ .n m

Vo= ;ZQ b ¢ f (13b)

n & n h ' ‘ '

v =Zom<e 1 . (13¢)
m= ' ' 3

If Eqs. 13 are substituted into either of Eqs. 11 or 12 and if terms are

- collected.in poweré'qf 0, the vanishing of all terms independently of ¢y yields

v,the‘following set qf relations between the constants of the series expansions

(different relatioﬁs are obtained for each valuelof n; only the relationships

forn =0, 1, 2 are 1isted ﬁere)

‘n=0 (a{, b2, c$ arbitrary)

1 )
| ,

o ° ol ° ° ! ' CT

8¢ = b Cl ‘1 2 = b = 3 =0 | \ (lha) K
. 2(1+v) (c 1°) - (pR1 + 2K1) c? T'“’*“"' |

¢ = K, ‘ ' (14b)
‘ 2(14p) ¢,° - (—3’4,+ bRy oy PR 2) a,°
a® = °2" 3 1/ % \ Y

3 =" 8(1+K1) . L | ¢

: 6%R 2 : : : .

by = <[1 + P IES S ' :

3 ° Url8R, [T ; o o . (1kd)

-§m°: bm°; Cmﬂzdetermined by 510; bloi co® for m>2
: ! ) ‘ " S,
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~ i
n=1 (aé{ b%, cigarbitrary) !
1 1.1 1 1 1. '
Co =a; = b% =c, = a3 = b3 =0
_ ‘a°1 - - b°1
. S+p ; 1 _ 1 _ ,1-3p 2 1
. b21 (S 2K1) a, (1+v) ey = ( Tt PR+ Kl) b,
| | e
! 2 UK 1 1 1 1+p, 1
1 [P(4) = pRT - ] o) - (1) (3¢, + by) + = b,
[ =
3 : o 81(1
1,1 1 1.1 1 a
a bm’ Cn determined by ass b°§ ¢y for m >3
’
2 2
n=2 (a3 » b5, % arbitrary)
2 2 2 . 2 2 2 2
a, = b, =c°’=c1 = a, =b2 =c3‘=,0
2 2 . '
a, " = b1 j
. ll - i
*eﬂ3wﬁ1@2+EL)- c,? |
b =2 %3 6 2 %2 -
| kv
o2, 2 2 ' - 2 2 2
a, s b7, ¢~ determined by az", b, ¢ form> 4

Numerical Integration Scheme - The method of solution chosen for the

boundary-value problem posed by either Eqs. 11 or 12 is a generalization of

PSS URIR P Gy S Y T S g Sy O U U P T = V1 ISR R N NN Y

(15a)

(15b)

(15¢)

(15d)

(16a)

(16b)

(16c)

'Holzer's method (3, 8, 12, 25, 31) in which the two-point boundary-value problem

‘(is transformed into a set of homogeneous initialivalue problems, each initial-

" value problem beingzintegrated numerically using-a generalized trapezoidal rule,
X :

“,‘The proper initial conditions for each initial-value problem are formed by as-

suming independent values of the unknown derivatives at one houndary of the

ghell.’

conditions prescribed at each end of a typical meridional” 1ine,

Since Eqs. 11 and 12 are both sixth-order systems with three boundary

three independent

assumptions can be made for the initial conditions for each of the three homogeneous

i - o

¥
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initial-value problems.

The solution process for the two-point boundary-value problem is outlined

Ibelow:

1.

- 3.

' a linear c%mbination of the three: partlal solutions:

-

i

‘ : .
For an assumed value of (5 the 6th-order boundary-value problem is
transformed into 3 initial-value problems by assuming 3 independent

sets of homogeneous boundary conditions at one edge of the shell.

»

The solution to each homogeneous initial-value problem is propagated

along a typical meridian, Newmark's beta~-method, a generalized trap-
ezoidal ruie for intigration, is used. ‘See References 19, 20, 25 for
discussions and applications of this method. Three parcial solutions

#

are thus generated.
(

The total solution at any meridional point, including the boundary, is

¢ true partial ‘ :
isolutionf [solutions] { n@ f , (17)
| .

ere.

where oy are the constants of the combination.

In order ﬁhat the'homogeneous boundary conditions at the edge be sat~

isfied, tﬁe linear homogeneous equations formed from the correSponding

portions gf the partial solutions must have a non-trivial solution.

In other mords the determinate of the coefficient matrix for the par-

tial solu%ions corresponding to the boundary conditions must be zero.
4

|

(&S Rk T RY RS
a3 ) ‘

conditions artial solutions

i
boundary values,K .
for g 0

oo 4 det )
partial solutions“

If the de#erminant'is not zero, the trial value of ¢y is not a natural
frequency‘and steps 1 to 3 must be repeated for another trial malue.
After two-values of yyare found for vhich the signs of the corresponding
determinaht are oppisite, a half-interval search is instituted to find
the bracketed value of chorreSponding,to a natural frequency.

P : - . {

R |
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‘6. If the determinant is zero, the boundary conditions are satisfied and
the mode shape for that natural frequency is determinable to within an
arbitrary constsnt b& solving Eq. 18 for 05 and oy in terms of o and
then by combining the partial solutions as in Eq. 17. : \

i '.
If the stdrting point tor the numericalFintegration of the initial-
‘ vslue problems is t%e apex, special methods must be used in the neighborhood
of the apex.,. The solutions in the region of ¢ = O are approximated by Taylor
. series expansions, Eqs. 13, For any value of n, sufficient terms in the series
expansions must be taken such that all of the arbltrary constants in Eqs. 1k, .
‘15,.and 16 are included. This will guarantee that the solutions at all points
~ in the shell are 1ﬂnear'combinations of all the ?rbrtrary conditions at the
. apex (20, 31). 5, - ‘ . )
Since it fs not poss;ble to consider all terms in the Taylor series
eXpan51ons, it is necessary to use a successive approximation scheme for propa-
‘gating solutions iJ the neighborhood of the apex? Such a scheme is described
-in Reference 20, ft was found that in cases where the geometry of the shell
;,chsnges rapidly ne#r the apex, e.g. a paraholoid; more rapid convergence of‘the
| ,
.‘successive approxiﬁations was possible if; instesd of using Taylor expansions
"of the displacement functions (u, v, w), Taylor ;xpansions of u/Rl, v/r, and
4

w were used.
i

Suppressién of Extraneous Solutions. = The use of the generalized

Holzer method in céses where the numerical integration must proceed over a

long interval introduces serious convergence difficulties in that the solution
. ! o

" to each of the initial-value problems includes ﬁoth-a decaying function of x1

i

“and a rapidly growing function of x (9). The coefficient of the rapidly growing

".function should in theory be zero, but because of various1numer1cal integration

errors is not exactly zero. For short regions of integration the rapidly growing

extraneous solutions have negligible effect on the combination of the partial

?
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solutions. stever, for longer intervalé of integration, the “extraneous solu-
tions predominate and the equations which express the linear combinations of the
partial solutions are extremely ill-conditioned.

There are two methods in current use for alleviating this convergence
problem. One.methoé, the multi-segment method, consists of subdividing the
shell region into short segments (4, 1%, 15, 21). The initial-value problems
are iﬁtegrated within each segment, and solutions are co&bined to satisfy compat-
ibility reduirements_atlthe junctions of the various segments. The second method,
'.the suppressipn method, consists of combining the partial solutions at selected

points.along-the meridian in order to suppress the extraneous solutions (3, 8,
30, 31): Although ;he two methods are similar in concept, and although the
multi-segment method lends itself to an easier physical interpretation, the
:'suppression method Fequires‘a lesser number,éf independent partial solutioms.
_Also, instead of so}ving, for example, one set of 3N equations simultaneously,'

‘ N sets of 3‘Simu1taneous equations are solved successively, For the above reason;
the suppression method was chosen in this study.
| ' The suppression Qethod is implemented by requiring that at certain meridional

’points fictitious conditions be satisfied by linear combinations of the unsup-
pressed partial solutions. The fictitious conditions to be satisfied must be
- arbitrary, independent conditions which have small magnitudes compared‘with the
-, partial solutions.‘ The partial solutions are therefore combined to form new
arbitrary partial solutions in which ;he extraneous growing functions are sup~
pressed. The lineér combinations at tﬂe point of suppression and‘at all prior
« points constitute the ;ew set of arbitrary solutions which are then propagated
',along the meridian to the next point at which suppreésion is required. The

suppression process ip'detailed in References 3 and 30,

4
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SAMPLE SOLUTIONS: FREE VIBRATIONS

" In order to test the solution procedures described in the previous section
lfor.both the exact #nd the approximate equations of motion (Eqs. il and 12),
several illustrative examples'were solved for théir natural fréquencies and
mode shapes, only the n = 0, 1, 2 harmonics being considered. A computer

. program was developed which was capable of handling a shell of revolution with
a general meridional configuration. The program was tested on several sample
shell configurations including: a sphere continuous at tﬁe apex and fixed or

; simply-suppbrted at the base; a sphere fixed or simply-suﬁported near the apex
and at the base; a sphere with a rigid plug near the apex and fixed at the base;
a paraboloid of revolution continuous at the apex and fixed or simply-supported
‘at the base; a toroidal section.with a rigid plug at one end and fixed at the
other end. The results for several of these problems are presented in this

" section. . oo

Sphere Continuous at Apex. - The first example considered was an initially-

" stressed spherical segment fixed at its base as shown in Fig. 2a. The initial

stress state was attained via internal pressure ;} the smallest characteristic

length L = radius of sfhere, and @, = opening angle of the spheré. If the

following substitutions are made in Eqs. 11 or 12, the natural fféquencies and ',

e . .
. associated mode shapes for this problem can be obtained:

x1 ="¢p ‘ G=0 ‘ =R éin¢ ‘ (19a)
_» _DPR(QO-p7) SR =
K, =K R, _‘,R2 = ‘/Kn" =R . (19b)

2 = LEX

Several numerical problems were considered. Figures 3, U4, and 5 depict
" the first three natural displacement and stress mode shapes for each of the
* first three harmonics of a sphere - with an opening angle of o = 45°. The

. properties of the initially-stréssed sﬁell considered are E = 300,000 psi,
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f.'G V ;‘Q.g,ix ='0.0001, L = 100 ££., R & 1, N1 = N(gé) ~ 20,000 psf. Figs 6,

"7, and 8 show the displacéhent mode shapes of a hemisphere with these same .
‘pfopertiés except that ¢, = 90°.

In all of the,above‘examples the exact formulation was used as the basis
. of solution,  When the approximgfe fofmuiation was used, results were obtaiﬁed
whicﬁ were iﬁ‘close agreement to the mére\éxact solutions. The solutions for
B the fwo forﬁulations are'compared'in Table 1 for a sphere with an opening angle
Llof’h5°. ’

:‘It is of interest to note that for a steep shell vibfating'in its lowest
axisymme;fic:mode there éxists a’node, w =0, at an interior point. The loca-
{'tion of the’node varies with the opening angle considered. Therefore, a uniform,
dynaﬁic pressure 1oading canﬁdt be adequately represented by only'one.mode when
" the modal analysis method for forced vibrations (described in a following section)
is used. In Fig. 9 are plotted the normal displacements for the first axisym-
‘:»ﬁetric mode shapes of spheres with various opening angles. For extremely steep
- shells, note thatvthe node occurs near o./2.

The effects of the thickness and initial-stress parameters were also
'.fgtu&ied. For a-shell of constant thickness, bo?h the thicknéss parameter X
‘;'anq Fhe initial-stress pérameter,N(115 are conéained within thé'éingle para-

iﬁetric expression .

o
X, - Niypy (-v7)

1 . . ; _ (20)

2E)\L
" Therefore, fof a given initiéi stress; fhé effect.of a change in thickness can
‘be. obtained by maintaining é constant thickness .and-changing thé}initial stress.
- Fig. 16 shows the effect of.initial stress on the values of the.natural fre-
"\quéncies'of a sPhere with gn opening angle of 45°. It was also found that the
;initial.stress had no appreciable effection the shapés of the naturél modes.

Sphere with Other Boundary Conditions. - Two ‘other sphere prbblems were

qonsidered: ;1) a sphere fixed near the apex and at the ﬁase, Fig. 2b; and



TABLE 1

COMPARISON OF EXACT AND APPROXIMATE FORMULATIONS FOR A SPHERE CONTINUOUS AT THE APEX AND FIXED AT ¢~, = U5°

n=0 n=1 ' n=2
¢, in ({exact)] v (approx) N*, 1, y{exact]) Nioy(approx W(exact) W(approx) Nhﬂ(exac't) N;u)(approx) W(exact) w{approx) Nh])(exact) N('.u)(approx) .
degrees w,{exact)= K975 u; (approx) = L9.13 ¢y (exact) = 44,76 "y (approx) = 43.93 u; (exact) = 5::.31 ui(approx) = 53.45
0 ©1.000 1.000 -100.0 ~100.0 0.000 0.000 - 0.0 - 0.0 - 0.000 0.000 ©100.0 100.0
9 0.815 0.815 - 93.1 - 93.8 0.611 0.609 -56.8 -55.7 0.267 0.266 98.0 95.8
18 0.363 0.382 - 75.7 - T7.7 0.967 0.965 -93.5 -92.5 0.785 0.784 90.0 8.5
27 -0.028 -0.030 - 54.6 - 57.6 0.930 0.930 -97.5 -9%.6 0.993 0.993 Th.l £9.5
36 -0.175 -0.176 - 37.4 - 40.3 0.541 0.54h -68.5 -69.3 0.627 0.627 51.3 47.8
45 0.000 0.000 - 29.4 - 30.7 0.000 2.000 -16.5 - -14.8 0.000 0.000 27.2 26.0
t,(exact )= 65.74 tw,{approx) = 65.43 o3, (exact) = 62,34 ,(approx) = 61.76 w (exact) = 72.54 w,{approx) = 72.05
0 =1.000 1.000 - 14.3 - 12.3 " 0.000 0.000 - 0.0 - 0.0 0.000 0.000 -100.0 -105.0
Bl 0.337 0.338 8.8 8.6 019'—‘2 0.920 -75.0 -71.2 0.575 0.575 ‘ -94 .7 -30.2
18 -0.730 -0.722 57.6 54.2 0.745 0.747 -100.0 -100.0 0.955 0.968 -66.0 . -59.0
27 -0.837 -0.818 ‘ 93.1 90.5 -0.166 -0.160 -73.0 -80.7 0.022 o.024 | -13.5 -1%.2
36 -0.185 -0.168 99.0 9.5 -0.546 -0.542 -35.8 -45.2 -0.687 -0.685 23.8 16.9
45 20,000} _-0.000 l 0.0 91.0 0.000 0.000 -26.0 =29,3 0.000 0.00Q 17.1 15.1
o, {exact) = 76.69 o, (approx) = 76.43 ,‘;’.3(exact) = 82.47 g (approx) = 82.02 u‘q(exact) = 93.09 a:{(approx) = 93.00
0 :l.OOO -1.000 ;oo.o . 100,0 0.000 0.000 .0.0 0.0 0.000 0.0C0 -100.0 | -100.0
9 -0.415 -0.414 79.5 81.5 0.970 0.990 -82.0 -75.2 0.860 0.859 - £9.6 - 85.5
’18 0.211 0.205 k.0 7.5 -0.155 -0.155 -21.5 -21.5 0.346 0.347 - h3.1 - 41,5
27 [ -0.127 -0.135 30.8 32.% -0.528 -0.532 7 85.0 78.0 -0.6336 -0.5637 k.5 1.6
36 -0.382 -0.383 36.7 37.h 0.376 0.373 92.2 o4.8 0.42h 0.421 4.5 . T.5
45 0.000 0.000 37.9 40.3 0.000 0.000 73.5 73.6 0.000 0.000 1.6 2.8

61 -



st Mode! w= 3235367

- +1.0

. o 3rd Mode! w=54.82266 .

\"u'\;\)' 0 ’ ‘ ‘ : ‘/QV\”I- ,
L : , e vl T o~ ’
4','\_/450/2 S R

405




- 0.5—

uvw O

-



B e b

I st Modew=38.50128

-



‘\m,.ﬂ Fe
AN

. A N




.34

"
80— L N=I; 3rd Mode
N=0, 3rd Mode
0 N=2, 2nd Mode
N=0,2nd Mode
" e0k ‘N=1,2nd Mode
N=2,lst Mode
501 .
: N=0, st Mode
'N=1,Ist Mode -
401
[ 1 | | =>-‘N ‘
- 5,000 IO‘,OQO o 15,000: 20,000 (1) ’

. LR



- 20 -

{’2)'é sphere with a-rigid plug ﬁeaf the épex and fixed or simply-supported at
the base‘ﬁFig. 2c. . Several numerical problems weré considered. Fig. 11 shows
; the LlrSt three normal displacement mode shapes for the first three harmonics

" of two sphere problems with @o = 45°,  1In both examples the shell near the

. apex is assumed to be attached to the fixed Support and to the rlgld plug, re-
 ‘spect1vely, at ¢ = 1°,

The 1n1t1a1-strgss states for tﬁese'two examples were obtained §ia uniform
-  in£érnal preééure. In the case of a sphere flxed at both ends of the meridian,
7, 1t was assumed that the sphere was completely supported on rollers which, after
the deSLred configuration was obtalned, were rigidly clamped The initial-

'f _stress resultants for a fixed-fixed sphere therefore are the same és those used
in the previous séctiﬁn for a sphere continuous at the apex. In a similar
‘fashion for the sphere with a rigid plug near the apex, it was assumed that
‘tﬁe sphere boundary conditions during the pressurization phase were that the
base‘waé on roller supports and that near the apex the sphere was attached to
ja rigid‘plug.‘ After p?essurization,‘the'sphere is then completely clamped

at the base.’” The initial-stress resultants for a sphere with a rigid plug near

the apex are therefore

—

 _DPIR 2 1my 2 L .
N(ll) ~ 2 sin LSln @+ 15 S wlj ‘ : (21a)
_1-p ' .
N(ap) = 2—5;:2: i - st (210)
_2 .
where the solutions have been linearized, i.e. terms of order RXE have been

neglgcted, and vhere 0] = angular location of rigiq plug.

Shells of Revolution with More Complex’ Geometries. - In order to demon- o

strate the solution procedure on a sample problem with a more complex geometry
then that of a sphere, two further examples were considered: 1) .the paraboloid

of revolutlon shown in Flg 12 and 2) the tor01da1 section shown in Fig. 13.

o For .the parab0101d of revolutlon several numerlcal examples were solved. The

; .
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results of one of these problems are depicted in Fig. 14, where the first three
"‘displacemeﬂt mode shapes are plotted for thelﬁirsf two harmonics of a paraboloid
;-ycontinudus at the apex and fixed at o = 45°. The data for the particular
Lparab0101d con51dered in Fig. 14 is E = 300, OOO p51 V =0.k, X = 0.000l,

= 50 ft., a=1, p = 500 psf, where p is the internal pressure used to cal-
‘culate the initial-stress resultants (18).

The toroxdal shell problem considered, Fig. 13, was that of a section of

‘a torus flxed at the base, © = ¢o, and attached to a rigid plug near the apex.
; \‘V‘The numerical data for the particular example considered are E = 300,000 psi,
1) = 0.4, L = 100 ft., a = -0.25,. ¢ = 30° o = 905, and 3 = 400 psf, where
p is the lnternal pressure used in the calculation of the initial-stress re-
sultants‘by the following equations

- L 2 a(l-2p) + R(l -y)sine

. . LRp R sin ¢ sin ¢ 1}}

N(ll)'_ (a + R sin o)~ 2t 2 El * sindml a + R(l+v) sin ] (22a)

N — __B {1 - Slngf’)‘l a(l 27)) + RL—_L) Sln("ﬁ} \ . . (22b)
(22 ) s:.ne(») a + R(1+?/) Sln@l ‘

The first three normal displacement mode shapes for the first three harmonics

" of this particular’ example are shown in Fig. 15.:

FORCED VIBRATIONS

Once the natural‘frequencies and essoeiated mode éhapes of free vibration
for a thin initially-stressed shell of revolution have been obtained, it is
possible to determine the response of the shell eq.time-dependene loading con-
ditions by means of the modal analysis method (3:»13, 17, 31). 1In this method
iit is assumed the transient displacements can be represented as an infinite,
convergent sum of the modeAshaées of free vibration,‘each mode'shape being mul-
tiplied_by'e fime dependent participation factor. The problem is then reduced

.to the determination of a sufficient number of mode participation factors to
o * -
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) :adequatelyhrepresent the forced response of the initially-stressed shell.

The 'equations of motion can be written as.

‘ o . ' _ 3 _aﬂ _ .
Ly (e v, W) *LE (l)ﬂ‘-n 2"‘31‘ /A 11 N axeL” VA 5 = O (23a)
e A 2 ‘ '
! . 3, Qv 3 Qv
Le(u, v; w) + LP‘( )r - 2\pL at 2)LCL at.’ = 0 . ‘ (23b)
S, ; ‘ L3 N 3 aw ] : ‘
- - - C = = 0 2
L3(n, v, W) + LPV(3)” 2)\pL " axeL’ £ (23¢)

‘where L, (ﬁ v, w) dllferentlal Operator related to the equivalent static
_:‘oroblem,‘and C = coe§f1c1ent of VLSoous damping. Note that Eqs. 23 are a

Pslight generelization of/Eqst ? or 8 in that a first approximation to the‘effect

‘aof.viscous damping has been included. It is assumed that the shell is under-
damped i.e}7 c < Ccr, where C ~is the coefficient of criticalvdamping.

Let the displacements: be expanded in terms of the natural modes as follows

u(x", 6, t) = E; Zi (xl) cos né Fﬁi'(t)j S "' (24a)

v(xl, o, t) = (x ) sin ng F_ '. (t) | -  (24b)
o n_l i= . 3y

w(xl, 6, t) = i; 51 (x ) cos né F_ ; (t)‘ - a (24c)

i,'wni are the modal displacements for the ith ordered mode of the

where un., v
P l\
harmonic; and Fni(t) is the corresponding tineede?endent mode.participation
factor. |
ThelEdnations 23 are combinedvas followst l) Eqs. 2L are“substituted
‘j:;into Eqs. 23; 2) " the equatlons of motion'for free Qibratlon are used to elim-
.?lnate eaoh‘of the li's; 3) the equations are multiplied by ﬁ“i cos nd,
, '?V?i sin ne;'wni cos nf respectively and then‘added'togethet;‘ L) the result
?’is then integrated over the surface;area of the initlelly-stressed middle sur-
faee; and.‘S) orthogonality properties of the natural modes are used to elim-

inate tetms - When the above steps are completed the following ordinary dif-

ferential equatxon is obtalned
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Fni * guhiﬁ Fni * Fnl = gni(t) ' - (25a)
“"where ‘ ’
, : r/A,
% (8) = j [o 20y + v, Pén) + (3)'\ — AL gt (25b)
sz 3 . ‘ ‘
o ni . ,
P n\2 o ny2 n\2 o1 ’
;.Ja [(“i © o+ (V; > (wy) ] /Ay dx (25¢)
In the abooe equations, Fﬁ- = dF ./dt, Wy is' the it-:h ordered natural frequency

for the n h harmonic, £ is ratio of the coeff1c1ent of damping to the coeff1cxent

of critical damping, Kni is the modal normalization constant, and P' (i ) (x ; 68, t)

. have been eXpanded as Fourier series in 0.

The problem of determlnlng the tran31ent reSponse of lnltlally-stressed

Y

- shells for which natural frequencxes and mode shapes are available has been
reduced to that of solv1ng the classical lnltlal-value problem posed by Egs. 25

for Fni" The 1n1t1a1-va1ue problem can be 1ntegrated by means of Duhamel integral

' 5techniques if the transient load vector is expressible in terms of a single
'foreing‘function, or by means of the generalized Holzer method. The latter was

chosen in this study. .

Initial Conditions.- It is necessary to prescribe initial conditions for

P \, ) L R !
Fni and Fni at time t = 0. These conditions can be arrived at ﬁrom consideration

of Egs. 27.‘“Ihe,initial condition for the shellkdlSplacehents and velocities are

A
[es]
- -
o
~—r
]

'i;*,u;n (xl) cos nb ‘ j 3\: ‘ | , (26a)‘
n= o ‘

.

(8]
-

o
~—

i

E;’lvon (xl)'cos no o . j . | (26b)
n: s N ‘ - '

R . 1 P R ‘ . } . -
w(x", 6, 0) vt (x ) cos n6 . SR 4 , 26¢)
S nLO o ' (

If steps 3 through 5 (as outllned above for the equatlons of motlon) are repeated

. using Eqs. 26, the following initial condltlons on F (t) are obtained
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) « " a_n’ _n_nm — .1
Fni(O)h'= ‘El— J (u° ;T Ve Vi F W Vi,)‘n/zll dx~ ! _ (27a)
S s ' i -‘n ' | 1
F .(0) = El— ja ( Gon,vin + Wo win) r/Kil dx (27b)

B In order to treat a particular forced vibratioo problem, using as a basis
vfor solutlon the snperp051tlon theory presented.hereln, it is- necessary to
f rselect a value for'e s the small non-dimensional parameter defined by the super-
. posed 1oad vector. If the dynamic load vector superposed is denoted by

" aP(t), a reasonable measure for ¢' is

o b"
8 Jd f R dxl d6

(28a)
R Ib F n/Zil

€

where F is the static load vector on the initially-stressed shell.

For ttensient'response problems‘io which sdoerposed initial displacements
iand‘velocitics are considered, a reasonable measure for ¢' is
- Jem b - =1 '
o jo ja [5v(x1,.e, 0) + AV(x . 6. 0) WA, dxtde -
¢! = ~ ‘ V “Fund . (28b)

b‘ .
) = 1,
Jo [a¥e (e 0) mmy ax'es

: -1 . o
.. where aV(x~, @, 0) and AV(Xl, 9, 0) are the superposed initial displacement and
velocity vectors, respectively, and where Vo is the non-dimensional static dis-
plaeemeht vector of the initially-stressed middle surface.

_Sample Forced Vibration Problems. - The modal analysis method was tested

on several dynamic problems. It is not the’purpoee of this section to solve
.a oroblem of’patticular interest, but rather t0'demoostrate the modal analysis
“method and elso tovshow the.validity of the mode shepes found in the previous
free vibration sample problems. Therefore,.three’eimple problems were choeeni
1)/ a crhae approximation to a 'static wind ;oad\(7),

]

G'PT<3) =’('5 sin ¢ cos 6§ - . 0<t< ey



i_‘E) a constant over-pressure ¢'P' (3) = 5';; and 43)::an initial velocity dis-
tribution pronortionallto the static displacement field of the initially-stressed
 ’she11. The first two oroblems were chosen becanse(the static resnits of the
Eame‘problems are available‘for compnrison,:thus’providing a check on the
’:xvalidity of the free vibration mode shapesﬂ In all three problems, g3 was chosen
(31) as 0.01: . | | |

Fig. 16 shows the dynamlc wind (€ p = 4O psf) Stresses at two meridional
points on a sphere contrnuous at the apex and‘figed at ¢, = 45°%. At time t = o,

‘the dynamic oscillations have died out and the displacements as calculated by
-the modal analy51s method should equal the dlsplacements'as calculated from

the static theory (20). In Fig. 17, the first three partial sums(at t = )

of. the normal modes multlplled by the part1c1pat10n factors are compared to the
) equtyalent static solution. It can be seen that only 3 modes need be considered
~in order to:give answers in close agreement with the static solution.

InFigsl‘18 end 19, the;partial sums of the dispiacement and stress mode
shapes of e:sphere continuous at the apex and fixed'at Co = MS;, each mode
‘belng multiplied by a limiting part1c1pat10n factor for a constant overpressure
of 40 pst,. are compared to)the equlvalent statlc solutlon (18) It can be seen
:’that more mode‘shapes'are required to adequately represent the static stresses
i‘than.ere“required to represent the static displacements. |

The final problem considered was that of the‘reSponse of a sphere, contin-
uous at the apex and fixed at ¢, = AS , to an 1n1t1a1 velocity distribution

Wlth a shape proport10na1 to the static dlSplacement field of the pressurlzed

Sphere. Tn this case L __ﬂ;gs |

f

o Ve /A, ., dido
O uf nd 11 _ (4

= —f—"= 06025
° = - “fund '
_[2 Jo Vo r/Ayy dgdo - T

‘where o is the constant of proportlonallty (chosen as 3. O), and from Fig. 3,-

'drund =‘h9.75. The.pertlallsum of 5 modes was’ foundyto give an adequate
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representation of the dynamic'reSponse. ~The superposed stress resultants at

three meridional points are plotted as a function of time in Fig. 20.

[

CONCLUSION

The- asymmetrtc reSponse to free and forced v1bratlons of an initially-
streseed membrane shell of revolutlon has been studred quatlons of motion
v”"have been presented for small free vibrations about a previously deformed
middle surfaoe. The assumptlons rnherent 1n the mathematical model are: 1) the
‘thickness ratio is small compared to unity; . 2) the‘moment resultants are
. negllglble\oompared to the force resultants- 3) the material‘is elastic,
homogeneons, and isotropic; and L) the superlmposed dynamlc strains are lntinl-
”tesimal. | |

- The naturallfrequencles and mode shapes for the exact and the approxrmate
formulatlons of the equations of motion were determined numerlcally using the-
generalized Holzer method. Convergence dlfflcultles fox .steep shells were
vallewiated hy suppressrng extraneous solutlons at 1ntermed1ate p01ntS. In the
xf.vneighborhood of,the apex a‘Special technique was used‘to integrate the equations
‘of‘motion:h This method is based on Taylor expansions of the displacements.
For sheils with rapidiy vaqﬁng‘geometries near the aoex, it was found that more
- rapidtconrergence of the’solotions was possihle if Taylor.expansions of functions
of‘the diSplaoements and of certain geometric quantities were used,

The modal method.of analysis was used to determine the transient response
'>of initiaily-stressed'membrane shells to statio and dynamic loads. The solution
‘techniques. developed for the free and forced reSponSe:of the general shell of
:  revoiutioniwere tested on‘several sample shell geometries with varied boundary
"conditions.' It was found that the magnitude of the initial stress had a sig-
nificant: effect on the‘natural frequencxes but dld not 81gn1f1cant1y effect the

-

associated mode.shapes. Both the exact and approximate formulations yielded
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solutions ln close agreement with each other.
| Further research is needed on the determination of the d&namic response
of isotropic and anlsotropic shells wlth non-symmetric initialestress states.
The'buckling behavior,(local and global, of extremely thin initially-stressed
shells is ahother important4subjectfin need of‘study. For one type of initially-
) :stressed shell,‘an‘inflatable"shell;‘the determination of the local buckling
| icharacteristlcs is’extremely important in .that imflatables'tend to wrinkle and

-kink at boundaries.
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APPENDIX II - NOTATION

metric'tensor of M!
foca1~1ength of paraboloid, or distance defined by Fig. 13
Toylor sories.constants in,Eés. 13. |
ourvature tensor of M' ,
ooefficieﬁts of viscous oompiﬁg |
Youné's moduiuo |

tensor components of the non-dlmen31ona1 superposed-

load vector.

mode partxcxpatlon factor
LP<1) /‘IllK o |
one-half the thickness of 1n1t1a11y-stressed shell
2EAL/(1 7 )
K
‘(cmr)/ - o
smallestocharac;eristic length of *M
middle surface of initially-stressed shell.

middle surface of additionally -deformed shell.

physical components of n® f‘g'n'ay

force resultant tensor,on,Mi

largest .characteristic load on *M.
physical components of F'oﬂ,?'3 :
oL2(1-07) /2 |

internal pressure on *M

non-dimensional Spheré radlos:'
non-dimensional radii of curvafure of *M

perpendlcular distance of a poxnt on *M from the axis
of revolutlon.

tlme. 2
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displacement functions défiﬁed\by‘Eqs. 3.0
d15p1aceﬁ¢nt functions definéd\bf Eqs. 6.
functions defined by Egs. 9. |

functions defined by'Eqs.flo;

L I n n n _
initial conditions on u, v, w, at t = 0.

tensor components of the non- dlmenSLOnal superposed

displacement vector,

physical components of V’;,'w;'“;
n&n-dimensional coordinates ;f ™, a=1, 2.
C/Ccr'

Christoffel symbols of M'.

superposed Yoad increment.

superposed initial displacement vector.

arbitrary small parameter defined by superposed loads.

azimuth angle of a she@lvof revolution.
thickness ratio = *h/L.
. .

Poisson's ratio.

mass density of initially-étrgssed shell,

angle normal to *¥M makes with axis of revolution.

one-half the opening angle of *M.
angular location of rigid plug..

fréquency.‘

ISR N
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Stress Resultants at ¢ =15° 35° of a Wind-Loaded Sphere
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pressurized Sphere . ’
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