Card Format for Optical and Radar Planetary Data

Douglas A. O'Handley

Technical Report 32-1296

Card Format for Optical and Radar Planetary Data

Douglas A. O'Handley

JET PROPULSION LABORATORY
 CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA

May 1, 1968

TECHNICAL REPORT 32-1296

Copyright (C) 1968
Jet Propulsion Laboratory California Institute of Technology
Prepared Under Contract No. NAS 7-100
National Aeronautics \& Space Administration

Preface

The work described in this report was performed by the Ephemeris Working Group. The group includes personnel from the U.S. Naval Observatory, the U.S. Naval Weapons Laboratory, the National Aeronautics and Space Administration, and the Jet Propulsion Laboratory.

Six conferences were devoted to discussions and formulation of a card format for planetary range data and optical data.

The participants at one or more of these conferences included:

Dr. Raynor L. Duncombe, U.S. Naval Observatory
Dr. R. Glenn Hall, U.S. Naval Observatory
Dr. Alan D. Fiala, U.S. Naval Observatory
Mr. Thomas C. Van Flandern, U.S. Naval Observatory
Mr. Paul Janiczek, U.S. Naval Observatory
Mr. William J. Klepczynski', U.S. Naval Observatory
Mr. P. Kenneth Seidelmann, U.S. Naval Observatory
Dr. Charles Cohen, U.S. Naval Weapons Laboratory
Dr. Claus Oesterwinter, U.S. Naval Weapons Laboratory Mr. Clyde Hubbard, U.S. Naval Weapons Laboratory
Mr. Lloyd Carpenter, Goddard Space Flight Center
Dr. Raymond Wilson, NASA Headquarters
Mr. Glenn Reiff, NASA Headquarters
Dr. William Brunk, NASA Headquarters
Dr. Paul Herget, Cincinnati Observatory
Dr. Irwin I. Shapiro, Massachusetts Institute of Technology
Mr. Michael E. Ash, Lincoln Laboratory
Mr. William B. Smith, Lincoln Laboratory
Dr. William G. Melbourne, Jet Propulsion Laboratory
Dr. Charles Lawson, Jet Propulsion Laboratory
Mr. Carleton B. Solloway, Jet Propulsion Laboratory
Dr. Roger Broucke, Jet Propulsion Laboratory
Dr. J. Derral Mulholland, Jet Propulsion Laboratory
Dr. Douglas A. O'Handley, Jet Propulsion Laboratory

Foreword

The card formats described herein are the result of considerable experience in the handling of current data sets. As new data are obtained, it may be necessary to alter a data field or add a code. When such an alteration or addition becomes necessary, a letter to the author of this report would be appreciated. Appropriate communications will then be originated to obtain a fast resolution of the problem. Because a large quantity of data has already been incorporated in these formats, altering of a format becomes a serious matter that should be considered by the Ephemeris Working Group.

Acknowledgment

The information presented in this report evolved as the result of a combined effort by personnel from the National Aeronautics and Space Administration, the U.S. Naval Observatory, the U.S. Naval Weapons Laboratory, and the Jet Propulsion Laboratory.

Contents

I. Introducłion 1
II. Optical Card 1
A. Planet Number-Columns 1 Through 4 1
B. Julian Date-Columns 5 Through 21 2
C. Observatory Codes-Columns 22 Through 24 2
D. Instrument-Column 25 4
E. Catalogue Code-Columns 26 Through 28 4
F. Observation Parameters-Columns 29 Through 33 and 50 4
G. Right Ascension-Columns 34 Through 42 9
H. Equinox-Columns 43 and 60 9
I. Right Ascension (Comparison)-Columns 44 Through 49 9
J. Declination-Columns 51 Through 59 9
K. Declination (Comparison)-Columns 61 Through 65 9
L. Year-Columns 73 Through 76 9
M. Source Number-Columns 77 Through 80 9
III. Radar Card 9
A. Planet Number-Columns 1 Through 4 9
B. Julian Date-Columns 5 Through 21 10
C. Observatory Codes-Columns 22 Through 24 and 26 Through 28 10
D. Type of Observation-Column 29 10
E. Range--Columns 30 Through 42 10
F. Standard Deviation (Range)-Columns 43 Through 47 11
G. Observations-Column 48 11
H. Doppler-Columns 49 Through 57 11
I. Standard Deviation (Doppler)-Columns 58 Through 62 11
J. Frequency Offset-Columns 63 Through 66 11
K. Frequency-Columns 67 Through 72 11
L. Year-Columns 73 Through 76 11
M. Source Number-Columns 77 Through 80 11

Contents (contd)

IV. Modified Card Format 12
A. Modified Card Format-Columns 44 Through 49 and 61 Through 65 12
B. Modified Card Format-Columns 66 Through 67 and 68 Through 69 12
References 12
Appendix. Card Bibles 13
Tables

1. List of observatories 2
2. Catalogue abbreviation and information 4
3. Six-inch transit circle observers 7
4. Clamp designation for six-inch transit circle 8
5. Limb codes for meridian observatories 8
6. Radar transmitter and receiver codes 10
7. Source codes for JPL-punched radar observations 11
Figures
A-1. Optical card-revision 2 14
A-2. Radar data card--revision 3 15
A-3. Optical card for USNO Mercury optical observations- revision 2 (modified) 16

Abstract

The Ephemeris Working Group grew out of informal discussions by users and producers of optical and radar observations of the moon and planets. Its first meeting was held in February 1967 at the Naval Weapons Laboratory. Subsequent meetings were held in May 1967 at the U.S. Naval Observatory, in November 1967 at the U.S. Naval Observatory, in January 1968 at the Jet Propulsion Laboratory, in April 1968 at the Naval Weapons Laboratory, and in June 1968 at the U.S. Naval Observatory. These meetings have provided a useful opportunity for the exchange of ideas on such problems as the analysis and interpretation of observations, the discussion of methods, and the presentation of results. One of the results of the discussions of the Ephemeris Working Group was the desirability of a common format for all observational data in machine-readable form. The following report delineates the card formats to be used in the exchange of data.

Card Format for Optical and Radar Planetary Data

I. Introduction

The observations of the bodies in the solar system both by optical and radar techniques have been collected by the various agencies. Because of the number of observations and the varied formats in which the data have been collected, it is necessary to provide a single card format which allows insertion of the maximum amount of information. The following discussion is an attempt to provide a single card format.

In this report, an attempt is made to provide a format for optical data that will be uniform from 1750 to the present. A separate format is provided for some of the data reconstructed from equations of condition. The card format for planetary range data represents a further attempt to originate a uniform data card for future use. This also includes the possibility of receiving radar echoes from Pluto and other types of radar data.

The list of observatories covered by the codes adopted for the data cards is perhaps not as complete as it could be. However, this document, being a preliminary guideline, is felt to be as comprehensive as need be for present purposes. Additional sources of information will undoubtedly expand the list of radar observatories. The ultimate goal of the Ephemeris Working Group is to assign unique codes to all entries in the data cards in conformity (where possible) with international usage. Once assigned, these
codes will be permanent. Other codes will be added only after consideration by the Ephemeris Working Group.

This report is sectioned according to the type of observation and then the column-by-column codes. The data card formats are shown in the Appendix.

II. Optical Card

An optical data card is shown in the Appendix (Fig. A-1). The optical data card displays the following information.

A. Planet Number-Columns 1 Through 4

The following code is used to identify planets:

```
P001 Mercury }\mp@subsup{}{}{1
P002 Venus
P004 Mars
P005 Jupiter
P006 Saturn
P007 Uranus
P008 Neptune
P009 Pluto
P010 Sun
P011 Moon
'P = planet.
```

Although the moon is not a planet, the code 11 has been commonly used to designate it and, therefore, this practice will be continued. The four columns allow enough space to include International Astronomical Union (IAU) asteroid designations and, with the proper prefix, can also designate natural and artificial satellites.

B. Julian Date-Columns 5 Through 21

The data listed in columns 5 through 21 represent the published time tags to be attached to the optical observations. The data are not corrected to ephemeris time. It should be noted that the decimal point is implied between columns 11 and 12 . To conserve space for necessary information, no decimal points are included on this card format.

These values are the epoch of observation in most instances except for transit circle observations from the U.S. Naval Observatory. In this case, the decimal portion should be derived from consideration of the right ascension of the object.

C. Observatory Codes-Columns 22 Through 24

The observatories listed in Table 1 represent a merging of information obtained from various sources. ${ }^{2}$
"Information obtained from the "Minor Planet Circulars," Cincinnati Observatory, and Table III of "The Astronomical Papers of the American Ephemeris," Vol. XX, Part 3.

Table 1. List of observatories

Table 1 (contd)

Dr. Paul Herget of the Cincinnati Observatory is responsible for the codes (numbers) that are used to designate the various observatories. These code numbers will allow the interchange of data with other organizations ădhering to the IAU.

This list is not complete; the number code is missing in some instances; and the altitude, longitude, and latitude are missing in others. Since these observatories are not used at present, the missing quantities will be added in a later revision of this report.

D. Instrument-Column 25

This column is used to designate the instrument used. In many cases, there have been two locations of the same observatory. This column will be used to provide the designation of the separate locations.

At present, only two codes are used. The data from the Six-Inch Transit Circle and the Nine-Inch Transit Circle of the U.S. Naval Observatory (USNO) have been given the instrument codes of 6 and 9 , respectively.

E. Catalogue Code-Columns 26 Through 28

The codes presented in Table 2 will designate the catalogues used for obtaining the star positions to which observations were referred.

There are two series of codes: (1) numbers 1 through 105 indicate work performed at the USNO, and (2) numbers 901 through 974 are formed by prefixing the Smithsonian Astrophysical Observatory Catalog tape codes with a 900 . The numbers 990 through 994 were added by T.C. Van Flandern.

F. Observation Parameters-Columns 29 Through 33 and 50

The following type of observation is listed in column 29:

Code	Observation
1	transit
2	micrometer
3	photographic

Table 2. Catalogue abbreviation and information

Code	Abbreviation	Location	Date	Observation	Code	Abbreviation	Location	Date	Observation
1	Abb_{1}	Abbadia	1900	Cat. of 14263 stars	18	BD	Bonn	1855	Bonn Durchmusterung
2	Abbe	Abbadia	1900	Cat. of 13532	19	AG Berl A 75	Berlin	1875	$+20^{\circ}$ to $+15^{\circ}$
				stars	20	AG Berl B 75	Berlin	1875	$+25^{\circ}$ to $+20^{\circ}$
3	Alg	Algiers	1900	Cat. of 9997 stars	21	BX			
4	AG Wash 00	Washington	1900	-14° to -18°	22	2. Bord	Bordeaux	1900	$+10^{\circ}$ to $+18^{\circ}$
5	AG Wash 00	Washington	1900	-14° to -18°	23	CC Bord			
6	AG	Berlin			24	Cbre	Cambridge (England)	1875	$+25^{\circ}$ to $+30^{\circ}$
7	AG W-OH 00	Wien-Ottakring	1900	-6° to - 10°	25	Cbr M	Cambridge	1875	$+50^{\circ}$ to $+55^{\circ}$
8	AG Leip II 75	Leipzig	1875	$+10^{\circ}$ to $+5^{\circ}$			(Mass.)		
9	AG Alb 75	Albany	1875	$+5^{\circ}$ to $+1^{\circ}$					
10	AG Strass 00	Strassburg	1900	-2° to - 6°	26	Cod S	Cordoba	1893	Zodiacal Catalogue and
11	AG Nik 75	Nikolajeiv	1875	$+1^{\circ}$ to - 2°					General
12	Bo gem	Bonn	1866	Ast. Nach. No. 1540	27	C.A.G.			Catalogue
13	AOe 1842	Wien	1919	$+45^{\circ}$ to $+80^{\circ}$	28	Ya	Washington	1860	Third edition
14	4				29	$12 y_{45}$	Greenwich	1845	12-year cata-
15	AW 1850	Wien	1890	$+15^{\circ}$ to $+31^{\circ}$					logue
16	Kon 15	Königsberg	1815	Bessel zone	30	$7 y$	Greenwich	1860	7-year catalogue
17	B.A.C.	British Association Catalogue			31	N7y	Greenwich	1864	New 7-year catalogue

Table 2 (contd)

Code	Abbreviation	Lacation	Date	Observation	Code	Abbreviation	Location	Date	Observation
32	9y	Greenwich	1872	9-year catalogue	69	San ${ }_{1}$	Padova	1840	0° to $+10^{\circ}$
33	H.C.				70	Sievers			
34	Hyderabad								
35	Kli 1860	Göttingen	1891	two valumes	71				
					72	Wien		1860-65	
36						Meridian			
37	Dr. Forster	Berlin			73	Pulk 65	Pulkova	1865	Vols. XII, XIV
		Observatory			74	WB			Weisse, B
38	Lalander	Berlin Observatory			75	Rbg	Pulkova	1875	Romberg Meridian
39	Lam	Munich	1850	2112 small stars					
40	Grb	Groombridge	1810		76	Lei Mer Obs		1865	
41	Lpz II	Leipzig	1875	$+5^{\circ} 10+10^{\circ}$	77	Lorak			
42	Kri	Kristiana	1900	$+65^{\circ} 10+70^{\circ}$	78	W Pal	Wien	1875	3458 stars
43	MaP	Madras	1875	New General	79	Berl	Berlin	1865	2338 stars
				Catalogue	80	CB	Göttingen	1875	-0° to -10
44	M_{1}	Munich	1880		81	Rob	Armagh	1840	5345 stars
45	New Standard	Washington	1850	Clock and	82	Berl A	Berlin	1875	Meridian
	Zodiacal			zodiacal	83	Lamont (3)			
46	W-OH 90	Wien-Ottakring	1890	1238 stars	84	Sans	Trettenero	1860	0° to $+3^{\circ}$
47	Oxf. Plot				85	Bo VI	Bonn	1855	
48	Par $_{1}$	Paris	1845						
49	Si	Schjellerup	1865	-15° to $+15^{\circ}$	86	Kgb		1881	Meridian
50	$\mathrm{Strb}_{2} \mathrm{I}$	Strassburg	1885	2 volumes					obseryation
		Strassburg			87	C_{p}	Cape	$1840-90$	
51	SF_{92}	San Fernando	1892		88		Meridian Obs.		
52	Fundamental		1866	Dr. Gould			Bonn; Scheivar		
	Stars				89	Gl	Glasgow	1870	Grant's list
53	$\begin{array}{r} \text { Toul Bo }{ }^{h} \ldots \\ 1^{h} . \end{array}$	Toulouse	1900	photographic	90	M_{1}	Hamburg	1844	
54	w	Weisse	1825	-15° to $+15^{\circ}$	91	Port			
55	W_{2}	Weisse	1825	$+15^{\circ}$ to $+45^{\circ}$	92	PuM	Pulkova	1855	Meridian
					93	A.We,			
56	Wash Cat.	Washington	1882	73,78	94	Par,	Paris	1860	
57	Hedr	Washingion	1900	zodiacal stars	95	RC_{3}	Cambridge	1875	Third Radcliff
58	Yale	New Haven	1950	21 volumes					
59					96				
60	Weisse Lan XI				97	Karlsruhe			
61	Gr.			observed by	98	Ru_{2}			
				Johnson	99	Par_{3}	Paris	1875	
62	R		1840	Catalogue of Reslhuber	100	Hels	Helsingfors	1875	$+55^{\circ}$ to $+65^{\circ}$
63	Challis				10.1				
64	Do ${ }_{50} \mathrm{M}$	Dorpat	1850	Bonn Durch-	102	Abb_{3}	Abbadia	1900	7443 stars
				musterung XVI	103	Lic Schl			
65	Nautical Alma.		1858	Pisce	104	C.C. Alg			
					105	Dr. Winnecki		1863	
66	RuH	Hamburg	1845			Meridian			
67	Lal	London	1800	F. Baily		Observa-			
68	KZA	Königsberg	1825	1309 stars					

Table 2 (contd)

Code	Abbreviation	Location		Dafe	Observation	Code	Abbreviation	Location	Date	Observation
901	AG	AGK 2	1	1950	85° to 80°	934	24	Yale 24	1950	30° to 25°
901	$A G$	AGK 2	1	1950	80° to 75°	935	25	Yale 25	1950	25° to 20°
901	AG	AGK 2	1	1950	75° to 70°					
902	AG	AGK 2	2	1950	70° to 65°	936	26A	Yale 261	1950	89° to 85°
902	AG	AGK 2	2	1950	65° to 60°	937	26B	Yale 26 II	1950	55° to 50°
		AGK 2				938	27	Yale 27	1950	60° to 55°
903	AG	AGK 2	5	1950	50° to 45°	940	C7	Cape 17	1950	30° to 35°
904	$A G$	AGK 2	6	1950	45° to 40°	941	C8	Cape 18	1950	35° to 40°
905	AG	AGK 2	7	1950	40° to 35°					
906	AG	AGK 2	8	1950	35° to 30°	942	C9	Cape 19	1950	52° to 56°
920	11	Yale	11	1950	10° to 14°	943	CO	Cape 20	1950	56° 10 64°
						948	CZ	Cape Zone	1900	40° to 52°
921	12A	Yale	121	1950	14° to 18°	960	M3	Me 3	1890	64°
922	12B	Yale	12 II	1950	18° to 20°	961	M4	Me 4	1900	-89°
923	13A	Yale	131	1950	20° to 22°					
924	13B	Yale	1311	1950	27° to 30°	970	GC	GC	1950	-89°
925	14	Yole	14	1950	22° to 27°	971	F3	FK 3	1950	
						974	F4	FK 4	1950	$+89^{\circ}$
926	16		16	1950	6° to 10°	990		ZC		
927	17	Yale	17	1950	$-2^{\circ} 10-6^{\circ}$			(Robertson)		
928	18	Yale	18	1950	20° to 15°	991		FK 4		
929	19	Yale	19	1950	15° to 10°			(Dynamical)		
930	20	Yale	20	1950	5° to 1°					
931	21	Yale	21	1950	$+1^{\circ} 10-2^{\circ}$	992		FK 4S (Supplement)		
932	22A	Yale	221	1950	9° to 5°	993		N30		
933	22B	Yale	22.11	1950	10° to 9°	994		AGK3R		

It should be noted that these codes are coordinated with the codes on the radar data card. The numbers 4 and 5 are reserved for use on the radar cards.

Column 30 lists observers from 1866 through 1967. The codes in Table 3 are used to designate the observers for observations made with the Six-Inch Transit Circle and Nine-Inch Transit Circle from 1866 through 1967. It should be noted that the 1967 codes became alphabetical, in agreement with codes already used in USNO cards.

Column 31 is used for clamp designation. Table 4 lists the volumes and source code. ${ }^{3}$ A compilation of the various codes, which have been used to refer to the positions of the clamp, has been made.

For source code 7, the meaning is not ambiguous as to position of the clamp. For source code 8, the introduction to the volume was not available and, therefore, the mean-

[^0]ing of the designation was assumed, based upon similar designations.

In source codes 9 and 0 , the designations 1 and 2 are equivalent to:

$$
\begin{aligned}
& 1=\text { West } \\
& 2=\text { East }
\end{aligned}
$$

For these sources, the General Planetary Format (GPF) code is the same:

$$
\begin{aligned}
& 1=\text { West } \\
& 2=\text { East }
\end{aligned}
$$

Source code 6 has a different designation. It means that the clamp is east (E) or west (W) and the additional I or II refers to the position of the instrument.

The decision to give GPF codes of 3 through 6 to these designations is arbitrary. It allows the peculiarity of this set of observations to be noted.

Table 3. Transit circle observers

Source code	Observer	Observed	Instrument	Observatory	GPF ${ }^{\text {a }}$ code	Source code	Observer	Observed	Instrument	Observatory	$\begin{aligned} & \text { GPF }^{\mathbf{a}} \\ & \text { code } \end{aligned}$
N	S. Newcomb	1866-1891		USNO	0	HD	J. C. Hammond	1925-1933	6 in .	USNO	0
H	A. Hall	1866-1867		USNO	1	Ws	C. B. Watts	1925-1941	6 in .	USNO	1
HA	W. Harkness	1866-1891		USNO	2	MY	W.C. Myers	1925-1926	6 in .	USNO	2.
E	J. R. Eastman	1866-1891		USNO	3	WI	J. D. Wise	1925-1927	6 in .	USNO	3
HN	E. S. Holden	1866-1891		USNO	4	WL	J. E. Willis	1926-1933	6 in .	USNO	4
F	E. Frisby	1866-1891		USNO	5	WH	G. C. Whittaker	1928-1941	6 in .	USNO	5
R	J. A. Rogers	1866-1867		USNO	6	LY	U. S. Lyons	1928-1932	6 in .	USNO	6
T	C. Thirion	1866-1891		USNO	7	HF	A. H. Hadfield	1928-1929	6 in .	USNO	7
A	C. Abbe	1866-1891		USNO	8	SS	B. P. Sharpless	1929-1941	6 in .	USNO	8
S	O. Stone	1870-1875		USNO	9	AD	A. N. Adams	1931-1941	6 in .	USNO	9
SK	A. N. Skinner	1873-1875		USNO	A	SW	N. C. Seewald	1936-1940	6 in .	USNO	A
S	A. N. Skinner	1876-1891		USNO	A	MI	A. H. Mikesell	1936-1937	6 in .	USNO	B
P	H. M. Paul	1866-1891		USNO	B						
PR	H. S. Pritchett	1866-1891		USNO	C	K	J. W. Kitchens	1946-1948	6 in.	USNO	0
R	M. Rock	1880-1883		USNO	D	SK	R. E. Strickler	1948-1948	6 in .	USNO	1
W	W. C. Winlock	1866-1891		USNO	E	DU	R. L. Duncombe	1942-1945	6 in .	USNO	2
H	A. Hall, Jr.	1889-1891		USNO	F	BL	S. M. Bestul	1942-1948	6 in .	USNO	3
						AD	A. N. Adams	1941-1948	6 in .	USNO	4
8	E. A. Boeger	1901-	6 in.	USNO	0	SC	F. P. Scott	1945-1947	6 in.	USNO	5
BR	W. M. Brown	1901-	6 in .	USNO	1	ST	J. Steinheider	1944-1948	6 in.	USNO	6
El	W. S. Eichelberger	1901-	6 in .	USNO	2	MI	A. H. Mikesell	1945-1947	6 in.	USNO	7
HD	J. C. Hammond	1901-1903	6 in .	USNO	3	WS	C. B. Watts	1941-1948	6 in .	USNO	8
HH	W. S. Harshman	1901-	6 in .	USNO	4	WH	G. C. Whitfaker	1941-1942	6 in .	USNO	9
K	T. I. King	1901-	6 in .	USNO	5	SS	B. P. Sharpless	1941-1941	6 in.	USNO	A
LA	G. K. Lawion	1901-	6 in .	USNO	6	GO	D. S. Goalwin	1941-1942	6 in.	USNO	B
L	F. B. Littell	1901-1903	6 in .	USNO	7						
R	H. L. Rice	1901-	6 in .	USNO	8	0	J. K. Gleim	1951-1955	6 in.	USNO	0
5	A. N. Skinner	1901-	6 in .	USNO	9	1	J. W. Kitchens	1949-1955	6 in .	USNO	1
u	M. Updegraff	1901-1903	6 in .	USNO	A	2	R. E. Strickler	1949-1950	6 in .	USNO	2
Y	E. I. Yowell	1901-	6 in .	USNO	B	3	S. M. Bestul	1950-1955	6 in .	USNO	3
						4	A. D. Allen	1949-1955	6 in .	USNO	4
U	M. Updegraff	1909-1910	6 in.	USNO	0	5	A. N. Adams	1949-1955	6 in.	USNO	5
L	F. B. Littell	1910-1911	6 in.	USNO	1	6	F. P. Scott	1949-1949	6 in.	USNO	6
HD	J. C. Hammond	1911-1918	6 in .	USNO	2	7	J. L. Schombert	1950-1955	6 in.	USNO	7
FN	M. Frederickson	1909-1918	6 in .	USNO	3	8	N. E. Hanson	1949-1949	6 in.	USNO	8
T	E. D. Tillyer	1909-1911	6 in .	USNO	4	8	R. W. Rhynsburger	1952-1955	6 in.	USNO	9
PK	R. M. Packard	1909-1909	6 in.	USNO	5	9	C. B. Watts	1949-1951	6 in.	USNO	A
R	D. Rines	1911-1914	6 in .	USNO	6						
WY	C. D. Wylie	1913-1918	6 in .	USNO	7	0	J. K. Gleim	1956-	6 in.	USNO	0
AN	R. Aston	1914-1915	6 in .	USNO	8	1	J. W. Kitchens	1956-	6 in.	USNO	1
M	H. R. Morgan	1913-1926	9 in .	USNO	0	2	W. T. Toland	1956	6 in .	USNO	2
P	J. Pawling	1913-1926	9 in .	USNO	1	3	S. M. Bestul	1956-	6 in.	USNO	3
EP	J. B. Eppes	1913-1914	9 in .	USNO	2	4	A. D. Allen	1956-	6 in .	USNO	4
S	L. P. Steele	1914-1917	9 in .	USNO	3	5	A. N. Adams	1956-	6 in .	USNO	5
SR	P. Sollenberger	1914-1919	9 in.	USNO	4	6	D. K. Scott	1956-	6 in.	USNO	6
BN	H. E. Burton	1919-1925	9 in .	USNO	5	7	M. S. Kalish	1956-	6 in .	USNO	7
RY	G. M. Raynsford	1919-1926	9 in .	USNO	6	8	R. W. Rhynsburger	1956-	6 in.	USNO	8

Table 3 (contd)

Source code	Observer	Observed	Instrument	Observatory	GPF ${ }^{\text {a }}$ code	Source code	Observer	Observed	Instrument	Observatory	$\begin{aligned} & \text { GPFa } \\ & \text { code } \end{aligned}$
9	G. E. Pease F. E. Followill F. S. Gauss B. L. Klock	$\begin{aligned} & 1956- \\ & 1961- \\ & 1962- \\ & 1960- \end{aligned}$	6 in. 6 in . 6 in. 6 in.	USNO USNO USNO USNO	9 A B C	1	F. S. Gauss	1965-	6 in.	USNO	1
						2	W.T. Toland	1965.	6 in.	USNO	2
						3	F. J. Giovane	1965-	6 in .	USNO	3
						4	B. L. Klock	1965-	6 in .	USNO	4
						5	A. N. Adams	1965	6 in .	USNO	5
1	F. S. Gauss	1963-	6 in.	USNO	1	6	D. K. Scott	1965 -	6 in .	USNO	6
2	W. T. Toland	1963-	6 in.	USNO	2	7	H. E. Durgin	1965-	6 in .	USNO	7
3	S. M. Bestul	1963-	6 in .	USNO	3	8	R. W. Rhynsburger	1965-	6 in.	USNO	8
4	8. L. Klock		6 in .	USNO	4	9	J. R. Sievers	1965-	6 in.	USNO	9
5	A. N. Adams	1963	6 in .	USNO	5						
6	D. K. Scott	1963-	6 in.	USNO	6	A	A. N. Adams	1960-1967	6 in.	USNO	
7						C	H. E. Crull	1966-1967	6 in.	USNO	C
7	M. S. Kalish			USNO	7	D	H. E. Durgin	1966-1967	6 in .	USNO	D
8	R. W. Rhynsburger	1963	6 in .	USNO	8	G	F. S. Gauss	1966-1967	6 in .	USNO	G
9	G. E. Pease	1963-	6 in .	USNO	9	H	P. D. Hemenway	1966-1967	6 in.	USNO	H
1	F. S. Gauss	1964-	$6 \mathrm{in} .$	USNO	1	1	J. R. Sievers	1966-1967	6 in.	USNO	1
2	W. T. Toland			USNO	2	J	E. S. Jackson	1966-1967	6 in .	USNO	J
3	S. M. Bestul	1964	6 in.	USNO	3	K	B. L. Klock	1966-1967	6 in .	USNO	K
4	B. L. Klock		6 in.	USNO	4	L	R. E. Laubscher	1966-1967	6 in .	USNO	1
5	A. N. Adams	1964-	in.	USNO	5	R	R. W. Rhynsburger	1966-1967	6 in.	USNO	R
6	D. K. Scott	1964-	6 in.	USNO	6	S	C. A. Smith, Jr.	1966-1967	6 in.	USNO	S
7	W. Milkey		6 in.	USNO	7	T	W. A. Toland	1966-1967	6 in.	USNO	T
8	R. W. Rhynsburger	1964-	6 in.	USNO	8	W	H. S. Liszt	1966-1967	6 in.	USNO	W
9	G. E. Pease	1964-	6 in .	USNO	9	χ	M. A. Seeds	1966-1967	6 in .	USNO	X
						Y	T. E. Corbin	1966-1967	6 in.	USNO	Y
0	P. D. Hemenway	1965-	6 in .	USNO	0	z	F. J. Giovane	1966-1967	6 in.	USNO	Z

Table 4. Clamp designation for Six-Inch Transit Circle

Volume	Source code	Designation	GPF code
XI	6	EI, EII, WI, WII	$\begin{aligned} & \mathrm{EI}=3, \mathrm{EII}=4 \\ & \mathrm{WI}=5, \mathrm{WII}=6 \end{aligned}$
XIII	7	E, $W^{\text {a }}$	$E=2, w=1$
XV, Part V	8	1. 2	1. 2
XVI, Part I	9	1,2	1,2
XVI, Part ill	0	1,2	1,2
$\begin{aligned} & \mathbf{a}=\text { East } \\ & \mathbf{w}=\text { West } \end{aligned}$			

Circle designations are presented in column 32; RALIMB designations in column 33; DELIMB in column 50 (see Table 5). Observations of the sun, Mercury, and Venus for the years 1911 through 1918 are found in source code 6. The current method of circle and limb designations was not used. The codes WI, WII, EI and EII are listed under instruments. This code has been translated into GPF code for clamp designation. In the case of RALIMB and DELIMB, the codes I, II, and * are

Table 5. Limb codes for meridian observatories

Volume	Source code	Circle	RALIMB	DELIMB
XI	6 see below $6=$ Venus			
			1, 11,*	N, S
XIII	$\begin{gathered} 7=\text { Mercury, } \\ \text { Jupiter } \\ 7=\text { Saturn, } \\ \text { Uranus, } \\ \text { Neptune } \end{gathered}$	None	1, II, C	N, S, C
			C	C
XV, Part V	$\begin{aligned} & 8=\text { sun } \\ & 8=\text { planets } \end{aligned}$	1 to 5	-	-
		1 to 5	1, 2, 3	1,2,3
XVI, Part I	9	1 to 10	1, 2, 3	1, 2, 3
XVI, Part III	0	1 to 3	1, 2, 3	1, 2, 3
XIX, Part 1	1	1 to 3	1,2,3	1,2,3
Circulars 103, 105. 108			1, 2, C	N, S, C
$\begin{aligned} & 105,108, \\ & 115,118 \end{aligned}$				

used for Venus. The code I is designated for the preceding limb; II is designated for the following limb; and * means center of the portion of illuminated disk, adjacent to the bright limb, observed in right ascension.

The GPF codes are as follows:

Code	Designation
1	Clamp west; preceding limb; north limb
2	Clamp east; following limb; south limb
3	Center (of the disk of a planet)

These codes are equivalent to the same numbering system used throughout the publications of the USNO. Additional designations are equivalent as follows:

	Code	GPF Code
I	N (N)orth limb	1
II	S (S)outh limb	2
C	C (C)enter	3

If the number (1-2) or ($\mathrm{I}-\mathrm{II}$) is used together in a limb code, the GPF code is 4 .

For the codes designating the circle, the numbers are identical for both the USNO and GPF codes except for source code 9 (Ref. 1), where the circle position 10 will be designated as A.

G. Right Ascension-Columns 34 Through 42

The right ascension is recorded in hours, minutes, and seconds. Two columns for hours and two columns for minutes are provided along with five columns for seconds and decimals of a second. The decimal point is implied between the second and third columns.

The values placed on the card are exactly as found in the respective publications listed in Refs. 1 through 10.

H. Equinox-Columns 43 and 60

The following information is listed in columns 43 and 60:
$0=$ true equator and equinox of date
$1=$ mean equator and equinox of beginning of year
$2=$ mean equator and equinox of beginning of next year
$3=$ mean equator and equinox of 1950.0
$4=$ mean equator and equinox of 1925.0
$5=$ mean equator and equinox of 1900.0
$6=$ mean equator and equinox of 1875.0
$7=$ mean equator and equinox of 1850.0
$8=$ mean equator and equinox of 1800.0
$9=$ mean equator and equinox of 1750.0

Codes A through Z will designate additional equinoxes, as necessary.

I. Right Ascension (Comparison)-Columns 44 Through 49

This field is used to record the observed minus computed $(\mathrm{O}-\mathrm{C})$ data which is given along with the observation. It is based upon the comparison ephemeris used by the publisher of the data.

The decimal point is implied between columns 46 and 47.

J. Declination-Columns 51 Through 59

The declination is recorded in degrees, minutes, and seconds of arc. Three columns are provided for a sign plus two significant figures of degrees. Two columns are provided for minutes and four columns for seconds. The decimal point is implied between the second and third column of the seconds.

K. Declination (Comparison)-Columns 61 Through 65

This field contains the declination comparison. A sign is placed in column 61, and the decimal point is implied between columns 63 and 64. The notes on the right ascension comparison also hold for this field.

L. Year-Columns 73 Through 76

The calendar year of the observation is recorded here for quick reference.

M. Source Number-Columns 77 Through 80

A source number provided by the agency punching the cards is recorded. This allows the origin of the data cards to be traced. The convention adopted is to precede the source number with a D for Dahlgren (NWL)-punched cards, a J for JPL, and U for USNO.

III. Radar Card

The radar data card is shown in the Appendix (Fig. A-2).

A. Planet Number-Columns 1 Through 4

The codes for the radar card are identical to those used in the optical card.

B. Julian Date-Columns 5 Through 21

The time tags associated with a radar observation must be given to the full accuracy. The Julian date must have at least 8 decimal digits.

C. Observatory Codes-Columns 22 Through 24 and 26 Through 28

The radar card observatory codes are listed in Table 6. These two fields on the card contain a code identifying the site where the data were taken. The first field is used when a single antenna both transmits the signal and receives the echo. The second field is necessary when two sites are used to obtain the range point. The first field contains the code which refers to the transmitter and the second contains the code which refers to the receiver location.

Column 25, which is located between the two fields, has two codes which differentiate between mono-static and bi-static ranging:

Code	Ranging
1	mono-static (the transmitter and receiver were coincident) bi-static (the transmitter and receiver were located at separate sites)

D. Type of Observation-Column 29

The following codes apply to the type of observation:

Code	Observation
4	Radar (AT)
5	Radar (UT)

E. Range-Columns 30 Through 42

The two-way range delay to the respective planets is recorded in microseconds. A decimal point is implied between columns 41 and 42.

Table 6. Radar transmitter and receiver codes

Code	Location	Name	Instrument	Radius, km	Geodetic latitude, deg	Geocentric ${ }^{\text {a }}$ latitude, deg	East longitude, deg
010	Arecibo, Puerto Rico	Cornell University Arecibo Ionospheric Observatory	Antenna ${ }^{\text {b }}$	6376.5602	18.343389	18.228761	293.246972
020	Goldstone, Calif.	California Institute of Technology (JPL) 1961 data ${ }^{\text {e }}$	Transmitter radius	6372.0362		35.119983	243.195194
021		1961 data $^{\text {c }}$	Receiver radius	6372.0355		35.206019	243.151750
022		California Institute of Technology (JPL) Venus Site—DSS $13^{\text {d }}$	Antenna	6372.1770	35.2477189	35.0665981	243.2059925
023		210-ff Mars Site-DSS 14^{4}	Antenna	6372.0527	35.4259278	35.2444061	243.1113473
030	Tyngsboro, Mass ${ }^{\text {e }}$	Lincoln Laboratories-Massachuselts Institute of Technology Haystack site	Antenno	6368.5517	42.623194	42.431518	288.511333
031	Westford, Mass.	Lincoln Laboratories-Massachusetts Instifute of Technology Millstone radar	Antenna	6368.5638	42.617333	42.425661	288.508611
040	Crimea	Crimea Tracking Station, USSR	Antenna	6367.416	-	44.9801139	+33.25
${ }^{\text {a }}$ Geocentric coordinates computed using the following values: $\rho=6378.165 \mathrm{~km}, 1 / \mathrm{f}=298.3$. ${ }^{b}$ Antenna implies that this location was both a transmitter and a receiver. © Muhleman, D. O., Lawson, C. L., Holdridge, D. B., O'Handfey, D. A., JfL Radar Range and Doppler Observafions of Venus, 1961-1966, p. 4. Technical Report 32.1123, Jet Propulsion Laboratory, Pasadena, Calif. dJPL Coordinates for Goldstone: DSS 13 and DSS 14, Jay Curtright, May 1. 1968. eMassachusetts Institute of Technology, Lincoln Laboratory, Site Positions, Millstone, Haystack and Arecibo Radio Observatories, May $28,1968$.							

This range measurement is recorded exactly as published. The units of time delay may therefore be recorded in Universal Time seconds (nonuniform) or Atomic Time seconds (uniform).

F. Standard Deviation (Range)-Columns 43 Through 47

The quoted standard deviation of the observation is recorded in microseconds. The decimal point is implied between columns 46 and 47 .

G. Observations-Column 48

The following coded information is listed in column 48:

Code	Observations
1	Range
2	Doppler
3	Range and Doppler
4	Range difference

This code is used to differentiate the types of radar observation recorded on the radar card.

H. Doppler-Columns 49 Through 57

This field is distinct from the range field because it is possible to have both range and Doppler measurements for the same epoch. The unit of measurement used is hertz. The decimal point is implied between columns 56 and 57.

I. Standard Deviation (Doppler)-Columns 58 Through 62

The standard deviation of the Doppler (in hertz), is taken from the publication or manuscript and recorded in this field. The decimal point is implied between columns 60 and 61.

J. Frequency Offset-Columns 63 Through 66

This field contains the frequency offset from the basic atomic frequency of cesium 133. The frequency offset is made to maintain the Atomic Time scale as close as possible to the Universal Time scale, which is based upon the rotation of the earth. Although the offsets are internationally agreed upon and take effect at 0^{h}, the beginning of the new year, the various radar sites may elect to maintain a given frequency for a period of time beyond the official date.

In some cases the frequency offset may not even be that which was internationally agreed upon. This correction must be made to a range value so as to make the units of time uniform (AT).

K. Frequency-Columns 67 Through 72

The frequency of the transmitter is recorded in megahertz. The data are right-justified in the field.

L. Year-Columns 73 Through 76

The calendar year of observation is recorded herein for quick reference.

M. Source Number-Columns 77 Through 80

The basis for the data in this field is the same as for the optical card. The list of source codes for JPL-punched radar observations is presented in Table 7.

Table 7. Source codes for JPL-punched radar observations

Code	Source
J001	Pettengill, G. H., Dyce, R. B., and Campbell, D. B., "Radar Measurements at 70 cm of Venus and Mercury," Astron. J., Vol. 72, No. 3, 1967
J002	Private communication, Gold, T., and Crawford, D., Cornell University, Sept. 20, 1967.
J003	Lawson, C. L., and Holdridge, D. B., Compression of JPL Venus Radar Data, Technical Memorandum 155, Section 314, Computation and Analysis Section, Jet Propulsion Laboratory, Pasadena, Calif., Feb. 3, 1967
1004	Evans, et al., "Radio Echo Observations of Venus and Mercury at 23 cm Wavelengths," Astron. J., Vol. 70, No. 7, 1965
$J 005$	Dyce, R. B., and Pettengill, G. H., "Radar Observations of Mars and Jupiter at $70 \mathrm{~cm}, "$ Astron. J., Vol. 72, No. 6, 1967
J006	Evans, et al., "Radar Observations of Venus at 23 cm in 1965/1966," Astron. J., Vol. 71, No. 9, 1966
J007	Private communication, Millstone, Smith, W., Lincoln Laboratory with Melbourne, W. G., JPL, Oct. 1967.
1008	Private communication, Haystack, Smith, W., Lincoln Laboratory with Melbourne, W. G., JPL, Oct. 1967.
1009	O'Handley, D. A., Reconstructed Data Preliminary, Technical Manual 311-39, Jet Propulsion Laboratory, Pasadena, Calif.
1010	Mars-Private communication, W. B. Smith/listing of Shapiro
1011	Mercury-Private communication, R. Goldsfein, March 11, 1968
1012	Venus-Old observations

IV. Modified Card Format

The modified card format shown in the Appendix (Fig. A-3) is identical to the format of the optical card with the following exceptions.

A. Modified Card Format-Columns 44 Through 49 and 61 Through 65

These columns contain the ($\mathrm{O}-\mathrm{C}$) residuals of the observations compared with Mercury ephemeris used at the USNO. The first field is right ascension and the second is declination.

B. Modified Card Format-Columns 66 Through 67 and 68 Through 69

The weights for right ascension and declination, as assigned by Prof. G. M. Clemence, are found in these fields, respectively. If the weights were fractional, asterisks are stored in the columns.

At present, the source numbers (columns 77 through 80) of these Mercury observations are assigned the code U001.

References

1. Publications of the U.S. Naval Observatory, Washington, D.C., Second Series, Vol. XVI, Part I, pp. 59-203, U.S. Naval Observatory, Washington, D.C., 1949.
2. Publications of the U.S. Naval Observatory, Washington, D.C., Second Series, Vol. XI, pp. 153-179, U.S. Naval Observatory, Washington, D.C., 1927.
3. Publications of the U.S. Naval Observatory, Washington, D.C., Second Series, Vol. XIII, Part II, pp. 101-155, U.S. Naval Observatory, Washington, D.C., 1933.
4. Publications of the U.S. Naval Observatory, Washington, D.C., Second Series, Vol. XVI, Part III, pp. 395-445, U.S. Naval Observatory, Washington, D.C., 1952.
5. Publications of the U.S. Naval Observatory, Washington, D.C., Second Series, Vol. XIX, Part I, pp. 47-110, U.S. Naval Observatory, Washington, D.C., 1964.
6. Observations of the Sun, Moon, and Planets; Six-Inch Transit Circle Results, 1956-1962, Circular No. 103, U.S. Naval Observatory, Washington, D.C., Oct. 9, 1964.
7. Observations of the Sun, Moon, and Planets; Six-Inch Transit Circle Results, March 8, 1963-July 2, 1964, Circular No. 105, U.S. Naval Observatory, Washington, D.C., Nov. 27, 1964.
8. Observations of the Sun, Moon, and Planets; Six-Inch Transit Circle Results, July 7, 1964-Dec. 24, 1964, Circular No. 108, U.S. Naval Observatory, Washington, D.C., July 1, 1965.
9. Observations of the Sun, Moon, and Planets; Six-Inch Transit Circle Results, Jan. 11, 1965-April 11, 1966, Circular No. 115, U.S. Naval Observatory, Washington, D.C., Feb. 1, 1967.
10. Observations of the Sun, Moon, and Planets; Six-Inch Transit Circle Results, May 29, 1966-July 10, 1967, Circular No. 118, U.S. Naval Observatory, Washington, D.C., Jan. 5, 1967.

Appendix

Card Bibles

Fig. A-1. Optical card-revision 2

Fig. A-2. Radar dafa card-revision 3

Fig. A-3. Optical card for USNO Mercury optical observations-revision 2 (modified)

[^0]: ${ }^{3}$ Informal set of explanatory notes by Dr. C. Oesterwinter, NWL, Sept. 15, 1967.

