General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

亿そ" researoh onnter

IV BETA-BREMSSIRAHLUNG SPECTROMETER
FOR GEMINI XII
Contract No. NASG-5765
Final Report
0-71.000/7R-1.
March, 1967

Prepared by: S. S Pan man Approved by:

P. R. Rural

Research Associate

W. J. Rainwater

Research Scientist

table of Contents

Page
INIRODUCTION 1
THEORY OF OPERATION 3
GENERAL 3
PARTICLE DETECTION PROCESSES 3
EUECTRONICS 4
ELECTRICAL DESIGN 5
GENERAL DESIGN SPECIFICATIONS 5
PHOTOMULITPLIER CIRCUIT (N100-10900). 5
LINEAR AMPLIFIER (NIOO-13900) 7
HIGH SPEED LEVEL DETECTORS (N100-12900) 8
LOGIC AND OUIPUT CIRCUITS (N100-13900) 9
LOW VOLTAGE POWER SUPPLY (N100-14900) 9
TESTING AND MONITORING 11
PACKAGE DESIGN 12
DESIGN SPECIFICATIONS 12
EXTERNAL DESIGN 12
INTERNAL DESIGN 12
ANALYSIS OF DATA 16
DATA REDUCTION EQUATIONS 16
EXPERIMENTAL DISTRIBUTIONS 17
BETA RESPONSE MATRIX R_{r} 19
RETA EFFICIENCY MATRIX ϵ 20
BETA CROSS-TALK RESPONSE MATRIX C β 21

TABLE OF CONIENNS (continued)

Page

BETA CROSS..TALK RFPTCIENCY MATRTX ρ_{β} 22
GAMMA RESPONSE MATRIX R_{r} 22
GAMMA RHFTICIENCY MATRIX a_{r} 22
GAMMA CROSS.TALK RESPONSE MATRTX C 24
GAMMA CROSS-IALK EPFICIENCY MATRTX ${ }^{\circ} r$ 24
TEST SPECTIRA 24
Beta Spectrum 25
Bremsstrahlung Spectrum 26
FINAL SYSTHM CALIBRRATION 26

INTRODUCTION

Throughout the demini program a number of radiation monitoring devices have been employed both inside and outside the spacecraft to measure radiation exposure to the astronauts. These have been both active and passive devices, sensitive to a variety of radiations expected in near earth orbit. In general It has been the object of these devices to determine the spectra of radiations outside the spacecraft and the physical dose due to those radiations inside the spacecraf't. However, on Gemini X a bremsstrahlung spectrometer was mounted inm side the cabin to better define the radiations inside the craft, and as a result of electron penetration data on the Gemini hatch, a combination betabremsstrahlung spectrometer was flown inside the vehicle on Gemini XII. It is this latter device that will be described in detail in this report.

Data relating to electron penetration through the Gemini III hatch was obtained early in 1966 at the LIV Research Center using a Van de Graaff pryticle accelerator. This data indicated that electrons with energies above 1.0 MeV lost only about 0.7 MeV in the hatch and entered the spacecraft with their remaining degraded energy. It became important to determine the relative intensitles of electrons and x-rays inside the spacecraft. Since LTV, under Contract NAS9-4013, provided a device to NASA for eveluation, which was capable of measuring both electrons and x-rays in a single instrument, it was decided to piace that device inside Gemini XII. The flight instrument utilized an original principle devised by LIV scientists for separating and analyzing electrons and x-rays (a patent has been applied for covering this apparatus) and only those design changes necessary to conform to the physical, interfacial, and environmental requirements of filght were made. The unit was designed to operate with a NASA modified data processor unit of the type flown with the bremsstrahlung experiment on Gemini X. The major design difficulties in the program were encountered in mating the LTV unit with the data processor. The fabrication, calibration, and calibration data reduction efforts in this program were carried out under National Aeronautics and Space Administration Manned Spacecraft Center contract NAS9-5765.

The Beta-Bremsstrahlung unit, serial number 3, was successfully flown on

Gemini XII November 11-15, 1966. Data was received as planned during the flight and post filght calibration of the instrument demonstrated that the function of the unit and its data processor was identical to that prior to launch. Data was not available in a form suitable for analysis at the time of publication of this report.

THEORY OF OPFRATION

GFNERAL

The IIV Beta-Bremsstrahlung spectrometer sensor unit is a scintiliation device which was designed to analyze electron and bremsstrahlung radiations in the region from approximately 0.2 to 4.0 MeV . It combines the application of a complex scintillation crystal assembly with high speed electronic circuitry to identify and separate the two radiations when the device is used in a mixed field.

PARTICLE DETFCHION PROCESSES

The basic principle of a scintiliation sounter employs the fact that the interaction of radiation with various materiais produces excitation or ionization which is followed by the emission of light. This light is converted, usually by a photomultiplier tube, into an electronic 3ignal. Dfferent materials have different phosphorescont decay times which vary over several orders of magnitude. Particle identification was made possible in the BetaBremsstrahlung spectrometer by the use of two such materials in the configuration shown in Drawing N1OO-10001. The plastic scintillation material has a decay time of approximately 3 nanoseconds while that of the thallium activated cesium-iodide is 1.1 microseconds. Gince electrons can enter only through the collimator shown in the drawing they must pass through the thin plastic crystal before entering the CsI. On the other hand, a gamma ray may enter from any direction and those passing through the plastic have a very low interaction probability in the material. Typlcal pulse shapes for electrons and gammas are shown in Fig. I for the curves labeled "Anode". The fast negative spike in the upper figure resulted from the electron interaction with the plastic and the remainder of the trace corresponds to energy lost in the CsI. No spike is seen for gammas in the lower figure because they interact only with the CsI. It is true, however, that some gamma interactions can occur in the plastic, plus the fact that a small number of the electrons which are produced by interactions in the CsI can escape and traverse the plaetic. Due to the relative volumes of the two scintillators and the dependence of atomic number of interaction probabilities, the chance of particle confusion from this mechanism is smali. To allow particle separation the pulse from
the photomultiplier anode was shaped with a shorted delay line giving the resultant gignals shown in Fig. 2. The aifference in these reaultant signals for gamman and betas is seen to be the presence of the positive spike prom duced by the betar. These types of signals were mplified, as will be deseribed below, and utilized for particle identification in the Beta-Bremsstrahlung apectrometer.

ULECTRONICY

A seneral explanation of the operation of the electronics may be made by referring to Drawing $N 100-10900$ which indicates in block form the relam tive assoniation of the individual electronic circuits. The linear signal, originating at the last dynode of the photomultiplier tube, pin 'i, was amplified by the linear amplifier, circuit As. From there the signal went direct$1, y$ to Pl for interconnection to the analyzer-processor.

The particle identification algnal originated at the anode of the photomultiplier tube and was shaped by the delay Ine before it entered the high speed amplifier, circuit Al. The amplified signal then went to the upper level detector, ULD, and the lower level detector, LID, circuits $A 2$ and $A 3$ respec. tively. The outputs of these circuits then went to the logic circuit, A4, where the particle identification signals, gamma inhibit and beta enable, were produced. The particle identification Bignals went directiy to Fl for interconnection to the analyzer-processor.

Monitoring of all the apectrometer output signals, was possible through interconnections provided at $P R$, the AGF test connector.

A detailed discusaion of the operation of these circuits plus the power supply and control circuits is given in the following paragraphs.

FLECIRIUAL DEMICN

GENERAL DFITIN SPECIFICAIIONTS

The spectrometer wan required to operate within the following final dealgn specifications over a temperature range of 0° to 120° Fahrenheit from a filtered but unregulated power solirce of 26 ± 4 volts. The Linear aignal was required to have nominal rise and fall time constants of $1 . ? \mu s$ and μ resnestivel, and a dynamic range of 7 volts. It was required to have a senstivity of approximately 1.6 volts/MeV with a 3 tability of $\pm 7 \%$ over the range of temperature and input voltage. The gating outputs requirel a rise and fall time of apnroximately $1 \mu s$ when loaded with the analyzer-processor and a width of approximately $\beta \mu \mathrm{s}$. The amplitudes required for the lofic levels were 4.5 ± 0.5 volts for the inhibited condition and 0.2 ± 1.2 volts for the uninhibited condition. These parameters were attained over the entire environmental conditions as evidenced by the succeastul completion of the qualification testing at NASA-MSC.

PHOTOMULITPLIFR CIRCUIT (N100-10900)

The photomultiplier circuitry consisted of an RCA-4460 photomultiplier, a Pul.se Engineerlng Corp. PEj400 photomultiplier power supply, a shorted delay line, and the necessary circuitry to 'st and stabilize the required phototube gain. The Lineas signal was derived from the last dynode current, acrosu the effective dynode capacitance to ground. The high speed signal was derived from the anode current driving the delay line and high speed amplifier. In order to minimize effects of photocathode nolse, the "Comnetic" magnetic shield surrounding the photomultiplier was elevated to photocathode potential through a high impedfance filter network.

The RCA-4460 was pioked due to its small size, ruggedness, and simiJarity to tubes used in the past in laboratory applications. The PE 5400 power supply was utilized because of its past history as reliable space hardware. The PF 5400 was designed to operate directly drom a 26 ± 4 volt power supply and was compatible with the sensor unit power specifications. Additional filtering was required on some of the power supply outputs and was accomplished by the addition of external capacitors.

The output voltage of the power supply, which directly determined the gain of the photomultiplier, wh; cuntrolled by the network attached to pins I and a of the $\mathrm{F}: 540$ power supply. Feedbeck through irs and (Ri provided the voltage control feedbaik from the high voltage circuit. lue to the highly unstable and non-linear ga!n charasterintic of phototubrg with temperature, It was necessary to kenorate an external temperature aensitive aignal which would vary the hif, voltage apnlied to the phototube in a manner that would compensate for eain shilta in the photomultiplier. For example, if the voltages on the phototube were held enstant, wain change of approximately 300 h over the temperature ranfe of $0^{\circ} \mathrm{F}$ to $10^{\circ} \mathrm{F}$ would reault. For compensation, a correction ourrent was fed into the feedback summing junction of the PF 5400 power supniy, Pin 1 , which, along with the voltage deedback network, would keep the system gain constant. A network was then designed to create a temperature corrolated surront, which closely matched that necessary for constant system gain. Bince the temperature sensitive element and the photom tube did not have precise absulute values at a given temperature, it was necessary to select the network resistance ralues for each individual sensor unit. High stability resistors were utilized to assure that the network rem tainad its characteristics throughout its iffe and expected environment. The characteriatics of the phototube and the correstion network were such that rather simple selection techniques were developed which stabilized the system to within the design Limits, $\pm 5 \%$. A series of adjustments were made at room temperature and the temperature extremes. Values of the various components were then picked which would give the best temperature compensation within the desjogn limits.

The characteristic shape of the linear pulse was determined solely by the impedance seen by the last dynode. The pulse amplitude was primarily a function of the capacitance from the last dynode to ground, which consisted of C2 (N100-13900), about 30 pi of cable capacitance, and a few pf of stray capacitance. This gave a total capacitance of approximately 220 pf . The decay time of the pulse was determined by the above capacitance shunted by the effective discharge resistance across it. This consisted of R3 (N100-10900) in parallel with the input impedance of the linear amplifier. This gave a decay time constant of about $8 \mu \mathrm{~s}$. The rise time of the pulse was approximately
1.2 uc, which way the ermbinotion of the l.d w GeT lignt decay conotant and the a mis deary monstant.

The high gpeed pulse, used dox particle fdentification, was derived from the anode surrent. Thts current ditreo otmultaneounly a chorted delay line and the hifh oneed amblifier input. The chargeterintic pulse shapeo, as seen at the amplifier input, are shown in Pig. i. The puloe of interest, the postive spile recultinf, from a reflected beta interuction, had approximately a 3 no rise time and a 10 no deray time. It was preceeded by a negative puloe correoponilne to the nommal alenal lasting for 10 ng which was twice the time of rropagation of the delay line.
$I, I N B A M P L T F T M E(N 19-1390)$
At the bersmane so the nrogram the output sensitivity requirement was 1. $\partial 5$ volto ner Mev. In order to obtain thic original sengitivity, the linear amplifier was deaigned with a maximum gain of 10.5 , a dynamic range of 5.5 volts, and a decay constant $f^{5} 5$ his. After the compatibility tests with the analyzer-processor, it was determined that proper operation required an output pulse with an β decay constant, a i volt dynamic range, and an output sensitivity of approximately 1.6 volts per MeV. In order to increase the input sensitivity of the amplifier and the decay time constant of the output, the amplifier gain had to be increased. This was accomplished by increasing the inverter gain by approximately a factor of 3 . Since the dynamic range of the amplifier was sufficient, no change was required to mest the new dynamic range specifications. The actual output sensitivity was adjustable through the use of an adiustment potentiometer, $R 5$.

The circuit utillzed had very good linearity and stability and a low output impedance to minimize the effect of load impedance. The instability and non-linearity characteristics were within $\pm 0.6 \%$ of full scale over the temperature range oi $-10^{\circ} \mathrm{F}$ to $130^{\circ} \mathrm{F}$ and unmeasurable with the equipment utilized over the temperature range of $-10^{\circ} \mathrm{F}$ to $110^{\circ} \mathrm{F}$ (see Figure 2). This was well within the design limits of $\pm 1 \%$ full scale maximum deviation of the best straight line. The output impedance of the amplifier was matched as closely as possible to the impedance of the interconnection cable used between the sensor and anaiyzer-processor by the series addition of 30 ohms,

N19, in the elrcuttry, Mhio was done to minimize reflection nroblens between the two untto. The amplisier output was capaeitively coupled to prevent damage if the output Isne wean innuvertenti, ohorted.

HIFH TPPED AMPITFIER (M100-11900)
The high-opeed amolitier wan degigned to amplify the poaitive output Irom the delay line netwonk to such a level that amplitude detections could be performed on the pulses. The amplifiex was dealened with limited bandwidth to minimize accidental detection due to erass, time variant fluctions on the aienal. The amplifier itself, had a gain of approximately 75 to 80 . As it was designed to amplify the reflected pulse of the deiay line output, which was positive, the amplifier had to be ensentially insensitive to the large negative overload pulse that preceeded the positive pulse. Ifnearity of gain was not a requirement, but stability was. Iimits of $\pm 5 \%$ gain stability over the range of $-10^{\circ} \mathrm{F}$ to $1.30^{\circ} \mathrm{F}$ were required for proper operation. Less than $\pm 1.5 \%$ change over this range was achleved as seen in Fig. 3. HIGH SPEED TEVEL DEIECHOR; (N1O0-129OO)

There were two fast detectors utilized in the sensor unit, an upper level detector degignated ULD, and a lower level detector designated $L D$. In each detector, there was an amplifier which served as an isolation buffer and allowed for a final gain adjustment. The detectors and amplifiers were arranged as shown in Fig. 5. As seen in Fig. 4, the detector circuits were stable to within $\pm 1 \%$, when operated at approximately midrange on the adjustment potentiometer. It was desirable to operate the detectors near this point if possible, so a ratio was determined for the $C L D$ and ULD, which was approximately 10. The gain of the A3 amplifier was then fixed to give this ratio of pulse amplitudes into the two detectors. The gain of the A2 amplifier was determined by the linear amplifier gain, phototube gain, and noise considerations. of course, typical output levels were known prior to initial design. The particular tube type, crystal configuration, and physical and electrical configurations peculiar to this sensor design were used to determine the gain of the A2 amplifier. This was found to be approximately 5. With the gains determined for the high speed system and the linear amplifier, the gains of the individual spectrometers were adjusted by setting
the phototube gains. The output of the $L \mathcal{L D}$ and ULD discriminitor circuita were fed into e pulse shaping circuit to provide the logic pulses required by the logic circuitiry (N100-1.3900). The actual levels at which the detectorg were set were determined by callbration with radioactive sources. IOGIC AND OUTPUT CIRCUITS (N1.00-13900)

The logic and output circultry weredesigned to accept the LLL and ULL outputs, and generate gamma inhibit pulses and beta enable pulses compatible With the analyzer-processor. The logic was realized utilizing military-range RTL integrated circuitg. The particular elements were picked to optimize the speed and power requirements of this device. In order to minimize the number of component types utilized in the spectrometer, the entire logic was designed around dual. 3-input NAND/NOR gates. Three and one half devices, seven gates, were required to fulfill the logic requirements.

One device was used as a monostable multivibrator, a technique developed at IIV prior to the initial Beta-Bremsstrahlung sensor concept. Ais long as precise timing throughout the temperature range was not required, it provides the functions of a monostable multivibrator with a minimum of components. Another dual gate was used, utilizing the ULL and monostable multivibrator signals, to develop the signal which was used to generate inhibits on both control outputs. The other two devices used the two previously developed signals to generate the control functions for the analyzer-processor. The outputs of the control logic gates drove output transistors to provide compatible signals for the analyzer-processor. The circuit was designed to provide signals to the analyzer-processor of proper width and sufficient amplitude to initiate the inhibit functions necessary to perform the proper analysis of the linear signal. The control signals were modified, after mating compatibility tests were performed, to eliminate a noise coupling problem. The width was increased to approximately 9μ and the rise and fall times were tailored to approximately $1 \mu s$. The output circuitry was designed such that a continuous short circuit would produce no damage to the circuitry and would produce negligible eticcis on power consumption.

LOW VOLTAGE POWER SUPPIY (N100-14900)
The operating voltage requirements for the spectrometer circuits were

4 volta $\pm 3 \%$ with $\pm 2 \%$ regulation and 6.8 and 12 volts $\pm 8 \%$ with $\pm 3 \%$ regulation over the entire range of temperature and input voltages. To obtain these requirements the 4 volts had to be within $\pm 1 \%$ and the 6.8 and 12 volts within $\pm 5 \%$ at standard conditions (26 V.D.C. input, $77^{\circ} \mathrm{F}$, and operationally loaded). The ripple was not to exceed 50 mililval.ts.

In order to fulfili, the preceeding requirements, a small relatively efficient unit had to be designed. Since the 4 volt output required the highest current, an efficient means of reducing the 26 volt input had to be used. The use of a resistance series regulator would have consumed much more than the 3 watts available. The use of a transformer $D C$ to $D C$ converter to lower the voltage would have required too much space and design time. A switching regulator was chosen because it offers a combination of efficient regulation, simplic? and compactness. Because the 6.8 volt and 12 volt output required much less current and less voltage accuracy, zener diode regulators were found to be adequate.

In order to visualize the operation of the switching regulator, refer to Fig. 6. The switch was simply a transistor cutting on and off when commanded by the driver transistor driven by a variable-duty-factor multivibrator. The filter was of the low pass, LC type with a diode to return current during the off portion of the cycle. This essentially supplies D.C. power with an output voltage equal to the input voltage times the ratio of the on time to the switching period. Then by varying the time the switching transistor was on to the time it was off the output voltage could be varied.

The multivibrator was an astable type that commences operation upon application of voltage. The pulse width was varied by the application of current to either of its transistor bases. The differential amplifier supplied difー ferential gain of approximately 50, proportional to the difference in the output voltage and the reference. When the output tried to increase either by an increase in input voltage or decrease in the load, the duty factor decreased and the output voltage was pulled down to approach the required output voltage. The regulator then changed the pulse widths of the multivibrator such that the output remained constant regardless of input and output variations.

The cwitching regulator performanee who typicaliy regulated within $\pm 2 \%$ over the entire voltage and temperature range with accurate getting of the output voltage by ad, iusting Ra. Ito effichency wan approximately 60 . The output was protceted from an overvoltage of greater than 6.3 volto with no load attached by the $6 . \beta_{\text {volt ager on the output. An IC filter at the input to }}$ the power supply lsolated it and the censor cixcultry from input current spikeg. The switchine transistor was a high current and high voltage type so that initial capacitor charging trancients on cut-on would not exceed the safe-operating area. A teat involving application of 4000 cycles of a 28 volt step inpit caused no degradation of switching transistor performance. Output ripple was typheally less than 10 mlllivolts at room temperature at 28 volta input. Iemperature stability was achieved by a low-temperature.com efficient zener diode reference and a matched dual transistor in the differential amplifier. jwitching frequency was approximately 20 KHz and the multivibrator would continue operation even if the output were shorted, thus, giving the output transistor about 5 seconds before it opened.

The 12 volt and 6.3 volt outputs were obtained across zener diodes. The regulation and efficiency obtained was not as good as with the series switching regulator but was adequate for the circuit requirements. The output of the 6.3 and 12 volt zeners could vary within $\pm 5 \%$ at standard conditions and regulate within $\pm 3 \%$ over the entire voltage and temperature range. Power Ioss in the resistor feeding the zeners was I watt maximum.

TESTING AND MONITORING

The sensor unit was provided with a test connector in order to perform tests on the unit under operating conditions. It had inputs for a linear signal, to check system linearity and analyzer-processor channel boundarles, and a high speed signal, to check the high speed circuitry and logic circuitry. All three sensor outputs could be monitored through this connector and there was a protected 4 volt power supply monitoring point. The power supply monitor had a series 1 Kohm resistor to protect the power supply and instrument from accidental shorting of this monitor point. To prevent RFI problems when the spectrometer was in use, a grounded shield cap was provided to cover the test connector. A temperature monitor was provided to the spacecraft connector to provide a signal which was a function of the sensor internal temperature.

DACRME DEHGN

DBGaN GPBCTFTGATION

To inoure the guccean of the omoos undt in the environment of onnce and Launch, the requiremoto fi Mac $13+33$ for preoourdaed hardware were evoked except for humidity, rain, wit nea atmoomere, nond, duot, funguo and ninuoddal vibration go net. out, in the eontract. Aine? the genoor was to be mounted
 shook test was impored, The unit was to be legs than 4.20 libs in welght and measure 5.50 inches x; inches $x \quad 3$ inches maximum. The unit alno was to have rounded corners at ages near the astronouts in order to avold possible damage to opacemoutt. The intertor of the package was to be vacuum cealed to insure operation of high voltage eircultry by maintaining a dry nitrogen atmosphere inside the case on expocure to the vacuum of outeropace and the oxygen atmosm phere of the capoule. All quallty control of ascembly was to conform to quality specification NPC-800-2 as modified by the contract.

EXTERNAL DESIGN

In order to satisiy the external requirementa, a container of the shape shown on Drawing N100-(009e was designed. The mounting configuration consisted of a back plate which was machined as an integral part of the container fitself. The mounting bracket hole pattern conflguration is shown on lrawing N100-00930. Adequate strength in the mounting back plate and container was maintained to insure that the unit would remain intact on the spacecraft door if it were opened in an emergency.

INTERNAL DESIGN

The internal configuration of the package also used the back plate as the main structural member. All heavy members of the internal design were secured to the back plate or mounted as close to it as possible to reduce the torque produced at the mounting plane. Since the collimator and shielding for the photomultiplier tube constituted the majority of the weight in the package, they were mounted on the bottom plate close to the back plate and secured with a clamp to the back plate.

The mafor factorg whten influcnce the deaign ot the detector head assembly (N100m10001-01) were the anticipated electron and bremsstrahlung intenolties, the electron collimator and bremsatrahlunf shield degign, vacuum protection, and the mechanical gheck and vibration enviroment during launch.

The cryotal and colilmator geometries were chosen to give, as nearly as pocsible, equal count raten in the electron and bremsotrahlung channels. Based on a brief experimental study of electron penetration through a Gemini hatch and NAGA supplied space electron intensities it wes determined that a CgI(Tl) sclutiliation crystal approximately $1 / 2-1 n c h$ long and 3/4-inch diameter was optimum. If the maximum poosible shielding, within weight limitations, were used, the calculations indicated that the count rates would remain within allowable limita even $1 f$ the space craft were boonted into a higher orbit than the standard misaion galled for.

The electron collimator who then designed to have a maximum acceptance cone angle compatible with this crystal ofze. Tantalum was chosen for the collimator and shield materfal because of ito high dengity, high strength, and machinability; thus, giving the maximum shlelding to weight ratio and allowing the shield to be an integral part of the mechanical structure.

Ithe collimator design also included an aluminum spacer between the tantalum apertures to reduce the scattering of electrons from the collimator walls. Fach aperture was maus thick enough to absorb electrons to approximately 6 MeV , the maximum energy which could introduce significant distortions into the pulse helght spectra.

The photomultiplier was euarded against shock and vibration by the use of silicone rubber gaskets at each end of the tube assembly, one compressing against the scintillation crystal and the other against the base of the photom multiplier tube. Thermal expansion problems were eliminated in the detector head assembly by these shock absorbing gaskets.

The "Co-netic" shield (N100-10010-03) around the photomultiplier tube served a dual purpose: it shielded the tube against the earth's and local magnetic fields and, since it was maintained at the potential of the photocathode of the photornultiplier tube, it acted as an electrostatic shiejd to reduce field effect noise at the photocathode.

To insure continued operation in the vacuum of apace during extra-vehicular activity the unit had to be sealed at cover removal points, input connectors, and collimator assembly, The vatwom geal at the cover removal pointa were formed by caskets of silicon rubber compressea by the mating surfaces. The input connectors were hermetically sealed types and were sealed by "0" rings between connector bodies and case, To achleve a vacuum seal at the detector head the electron window (N100-10006-01) was machined as an integral part of the washer which preased against the o-ring. This gave the window strength and did not require the bonding of a foil to the sealing washer.

The printed circult boards were made acceasible to adjustment and service. Since the high speed amplifier ($\mathrm{NLOO}-11000-01$), level detectors (N100-12000-01) and linear amplifier and Logic (N100-13000-01) were the main active boards and probably required the most adjustment, they were mounted as plug in boards and used miriature RF connectors where required. The boards were plugged into connectors at the bottom and were secured to the sides by vibration absorbing card slides. In addition to the sildes, pressure was applied to both the top and bottom of boards by rubber pads to insure vibration isolation and adequate structurel strength. This method of mounting reduced the possibility of board resonances.

The high voltage control board (N100-15000-01) and HV power supply were mounted on bases in the top section to allow access to the board with the cover removed. The harness wiring (N1O0-10300-01) to the photomultiplier tube and to the w. ring below (N100-10200-O1) was made of sufficient length to allow the board to be lifted out of case for maintenance and case removal. The low voltage power supply ($\mathrm{NlOO-14000-01} \mathrm{)} \mathrm{was} \mathrm{installed} \mathrm{on} \mathrm{bosses} \mathrm{on} \mathrm{the} \mathrm{bottom}$ cover and wired into the N100-10200-01 harness. To gain access to this power supply it was necessary to remove the bottom cover.

A1I boards were layed out on artwork per specification MSFC-STD-154. Components were mounted on the board with lead spacing to allow conformity to soldering specification NPC-200-4. The plug-in boards as well as the upper low voltage power supply board were made of .063 inch thickness glass epoxy board per Mil-P-13949. The lower low voltage power supply board and the high voltage power supply control board were made of .093 inch thickness glass
epoxy board per the 3 amo opecification. To insure added vibration atrength and component nrotection a conformal costing of leatcheast 1 wes used and applied pei Garland Tuiaion of LIV Flectrosyatems proceoc gpeaditeation 401-00060. Pooh of the three plus-in boards were rhedium plated in the connector area to reduce ingertion wear. The undt was deaigned to be one complete operating package outatde of the gase ard could be checked out for proper operation in this conficuration.

The wiring between connectors and boardo was atcomplished per LIV Aerospace Misoiles and Space Suiaion fabrication apecification 308-1.1.2. A1. Wires were per M1L-W-16T78 type B and cables pex MIL-C-17. The wiriug to the high voltage power supply from the photomultiplier tube used Mil-W-16878 type E wire covered by teflon tubing on wires exceeding 600 V potential to prevent possible voltage breakdown of wires in harness. The entire top of the high voltage power supply was conformally coated to add strength and reduce possibility of high voltage breakdown.

ANATY:I: OF DAIA

Calibration data wan obtained for both the flight undt (3/N 3) and the beck-up unit ($\mathcal{A}, \mathrm{N} P$). The data reduction matrices were detcrmined only for the flight unft, howover, ifnce the back-up unit was not required for filght. Ihis section gives a digeuasion of the manner in which the galibration data was taken, the method by which it was reduced, and a suggested technique for the reduction of the actual space pulse height distaibutions.

DATA REDUCTION FQUATTONS

Recouse the exclusion of electrons from the bremsstrahlung channels (and vice verge) was not absolute it is imposaible to make an analysis of one spec trum without a considerat? in of the other. A complete data reduction technique is discussed in this gection which employs matrix aigebra. The definition of the various matrices is given first, then the construction and solution of the equations, and, finalily, the method by which each matrix was obtained. We should define at this point the rejevant terms and matrices.
$\mathrm{E} \quad-\quad$ incident paridele energy in MeV
$\mathrm{E}^{\prime} \quad \mathrm{m}$ mise height given in MeV
$\mathrm{R}_{\gamma}=$ normalized gemima resolution matrix
$R_{\beta}=$ normalized beta resolution matrix
$C_{\gamma} \quad$ normalized matrix of gamma cross-taik in the electron channels
$C_{\beta}=$ normalized matrix of electron cross-talk in the gamma channels
$\epsilon_{\gamma}=$ gamma efficiency matrix
$\epsilon_{B}=$ beta efficlency matrix
$f_{r}=$ fraction of gamma cross-talk in the beta channels
$f_{\beta}=$ fraction of beta cross-talk in the gamma channels
$N_{r}=$ gamma pulse helght spectrum
$N_{B}=$ beta pulse helght spectrum
$S_{r}=$ true gamma spectrum
$S_{\beta}=$ true beta spectrum
The equations relating these terms are as follows:

$$
\begin{equation*}
N_{r}=R_{\gamma} \epsilon_{r} S_{r}+C_{\beta} \epsilon_{\beta} f_{\beta} S_{\beta} \tag{I}
\end{equation*}
$$

$$
\begin{equation*}
N_{\beta}=R_{\beta} \epsilon_{\beta} \mathcal{B}_{\beta}+G_{r} \epsilon_{f} f_{i} \xi_{r} \tag{2}
\end{equation*}
$$

These reyresent a set of simultaneous, ilnear, matrix equations which may be Bolved in a manner similar to a set of aimultaneous, linear, algebraic equations. Perhaps the simplest aolution is by direct matrix inversion. We first write the set as a oingle matrix equation.

$$
\binom{N_{\gamma}}{N_{\beta}}=\left(\begin{array}{l}
\left.R_{\gamma} C_{\gamma} \quad G_{\beta} \epsilon_{\beta} f_{\beta}\right) \tag{3}\\
G_{\gamma} \epsilon_{\gamma} f_{\gamma}
\end{array} R_{\beta}{ }_{\beta} . \quad\left(\begin{array}{c}
G_{\gamma}
\end{array}\right)\right.
$$

The solution of which is

$$
\binom{G_{\gamma}}{\sigma_{\beta}}=\left(\begin{array}{ll}
R_{\gamma} c_{\gamma} & \left.C_{\beta}{ }_{\beta} f_{\beta} f_{\beta}\right)^{-1} \tag{4}\\
C_{\gamma} C_{\gamma} f_{\gamma}^{\prime} & R_{\beta} c_{\beta}
\end{array}\binom{N_{\gamma}}{N_{\beta}}\right.
$$

which for this case involves the inversion of one forty by forty matrix.
In the event it is impractical to invert a forty by forty matrix an alternate solution, which involves the inversion of several twenty by twenty matrices, may be obtained by the solution of Equations (1) and (2) using the elimination method. Care must be taken with this method when working with R_{β} and C_{β}, since each has at least one zero row. Either of these techniques should yleld satisfactory results. The resulting functions for both electrons and bremsstrahlung will be the differential spectra in particles or photons per MeV per square centimeter per second at the detector.

EXPERIMENTAL DISTRIBUYIONS

In any data reduction technique, statistical fluctuations are amplified when one attempts to remove the effect of response functions from data. Further, data reduction is made more complex when unequal data acquisition channel widths are employed. The data anticipated from the beta-bremsstrahlung spectrometer will suffer from both these difficulties; however, a curve fitting technique may be employed to effect a solution. Let us denote C_{i} as the counts recelved during a given period of time T in channel 1 of width
W_{1}, then

$$
\begin{equation*}
N_{1}=\frac{c_{1}}{W_{1} T} \tag{5}
\end{equation*}
$$

denotes the integral of the pulse height spectrum over the $1^{\text {th }}$ channei, or

$$
\begin{equation*}
N_{1}=\int_{1} N(V) d V \tag{6}
\end{equation*}
$$

where V is the voltage of the pulse. It then remains to determine an amalytical expression for $N(V)$.

Although, at the time of the preparation of this report, no actual data Was avallable, the brief experimental inveatigation at IIV of electron penetration through a Gemini hatch and other electron penetration and bremsstrahlung studies at IIV have indicated that the shape of the pulse height distributions snould be near exponential. If, in fact, the data demonstrates this characteristic a fitting function of the following form may be employed:

$$
\begin{equation*}
N(V)=e^{-\left(a V^{2}+b V+c\right)} \tag{7}
\end{equation*}
$$

where
a, b, and c are constants. The function may then be written in the form

$$
\begin{equation*}
\ln N(V)=-\left(a V^{2}+b V+c\right) \tag{B}
\end{equation*}
$$

A least squares fit may be used to determine the constants if the data points are weighted according to the statistical fluctuations. Since the fit is made to $\ln N_{1}$, the proper weighting function U_{1} may be ahown to be

$$
\begin{equation*}
U_{i}=\left(c_{i} \ln \frac{c_{i}}{W_{i} T}\right)^{-1} \tag{9}
\end{equation*}
$$

Since the raw data is actually the integral of $N(V) d V$ over the channel, the fit must first be made to the N_{i} 's assuming they lie at the midpoint of the channels. Then first correction may be obtained by integrating the function
over each channel, subtrocting the dfference from the original $N_{i}{ }^{\prime}$ and repeating the fit with the new \mathbb{N}_{i} 's until convereence occurs.

The resulting spectrum must be converted at this point to a riseudoenergy scale before being perated on by the matrix. This seale is defined in terms of the pulse height voltage of the center of photo-peak of gamma rays In the CsI(Tl) orystal. The absolute value of the conversion constant was determined using a thorium- 226 gamma wurce in a manner described in the Final calibration section at the end of this report. The conversion relationship was found to be

$$
\begin{equation*}
V=1.53(v o l t s / \mathrm{Mev}) \mathrm{E}^{\prime} \tag{10}
\end{equation*}
$$

Where we chall use F^{\prime} as the pseudo-energy reierring to pulse amplitude. If any variation in this convergion coefficient is found at post-flight calibration or because of temperature effects, it may be inserted into the program later. We may then write the final analytical pulse height spectrum as follows:

$$
\begin{equation*}
\left.N\left(E^{\prime}\right)=e^{-\left(A E^{\prime}\right.}+B E^{\prime}+C\right) \tag{11}
\end{equation*}
$$

where A, B, and C are the constants for the function in terms of E^{\prime}.
This function must then be divided into twenty increments to match the resciution matrices discussed in the following sections. This involves integrating $\operatorname{lV}\left(E^{\prime}\right)$ dit over each of the 200 keV intervals with the first beginning at 100 keV .

BEIA FESPONSE MAITRIX R_{B}
The response of the spectrometer was measured for eight electron energies between 0.4 and 2.5 MeV . The information obtained was used to determine not only the response matrix R_{β} but also the efficiency matrix $\epsilon_{\beta 3}$, the normalized cross-talk response matrix C_{β}, and the cross-talk efficiency f_{β}. The determination of the last three matrices will be discussed later. The spectrometer was placed in an evacuated chamber at the end of the drift tube of the LTV Research Center's 3 MeV Van de Graaff Accelerator. The experimental arrangement is shown in Fig. 7. Approximately six feet in front of the spectrometer, the
beam pasced through a thin siuminum foil 0.0025 inchen thick which scattered the beain and caused a homogeneous flux of electrons to fall on the opectrometer. The homogeneity of the flux was monitored, prior to the data tairing, With a lithium ion drift (LiDD) solid state detector and was shown to be within the required $\pm 10 x$ maximum deviations, in ascordance with the Quality Control Bulletin (QCB-CP-001) "OLIbration of the IIV Beta-Bremsatrahlung Spectrometer for Gemini-1.2". The same IND detector was then mounted on one aide of the beam tube slightly in front of the spectrometer and was used as the beam flux and energy monitor. The LID detector was calibrated for electron energy using the internal conversion electrons from two sources: Cesium-137 at. 625 MeV and bismuth-207 at . 43 ? and .97 c MeV. The accelerator electron energy wan then determined irom this calibration.

Response functions were measured at several incident angles; however, the deviations in the shape of the response functions were found to be so small, even near cut-off, that only one matrix was required. The functions were obtained at eight energies between 0.4 and 2.5 MeV by accumulating data directly from the linear output of the Beta-Bremsstrahlung spectrometer sensor unit in a 256 channel pulse helght analyzer. The analyzer was gated by the sensor particle identification outputs so that the electrons were stored in one half of the memory and the actual bremsstrahlung plus the cross-talk in the other. Typical electron pulse height distributions axe shown in Figs. 8 and 9.

To obtain the required distributions for the matrix it was necessary to interpolate between and extrapolate from these distributions. To do this most accurately the curves were normalized to the same peak position and integral and cross-plots were made at steps equal to 0.05 of the peak value. From these cross-plots new pulse height distributions were determined at 200 keV steps from 200 keV to 4.0 MeV . These spectra were integrated over 200 keV intervals beginning at 100 keV and ending at 4.1 MeV . These integrals plus the value from 0 to 100 keV were then normalized to one. The results are shown in the matrix for R_{β} given in Table 1.
BEITA EFFICIENCY MATRIX ϵ_{B}
The electron efficienofes $\epsilon_{\beta}(\theta)$ were measured as a function of incident
electron angle θ and electron energy P. A typical curve at ? MeV is ohown in Flg. 10 and compared with the function calculated from pure ceometrical con3iderations. The pulse height distributions were integrated over channel and the reculting number was corrected for analyzer dead tine. The flux was determined by the count rate of the LID detector when corrected for the geometry of the collimator and for backscatter from the detector's silicon wafer With this information the $\epsilon_{6}(0)$ functions were obtained as counts per electron per square centimeter. With this data, if angular distributions of electrons which penetrate the Gemini spacecraf' walls are known, one may make an Integration over e to determine the actual flux of electrons at the collimator. However, electron scattering xperiments (some of which were carried out at IIV) have indicated that the distrit tion is near isotropic. Using this assumption an electron efficiency function ρ_{0} was obtained from the angular efficiency functions $\epsilon_{\beta}(\theta)$ follows:

$$
\begin{equation*}
\epsilon_{\beta}=\frac{\int_{\Omega}^{2 \pi} \epsilon_{\Omega}(\theta) d \Omega}{\int_{\Omega} d \Omega} \tag{12}
\end{equation*}
$$

where Ω denotes the clement of solid angle. This reduces to

$$
\begin{equation*}
\epsilon_{\beta}=\frac{1}{2} \int_{0}^{2 \pi} \epsilon_{\beta}(\theta) \sin \theta d \theta \tag{13}
\end{equation*}
$$

This integral was evaluated numerically to obtain ϵ_{β} which is a function of energy. This function is shown in Fig. 11 and is tabulated in Tible 2 where the values represent the average values over the 200 keV increments. These values are then the elements of the diagonal matrix ϵ_{β}.
BETA CROSS-TALK RESPONSE MAITRIX C

As mentioned above, the data to determine the amount of electron crosstalk received in the bremsstrahlung channels was taken auring the electron response function rieasurements. The data received in the bremsstrahlung channels included not only cross-talk but also the actual electron-produced bremsstrahlung counts. The latter effect was determined by accumulating data with the detector at 90° to the beam and the proper amount was then removed
from the false electron countr. In a manner identical to that discussed for the R_{B} matrix, the normalizations and cross-plots were made and the elements for the matrix C_{β} were determined. These are given in table 3. BEIA CROSS-TATK EFFTCIENCY MATRIX f°

The magnitude of the cross-talk was determined relative to the number of electrons detected. After the removal of the bremsstrahlung background, the integrals of the cross-talk spectra were divided by those of the electron spectra. These values are plotted in Fig. 12. The average values of this curve over 200 keV increments are given in Table 4. These values form the elements of the diagonal.matrix f_{β}

gAMMA REsPONSE MAITIX R

The gamma response functions and efficiencies were measured for the BetaBremsstrahlung sensor using a series of accurately calibrated gamma ray sources, listed in Table 5. The spectrometer was mounted on a rotating mill table With a source located from 25 to 100 centimeters from the center of the crystal. Response functions for most of the sources were recorded at 26 orientations using a 256 channel pulse height analyzer. The values of the orientation indices θ and ϕ are defined by Fig. 13. The response functions for the sources are shown in Figs 14 through 19. For those sources with two or more lines, the responses from the lower lines were removed on the basis of a knowledge of the shape of the lower response functions. For example, the 511 keV line in sodium-22 was removed from the 1.28 MeV distribution by normalizing the 511 keV shape to the 662 keV distribution of Cesium-137 and subtracting the resulting shape from the total spectrum. The data taken in this manner at the various angles showed that the shape of the distributions was independent of angle. This allowed the use of only one response matrix at all angles. The set of pulse height distributions were then normalized to the same integral and photo-peak position. inally, in a manner identical to that used for the electron response matrix, the gamma response matrix R_{r} was obtained and is given in Table 6.

GAMMA EFFICIENCY MAIRIX ϵ_{γ}
The efficiency function for gamma rays ϵ_{γ} was more complex in construction
than that for electrons, aince the efficiency varies with angle and the bremsw strahlung intensity is not expected to be isotropic over ail angles. The values of the angular efficiency function $\kappa_{\gamma}(\cup \phi)$ were obtained at $0=0$ and 180°, plus several representative directions at $\theta=45^{\circ}, 90^{\circ}$, and 135°, for most of the calibration sources by first integrating over the pulse height spectra and correcting for analyzer dead time. These spectra were obtained as discussed in the R_{r} section. The values at the remaining angles were obtained by simply acaling the pulse height distributions above a certain discriminator level and comparing these values with those taken at the representative angles. The flux was then calculated at the crystal for each source, based on the geometry and source strength given in Table 5. This gave $\epsilon_{\gamma}(\Theta \phi)$ in counts per gamma per square centimeter.

The calibration of the sources was determined at LIV as a part of this contract using a sodium-iodide, anticoincidence spectrometer which has been used several years for making absolute bremsstrahlung measurements under contract for NASA-Headquarters. A new calibration of the spectrometer was made for this work using a series of low level calibration sources with a quoted accuracy of $\pm 2 \%$. These sources were obtained from the Amersham Corporation in England.

For reference the curves for $\epsilon_{\gamma}\left(0^{\circ}, 0^{\circ}\right)$ and $\epsilon_{\gamma}\left(90^{\circ}, 0^{\circ}\right)$ are show in Fig. 20. The average values over 200 keV increments for these $\epsilon_{\gamma}(\theta \phi)$ plus those for $\epsilon_{\gamma}\left(180^{\circ}, 0^{\circ}\right)$ are given in Table 7. For all angles, except at $\theta=0^{\circ}$ and 180°, the shape of the $\epsilon_{r}(\theta, \phi)$ functions were identical. It was, thus, possible to obtain these functions from $\epsilon_{\gamma}\left(90^{\circ}, 0^{\circ}\right)$ by a simple multiplication as indicated by the following equation:

$$
\epsilon_{\gamma}(\theta \phi)=N_{\theta \phi} \epsilon_{\gamma}\left(90^{\circ}, 0^{\circ}\right)
$$

The values of $N_{\theta \phi}$ are given in Table 8. The equation relating the functions to an overall gamma efficiency matrix ϵ_{r} may be written as follows:

$$
\epsilon_{r}=\frac{1}{26} \sum_{\theta \phi}^{\Sigma} \epsilon_{r}(\theta, \phi),
$$

where we have ascribed equal area weighting to the $\epsilon_{\gamma}(\theta \phi)$ functions, since they are very evenly distributed around the crystal. $P_{\theta \phi}$ is a function which
degeribes the probability af receivine radiaion from the direction at. The Po functions must be nommalized, f.e.,

$$
\sum_{0} D_{0}=I
$$

where I is the ilentity matrix. The values of the $O_{0 \phi}$ may be determined approximately by a concideration of che opacecratt material composition and cafiguration. One firot eotimater a source function over the area covered by each $\epsilon_{Y}(0)$. Then thic 10 attenuated by the avecare mase per unit area of the spacecraft betwen the source and detector. The reoulting spectra are then normalized to give the P_{0} values. The derivation of the ${ }^{P}{ }^{\theta} \phi$ functions were not a part of this program; however, the information required for their determination should be avaliable at NAB-MSC. To make a rapid but leas accurate calculation of the intensity one may assume an isotropie source and attenuation function and insert the constanta.

GAMMA CROSㄱ-TAIK RESPONSE MATRIX C C_{γ}
The information required to determine the pulse height distributions of fals gama counts received in the electron channels was obtained simultaneously with response function data for the gamma response matrix. Since no background removal was required, the spectra were plotted and a smooth curve vas drawn through the data to remove statigtical. fluctuations. In a manner identical to that used for the determination of R_{β} the curves were normailzed, cross-plots were made and the matrix elements calculated by averaging over 200 keV intervals. The matrix for C_{r} is Given in Table 9.
GAMMA CROSS-TALK EFFICIENCY MATRIX f_{r}
The magnitude of the cross-talk was determined relative to the number of photons detected. The integrals of the cross-talk spectra were divided by those of the gamma pulse height spectra. These values are plotted in Fig. 21. The average values of this curve over 200 keV increments, which form the elements of the diamond matrix f_{r}, are given in Table 10.

TEST SPECTRA

In order to demonstrate the effectiveness of the analysis technique

Leacribed above for convorting pulse height information into energy spectra, two known opectral diatributions of electrons and bremsstrahlung were measured With the JIV Beta-Bremostrahluns opectrometer and comparisons were made between the known sqlues and bhose obtained from the opectrometer. Bince the computer program for performines the analisis of data was not included under this contracted effort, the comparison of tect opectra to measured spectra was made indirectily. This was done analytically by distortine the known spectra with the measured response and edficiency functions of the spectrometer and plotting the reoulting curves on a graph with the measured spectia. The following paragrapho detail this procedure.

Beta Spectrum

The beta spectra from a thin source of sr^{90} - Y^{90} were measured with the Beta-Bremsotrahlung opectrometer. The resulta of this measurement are shown in FIg. 2f. The spectra from the same source were measured with a large anthracene crystal type spectrometer. The object of this measurement was to obtain as closely as posaible the true shape of the $s r^{90}-Y^{90}$ spectra. By using an anthracene crystal the amount of electron backscatter was minimizer and this spectrometer's reaponse was practically all Gaussian. Thus, the anthracene measured $\operatorname{sr}^{90}-Y^{90}$ spectra had little distortion except that near the end moint, which is due to the spectrometer's finite resolution. These "true" $5 r^{90}-Y^{90}$ spectra were then multipiled by the electron efficiency diagonal matrix ϵ_{β} and the electron response matrix R_{β}. These results were compared with the shape of the meagurement obtained with the Beta-Bremsstrahlung spectrometer. The comparison is shown in Fig. 22.

The relative magnitude of the two distributions shown was determined by a normalization of their total areas. The agreement is within the experimental uncertainties involved in the two determinations except in the last few energy lines. Here the "true" distorted or smeared distribution takes on progressively higher values than the beta-gamma measured distribution. This is expected though since the "true" smeared distribution also contained the anthracene spectrometer resolution. A correction for this effect, i.e., the removal of the resolution, would reduce the last bin by approximately 50% and the previous bins by progressively lesser amounts. This would bring these
points in line with the agreement observed at the other points.
Bremsetrahlunes Spectrum
The bremstrahlung or x-ray spectrum resulting from a 2 MeV beam of electrons striking a thick aluminum target was measured with the Beta-Bremsatrahlung spectrometer. The angle of observation was 30° from the direction of the incident beam. The results of this measurement are shown in Fig.e3. The true spectrum emitted under these conditions was previously measured in our laboratory utilizing a 2 inch by 6 inch NaI crystal and annulus arrangement which exhibited a hich photopeak efficiency at 2 MeV . This true spectrum was mul. tiplied by the photon efficiency diagonal matrix ϵ_{ρ} and the photon response matrix R_{γ}. The resuit of these multiplications was compared with the spectrum measured with the Beta-Bremsstrahlung spectrometer. The comparison is shown in Fig. 23 and is on an absolute basis as indicated by the ordinate values. On the basis of the many experimental uncertainties which are involived in obtaining these absolute x-ray ylelds the agreement is well within the expected experimental error.

FTNAL $3 Y 5 T E M$ CALIBRATION
The final adjustment in calibration of the sensor unit was the exact setting of the output linear puise amplitude relative to the photo-peak of a gamma ray pulse height distribution. The source used was thorium- 226 which has a gamma energy of 2.615 MeV . A spectrum was taken, printed out, and plotted. The spectrum was then hand stripped to determine the proper channel for the 2.615 MeV peak. A pulser was then fed into the spectrometer test input and the amplitude adjusted until the output was in the channel corres. ponding to 2.615 MeV . The gain of the linear amplifier was then adjusted until the amplitude of a 2.61 .5 MeV pulse was 4.00 volts giving a calibration of 1.53 volts per MeV.

With the outputs of the analyzer-processor con ? ?ted to the NASA AGE, the channel boundaries were determined by adjusting t_{1} : amplitude of a calibrated pulser until equal count rates were accumulated. . i adjacent channels. This pulser amplitude, was determined relative to the thor um-226 calibration and provided the lower and upper channel boundaries. A lisi of channel
boundaries and width which were derived from the above testis are shuwn in Table 11. The boundarde. rre eiven in volts with a calibration basis of 4.00 volts for the 2.615 MeV thorium-226 gamma peak as determined above.

BETA PULSF

(EESULIING FROM AN INIERACIION IN BOTH PHOSPHORS)

$50 \mathrm{~ns} / \mathrm{CM}$

RHFTLECIED
REGULITANT
ANODE

GAMMA PUISE
(RESULITNG FROM AN INTERACTION IN THE CgI(T८) ONLY)

REFITECTED
RESULTANT
ANODE

FIGURE 1 SIGNALS FROM CRYSTAL ASSEMBLY

FIGURE 2 LIIEAR AMPLIFIER GAIN - TTMPRRATURB CBARACTERISTICS
(OTBOS TTMA $\%$) - 7ndqno

afbi pezftewion

FIGURE 4 LEVEL DETECTOR TEMPRRATURE CHARACTERISTICS
 Ar alifier

FIGURE 5 LEVEL DETECTOR BLOCK DIAGRAM

Unregulated DC Input

FIGURE 7 EXPERIMENTAL ARRANGEMENT FOR ELECTRON CALIBRATION

FIGURE 12 faLSe photon counis in electron channels ir

FIGURE 13 GAMMA CAIIBRATION GEOMETRY

FIGURE 15 Cs-137 PULSE HETGHT SPECTRLM

FIGURE 16 Mn-54 PUISE HEIGHY SPECIRUM

FIGURE 17 Na-22 PULSE HETGHP SPECTRUM

FTuthe 18 y-88 PULSE HEIGRT SPECTRUM

FIGURE 19 Th-226 PULSE HETGHT SPECTRUM

FIGURE 21 FALSE ELECTRON COUNIS IN GAMMA CHANNELS f_{β}

FIGURE 22 ธr-Y BETA PULSE HEIGHT SPECTRUM

FIGURE 23 BREMSSTTRAHLUNG PULSE HEIGHT SPECTRUM

TABLE 1

BITA RPDGNP MITAXX $-R_{B}$

$\begin{gathered} \text { Tn } \\ \text { Thent } \\ \left(M+y^{2}\right) \end{gathered}$	R', - Pulge Hefigh(MeV)				
	0.2....	9.4	0.6	0.8	1.0
0.8	"	1	,	0	0
0.4	1.3(-1)	1.13(-8)	$1)$	9	0
9.6	1. $97(-1)$	9.00(-1)	6.13(-9)	9	0
0.8	4.13(-9)	3.59(-1)	5.14(-1)	6, 24 (-2)	0
1.0	3.93(-2)	$1.78(-1)$	2.57(-1.)	4.3' ${ }^{\prime}(-1)$	2.91(-1)
1.2	3.35 (-2)	1. $38(-1)$	1.10(-1)	1.1.1.(-1)	3.26(-1)
2.4	1.33(-2)	9.46(-2)	9.43(-2)	$6.54(-2)$	8.42(-2)
1.6	1. $3: 3(-2)$	3.35(-2)	$7.56(-2)$	$6.93(-2)$	5.89(-2)
1.8	1. 25 (-2)	6.10(-2)	'1.63(-2)	$6.33(-2)$	5.36(-2)
P. 0	1.14(-2)	4.35(-2)	6.33(-2)	5.88(-2)	5.24(-2)
2.8	1.08(-2)	3.23(-2)	5.28(-2)	5.78(-2)	5.4.3(-2)
2.4	$6.42(-3)$	$3.09(-2)$	4.83(-2)	5.16(-2)	4.94(-2)
2.6	5.94(-3)	2.48(-3)	4.01(-2)	4.40(-2.	4.38(-2)
2.3	4.59(-3)	2.14(-2)	3.66(-2)	4.00(-2)	4.00(-2)
3.0	3.64(-3)	$1.85(-2)$	3.00(-2)	3.57(-2)	$3.81(-2)$
3.2	3.08(-3)	1.48(-2)	2.73(-2)	$3.30(-2)$	3.58(-2)
3.4	2.92(-3)	$7.84(-3)$	2.36(-2)	$2.78(-2)$	3.06(-2)
3.6	2.47(-3)	1. 20 (-2)	2.38(-2)	$2.87(-2)$	3.10(-2)
3.8	2.01(-3)	1.12(-2)	2.22(-2)	$2.70(-2)$	2.97(-2)
4.0	1. $77(-3)$	9.21(-3)	2.03(-2)	2.58(-2)	2.88(-2)

TABLE d
BTA BMPONT MATRTX - R_{B} (On't)

B Tneflent Pnorov	RI- Puloe Helght (MoV)				
(MeV)	1.9	1.4	1.6	1.3	8.0
. 2	,	')	$1)$	$1)$	0
. 4	$1)$	0	0	1)	$1)$
.6	0	9)	0	0	0
. 8	11	$1)$	0	9	1)
1.0	9)	0	0	0	0
1.2	2.30(-1)	0	0	0	0
1.4	3.39 (-1.)	3.02(-1)	0	0	0
1.6	3. $433(-2)$	3.11. -1.1$)$	$2.80(-1)$	4.23(-3)	0
1.8	$5.50(-2)$	3.91(-2)	$3.53(-1$.	2.67(-1)	0
2.0	$4.85(-2)$	$5 \cdot 37(-2)$	8.31(-2)	$3.16(-1$.	$2.67(-1)$
2.2	5.33(-2)	$5.64(-2)$	9.08(-2)	2.89(-1)	2.93(-1)
2.4	$4.89(-2)$	5.12(-2)	$5 \cdot 34(-2)$	6.09(-2)	9.73(-2)
2.6	$4.46(-2)$	$4.94(-2)$	5.25(-2)	$5.27(-2)$	$6.28(-2)$
2.8	$4.07(-2)$	4.49(-2)	$5.36(-2)$	5.52(-2)	5.35(-2)
3.0	$3.83(-2)$	$3.96(-2)$	$4.82(-2)$	$5.64(-2)$	5.51(-2)
3.2	3.67(-2)	3.75(-2)	4.11(-2)	4.96(-2)	5.85(-2)
3.4	3.32(-2)	3.54(-2)	3.85(-2)	$4.57(-2)$	5.63(-2)
3.6	3.17(-2)	3.25(-2)	3.46(-2)	3.94(-2)	5.31(-2)
3.8	$3.06(-2)$	3.11(-2)	3.24(-2)	3.51.(-2)	4.18(-2)
4.0	$3.02(-2)$	$3.04(-2)$	$3.05(-2)$	3.18(-2)	3.54(-2)

TABLE 2

BEMA PBYONTR MATRTX - I_{B} (Con't)

$\begin{gathered} \text { Incident } \\ \text { Encry } \\ (\text { MoV) } \end{gathered}$	E' Pribe Hedght (Mov)				
	$\underline{20}$	$\underline{3.4}$	2.6	2.8	3.0
. ${ }^{\text {e }}$	0	$1)$	0	0	0
. 4	i	1.	0	0	0
.6	$1)$	0	0	0	0
. 9	$1)$	$1)$	0	0	0
1.0	"	1	0	0	0
1.9	11	$1)$	0	0	0
1.4	0	0	0	0	0
1.6	0	0	0	0	0
1.3	0	0	0	0	0
2.0	$2.27(-3)$	0	0	0	0
2.2	9.23(-3)	0	0	0	0
2.4	2.57(-1)	2.36(-1)	1.12(-3)	0	0
2.6	1.05(-1)	2.56(-1)	2.10(-1)	8.35(-3)	0
2.8	6.73(-2)	$1.06(-1)$	2.33(-1)	1.92(-1)	1.15(-2)
3.0	5.37(-2)	6.98(-2)	1.05(-1)	2.11(-1)	1.81(-1)
3.2	5.49(-2)	5.87(-2)	7.54(-2)	1.06(-1)	1.94(-1)
3.4	$6.05(-2)$	5.49(-2)	$5.87(-2)$	7.57(-2)	1.01(-1)
3.6	6.21(-2)	5.89(-2)	5.03(-2)	6.06(-2)	7.52(-2)
3.8	5.61(-2)	6.29(-2)	5.55(-2)	4.80(-2)	5.95(-2)
4.0	4.78(-2)	$6.14(-2)$	6.07(-2)	5.10(-2)	4.77(-2)

TABIE 1

No Mhoe Metbit (MeV)

(1)

0
.2
.4
.6
.3

$$
1.2
$$

1.4
1.6
1.3
P.O
$\therefore . ?$
0.4
2.6
2.3
3.0
3.2
3.4
3.6
3.8
$7.15(-2)$
$3.65(-2)$
1.29(-1)
1.26(-1) 4.17(-2)
4.0
$6.18(-2)$
$6.86(-2)$
$7.80(-2)$
1.14(-1) 1.23(-1)

TABLE 2

BETA EFFICIENCY MATRIX - ϵ_{β}

$E(\mathrm{MeV})$	$\epsilon_{B}\left(\right.$ Counts/Electron $\left.-\mathrm{Cm}^{-2}\right)$
0.2	0
0.4	$2.37(-2)$
0.6	$2.50(-2)$
0.8	$2.34(-2)$
1.0	$2.22(-2)$
1.2	$2.24(-2)$
1.4	$2.34(-2)$
1.6	$2.43(-2)$
1.8	$2.45(-2)$
2.0	$2.43(-2)$
2.2	$2.38(-2)$
2.4	$2.34(-2)$
2.6	$2.32(-2)$
2.8	$2.32(-2)$
3.0	$2.32(-2)$
3.2	$2.32(-2)$
3.4	$2.32(-2)$
3.6	$2.32(-2)$
3.8	$2.32(-2)$
4.0	$2.32(-2)$

TABLE 3
BEITA CROSS-TAIK RESPONSE MATRIX C_{B}

E
Incident Finergy $-(\mathrm{MeV})$
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
2. $35(-4$.
2.18(-3)
4.58(-3)
7.06(-3) $\quad 9.55(-3)$
7.06(-3) $\quad 9.55(-3)$
0.2

0
0
0
3.47(-2)
1.55(-2)
7.62(-3)
8. $39(-3)$
9.35(-3)
9.20(-3)
7.20(-3)
5.91(-3)
3. $36(-3)$
2.20(-3)
7.75(-3)
$6 \cdot 3^{7}(-3)$
5.18(-3)
9.72(-3)
8. $39(-3)$
7.31(-3)
5.99(-3)
9.23(-3) $1.23(-2)$
3.82(-4)
3.00(-3)
2.56(-3)
5.52(-3)
8.56(-3) $1.13(-2)$

TABLE 3
BETA CROSS-TALK RESPONSE MATRIX $C_{\beta}\left(\right.$ Con' $\left.^{\prime} t\right)$

0.2
0.4
0.6
0.3
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

1. $39(-2)$
1.66(-2)
1.91(-2)
2.13(-2)
2. $30(-2)$
1.19(-2)
$1.43(-2)$
1.66(-2)
1.85(-2)
2.02(-2)

TABLE 3

BETA CRO3S-TAIK RESPONSE MATRIX C_{β} (Con't $^{\prime}$)					
E					
Incident	E'... Pulse Helght (MeV)				
$\begin{gathered} \text { Energy } \\ (\mathrm{MeV}) \end{gathered}$	2.2	2.4	2.6	2.8	3.0
0.2	0	0	0	0	0
0.4	0	0	0	0	0
0.6	0	0	0	0	0
0.8	0	0	0	0	0
1.0	0	0	0	0	0
1.2	0	0	0	0	0
1.4	0	0	0	0	0
1.6	1.01(2)	0	0	0	0
1.8	1.02(-2)	4.42(-3)	0	0	0
2.0	1.38(-2)	4.30(-3)	1.13(-3)	0	0
2.2	3.75(-1)	1.46(-2)	4.49(-3)	2.22(-3)	7.4.5(.4)
2.4	$3.38(-1)$	3.75(-1)	3.63(-2)	2.32(-3)	1.23(-3)
2.6	7.16(-2)	3.11(-1)	3.13(-1)	4.86(-2)	1.79(-3)
2.8	4.00(-2)	7.35(-2)	2.85(-1)	3.10(-1)	$6.95(-2)$
3.0	3.32(-2)	3.83(-2)	8.32(-2)	2.86(-1)	2.88(-1)
3.2	3.04(-2)	3.27(-2)	3.91(-2)	9.52(-2)	$2.87(-1)$
3.4	2.83(-2)	2.91(-2)	3.15(-2)	$3.72(-2)$	8.38(-2)
3.6	2.53(-2)	2.58(-2)	$2.67(-2)$	2.94(-2)	3.53(-2)
3.8	2.42(-2)	2.49(-2)	2.53(-2)	2.64(-2)	$2.90(-2)$
4.0	$2.15(-2)$	2.25(-2)	2.30(-2)	2.34(-2)	2.46(-2)

TABLE 3
BETA CROSS-TAIK RESPONSE MATRIX C_{B} (Con't $^{\prime}$)

E Incident Energy (MeV)	E^{\prime} - Pulse Height (MeV)				
	$3 \cdot 2$	3.4	3.6	3.8	4.0
0.2	0	0	0	0	0
0.4	0	0	0	0	0
0.6	0	0	0	0	0
0.8	0	0	0	0	0
1.0	0	0	0	0	0
1.2	0	0	0	0	0
1.4	0	0	0	0	0
1.6	0	0	0	0	0
1.8	0	0	0	0	0
2.0	0	0	0	0	0
2.2	0	0	0	0	0
2.4	4.55(-4)	0	0	0	0
2.6	9.72(-4)	4.00(-4)	0	0	0
2.8	2.06(-3)	1.01(-3)	7.13(-4)	1.54(-4)	0
3.0	7.62(-2)	2.97(-3)	1.02(-3)	7.19(-4)	2.62(-4)
3.2	2.68(-1)	$6.85(-2)$	4.44(-3)	1.04(-3)	7.42(-4)
3.4	$2.71(-1)$	2.71(-1)	8.28(-2)	$6.80(-3)$	1.13(-3)
3.6	9.05(-2)	2.96(-1)	2.47(-1)	8.00(-2)	8.23(-3)
3.8	$3.57(-2)$	9.03(-2)	2.46(-1)	2.56(-1)	1.01(-1)
4.0	$2.72(-2)$	3.45(-2)	9.14(-2)	2.26(-1)	2.55(-1)

TABLE 4
BETA CROSS.MALK EFFICIENCY MAITRIX . f_{β}

$E(\mathrm{MeV})$	f_{B}
.2	.00052
.4	.00075
.6	.00105
.8	.00148
1.0	.00205
1.2	.00295
1.4	.0041
1.6	.0058
1.8	.0082
2.0	.0115
2.2	.0161
2.4	.0225
2.6	.032
2.8	.045
3.0	.064
3.2	.089
3.4	.124
3.6	.178
3.8	.245
4.0	.349

[^0]GAMMA RESPONGE MATRIX- R_{r}

$\begin{gathered} \text { E } \\ \text { Incident } \\ \text { Fnergy } \\ (\text { MeV) } \\ \hline \end{gathered}$	E'- Pulse Height(MeV)				
	0.2	0.4	0.6	0.3	1.0
0.2	3.86(-1)	0	0	0	0
0.4	2.54(-1)	3.35(-1)	5.38(-3)	0	0
0.6	2.90(-1)	1.87(-1)	2.14(-1)	8.43(-3)	0
0.8	2.45(-1)	1.94(-1)	1.34(-1)	1.34(-1)	1.21(-2)
1.0	$2.16(-1)$	1.60(-1)	1.10(-1)	8.68(-2)	8.31(-2)
1.2	2.00(-1)	1.76(-1)	1.10(-1)	8.98(-2)	7.95(-2)
1.4	1.65(-1)	1.23(-1)	1.12(-1)	9.25(-2)	7.77(-2)
1.6	1.27(-1)	1.20(-1)	1.20(-1)	1.30(-1)	1.02(-1)
1.8	9.63(-2)	9.61(-2)	9.61(-2)	1.31(-1)	1.40(-1)
2.0	3.71- - ?)	8.53(-2)	8.58(-2)	9.04(-2)	1.50(-1)
2.2	7.3P(-2)	7.69(-2)	7.69(-2)	7.30(-2)	1.11(-1)
2.4	7.44(-2.)	7.44(-2)	7.44(-2)	7.44(-2)	7.85(-2)
2.6	7.02.(-2)	7.16(-2)	7.16(-2)	7.16(-2)	7.16(-2)
2.8	6.51(-2)	6.90(-2)	7.04(-2)	6.97(-2)	$6.34(-2)$
3.0	6.18(-2)	6.75(-2)	6.84(-2)	6.80(-2)	6.73(-2)
3.2	5.87(-2)	6.34(-2)	6.53(-2)	6.46(-2)	$\left.6.59^{\prime}-2\right)$
3.4	5.74(-2)	6.27(-2)	6.46(-2)	6.39(-2)	6.46(-2)
3.6	5.90(-2)	6.06(-2)	$6.13(-2)$	5.96(-2)	5.96(-2)
3.8	4.83(-2)	5.54(-2)	5.90(-2)	6.03(-2)	5.96(-2)
4.0	4.70(-2)	5.48(-2)	5.96(-2)	$6.17(-2)$	$6.16(-2)$

TABLE 6

GAMMA RESPONSE MATRIX - R r

E					
Incident			1se Heigh		
$\begin{aligned} & \text { Fnergy } \\ & \text { (MeV) } \end{aligned}$	$\underline{3} \cdot 2$	1.4	1.6	$\underline{1.8}$	2.0
0.2	0	0	0	0	0
0.4	0	0	0	0	6
0.6	0	0	0	0	0
0.3	0	0	0	0	0
1.0	2.56(-2)	\%.10(-4)	0	0	0
1.2	$6.22(-2)$	2.96(-2)	1.08(-3)	0	0
1.4	. $6.77(-2$.	4.07(-2)	3.02(-2)	1.44(-3)	0
1.6	9.46(-2)	8.08(-2)	4.80(-2)	2.91(-2)	3.92(-3)
1.8	8.97(-2)	9.74(-2)	7.04(-2)	5.15(-2)	2.74(-2)
2.0	9.90(-2)	8.68(-2)	9.10(-2)	6.25(-2)	5.15(-2)
2.2	1.21(-1)	9.09(-2)	$7.98(-2)$	8.35(-2)	5.61(-2)
2.4	9.17(-2)	9.83(-2)	8.77(-2)	7.51(-2)	\%.15(-2)
2.6	〒.16(-2)	7.89(-2)	1.02(-1)	7.78(-2)	6.85(-2)
2.8	$6.48(-2)$	5.79(-2)	8.72(-2)	9.61(-2)	$6.79(-2)$
3.0	6.21(-2)	5.03(-2)	5.35(-2)	9.87(-2)	8.78(-2)
3.2	$6.09(-2)$	4.68(-2)	4.09(-2)	6.73(-2)	1.06 ${ }^{\prime}-1$
3.4	$6.27(-2)$	5.02(-2)	3.45(.2)	3.72(-2)	8.38(-2)
3.6	$6.05(-2)$	4.97(-2)	3.25(-2)	2.89(-2)	4.82(-2)
3.8	5.73(-2)	5.15(-2)	3.83(-2)	$2.57(-2)$	2.52(-2)
4.0	$5.89(-2)$	7.30(-2)	$3.97(-2)$	2.37(-2)	2.32(-2)

TABLE 6

GAMMA RESPONGE MATRIX - R_{r}
$2.8 \quad 6.17(-2) \quad 6.17(-2) \quad 4.94(-2) \quad 3.22(-2) \quad 1.29(-2)$
E
Incident.
Energy
Energy
(MeV)
0.2
0.4
0.6
0.9
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
3.0
3.2
3.4
3.6
3.8
4.0
.6
.4
.8

E' - Pulse Height (MeV)
2.2

0
2.4

0
0
2.8 3.0

0
0

0

0
0
0
0

0
0
$0 \quad 0$
0
0
7.70(-4)

0
3.33(-3)
$8.70(-4)$
1.66(-2)
2.58(-3)
9.90(-4)
$1.64(-2) \quad 2.53(-3)$
9.70(-4) 0
5.10(-2)
4.60(-2)
1.86(-2)
$2.36(-\tilde{5}) \quad 1.01(-3)$
7.06(-2)
4.86(-2)
3.73(-2)
1.46(-2) $3.06(-3)$
5.90(-2)
$5.62(-2) \quad 5.64(-2)$
4.61(-2) 2.87(-2)
$7.25(-2)$
4.92(-2)
$4.88(-2)$
5.25(-2) 3.90(-2)
9.90(-2)
$5.47(-2) \quad 4.85(-2)$
4.49(-2) $5.06(-2)$
1.05(-1)
8. $34(-2)$
4.25(-2) 4.14(-2) $3.71(-2)$
$6.65(-2)$
1.10(-1)
9.28(-2)
$4.46(-2)$
3.46(-2)
?. $39(-2)$
8.61(-2)
$1.12(-2)$
5.65(-2) 3.62(-2)

TABLE 6

$\begin{gathered} \text { Incident } \\ \text { Energy } \\ \text { (MeV) } \\ \hline \end{gathered}$	GAMMA RESPONSE MATRIX - R_{r}				4.0
	E^{\prime} - Pulse Hei.ght (MeV)				
	3.2	3.4	3.6	3.8	
0.2	0	0	0	0	0
0.4	0	0	0	0	0
0.6	0	0	0	0	0
0.8	0	0	0	0	0
1.0	0	0	0	0	0
1.2	0	0	0	0	0
1.4	0	0	0	0	0
1.6	0	0	0	0	0
1.8	0	0	0	0	0
2.0	0	0	0	0	0
2.2	0	0	0	0	0
2.4	0	0	0	0	0
2.6	1.15(-3)	0	0	0	0
2.8	3.24(-3)	1.28(-3)	7.40(-4)	0	0
3.0	$6.37(-2)$	3.97(-3)	1.57(-3)	8.20(-4)	0
3.2	2.33(-2)	1.33(-2)	5.11(-3)	1.74(-3)	8.00(-4)
3.4	3.13(-8)	1.92(-2)	1.16(-2)	4.82(-3)	1.63(-3)
3.6	i. 58 (-2)	3.22(-2)	$1.63(-2)$	$1.03(-2)$	5.37(-3)
3.8	3.25(-2)	3.95(-2)	2.36(-2)	1.52(-2)	1.08(-2)
4.0	3.05(-2)	3.13(-2)	3.94(-2)	2.02(-2)	1.56(-2)

TABLE 7

E (MeV)	$\epsilon_{1}(\theta, \phi) \text { (Counts/Photon }-\mathrm{Cm}^{-2} \text {) }$		
	$\theta, \phi=0^{\circ} 0^{\circ}$	$\theta, \pm=180^{\circ}, 0^{\circ}$	$\theta, \phi=90^{\circ}, 0^{\circ}$
0.2	. 720	. 928	. 046
0.4	. 780	. 820	. 241
0.6	.768	. 702	. 501
0.8	. 753	. 690	. 617
1.0	. 733	. 610	. 630
1.2	. 708	. 595	. 583
1.4	. 685	. 583	. 517
1.6	. 660	. 568	. 468
1.8	. 638	. 555	. 439
2.0	. 623	. 545	. 435
2.2	. 610	. 537	. 435
2.4	. 603	. 532	. 435
2.6	. 601	. 525	. 435
2.8	. 600	. 519	. 435
3.0	. 600	. 515	. 435
3.2	. 600	. 510	. 435
3.4	. 600	. 510	. 435
3.6	. 600	. 510	. 435
3.8	. 600	. 510	. 435
4.0	. 600	. 510	. 435

TABLE 8
GAMMA EFFTCIENCY MULTIPLIERS

0 (deg)	¢ (deg)	$\mathbb{N}_{\partial, \phi}=\frac{\epsilon_{r}(\theta, \phi)}{\epsilon_{r}\left(90^{\circ}, 0^{\circ}\right)}$
45	0	0.83
45	45	0.86
45	90	0.83
45	135	0.84
45	180	0.85
45	225	0.79
45	270	0.88
45	315	0.90
90	0	1.00
90	45	0.88
90	90	0.68
90	135	1.08
90	180	1.13
90	225	1.11
90	270	1.00
90	315	1.07
135	0	0.96
135	45	0.61
135	90	0.76
1.35	135	0.97
135	180	1.01
135	225	1.00
135	270	0.86
135	315	0.83

GAMMA CROSS-TAIK RESPONGE MATRIX - C_{γ}

$\begin{gathered} \text { E } \\ \text { Incident } \\ \text { Fnergy } \\ (\mathrm{MeV}) \end{gathered}$	E^{\prime} - Pulse Height (MeV)				
	0.2	0.4	0.6	0.8	1.0
0.2	3.32(-1)	0	0	0	0
0.4	3.65(-1)	$6.38(-2)$	0	0	0
0.6	3.62(-1)	1.42(-1)	$2.45(-2$.	0	0
0.3	3.36(-1)	$1.88(1)$	6.39(-2)	1.25(-2)	0
1.0	3.13(-1)	$2.08(-1$.	9.31(-2)	3.06(-2)	9.88(-3)
1.2	2.35(-1)	2.10(-1)	1.16(-1)	$3.17(-2)$	2.03(-2)
1.4	2.55(-1)	2.06(-1)	1.33(-1)	7.3l(-2)	3.58(-2)
1.6	2.30(-1)	1.96(-1)	1.43(-1)	$3.98(-2)$	5.04(-2)
1.8	1.93(-1)	1.76(-1)	1.43(-1)	1.06(-1)	7.24(-2)
2.0	1.68(-1)	1.57(-1)	1.35(-1)	$1.09(-1)$	8.32(-2)
2.2	1.39(-1)	1.34(-1)	1.23(-1)	1.07(-1)	8.92(-2)
2.4	1.20(-1)	1.14(-1)	1.06(-1)	9.64(-2)	8.53(-2)
2.6	1.01(-1)	9.4.9(-2)	8.95(-2)	8.40(-2)	$7.86(-2)$
2.8	8.80(-2)	$7.98(-2)$	7.60(-2)	7.66(-2)	$7.60(-2)$
3.0	7.63(-2)	7.45(-2)	7.05(-2)	7.22(-2)	7.28(-2)
3.2	7.05(-2)	$6.53(-2)$	$6.30(-2)$	$6.36(-2)$	$6.36(-2)$
3.4	$6.48(-2)$	$6.32(-2)$	5.93(-2)	5.93(-2)	5.99(-2)
3.6	$5.80(-2)$	5.75-2)	5.65(-2)	5.60(-2)	$5.60(-2)$
3.8	5.33(-2)	5.33(-2)	5.28(-2)	5.24(-2)	$5.18(-2)$
4.0	$5.24(-2)$	5.24(-2)	5.14(-2)	4.86(-2)	4.95(-2)

TABLE 9

.. GAMMA CROSS-TALK RESPONSE MATRIX - $C_{r}($ Con't)

$\begin{gathered} \text { In } \\ \text { Incident } \\ \text { Energy } \\ \text { (MeV) } \end{gathered}$	E', = Pulse Height (MeV)				
	1.2	1.4	1.6	1.8	2.0
0.2	0	0	0	0	0
0.4	0	0	0	0	0
0.6	0	0	0	0	0
0.8	0	0	0	0	0
1.0	0	0	0	0	0
1.2	9.11(3)	0	0	0	0
1.4	1.73(-2)	9.64(-3)	0	0	0
1.6	2.74(-2)	1.55(-2)	9.27(-3)	0	0
1.8	4.48(-2)	2.78(-2)	1.89(-2)	1.33(-2)	8.38(-3)
2.0	6.10(-2)	4.30(-2)	$2.97(-2)$	2.05(-2)	1.39(-2)
2.2	7.16(-2)	5.60(-2)	4.34(-2)	3.30(-2)	2.46(-2)
2.4	7.46(-2)	6.45(-2)	5.10(-2)	4.68(-2)	3.86(-2)
2.6	7.35(-2)	6.83(-2)	6.25(-2)	5.67(-2)	5.06(-2)
2.8	7.22(-2)	6.65(-2)	6.20(-2)	6.14(-2)	5.79(-2)
3.0	6.99(-2)	6.00(-2)	5.74(-2)	5.76(-2)	5.88(-2)
3.2	6.25(-2)	5.96(-2)	5.62(-2.)	5.56(-2)	5.73'-2)
3.4	5.93(-2)	5.77(-2)	5.60(-2)	5.36(-2)	5.2' ${ }^{\prime \prime}(-2)$
3.6	5.44(-2)	5.28(-2)	5.23(-2)	5.08(-2)	4.992(-2)
3.8	5.09(-2)	5.04(-2)	4.99(-2)	4.91(-2)	4.76(-2)
4.0	4.91(-2)	4.76(-2)	4.72(-2)	$4.62(-2)$	4.54(-2)

TABLE 9

GAMMA CROSS-TAIK RESPONSE MAIRIX - C_{γ} (Con't)

$\begin{gathered} \text { E } \\ \text { Incident } \\ \text { Energy } \\ \text { (MeV) } \end{gathered}$	E^{\prime} - Puise Height (MeV)				
	2.2	2.4	2.6	2.8	3.0
0.2	0	0	0	0	0
0.4	0	0	0	0	0
0.6	0	0	0	0	0
0.8	0	0	0	0	0
1.0	0	0	0	0	0
1.2	0	0	0	0	0
1.4	0	0	0	0	0
1.6	0	0	0	0	0
1.8	0	0	0	0	0
2.0	9.31(-3)	0	0	0	0
2.2	1.77(-2)	1. $21(-2)$	8.38(-3)	0	0
2.4	$3.07(-2)$	2. $34(-2)$	1.63(-2)	9.77(-3)	0
2.6	4.41(-2)	3.66(-2)	2.72(-2)	$1.76(-2)$	9.96(-2)
2.8	5.19(-2)	4.43(-2)	$3.67(-2)$	2.78(-2)	1.30(-2)
3.0	5.71(-2)	5.18(-2)	$4.40(-2)$	3.64(-2)	2.80(-2)
3.2	5.79(-2)	5.53(-2)	5.10(-2)	4.53(-2)	3.7P(-2)
3.4	5.49(-2)	5.38(-2)	5.11(-2)	4.75(-2)	4.34(-2)
3.6	4.98(-2)	5.08(-2)	4.92(-2)	$4.66(-2)$	4.43(-2)
3.8	$4.66(-2)$	4.69(-2)	4.69(-2)	4.56(-2)	4.41(-2)
4.0	4.46(-2)	4.39(-2)	4.29(-2)	$4.20(-2)$	4.10(-2)

TABLE 9

	MMA CRO	ALK KESPO	MATRIX $=$	on't)	
$\stackrel{E}{\text { Incident }}$		E^{\prime} -	se Height		
$\begin{aligned} & \text { Energy } \\ & (\mathrm{MeV}) \\ & \hline \end{aligned}$	3.2	3.4	3.6	3.8	4.0
0.2	0	0	0	0	0
0.4	0	0	0	0	0
0.6	0	0	0	0	0
0.8 ..	0	0	0	0	0
1.0	0	0	0	0	0
1.2	0	0	0	0	0
1.4	0	0	0	0	0
1.6	0	0	0	0	0
1.8	0	\bigcirc	0	0	0
2.0	0	0	0	0	0
2.2	0	0	0	0	0
2.4	0	0	0	0	0
2.6	0	0	0	0	0
2.8	1.00(-2)	0	0	0	0
3.0	1.83(-2)	9.90(-3)	0	0	0
3.2	2.95(-2)	2.03(-2)	1.05(-2)	0	0
3.4	3.74(-2)	2.99(-2)	2.03(-2)	1.02(-2)	0
3.6	4.12(-2)	3.73(-2)	3.11(-2)	2.36(-2)	1.58(-2)
3.8	4.24(-2)	3.94(-2)	3.59(-2)	3.09(-2)	2.44(-2)
4.0	3.96(-2)	3.99(-2)	3.87(-2)	$3.61(-2)$	3.18(-2)

TABLE 10
GAMMA CRDSS-TALK EFFICIENCY MAITRIX - f_{r}

$E(\mathrm{MeV})$	f_{r}
.2	.0044
.4	.0053
.6	.0062
.8	.0074
1.0	.0088
1.2	.0105
1.4	.0131
1.6	.0165
1.8	.0205
2.0	.0260
2.2	.0325
2.4	.041
2.6	.051
2.8	.064
3.0	.080
3.2	.100
3.4	.125
3.6	.158
3.8	.200
4.0	.250

TABLE 11

SYSTEM CHANNEL BOUNDARIES

```
Calibration Reference - 2.615 MeV = 4.00 volts
```

Bremsstrahlung Channels

Channel Number	Lower (volts)	Upper (volts)	W1dth (volts)
1	0.345	0.427	0.082
2	0.427	0.764	0.336
3	0.764	1.709	0.945
4	1.709	2.62	0.918
5	2.627	5.491	2.864

Beta Channels

Channel Number	Lower (volts)	Upper (volts)	Width (volts)
1	0.296	0.709	0.413
2	0.709	1.727	1.018
3	1.727	2.854	1.127
4	2.854	4.236	1.382
5	4.236	5.491	1.254

Foldont frame 1.

*

atrith
unoon
Asy

[^0]: * 1200 Hrs. GMT

