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INTRODUCTION

Throughout the Gemini program a number of radiation monitoring devices

have been employed both inside and outside the spacecraft to measure radiation

exposure to the astronauts. 'These have been both active and passive devices,

sensitive to a variety of radiations expected in near earth orbit. In general

it has been the object of these devices to determine the spectra of radiations

outside the spacecraft and the physical dose due to those radiations inside the

spacecraft. However, on Gemini X a bremsstrahlung spectrometer was mounted in-

side the cabin to better define the radiations inside the craft, and as a re-

sult of electron penetration data on the Gemini hatch, a combination beta-

bremsstrahlung spectrometer was flown inside the vehicle on Gemini XII. It is

this latter device that will be described in detail in this report.

Data relating to electron penetration through the Gemini III hatch was ob-

tained early in 1966 at the LTV Research Center using a Van de Graaff, pw ticle

accelerator. This data indicated that electrons with energies above 1.0 MeV

lost only about 0.7 MeV in the batch and entered the spacecraft with their re-

maining degraded energy. It became important to determine the relative inten-

sities of electrons and x-rays inside the spacecraft. Since LTV, under Contract

NA:19-4013,provided a device to NASA for evaluation, which was capable of measur-

ing both electrons and x-rays in a single instrument, it was decided to place

that device inside Gemini XII. The flight instrument utilized an original

principle devised by LTV scientists for separating and analyzing electrons and

x-rays (a patent has been applied for covering this apparatus) and only those

design changes necessary to conform to the physical, interfacial, and environ-

mental requirements of flight were made. The unit was designed to operate with

a NASA modified data processor unit of the type flown with the bremsstrahlung

experiment on Gemini X. The major design difficulties in the program were en-

countered in mating the LTV unit with the data processor. The fabrication,

calibration, and calibration data reduction efforts in this program were carried

out under National Aeronautics and Space Administration Manned Spacecraft Center

contract NAS9-5765.

The Beta-Bremsstrahlung unit, serial number 3, was successfully flown on

•1-
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Gemini XII November 11-15, 1966. Data was received as planned during the Flight

and post flight calibration of the instrument demonstrated that the function

of the unit and its data processor was identical to that prior to launchs Data

was not available in a form suitable for analysis at the time of publication

of this report.

,_ ,,,,,,,.. _ ^	 r,.,,..,.,.,,,,. ,,.sae•,.. •,,	 _.^,	 .,..^ _.. r.	 __.. ..^ Tr ..: tea.
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THEORY OF OPERATION

GENERAL

The LTV Leta-Bremsstrahl.ung spectrometer senior unit is a scintillation

device which wan designed to analyze electron and bremsstrablung radiations

in the region From approximately 0.2 to 4.0 MeV. It combines the application

of a complex scintillation crystal assembly with high speed electror1 c circui-

try to identify and separate the two radiations when the device is used in a

mixers field.

PARTICLE DETECTION PROC933M

The basic principle of a scintillation counter employs the fact that the

interaction of radiation with various materials produces excitation or ioniza-

tion which is followed by the emission of light. This light is converted,

usually by a photomu?tiplier tube, into an electronic signal. Different ma-

terials have different phosphorescont decay times which vary over several

orders of magnitude. Particle identification was made possible in the Beta-

Bremsstrahlung spectrometer by the use of two such materials in the configura-

tion shown in Drawing N100-10001. The plastic scintillation material has a

decay time of approximately 3 nanoseconds while that of the thallium activated

cesium-iodide is 1.1 microseconds. Since electrons can enter only through

the collimator shown in the drawing they must pass through the thin plastic

crystal before entering the CsI. On the other hand, a gamma ray may enter

from any direction and, those passing through the plastic have a very low in-

teraction probability in the material. Typical pulse shapes for electrons

and gammas are shown to Fig. 1 for the curves labeled "Anode". The fast

negative spike in the upper figure resulted from the electron interaction with

the plastic and the remainder of the trace corresponds to energy lost in the

Cs1. No spike is seen for gammas in the .lower figure because they interact

only with the Csx. It is true, however, that some gamma interactions can

occur in the plastic, plus the fact that a small number of the electrons which

are produced by interactions in the Csx can escape anu traverse the plastic.

Due to the relative volumes of the two scintillatoos and the dependence of

atomic number of interaction probabilities, the chance of particle confusion

from this mechanism is small. To allow particle separation the pulse from

..3..
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the photomultipl.i,er anode wan shaped with a shorted delay line giving the
resultant signals shown in Fig. 1, The aifference in these resultant signals

for gammas and betas 13 seen to be the presence of the positive spike pro-

tluced by the betaF;. Thefse typen of signals were ammplifie(i, an will be dew
ncri.bed below, and iiti Li zed for particle identification in the Beta-Arems-
strahlung npentiome;ter.

A general explanation of the operation of the eleetronics may be made
by referring to Drawing N 00-10goO which indicates in block form the rela-
tive an Boni ati on of the individual electronic circuits. The linear signal,
originating at the last dynode of the photomul.tiplier tube., pin '(, was ampli-
fied by the :Linear amplifier, circuit A'). From there the signal went direct-
l;, to PI for interconnection to the analyzer-processor.

The particle; identification :signal originated at the anode of the photo-
multiplier tube and was shaped by the delay line before it entered the high
speed amplifier, circuit Al. The amplified signal then went to the upper level

detector, ULD, and the sower level, detector, LLD, circuits A2 and A3 respec-

tively. The outputs of these circuits then went to the logic circuit, A4,

where the particle identification signals, gamma inhibit and beta enable)

were produced. The par t-. cl a a. e natif i ca ti^3z^ ^ i ^a13 went da.r^ qtly -4 Pl

for interconnection to the analyzer-processor.

Monitoring of all the spectrometer output signals was possible through

interconnec:tiona provided at P2, the AI,F test connector.

A detailed discussion of the operation of these circuits plus the power

supply and control, circuits is given in the following paragraphs.

-^,'...,.xw ^..



MR(; IUAL nr,)I(rN

GEMMAL DR TIN SPECIFICATIOM

The 3pentrometer wan required to operates within the following final

design specifinationa over a temperature range of 0° to 120° Fahrenheit

from a filtered but unregulated power source of 96 1 4 volts. The linear

signal was required to have nominal r13e and fall time constants of 1. ? ps

and. r jis re. s??e G.,tf ve l,,v , and a dynamic ranee of 7 volt:. Tt was required to

have a ,,en f t1,vity n;'.' approximately 1.6 volts] MeV with a stability of t7%

over t;ht-, range of temperature and input voltage. The gating outputs re-
quired a rises and fall time of approximately 1 µs when loaded with the
analyzer-Drocet,)nor and a width of approximately 8 µs. The amplitudes re»

quired for the logic levels were 4.5 i 0.5 volts for the inhibited condition

and 0.2 :t 0.2 volts for the uninhibited condition. These parameters were

attained over the entire environmental conditions as evidenced by the suc-

ce;, ful. completion of the qualification testing at NAaA-MSC.

PHOTOMULTIPLI CIRCUIT N'100-10900
awwrw.ay H1-Mww^^s IwMrwrr ^YMwrYM. 	 raw.

The photomultiplier circuitry consisted of an RCA-4460 photomultiplier,

a Pulse Engineertng Corp. PE5400 photomultiplier power supply, a shorted

delay line, and the necessary circuitry to • .t and stabilize the required

phototube gain. The linear signal was derived from the last dynode cur-

rent, across the effective dynode capacitance to ground. The high speed

signal was derived from the anode current driving the delay line and high

speed amplifier. In order to minimize effects of photocathode noise, the

"Co-netic" magnetic shield surrounding tihe photomultiplier was elevated to

photocathode potential through a high impedance filter network.

The RCA- 4460 was picked due to its small size, ruggedness, and simi-

larity to tubes used in the pant in laboratory applications. The PE 5400

power supply was utilized because of its past history as reliable space

hardware. The PE 5400 was designed to operate directly drom a 26 + 4
volt poorer supply and was compatible with the sensor unit power specifications.

Additional filtering was required on some of the power supply outputs and

was accomplished by the addition of external capacitors.

-5-



The output 'rol,tage of the p )weAr rjupply, which iiirectly fietermi.ned ths-

gain of the photomulati pzi er, wivi cunt.rol l,e pi by tho network attae'hed to pins

l and 2 or Lhe PE' ')14)o power .3upply. Feedbtck through 	 end (Ml provided

the voltages control. feedbaA from the high voltage (Arryuit. Wit to the highly

unstable and non-linear gatn nhara ,^teristict of phototlit)( , r, with temperature,

it was necessary to geno-rates an extesrnal. temperature Sensitive rsignal which

would vary they high voltage aprl.i esd to the phototube In a manner that would

compensates for gain ,,hi,f't:i in the photomul,tipli.ex. For example, if the vol-

tages on the phototube wfsres held constant, gain change of approximately

3001 over the temperaturree, range tef 0 °F to 1PO °F would result. F014 compen$a-

tion, a corree'tion current war, fed into the feedback st mming Junction of the

PH 5 )9)0 rower :;ixpply, S"'f n 1, which, along with the voltage Ceedback network,

would keep the 5y.(A;em gain constant. A network wary then designed to ereate

a temperature, corrol.ated c;urrer,t which closely matched that necessary for

constant system gain. lince the temperature sensitive element and the photo-

tube did not have precise absulute values at a given temperature, it was

necessary to select the network resistance - values for each individual sensor

unit. High stability resistors were utilized to assure that the network re-
tained its characteristics throughout its life and expected environment. The

characteristics of the phototube and the correction network were such that

rather sLiple selection techniques were developed which stabilized the system

to within the design limits, t 5%. A series of adjustments were made: at

room temperature and. the temperature extremes. Values of the various com-

ponents were then picked which would give the best temperature compensation

within the design limits.

The characteristic shape of the linear pulse was determined solely by

the impedance seen by the last dynode. The pulse amplitude was primarily

a function of the capacitance from the last dynode to ground, which consisted

of C2 (N100-13900), about ;0 pf of cable capacitance, and a few pf of stray

capacitance. This gave a total capacitance of approximately 220 pf. The

decay time of the pulse was determined by the above capacitance shunted by

the effective discharge resistance across it. This consisted of R3 (N100-10900)

in parallel with the input impedance of the linear amplifier. This gave a

decay time constant of about 8 µs. The rise time of the pulse was approximately

-6-



1,P 110, whioll wao 
the	

of thy' J,J I L ,,) Ohl li jdit dec,-ay (,,'-on,,;tOnt and

the	 BC	 0011r. tant.

The M h speed ryul,,;e, used Vor particle identifiPation, was derived from
the anode ourr"nt. U&S current iri^rao Ptmu1tanP_ou,,;1y a shorted delay line
an(I tho lrljrb 	 ananliffer input. Mie ( ,-,haraeteriotl P_ puloe ,hape(-,, as
seen at the amplifter input, are f-Ilown in Pie,,. j-. Me, puloe of interest, the
po,,1,1,tiv(1, ,3piko, re.r-)-ulting from a reflooted bota interaction, had approximately
a 3 iv,; rirof, time Pn(l rt 10 n; decay time. It wals, preceeded, by a negative
puloe corre;pording to the nonii fil signal laotingr for 10 no which was twice
the time of propq t,_Pation	 tho delay line.

UN10,AP WTJFTTi'

	

At the b(pi;ining t)P tho	 the output -,on.-,itivity requirement was

1. Plj volts per MOV. Tn ordor 'to obtain this original sensitivity, the linear
amplifier wao designed with a maximum gain of 10.51 a dynamic range of 5-5
volts, and a deray conotant )f 5 [x^4;. After the compatibility tests with the

analyzer-processor, it wa.; determined that proper operation required an out-
put pulse with an 8 jtf,, decay constant, a '( volt dynamic range, and an output
sensitivity of approximately 1.6 volt  per MeV. In order to increase the
input sensitivity of the amplifier and the decay time constant of the output.,
the amplifier gain had to be incr^asled. This was accomplished by increasing
the inverter gain by approximately a factor of 3. Since the dynamic range of
the amplifier wE sufficient, no change was required to me-et the new dynamic

range specifications. The actual output sensitivity was adjustable through
the use of an ad.4 ustment potentiometer, R5.

The circuit utilized had very good linearity and stability and a low out-
put impedance to minimize the effect of load impedance. The instability and
non-linearity characteristics were within ± 0.0 of full scale over the
temperature range of -10°F to 130°F and unmeasurable with the equipment
utilized over the temperature range of -10°F to 110°F (see Figure 2). This
was well within the design limits of ± 1% full scale maximum deviation of
the best straight line. The output impedance of the amplifier was matched
as closely as possible to the impedance of the interconnection cable used
between the sensor and analyzer-processor by the series addition of 30 ohms,



LIP, in the oircuttry. ^111A(J wary done to minimize reflection 'Droblemo between
the two tinito. The rwiplif ter out put wa, Papaeitively coupled to prevent damage
if the output line we °( inadvertently ,,,horte(i.

HTG11	 -AMPU PIER (N100-11900)

Me hi g'h- -, peed allArlit'lor wa, de.-,,At ned to amplify the po3itive output
Vrom the del4y line network to f^,uoh a level that amplitude detections, could

be performed on the pul e,,;. 'Aie amplifier wa (tot-Agned with limited bandwidth
to minimize acotdontal dete(F do  due to ora, ,;r,, time variant fluctionr, on the
fAV,nal. The. amplifier it,,jelf, had a grain of approximately '(`j to 80. As it
wao designed to araplify the reflented pulse of the; delay  line output ., which

was pooitive, the amDlifier had to be essentially insensitive to the large
negative overload pulse that precise deed tN_1 positive pulse. Linearity of gain
was not a requirement, but stability wa-s. Li mits of :t 51 gain stability over
the range of -,1D *F to 130 0 F were required for proper operation. Less than

t 1.5'$ change over this range was achieved as seen in Fig. 3.

HIGH I)PEED LEVEM D-317CTORI) (N100-12900)

There were two fast detectors utilized in the sensor unit, an upper
level detector designated ULD, and a lower level detector designated LLD.
In each detector, there was an amplifier which served as an isolation buffer
and allowed for a final gain adjustment. The detectors and amplifiers were
arranged as shown in Fig. 5. 

As seen in Fig. 4y the detector circuits were
stable to within +_1`!5, when operated at approximately midrange on the adjust-
ment potentiometer. It was desirable to operate the detectors near this
point- if possible, so a ratio was determined for the 'LLD and ULD, which
was approximately 10. The gain of the A3 amplifier was then fixed to give
this ratio of pulse amplitudes into the two detectors. The gain of the A2

amplifier was determined by the linear amplifier gain, phototube gain, and
noise considerations. Of. f course, typical output levels were known prior to
initial design. The particular tube type, crystal configuration, and physical
and electrical configurations peculiar to this sensor design were used to
determine the gain of the A2 amplifier. This was found to be approximately

5. With the gains determined for the high speed system and the linear am-
plifier, the gains of the individual spectrometers were adjusted by setting

-8-



the phototube gains. The output of the LLD and ULD discrimin.,tor circuits were

fed into a pulse shaping circuit to provide the logic pulses required by the

logic circuitry (N100-13900). The actual levels at which the detectors were

set were determined by calibration with radioactive sources.

LOGIC AND OUTPUT CIRO 173 ( NIOO-13900 )

The logic and output circuitry vrere designed to accept the LLL and ULL

outputs, and generate gamma inhibit pulses and beta enable pulses compatible

with the analyzer-processor. The logic was realized utilizing military-range

RTL integrated circuits. The particular elements were picked to optimize the

speed and power requirement, of this device. In order to minimize the number

of component types utilized in the spectrometer, the entire logic was designed

around dual 3-input NAND/NOR gates. Three and one half devices, seven gates,
were required to fulfill the logic requirements.

One device was used as a monostable multivibrator, a technique developed

at LTV prior to the initial Beta-Bremsstrahlung sensor concept. A long as

precise timing throughout the temperature range was not required, it provides

the functions of a monostable multivibrator with a minimum of components.

Another dual gate was used, utilizing the ULL and monostable multivibrator

signals, to develop the signal which was used to generate inhibits on both

control outputs. The other two devices used the two previously developed

signals to generate the control functions for the analyzer-processor. The

outputs of the control logic gates drove oix'put transistors to provide com-

patible signals for the analyzer-processor. The circuit was designed to pro-

vide signals to the analyzer-processor of proper width and sufficient amplitude

to initiate the inhibit functions necessary to perform the proper analysis of

the linear signal. The control signals were modified, after mating compati-

bility tests were performed, to eliminate a noise coupling problem. The

width was increased to approximately 9 ps and the rise and fall times were
tailored to approximately 1 µs. The output circuitry was designed such that

a continuous short circuit would produce no damage to the circuitry and would

produce negligible et.L'c:cs on power consumption.

LOW VOLTAGE POWER SUPPLY (N100-14900)

The operating voltage requirements for the spectrometer circuits were

-9-



4 volts *3% with t2% regulation and 6.8 and 12 volts ± 8% with 13% regulation

over the entire range of temperature and input voltages. To obtain thecae

requirements the 4 volts had to be within :tl% and the 6.8 and 12 volts within

±5% at standard conditions (26 V.D.C. input, 77°F, and operationally loaded).

The ripple was not to exceed 50 millivolts.

In order to fulfill the preceeding requirements, a smell relatively

efficient unit had to be designed. Since the 4 volt output required the high-

est current,an efficient means of reducing the 26 volt input had to be used.

The use of a resistance aeries regulator would have consumed much more than

the 3 watts available. The use of a transformer DC to DC converter to lower

the voltage would have required too much space and design time. A switching

regulator was chosen because it offers a combination of efficient regulation,

simplie '°°° and compactness. Because the 6.8 volt and 12 volt output required

much less current and less voltage accuracy, zener diode regulators were

found to be adequate.

In order to visualize the operation of the switching regulator,refer

to Fig. 6. The switch was simply a transistor cutting on and off when com-

manded by the driver transistor driven by a variable-duty-factor. multivibra-

tor. The filter was of the low pass, LC type with a diode to return current

during the off portion of the cycle. This essentially supplies D.C. power

with an output voltage equal to the input voltage times the ratio of the on

time to the switching period. Then by varying the time the switching transis-

tor was on to the time it was off the output voltage could be varied.

The multivibrator was an astable type that commences operation upon appli-

cation of voltage. The pulse width was varied by the application of current

to either of its transistor bases. The differential amplifier supplied di--

ferential gain of approximately 50, proportional to the difference in the

output voltage and the reference. When the output tried to increase either

by an increase in input voltage or decrease in the load, the duty factor

decreased and the output voltage was pulled down to approach the required

output voltage. The regulator then changed the pulse widths of the multi-

vibrator such that the output remained constant regardless of input and

output variations.

-10-



The nwiteiiing regulator performance wren typically regmlated within tl^
over the entire voltage and temperature range with accurate netting of the
output voltage by ad,luoting,, ]PP. Tt,,,- efficiency wan approximately W, The out-
put was protected from nn overvoltage of greater than 6. ,'l volt-", irlth no Iona
attached by the 6.(3 volt :ewer 

on the output. An 
LO filter at the input to

the power supply isolated it and the sensor circuitry from input current
spikes. The switching Iran rotor wao a high current and high voltage type
so that initial capacitor charging tranoiento on out-on would not exceed the
safe-operating area. A test involving application of 4000 cycles of a 28

volt step input caused no degradation of switching transistor performance.
Output ripple wao typically less than 10 millivolts at room temperature at
28 volts input. Temperature stability was achieved by a low-temperature-co-
efficient zener diode reference and a matched dual transistor in the differen-
tial amplifier. Switching frequency was approximately 20 KIN and the multi-
vibrator would continue operation even if tha output were ohorted,thus,giving
the output transistor about 5 seconds before it opened.

The 12 volt and 6.8 volt outputs were obtained across zener diodes.
The regulation and efficiency obtained was not as good as with the series
switching regulator but was adequate for the circuit requirements. The out-
put of the 6.8 and 12 volt zeners could vary within ±5% at standard conditions
and regulate within ±3$ over the entire voltage and temperature range. Power
loss in the resistor feeding the zeners was I watt maximum,

TESTING AND MONITORING

The sensor unit was provided with a test connector in order to perform
tests on the unit under operating conditions. It had inputs for a linear

4	 signal, to check system linearity and analyzer-processor channel boundaries,
and a high speed signal, to check the high speed circuitry and logic cir-
cuitry. All three sensor outputs could be monitored through this connector
and there was a protected 4 volt power supply monitoring point. The power
supply monitor had a series 1 Kohm resistor to protect the power supply and
instrument from accidental shorting of this monitor point. To prevent RFI
problems when the spectrometer was in use, a grounded shield cap was pro-
vided to cover the test connector. A temperature monitor was provided to the
spacecraft connector to provide a signal which was a function of the sensor
internal temperature.

-11-



D1_-',3TCTN MN0TFTCAT.fON'-)

To insure the ucee,, of tho lr;fntfor unit In th(,,, onvIronmeW -. of op'tpe and

launoh,the roquiremoiit,,; of KV, 1 1433 for pre; ,,;urizod hardware w(-"r(-, evoked ex-

cept for humidity t rain, . ,,alt ,,,oa atmo,,,q)here, -iand, du ,,3t t flinguo and ^,)inu.,,,oi-

dal vibration ar, ,Iet out in the eantract. :1 7 not , the Jpen^;or wao to be mounted

on the command 	 hatQh whieh war,ri(r_,gre(l for explo,,31.ve openinga FjOg

,hook tet,,t wat,, I_mT)r),r,e(1, 'llip unit wa, to 14o Jeot-, than 4.'cX) 1.b, in weight and

measure 5. 1j0 inolie,,; x ^) 1neheo x 3 incho.t. maximum. The unit aL,;o was to have

rounded cornero at	 near the aotronautt-, in order to avoid possible damage

to ,pace-iiuitB. The Interior of the package wao to be vacuum -,ealed to insure

operation of high Volta ;o eirouitry by maintaining a dry nitrnge-n atmosphere

inside the cag e on expuoure to the vacuum of outerGpace and the oxygen atmos-

phere of the capoule. All quality control of assembly was to conform to quality

specification NPO- P.W- P aG modified by the contract.

EXTERNAL DE,31GN

In order to oatiafy the external requirements, a container of the shape

shown on Drawing N100-00920 was designed. The mounting configuration consisted

of a back plate which wao machined as an integral part of the container itself.

The mounting bracket hole pattern configuration is ,,hown on Drawing N100-00930.

Adequate strength in the mounting back plate and container was maintained to

insure that the unit would remain intact on the spacecraft door if it were

opened in as emergency.

INTERNAL DESIGN

The internal con-figuration of the package also used the back plate as the

main structural member. All heavy members of the internal design were secured

to the back plate or mounted as close to it as possible to reduce the torque

produced at the mounting plane. Since the collimator and shielding for the

photomultiplier tube constituted the majority of the weight in the package,

they were mounted on the bottom plate close to the back plate and secured with

a clamp to the back plate.

_ 12-
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Me major faotorj which influence the (Iel,Agn of the detector head assembly

(14100-10001-01) were the anti, c1pated electron and bremaitrahlung intensities,

the electron eollimator and brem.-,strah1m , shield de,,Ag	 0-,n, ,raouum protection, and

the mechanical ohook and vibration envirorment during launch.
The cry[Aal and collimator geometric.,,, were chosen to give, as nearly as

possible, equal count rates in tho electron and bremr.3trahlxmg channels. Based

on a brief experl.mental, ;jtudir of electron penetration through a Oemini hatch

and NASA supplied -,pace electroa inten gitiet', it wtit) determined that a

Col(TI) scintillation ery.,;tal, approximately 1/2-:inch long R-nd 3/4-inch diameter
was optimum. If the maxi mum poo.Able ,.hielding ., within weight limitations, were

used, the calculationr, indicated that the count rates would remain within allowable

limits even if the !;pace craft were boosted into a higher orbit than the standard

mission called for,,

The electron collimator was then denigned to have a maximum acceptance cone

angle compatible with ► his crystal rAze. Tantalum was chosen for the collimator

and rhield material because of it,,,, high density, high strength, and machinability;

thus, giving the maximum ,3hielding to weight ratio and allowing the shield to

be an integral part of the mechanical structure.

The collimator design also included an aluminum spacer between the tantalum

apertures to reduce the scattering of electrons from the collimator walls. Each

aperture was main:_, thick enough to absorb electrons to approximately 6 MeV, the
maximum energy which could introduce significant distortions into the pulse

height spectra.

The photomultiplier was guarded against shock and vibration by the use of

silicone rubber gaskets at each end of the tube assembly, one compressing

against the scintillation crystal and, the other against the base of the photo-

multiplier tube. Thermal expansion problems were eliminated in the detector

head assembly by these shock absorbing gaskets.

The "Co-netic" shield (NlOO-10010-03) around the photomultiplier tube

served a dual purposes it shielded the tube against the earth's and local

magnetic fields and, since it was maintained at the potential of the photo-

cathode of the photomultiplier tube,it acted as an electrostatic shield to

reduce field effect noise at the photocathode.

-13-

4- __Ar



To insure continued operation in the vacuum of space ^Iuring extra-vehicular

activity the unit had to be sealed at cover removal. points, input conrl-ctor,'3, and
collimator assembly. The va^.,. ,-Lm oeaj. at the cover removal, rx)int,,.4	 _; were formed by

gaskets of silicon rubber compresoed by the mating surface.-,. The input connectors
were hermetically sealed types and were sealed by "0" rings between connector

bodies and case. To achieve a vacuum seal at the detector head. the electron
window (R00-10006-01) was machined ao an integral part of the washer which
pressed against the 0-ring. This gave the window strength and did not require
the bonding of a foil to the sealing washer.

The printed circuit boards were made accessible to adjustment and service.
Since the high speed amplifier (N100-11000-01), level detector; (NI00-12000-01)
and linear amplifier end logic (N100-13000-01) were the main active boardo and
probably required the most adjustment,, they were mounted as plug in boards and
used ml ,,iature RF connectors where required. The boards were plugged into
connectors at the bottom and were secured to the sides by vibration absorbing
card slides. In addition to the slides, pressure was applied to both the top
and bottom of boards by rubber pads to insure vibration isolation and adequate
structural strength. This method of mounting reduced the possibility of board
resonances.

The high voltage control board (N100-15000-01) and HV power supply were
mounted on bases in the top section to allow access to the board with the cover
removed. The harness wiring (N100-10300-01) to the photomultiplier tube and
to the w.' ring below (N100-10200-01) was made of sufficient length to allow the
board to be lifted out of case for maintenance and case removal. The low
voltage power supply (N100-11 000-01) was installed on bosses on the bottom
cover and wired into the N100-10200-01 harness. To gain access to this power
supply it was necessary to remove the bottom cover.

All boards were layed out on artwork per specification M3FC-STD-154.
Components were mounted on the board with lead spacing to allow conformity to
soldering specification NPC-200-4. The plug-in boards as well as the upper
low voltage power supply board were made of .063 inch thickness glass epoxy
board per Mil-P-13949• The lower low voltage power supply board and the high
voltage power supply control board were made of .093 inch thickness glass

-14-



I

epoxy board per the uam" n)pecif ioationt TO insure added vibration strength

and component Protection a conformal, eoAting of 10ootehcant I wan used and
applied per larinnd 74viaion of LTV Nlectroayatcma process; opeoification
)IOA-00000.	 of the three plug-in boards were rhodium plated in the con-

nector area to reduce inroertion wear. The unit was (Ie,,Agne4 to be one com-
plete operating paAage outAde 

of 
the ca;► e and could, be P14ce-ked out for

proper operati(M in thio configuration*

The wiring between connector p, and board; was accomplished per LTV Aero-
space Mis.-Aleo, and pace %vision fabrication specification 	 A111
ware:; were per Mil-W-1078 type B and cables per MIL-C-17. The wiring to the
higi voltage power supply from the photomultiplier tube used Mil-W-16678 type
E wire eovered by teflon tubing on wires exceeding 600V potential to prevent
possible voltage breakdown of wire3 in harness. The entire top of the high
voltage power supply was conformally coated to add strength and reduce p0331-

bility of high voltage breakdown.

W

1



ANALY'ITI OF DN2A

Calibration data was obtained for both the flight unit (I /N3) and the

back-up unit (11i N IP). qlie data reduction matrices were determined only for

the flight unit, however ) wince the back-up unit wa3 not required for flight.

Thin section gives a fLiGeunnion of the manner in which the calibration data wan

taken, the method b ,, which it was reduced, and a 3uggented technique for the

reduction of the actual apace pulse height Mist:. ibutiona,

DATA RBDUCTTON iwaroao)

Because the exclusion of electrons from the bremstrahlung channels (and

vice ver3a)was not absolute it in impo33ible to make an analysis of one spec-

trum without a congiderat",in of the other. A complete data reduction technique

is discussed in thus 	 which employs matrix algebra. The definition of

the various matrices in given first, then the construction and solution of the

equations, and, finally, the method by which each matrix was obtained. We

should define at this point the re3evant terms and matrices.

F,	 M incident particle energy in MeV
h'	 pulse height given in MeV

A 
r	

namalized gamma resolution Maturi'X

R 
0	

normalized beta resolution matrix

C	 normalized matrix of gamma cross-talk in the electron channels

C	 normalized matrix of electron cross-talk in the gamma channels

V	 gamma efficiency matrix

V	 beta efficiency matrix

f 
r	

fraction of gamma cross-talk in the beta channels
£0	fraction of beta cross-talk in the gamma channels

N r	
M gamma pulse height spectrum

N	 M beta pulse height spectrum

S r	 true gamma spectrum

S	 true beta spectrum

The equations relating these terms are as follows:

Nan  = R T F r
 
3 Y' + C P C. 

P 
f 
P 

S 
P	

(1)

1
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These represent a set of simultaneous, linear, matrix equations which may be

solved in a manner similar to a set of simultaneous, linear, algebraic equa-

tions. Perhaps the simple; gt solution is by direct matrix inversion. We first

write the iet as a ;jingle matrix equation.

NY 	 4	 r IP C
0 C 

f ^3^ ( 3,r (^ ry

Ile solution of which its

(3)

which for this case involves the inversion of one forty by forty matrix.

In the event it is impractical to invert a forty by forty matrix an

alternate solution, which involves the inversion of several twenty by twenty

matrices) may be obtained by the solution of Equations (1) and (2) using the

elimination method. Care must be taken with this method when working with

R0 and C,, since each has at least one zero row. Either of these techniques

should yield satisfactory results. The resulting functions for both electrons

and bremsstrahlung will be tho differential spectra in particles or photons

per MeV per square centimeter per second at the detector.

EXPERIMENTAL DISTRIBUTIONS

In any data reduction technique, statistical fluctuations are amplified

when one attempts to remove the effect of response functions from data. Fur-

ther, data reduction is made more complex when unequal data acquisition

channel widths are employed. The data anticipated from the beta-bremsstrah-

lung spectrometer will suffer from both these difficulties; however, a curve

fitting technique may be employed to effect a solution. Let us denote C  as

the counts received during a given period of time T in channel i of width

.,	 IF



Wi, then

C
Ni	

WiT
	 (5)

denotes the integral of the pulse height spectrum over the ith, channel, or

Ni	 N(V) (IV

where V is the vol.ta^e of the pulse. It then remRins to determine an analyti-

cal expreo3ion for N(V).

Al.though,at the time of the preparation of this report, no actual data

was available, the brief experimental investigation at LTV of electron penetra-

tion through a remini hatch and other electron penetration and bream trahlung

studies at LTV have indicated that the shape of the pulse height distributions

should be near exponential. If, in fact, the data demonstrates this charac-

teristic a fitting, function of the following fora may be employed:

N(V)	 e-(aV + bV + c)	
(7)

where

a, b, and c are constants. The function may then be written in the form

In N(V) = --(aV2 + bV + c)	 (8)

A least squares fit may be used to determine the constants if the data points

are weighted according to the statistical fluctuations. Since the fit is

made to ]n, Ni , the proper weighting function U  may be .shown to be

U	 ( C In Ci )-1i	 i	 WiT

Since the raw data is actually the integral of N(V) dV over the channel, the

fit must first be made to the 
Ni 

i sassuming they lie at the midpoint of the

channels. Then rj,first correction may be obtained by integrating the function
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over each Phannel, oubtracting the, li fference from the on ;final Ni 's and
repeating the fit with the new Ni 'o until convergenec occur,.

The resulting pectrum must be converted at thio point to a p>eudo-

energy ocale before being operated on by the matrix. This, scale is defined
in terms of tho pulse height voltage of the center of photo-peak of gamma rays

in the Col(Tt) crystal. The absolute value of the conversion constant waa

determined using a thorium-226 gamma 7oaree in a manner described in the

Final Nlibrati.on section at the end of this report. The conversion rela-
tionship wa found to be

`J = 1.53 (volts/Mev )E'
	

(10)

where we ,hall use F?' as the pseudo-energy roferring to pulse amplitude. If

any variation in this conversion coefficient is found at post-flight calibra-

tion or because of temperature effects, it may be inserted into the program

later. We may then write the final analytical pulse height spectrum as

follows :

N(EI ) = e "(AE' 2 + BE  + C)	 (11)

where A, B, and C are the constants for the function in terms of El.

This function must then be divided into twenty increments to match the

resolution matrices discussed in the following sections. This involves in-

tegrating, N(El )dE' over each of the 200 keV intervals with the first beginning
at 100 'A.eV.

'SETA PESPON ' E MATRIX R

`The response of the spectrometer was measured for eight electron energies

between 0.4 and 2.5 Mel. The information obtained was used to determine not

only the response matrix R P but also the efficiency matrix y the normalized

cross-talk response matrix C R, and the cross-talk efficiency f^. The deter-

mination of the last 'three matrices will be discussed later. The spectrometer

was placed in an evacuated chamber at the end of the drift tube of the LTV

Research Center's 3 MeV Van de Graaff Accelerator. The experimental arrange-

ment is shown in Fig. 7. Approximately six feet in front of the spectrometer, the



beam parsed through a thin aluminum foil 0.0025 inches thick which scattered

the be€i^ and cawed a homogeneous flux of electrons to fall on the ,pectro-
meter. The homQgcneity of the flux was monitored, prior to the data taking,

with a lithium ion dr''.ft (IM) solid state detector and was shown to be within

the required 1 10 maximum  deviations, in accordance with the Quality Control

Bulletin (4CB-CT-001) "G , Llibration of the LTV Beta-Bremastrablung .3pectrometer
for Gemini-12". The same LID detector was then mounted on one side of the

beam tube ,lightly in front of the spectrometer and was used as the beam flux
and energy monitor. The LID detector was calibrated for electron energy using

the internal conversion electrons from two sources: 0A5ium -137 at .625 MeV and

bismuth-207 at .482 and .97a McV. The accelerator electron energy was thexi

determined From this calibration.

Response functions were measured at several incident angles; however, the

deviations in the shape of the response functions were found to be so small, even

near cut-off, that only one matrix was required,. The functions were obtained

at eight energies between 0.4 and 2.5 MeV by accumulating data directly from

the linear output of the Beta-Bremsstrahlung spectrometer sensor unit in a

256 channel pulse height analyzer. The analyzer was gated by the sensor

particle identification outputs so that the electrons were stored in one half

of the memory and the actual bremsstrahlung plus the cross-talk in the other.

Typical electron pulse height distributions are shown in Figs. 8 and 9.

To obtain the required distributions for the matrix it was necessary

to interpolate between and extrapolate from these distributions. To do this

most accurately the curves were normalized to the same peak position and

integral and cross-plots were made at steps equal to 0.05 of the peak value.

From these cross-plots new pulse height distributions were determined at

200 keV steps from 200 keV to 4.0 MeV. These spectra were integrated over

200 keV intervals beginning at 100 keV and ending at 4.1 MeV. These integrals

plus the value from 0 to 100 keV were then normalized to one,. The results are

shown in the matrix for RP given in Table 1.

BETA EFFICIENCY MATRIX e.

The electron efficiencies a (©) were measured as a function of incident
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electron angle 0 and electron energy F. A typical curve at P MeV is ohown in

Fig. 10 and compared with the function calculated from pure geometrical con-

siderations. The pulGe height distributions were integrated over channel

and the resulting number war; corrected for analyzer dead time. The flux was
determined by the count rate, of the 1,,ID detector when corrected for the geo-

metry of the collimator and for backaeatter

With this information the c [", (0) functiono w

per square centimeter. With 

'

this data, if

trans which penetrate the Gemini opacccraft

from the detector's silicon wafer.

Dre obtained ac counts per electron

angular distributions of elec-

walls are known, one may make an

integration over 0 to determine the actual flux of electrons at the collimator.
However, electron scattering xperiments (some of which were carried out at LTV)

have indicated that the diotril-,tion is near isotropic. Using this assumption

an electron efficiency function 	 was obtained from the angular efficiency

functions e (0) follows:
eTr

f 6 
L 

(0) d	
(12)

fo 
al

where S2 denotes the element of solid angle. This reduces to

fo	
U sine de

This integral was evaluated numerically to obtain .E P  which is a function of

energy. This function is shown in Fig. 11 and is tabulated in TLble 2 where

-the values represent the average values over the 200 keV increments. These

values are then the elements of the diagonal matrix EP.

BETA CROSS-TALK RESPONSE MATRIX C 
P_

As mentioned above, the data to determine the amount of electron cross-

talk received in the bremsstrahlung channels was taken during the electron

response function measurements. The data received in the bremsstrahlung

channels included not only cross-talk but also the actual electron-produced

bremsstrahlung counts. The latter effect was determined by accumulating data

with the detector at 90 0 to the beam and the proper amount was then removed
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from the false electron oounta. In a manner identical to that discussed for

the R matrix, the normalizations and er000-plots were made and the elements

for the matrix 
0  

were determined. Those are given in Table 3.

BETA CROSS-`ZAIR HITICIENCY WkTRIX f

The magnitude of the cro.(3s-talk was determined relative to the number of

electrons detected. After the removal of the bremsatrablung background, the

integrals of the caress-talk spectra were divided by those of the electron

spectra. These values are plotted in Fig. 12. The average values of this

curve over 2303 keV increments are given in Table 4. These values form the

elements of the diagonal ,matrix f a

GAMMA R}+ ^FONSE MATRIX R ,
r

The gamma response functions and efficiencies were measured for the Beta-

Bremsstrahlung sensor using a series of accurately calibrated gamma ray sources,

listed in Table 5. The spectrometer was mounted on a rotating mill table

with a source located from 25 to 1030 centimeters from the center of the crystal.

Response functions for most of the sources were recorded at 26 orientations

using a 256 channel pulse height analyzer. The values of the orientation

indices 0 and (^ are defined by Fig. 13. The response functions for the sources

are shown in Figs.14 through 19. For those sources with two or more lines,

the responses from the lower lines were removed on the basis of a knowledge

of the shape of the lower response functions. For example, the 511 keV line

in sodium-22 was removed from the 1.28 MeV distribution by normalizing the

511 keV shape to the 662 keV distribution of Cesium-137 and subtracting the

resulting shape from the total spectrum. The data taken in this mariner at

the various angles showed that the shape of the distributions was independent

of angle. This allowed the use of only one response matrix at all angles.

The set of pulse height distributions were then normalized to the same integral

and photo-peak position. 	 Lnally, in a manner identical to that used for the

electron response matrix, the gamma response matrix Rr was obtained and is

given in Table 6.

GAMMA EFFICIENCY MATRIX er

The efficiency function for gamma rays e  was more complex in construction
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than that for electrons, since the efficiency varies with angle and the brems-

strahlung intensity is not expected to be isotropic over all angles. The

values of the angular efficiency function P V (0 ;^ ) were obtained at 0 = 0 and 1300,

plus several representative directions at 0 = 45 0 , 90 0, and 135 °,,for most of

the calibration sourceo by first integrating over the pulse height spectra

and correcting for analyzer dead time. These spectra were obtained as dis-

cussed in the Fir section. The values at the remaining angles were obtained

by simply scaling the pulse height distributions above a certain discriminator

level and comparing these values with those taken at the representative angles.

The flux was then calculated at the crystal for each source, based on the

geometry and source strength, given in Table 5. This gave er (0 ^) in counts per

gamma per square centimeter.

The calibration of the sources was determined at LTV as a part of this

contract using a sodium-iodide, anticoincidence spectrometer which has been

used several years for making absolute bremsstrahlung measurements under con-

tract for NASA-Headquarters. A new calibration of the spectrometer was made

for this work using a series of low level calibration sources with a quoted

accuracy of t 2%. These sources were obtained from the Amersham Corporation

in England.

For reference the curves for e r (00 1 00 ) and (900 ) 00 ) are shown in Fig. 20. The

average values over 200 keV increments for these e T (0 0) plus those for F,,(1800,00)

are given in Table 7. For all angles except at 6 = 0 0 and 180 0,the shape of

the e r re,0) functions were identical. It was, thus, possible to obtain these

functions from e, (900,00 ) by a simple multiplication as indicated by the following

equation:

er (e m) = N00 er(900100)

The values of NGO are given in Table 8. The equation relating the functions

to an overall gamma efficiency matrix a
r 

may be written as follows:

Er	 1	
E	

(F (010);
e0 r

where we have ascribed equal area weighting to the er (0 0) functions, since they

are very evenly distributed around the crystal. P 	 is a function which
00
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describes the probability of receiving radia'.ion from. the (1irection, 0(^. The

P (^ 
functions must be normalized, i.e.,' 0

where I is the identit:, r matrix. 'Die valueo of the 'r-10 m atyy be determined ap-
it

proximately by a conrileration of the tr,,pace P-ra'et material composition and ccn-

figuration. One first e-Ptimates a :,jource function over the area covered by

J_jen thio I- a4 4,enUa+
0	

"e(I "L)y the avCra ^y ULn_	 iteach	 o	 -1	 e	 f taleo p r un area o U e

spacecraft betwen the source and detector. The re3ulting 43pec l,,ra are then

normalized to give the TIQ(( ialue3. Tale derivation of the I
' 
D 00 functions were

not a part of this program; however, the information required for their deter-

mination should be available at NASA-M30. To make a rabid but Jess accurate

calculation of the intensity one may gooume an isotropic ,*4ource and attenuation

function and insert the constants.

GAMMA CRO"333- TALK FB3P0N._')R MATRIX C

The information required to determine the pulse height distributions of

false gamma counts received in the electron channels was obtained simultan-

eously with response function data for the gamma res ponse matrix. :since no

background removal was required, the spectra were plotted and a smooth curve

	

w.-.- drawn through the data to remove -t-ti,,t4Cn1 fluctuations .	 ILA nnl-.j ^ 12 A. ^.J. ^	 ^j	 In - mangier

identical to that used for the determination of RAW the curves were normalized,

cross-plots were made and the matrix elements calculated by averaging over

200 keV intervals. The matrix for C 
'r 

is given in Table 9.

GAMMA CROSS-TALK EFFICIENCY MATRIX f 
'r

The magnitude of the cross-talk was determined relative to the number of

photons detected. The integrals of the cross-talk spectra were divided by

those: of the gamma pulse height spectra. These values are plotted in Fig. 21.

The average values of this curve over 200 keV increments ., which form the

elements of the diamond matrix f r , are given in Table 10.

TEST SPECTRA

In order to demonstrate the effectiveness of the analysis technique
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Jeticribc ,_I above ,fear (,r)nierting pulse height information into energy spectra,
two known spectral diatributiono of electrons and bromsstrahlung were measured
with the TV Beta- Brem.-) ,3 trahlung spectrometer and comparisons were made between
the known .atuer, and tLo,,,,e obtained from the spectrometer. ^ Iince the computer
program for performing the anal vtAG of data was not included under this con-

tracted effort ) the comparison of test spectra to measured spectra was made
indirectly. This was done analytically by distorting the known spectra with

the measured re5ponae and effiPiency functions of the spectrometer and plotting
the resulting curvet-, on a graph with the measured spectra. The following
paragrapho detail this procedure.

Beta 11poutrum

The beta spectra from a thin source of ,r9© - Y90 were measured with the
Beta-Bremsotrahlung spectrometer. The results of this measurement are shown
in Fig. 22. The spectra from the Game source were measured with a large
anthracene crystal type spectrometer. The object of this measurement was to

obtain as closely ao possible the true shape of the Sr 9O - Y90 spectra. By
using an anthracene crystal the amount of electron backscatter was minimizer,
and this spectrometer's response was practically all Gaussian. Thus, the
anthracene measured Sr90 - Y90 spectra had little distortion except that near
the end point) which is due to the spectrometer's finite resolution. These

.90"true" or90 - 'Y- spectra were then multiplied by the electron efficiency
diagonal matrix c0 and the electron response matrix IMP. 

 
These results were

compared with the shape of the measurement obtained with the Beta-Bremsstrahlung
spectrometer. The comparison is shown in Fig. 22.

The relative magnitude of the two distributions shown was determined by a

normalization of their total areas. The agreement is within the experimental
uncertainties involved in the two determinations except in the last few
energy lines. Here the "true" distorted or smeared distribution takes on
progressively higher values than the beta-gamma measured distribution. This
is expected though since the "true" smeared distribution also contained the
anthracene spectrometer resolution. A correction for this effect, i.e., the
removal of the resolution, would reduce the last bin by approximately 50%

and the previous bins by progressively lesser amounts. This would bring these
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point; in line with the agreement observed at the other paints.

Bremastrahlun ; spectrum

The bremsstrahlung or x-ray spectrum resulting from a 2 MeV beam of elec-

trons striking a thick aluminum target was measured with the Beta-Bremsstrahlung

spectrometer. The angle of observation was 30 0 from the direction of the inci-

dent beam. The results ©f this measurement are shown in Fig.23 . The true

spectrum emitted under these conditions was previously measured in our labora-

tory utilizing a 2 inch by 6 inch Nal crystal and annulus arrangement which

exhibited a high photopeak efficiency at 2 MeV. This true spectrum was mul-

tiplied by the photon efficiency diagonal matrix and the photon response

matrix Rr. The result of these multiplications was compared with the Spec-

trum measured with the Beta-Bremsstrahlung spectrometer. The comparison is

shown in Fig. 23 and is on an absolute basis as indicated by the ordinate

values. On the basis of the many experimental uncertainties which are involved

in obtaining these absolute x-ray yields the agreement is well within the

expected experimental error.

FINAL  ̀`)Y:-MM  CALIBRATION

The final adjustment in calibration of the sensor unit was the exact

setting of the output linear pulse amplitude relative to the photo-peak of

a gamma ray pulse height distribution. The source used was thorium-226 which

has a gamma energy of 2.615 MeV. A spectrum was taken, printed out, and

plotted. The spectrum was then hand stripped to determine the proper channel

for the 2.615 MeV peak. A pulser was then fed into the spectrometer test

input and the amplitude adjusted until the output was in the channel corres-

ponding to 2.615 MeV. The gain of the linear amplifier was then adjusted

until the amplitude of a 2.615 MeV pulse was 4.00 volts giving a calibration

of 1.53 volts per MeV.

With the outputs of the analyzer-processor com.9ited to the NASA AGE,

the channel boundaries were determined by adjusting ti.: amplitude of a cali-

brated,pulser until equal count rates were accumulated .. ,I adjacent channels.

This pulser Amplitude,was determined relative to the thorium-226 calibration

and provided the lower and upper channel boundaries. A lis-k` of channel
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i
boundarieo and width; whioh were derived from the above teat s, are ohuwnain

Table 11. The boundarie.-: -,re given in volt3 with a calibration baAn of

4.00 volts for the P.611)' MeV thorium-226 gamma peak as determined above.

-27-
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TA13TY, I

RTiVA Xa' . ,	 GNI-114' MAMM - R

lent Puloo IIht(1.1V)

o. 4 0.6 f).	 `i
s- lA

oo(0.

o. 1, 1( 0

1. 0 1)	 P 1.72(-1) 3,.57(l)

1.11,(-1) 3.26(-1)

1.4 9.46(-2) 9.4('3(-2) 6.54(-2) 8. 42( - 2)

1.6 1. 34`3(- 2) 8.3fj(-2) 7. 56(-2) 6.53(-2) 5. X39( - 2)

1.8 1.. 2`j(-2) 6. 10( -P) '(- 63( - 2) 6.33(-2) 5-36(-2)

P.© 1.14(-'0 4.35(-2) 6.33(-2) 5.83(- 2) 5.24(-2)

2.2 l.08( - 2) 3. 23( -2) 5. 22( - 2) 5.78( - 2) 5.48(-2)

2. 4 6. 42( -3) 3.09(-2) 4.83(-2) ) . 1.6( - 2) 4.94(-2)

2-6 5,91^(-3) 2-48(-3) 4.ol(-2) 4.40(-2) 4.38(-2)

P. il 4.,,)(-3) P. 14( -p) 3.66(-2) 4-oo(-2) 4.00(-2)

3.0 3.64(-3) 1. 85( - 2) 3.00(-2) 3.57(-2) 3.81( 2)

3. 2 3.08(-3) 1.48(-2) 2.73(-2) 3.30(-2) 3.58(-2)

3.4 P.92(-3) 7. 81(-3) 2.36(-2) 2.78(-2) 3.06(-2)

3.6 P.4'j,(-3) 1..20(-2) 2.38(-2) 2.87(-2) 3.10(-2)

3.8 Pr•01(-3) 1.12(-2) 2.22(-2) 2.70(-2) 2.97(-2)
4,,o '1..77(-3) 11.21(-3) 2.03(-2) 2.58(-2) 2.88(-2)

Ionia - =7- -



TABLE'	 I

BE,T"t	 I'I T-I"IPOITIE, MATRTX - R ("4 gin' t)

Tnoident	 Pulne Height(mov)
Vnergy
(Mel').	 1.4	 1-6

oil

.6	 0	 0

. t9	 0

1.0	 0	 0

1.2	 .3o(-1)	 0	 0	 0	 0

1.4	 3.39(-1)	 3.o2(-i)	 0	 0	 0

1.6	 43(-P 3-11(1)	 2A0(-1)	 4.23(-3)	 0

1.8	 5.50(-2)	 8-91(-2)	 0* 53(-1)	 2.67(-1)	 0

4-85(-2)	 5.37(-2)	 8.31(-2)	 3.16(-1)	 2. 67(-1)

P.2	 5.33(-2)	 5.64(-2)	 9.08(-2)	 2-89(-1)	 2-93(-1)

2.4	 4.89(-2)	 5-12(-2)	 5.34(-2)	 6.09(-2)	 9.73(-2)

2-6	 4.46(-2)	 4-94(-2)	 5.25(-2)	 5.27(-2)	 6.28(-2)

2.8	 4-0V-2)	 4.49(-2)	 5.36(-2)	 5.52(-2)	 5.35(-2)

3.0	 3.83(-2)	 3.96(2)	 4.82(-2)	 5.64(-2)	 5.51(-2)

3.2	 3.67(-2)	 3.75(-2)	 4.11(-2)	 4.96(-2.)	 5.85(-2)

3.4	 3.32(-?)	 3.54(-2)	 3.85(-2)	 4.57(-2)	 5.63(-2)

3.6	 3.17(-2)	 3.25(-2)	 3-46(-2)	 3.94(-2)	 5.31(-2)

3.8	 a. o6(-2)	 3.11(-2)	 3.24(-2)	 3.5,1,(-2)	 4.18(-2)

4.o	 3,02(-2)	 3.o4(-2)	 3.05(-2)	 3.18(-2)	 3.54(-2)



TABLE 1

Bj,',TA I)* ("On t)

Energy
Nov) P.

6

1) 0

0

1. 0 0 0

J,4 0

1. 6 0 0 0

1, . --I i) 0 0 0

2.0 2.27(-3) 0 0 0

2.2 9.23(-3) 0 0 0 0

2.4 9.57(-1) 2o36(-1) 1.12(-3) 0 0

2.6 1.05(-1) 2.56(-1) 2.10(-1) 8.35(-3) 0

2.8 6.73(-2) 1.06(-1) 2.33(-1) 1.92(-1) 1.15(-2)

3.0 5.37(-2) 6.98(-2) 1.05(-1) 2.11(-1) 1.81(-1)

3.2 5.49(-2) 5.87(-2) 7.54(-2) 1.06(-1) 1.94(-1)

3.4 6.05(-2) 5.49(-2) 5.87(-2) 7.57(-2) 1.01(-1)

3.6 6.21(-2) 5.89(-2) 5.03(-2) 6.06(-2) 7.52(-2)

3.8 5.61(-2) 6.29(-2) 5.55(-2) 4.80(-2) 5.95(-2)

4.o 4.78(-2) 6.14(-2) 6.07(-2) 5.10(-2) 4.77(-2)

win



TABUF I

Ffl U'Onit

n1loo, llei^;Ilt (Mev)

"nomw

3. 3"

P

oil

0 0 0

0

0 0 0

0 0

P 0

P-6 0 0 0 0 0

P. l i a 0 0 0 0

3.0 9 0 0 0

3. 2 1. 6r((—P) 0 0 -D

3.4 J..74(-1) 1.49(-1) 2. 45(-2) 0 0

3.6 9.34(-2) 1..52(-1) 1-34(-1) 2.46(-2) 0

3.8 7.15(-2) 8.65(—.2) 1.29(-1) 1.26(—l) 4.17(-2)

40.0 6.18(-2) 6.86(-2) 7.80(-2', 1.14(-l) 1.23(-1)



it

TABLE 2

BETA EFFICTENCI MATRIX

E ^ MeV	 - E^	
(Counts/Electron - Ctni 

2

0.2 0

o.4 2.37(-2)

0.6 2.50(-2)

0118 2.34(-2)

1.0 2. PP( -2)

1.2 2.24(-2)

1.4 2.34(-P,)

1.6 P. 43( -2)

1. 8 2.45(-2)

2.0 2.43(-2)

2.2 2.38(-2)

2.4 2.34(-2)

2.6 2.32(-2)

2.8 2.32(-2)

3.0 2.32(-2)

3.2 2.32(-2)

3.4 2.32(-2)

3.6 2.32(-2)

3.8 2.32(-2)

4.o 2.32(-2)

\1



TABLE 3

BETA CR053 TAIK RESPONSE MATRIX C ^
♦wy^♦ . M MGM.-w ♦ ♦ M IM.. rwNr:,-+^+r_w.y ♦-wwI.IwwM+w wwrwFww i. 	 Ni

E	

L-J

Incident	 Et	 Pulse Height (MeV').
Energy
^( McV)	 _ 0.2 -	 o.4 	 0.6	 0.8	 1.0

0.2	 0	 0	 0	 0	 0

o.4	 0	 9.65( -1) 	 3.50( -2) 	 0	 0

0.6	 0	 1.27( -1) 	7.65(-I)	 1.01(-1)	 0

o.8	 8.47(--2)	 3.o4(-l)	 3.63( -1) 	2.12(-x.)	 3.25(-2)

9	 1.0	 1.55(-2)	 7.94(-2)	 2.06( -1) 	4.36( -1) 	2.33(-1)

1.2	 7.62(-3)	 1.08(-2)	 1.83(-2)	 5.58( -2) 	 3.31(-1)

1.4	 8.39(-3)	 1.06(-2)	 1.32(-2)	 1.76(-2)	 4.25(-2)

1.6	 9.35(-3)	 1.23(-2)	 1.73(2)	 2.52(-2)	 3.84(-2)

1.8	 9.20(-3)	 1.06( -2) 	1.35( -2) 	 1.93( -2) 	2.99(-2)

2.0	 7.20( -3) 	 7.92(-3)	 9.14(-3)	 1.12(-2)	 1.47(-2)

2.2	 5.91(-3)	 7.59(-3)	 9.55(-3)	 1.15(-2)	 1.39(-2)

2.4	 3.•96(-3)	 'i".78(-3)	 1.22(-2)	 1.66(-2)	 2.07(-2)

2.6	 '.20(-3)	 7.75(-3)	 1.4o(-2)	 2.02(-2)	 2.58(-2)

2.8	 1.33( -3)	 6. "' -	 1.1 -2	 1.70 -2	 2.20( - 233( 3)	 .^^( 3)	 7(	 )	 (	 )	 )

3.0	 1.07( -3) 	 5x18(3)	 9.72(-3)	 1.44( -2) 	1.88( -2)

3.2	 8.07(-4)	 4.31(-3)	 8.39(-3)	 1.25(-2)	 1.65(-2)

3.4	 5.,36(-4)	 3.6r((-3)	 7.31(-3)	 1.08(-2)	 1.45(-2)

3.6	 3.82(-4)	 3.00(-3)	 5.99(-3)	 9.23(-3)	 1.23(-2)

3.8	 2.94(-4)	 2.56(-3)	 5.52(-3)	 8.56(-3)	 1.13(-2)

4.o	 2.35(4)	 2.18(-3)	 4.58(-3)	 7.06(-3)	 9.55(-3)



TABLE 3

BET A CROS I-TALK RESPONSE MATRIX C^ (Cnn't )
WKw Mww lwMlww^+M.v-w+I KaKrwnM+ww-+aM^.w aww^wl.,w .1.

P
Nww

Incident r'	 - PAlse Heir ,̂,. ( q(l
Energy
JMeV) -1.2 ^ 1.4.- 1.6 1.8 2.0

0.2 0 0 0 0 0

o.4 0 0 0 0 0

0.6 0 0 0 0 0

o.3 c) 0 0 0 0

1.0 P. 59(-2) 0 0 0 0

1.2 5.02(-1) 6.10(-2) 6.76(-3) 0 0

1.4 3.52( -1) 4.87.(,-l) 5 .8:1.(-2) 8.89(-3) 0

1.6 6.56(-2) 3.21(-1) 4.44( -1) 3.21(-2) 1.61(-2)

1.8 4.87(-2) 8 .78( -2) 4.05( -1) 3.34( -1) 1.85(-2)

2.0 2.11(-2) 3.48(-2) 6.76(-2) 3. rr6( -1) 4.23(-1)

2.2 1.72(-2) 2.36(-2) 3.60(-2) 6.69(-2) 4.05(-1)

2.4 2.38(-2) 2.58(-2) 2.98(-2) 3.85(-2) 6.46(-2)

2.6 3.07(-2) 3.43(-2) 3.63(-2) 3.'(6(-2) 4.20(-2)

2.8 2.63(-2) 3.03(-2) 3.29(-2) 3.4o(- 3.52(-2)3.52(-2)

3.0 2.27(-2) 2.61(-2) 2.89(-2) 3.06( -2) 3.15(-2)

3.2 2.01(-2) 2.34(-2) 2.65(-2) 2.86(-2) 2.97(-2)

3.4 1.81(-2) 2.13(-2) 2.40(-2) 2.61(-2) 2.75(-2)

3.6 1.53(-2) 1.81(-2) 2.06(-2) 2.28( -2) 2.43(-2)

3.8 1.39(-2) 1.66(-2) 1.91(-2) 2.13(-2) 2.30(-2)

4.o 1.19( -2) 1.43(-2) 1.66(-2) 1.85(-2) 2.02(-2)



TABLE 3

BETA CROSS-TALK RESPONSE MATRIX C
0
 (Can't)

^M-uN^Wrw.nw^rlw^MS+^M+MA^Mrr.^.rwnWM .VN.N^wrwrw+r^l .w.r^xrl^.r+ur^W A

E
Incident	 E' - Pulse KtiaM (Me
Energy

(MeV)	 2.2	 2.4	 2. 6 	 2.8	 3.0

0.2 0 0 0 0 0

0. 4 0 0 0 0 0

0.6 0 0 0 0 0

0.8 0 0 0 0 0

1.0 0 0 0 0 0

1.2 0 0 0 0 0

1.4 0 0 0 0 0

1.6 1.01(	 2) 0 0 0 0

1.8 1.02(-2) 4.42(-3) 0 0 0

2.0 1.38(-2) 4.30(-3) 1.13(-3) 0 0

2.2 3.75( -1) 1.46(-2) 4.49(-3) 2.22(-3) 7•4,5(-4)

2.4 3.38(-1) 3.75( -1) 3.63(-2) 2.32(-3) 1.23(-3)

2.6 7.16(-2) 3.11(-1) 3.13(-1) 4.86(-2) 1.79(-3)

2.8 4.00(-2) 7.35(-2) 2.85( -1) 3.10( -1) 6.95(-2)

3.0 3.32(-2) 3.83(-2) 8.32(-2) 2.86( -1) 2.88( -1)

3.2 3.o4(-2) 3.27(-2) 3.91(-2) 9.52(-2) 2.87(-1)

3.4 2. 83( -2) 2.91(-2) 3.15(-2) 3.72(-2) 8.38(-2)

3.6 2.53(-2) 2.58(-P-) 2.67(-2) 2.94(-2) 3.53(-2)

3.8 2.42( -2) . 2.49(-2) 2.53(-2) 2.64(-2) 2.90(-2)

4.0 2.15(-2) 2.25(-2) 2.30(-2) 2.34(-2) 2.46(-2)



TAB t9 3

BETA CROSS-TALK RESPONSE MATRIX C^ (Con't)

E
Incident E" Pulse He LCht (MeYj
Energy

MeVL 2 3,.4 3-6  3.8 4.o 	 -

0.2 0 0 0 0 0

o.4 0 0 0 0 0

0.6 0 0 0 0 0

0.8 0 0 0 0 0

1.0 0 0 0 0 0

1. 2 0 0 0 0

1.4 0 0 0 0 0

1.6 0 0 0 0 0

1.8 0 0 0 0 0

2 .0 0 0 0 0 0

2.2 0 0 0 0 0

2.4 4.55(-4) 0 0 0 0

2.6 9.72(-4) 4.00(-4) 0 0 0

2.8 2.06(-3) 1.01(-3) 7.13(-4) 1.54(-4) 0

3.0 7.62(-2) 2.9'((-3) 1.02(-3) 7.19(-4) 2.62( -4)

3.2 2.68( -1) 6.85(-2) 4.44(-3) 1.o4(-3) 7.42(-4)

3.4 2.71( -1) 2071(-1) 8.28(-2) 6.80(-3) 1.13(-3)

3.6 9.05(-2) 2.96( -1) 2.47(- l) 8.00(-2) 8.23(-3)

3.8 3.57(-2) 9.03(-2) 2.46( -1) 2.56( -1) 1.01( -l)

4.o 2.72(-2) 3.45(-2) 9.14(-2) 2.26(-1) 2.55(-l)



TABLE 4

BETA CROSS-TALK EFFICIENCY MATRIX - P^

E	 MeV

.2 .00052

.4 .00075

.6 .00105

.8 .00148

1.0 .00205

1.2 .00295

1.4 .0041

1.6 .0058

1.8 .0082

2.0 .0115

2,, 2 .0161

2.4 .0225
2.6 .032

2.8 . o45

3. 0 .064

3.2 .089

3 .4 .124

3.6 .178

3.8 .245
4.o . 49



W

5

OA MON 30URCM
Source Date

^m. Energy Strength 1200
Source Half Life Cow.:^ . nth MeV ('(/See) Firs .	 CST.,..r._...._._ ..n__.._......._...^...^ ,w., ...

Na 
22

2.58 Yrs. Needle 4.0 to 7 1.28 1 -15 (8) 8/31/66

Na 
22

Bottle 0.1 MO 1.28 3.54 (6) 9/8/66
r

Cs 
1

30.2	 Yrs. Bottle 0.1 me 0.662 3.2.1 (6) 9191 66
rs137 Needle 3.7 me 0.662 1.23 (8) 911166

Co 60 5.28 Yrs. Bottle 0.1 me 1.17-1.33 83.51 µc 4/1/66*

Co 60 Needle 0.5 me 1.17 1.42 (7) 91 1166
1.33 1.42 (7)

Co 60 Needle 4.0 me 1. 17 1.39 (8) 911166
1.33 1.39 (8)

H9 203 46.7 Dys Needle 0.5 me 0.279 9.28 (6) 911166

H9 M3 Needle 4.0 me 0.279 5.29 (7) 91 11 66

Mn54 303. Dys Needle 0.5 me 0.835 1.80 (7) 911166

Mn 54 Needle 4,0 me 0.835 1.02 (8) 91 11 66
Y88 105 Dys Needle 2.99 me 0.9 7.71 (7) 919166

1.8 8.86 (7)

2.76 5.27 (5)

* 1200 Hrs. GMT

^s



TABLE 6

GAMMA  RMPONSE MATRIX- RY

E l - Pulse eAL (MeV)

0.2	 0.4	 0.6	 0.8

,3.86( -1)

2.54(- 1)
2.90(-l)

2.45-(-1)

2.16(-1)
2.00(-l)

1.65(-1)

1. 27( -1)

9.63( -2)

%x.71(-2)

7.82(-2)°

7.44( -2)

7.02(-2)

6.51(-2)

6.18(-2)

5.87(-2)

5.74(-2)

5.90(-2)

4.83(-2)

4 .,(o(-2)

0

3.35(-1)

1.87(-1)

1.94( -1)

1.60(-1)

1.76(-1)

1. ?3( -l)

1.``'0(-1)

9.61(-2)

8.53(-2)

T.69(-2)

7.44(-2)

7.16(-2)

6.90(-2)

6.75(-2)

6.34(-2)

6.27(-2)

6.06(2)

5.54(-2)

5.48(-2)

0

5.38(-3)

2.14(-l)

1.34,( -1)

1.20(-1)

9.61(-2)

8.58(-2)

7.69(-2)

-(.44 ( -2)

7.16(-2)

7.o4(-2)

6.84(-2)

6.53(-2)

6.46(-2)

6.13 (-2)

5.90(-2)

5.96(-2)

0
0

8.43(-3)

1.34(-l)

8.68(-2)

8.98(-2)

9.25(-2)
1.30(-1)
1.31(-1)

9.04(-2)

7.(50(-2)

7.44(-2)

7.16(-2)

6.97(-2)

6.80(-2)

6.46(2)

6.39(-2)

5.96(-2)

6.03(-2)

6.17(-2)

1.0

0
0

0

1.21(-2)
8.31(-2)
7.95(-2)

7.77(-2)

1.02(-l)

1.40( -1)

1.50(-1)

1.11( -1)
7.85(-2)

7.16(-2)

6.84(-2)

6.73(-2)

6.59'-2)

6.46(-2)

5.96(-2)

5.96(-2)

6• x.6( -2)

E
Incident
Energy
MeV) -

0.2
o. 4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

^. 4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.o

Y

r^



TABLE 6

GAMMA RE'3PONf-)E MATRIX - Rr

E
Incident E'	 - Pulse Height (MeV)
Energy

(Me V) » J.. 2 -- 1.4	 _ 1.6 1.8 2.0 ^.

0.2 0 0 0 0

0.4 0 0 0 0

0.6 0 0 0 0 0

0.3 c,; 0 0 0 0

1.0 P. 56(-?) ,( . lo( -4) 0 0 0

1.2 6.22(-P) 2.96(-2) 1.08(-3) 0 0

1.4 ,.	 6.77(-2) 4.07(-2) 3.02(-2) 1.44(-3) o

1.6 o.46(-2) 8.08( -2) 4.8o(-2) 2.91(-2) 3.92(-3)

1.8 8.9"((-2) 9.74(-2) 7.o4(-2) 5.15(-2) 2.r(4(-2)

2.0 9.90(-2) 8.68(-P) 9.10(-2) 6.25(-2) 5.15(-2)

2.2 1.21(-1) 9.09(-2) '(.98(-2) 8.35(-2) 5.61(-2)

2. 4 9.17(-2) 9.83(-2) 8.77(-2) 7.51(-2) r(."(5(-2)

2.6 1(.16( -2) 7.89( -2) 1.02(-1) 7.78(-2) 6.85(-2)

2.8 6.48(-2) 5.79(-2) 8.72(-2) 9.61(-2) 6.79(-2)

3.0 6.21(-2) 5.03(-2) 5.35(-2) 9.87(-2) 8.78(-2)

3.2 6.09(-2) 4.68(-2) 4.09(-2) 6.73(-2) 1.06' -1)

3.4 6.27(-Q) 5.02(-2) 3.45(.2) 3.72(-2) 8.38(-2)

3.6 6.05(-2) 4.97(-2) 3.25( -2) 2.89(-2) 4.82(-2)

3.8 5.73( -2) 5.15(-2) 3.83(-2) 2.57(-2) 2.52(-2)

4.o 5.89(-2) 5-30(-2) 3.97(-2) 2.37(-2) 2.32(-2)



TABLE 6

GAMMAM^ REPON E MATRIX _ R ,

E
Incident. E' - Pulse HeiAh (̂Me )

H,'nexgy
(MeV) 2.2 2. 4 2.6 2.8 3.0

0.2 0 0 0 0 0

0. 4 o 0 0 0 0

0.6 0 0 0 0 0

0.8 0 0 0 0

1.0 0 0 0 0 0

1.2 ! 7 0 0 0 0

1.4 0 0 0 0 0

1.6 0 0 0 C)

1.8 3.83(-3) 8.70(-4) 0 0 0

2.0 1.66(-2) 2.58(-3) 9.90(-4) 0 0

2.2 4.,-(4(-2) 1.64(-2) 2.53(-3) 9.7o(-4) 0

2.4 5.10(-2) 4.60(-2) 1 .86( -2) 2.36(-3) 1.01(-3)

2.6 r(.06(-2) 4.86(-2) 3.'(3(-2) 1.46(-2) 3.06(-3)

2.8 6.17(-2) 6.17(-2) 4.94(-2) 3.22(-2) 1. 29( -2)

3.0 5.90(-2) 5.62(-2) 5.64(-2) 4.61(.-2) 2.87(-2)

3.2 7.25(-2) 4.92(-2) 4.88(-2) 5.25(-2) 3.00(-2)

3.4 9.90(-2) 5.47(-2) 4.85(-2) 4.49(-2) 5.06(-2)

3.6 1.05( -1) 8.34(-2) 4.25(-2) 4.14(-.2) 3.71(-2)

3.8 6.65(-2) 1.10(-1) 9.28(-2) 4.46(°2) 3.46(-2)

4.o 2.39(-2) 8.61(-2) 1.12(-2) 5.65(-2) 3.62(-2)



TABLE 6

_GAMMA RESPONSE MATRIX - RY

E
Incident E' - Pulse Rk&.ht (MeV )
Energy ^^  -'

(MeV) _	 3 2 3.4 3.6 3.8 4.o

0.2 0 0 0 0 0

0.4 0 0 0 0 0

0.6 0 0 0 0 0

o.8 0 0 0 0 0

1.0 0 0 0 0 0

1.2 0 0 0 0 0

1.4 0 0 0 0 0

1.6 0 0 0 0 0

1.8 0 0 0 0 0

2.0 0 0 0 0 0

2.2 0 0 0 0 0

2.4 0 0 0 0 0

2.6 1.15(-3) 0 0 0 0

2.8 3.24(-3) 1.28(-3) 7.4o(-4) 0 0

3.0 6.37(-2) 3.97(-3) 1.57(-3) 8.2o(-4) 0

3.2 2.33(-2) 1.33(-2) 5.11(-3) 1.74(-3) 8.00(-4)

3.4 3.13(-0) 1.92( -2) 1.16(-2) 4.82(-3) 1.63(-3)

3.6 ;,.58(-2) 3.22(-2) 1.63(-2) 1.03(-2) 5.37(-3)

3.8 3.25(-2) 3.95(-2) 2.36(-2) 1.52(-2) 1.o8(-2)

4.o 3.05(-2) 3.13(-2) 3.94(-2) 2.02(-2) 1.56(-2)

f



TABLE 7

GAMMA EFFICIENCY MATRICES	 E.r (A, ,O )

e (8, 4, )	 ( Counts/Photon - Cm-2)

F (Me V) e^ _	 0 °00 6^
^ 

= 180°^o0
	 -^.^. e'^^	

-	 90 ° 	 o°

0.2 .720 .928 .o46

o.4 .78o .82o .241

0.6 . 768 .702 . 501

0.8 •753 .690 .617

1.0 .733 .610 .630

1.2 .7o8 .595 •583

1.4 .685 .583 .517

1.6 .660 .568 .468

1.8 .638 •555 •439

P.0 .623 ,545 .435

2.2 . 610 .537 .435

2. 4 .603 .532 .435

2.6 .601 ,525 .435

2.8 .600 -519 •435

3.0 .600 .515 .435

3.2 .600 .510 •435

3.4 .600 .510 •435

3.6 .600 .510, .435

3.8 .600 .510 .435

4.o .600 .510 .435

t
.
^ 	 I
I
f



TABLE	 8

GAMMA EFFICIENCY MULTIPLIERS

T F r (e,^)
0 ( deg) 0	 ( deg)

_
N F•--- (9

f
45 0 0.83

45 45 o.36

45 90 0.83

45 135 o.84

45 18o 0.85

45 225 0.79

45 270 0.88

45 315 0.90

90 0 1.00

go 45 0.88

go 90 o.68

go 135 1.o8

go 180 1.13

g0 225 1.11

go ?70 1.00

90 315 1.07

135 0 0.96

135 45 o.61

135 90 0.76

1.35 135 0.97

135 180 1.01

135 225 1.00

X35 270 o.86

X35 315 o.83

1



TABT..,E 9

GAMMA CROSS-TALK RESPONSE MATRIX - Qr

E
Incident E'	 - Pulse
energy

,. .....^., »	 r	 ...-.

(MeV) 0.2 o.4 0.6 0.8 1.0

0.2 3.32( -l) o 0 0 0

o.4 3.65( -1) 6.88(-2) 0 0 0

0.6 3.62(-l) 1.42( -1) 2.45(- P.) 0 0

0.8 3.36( -1) 1.(98(.l) 6.39( - 2) 1.25( - 2) 0

1.0 3.13(-1) 2.08(-].) 9.31(-2) 3.06(-2) 9.88(-3)

1.2 2.85(-l) 2.10(-1) 1.16(-1) 7.17(-2) 2.03(-2)

1.4 2.55( -1) 2.06(- 1) 1.33( -1) 7.31( -2) 3.58(-2)

1.6 P.30(-l) 1.96(-1) 1.43(-1) 3.98(-2) 5.o4(-2)

1.8 1.93(-1) 1.76(-1) 1.43(-1) 1.06(-1) 7.24(-2)

2.0 1.68(-l) 1.57(-l) 1.35(-1) 1.09(-1) 8.32(-2)

2.2 1.39(-l) 1.34(-l) 1.23(-1) 1.07(-1) 8.92(-2)

2.4 ],.20( -1) 1914(-7) 1.06(1-1) 9.64(-2) 8:53(-2)

2.6 1.01( -1) 9.49(-2) 8.95(-2) 8.40(-2) 7.86( -2)

2.8 8.80(-2) 7.98(-2) 7.60(-2) 7.66( -2) 7.60( - 2)

3.0 7.63(-2) 7.45(-2) 7.05(-2) ;.22( -2) 7.28(-2)

3.2 7.05(-2) 6.53(-2) 6.30(-2) 6.36(-2) 6.36( -2)

3.4 6.48(-2) 6.32(-2) 5.93(-2) 5.93(-2) 5.99(-2)

3.6 5.80(-2) 5.75(-2) 5.65(-2) 5.60(-2) 5.60(-2)

3.8 5.33(-2) 5.33(-2) 5.28(-2) 5.24(-2) 5.18(-2)

4 .0 5.24(-?) 5.24( -2) 5.14( -2) 4.86( -2) 4.95(-2)



TABLE 9

_ GAMMA CROSS-TALK RESPONSE MATRIX ^- C	 (Con't)

E
Incident El	 _ pulse Height (MeV)
Energy

( MeV) 1.2 1.4 1.6 1.8 2.0

0.2 0 0 0 0 0

0.4 0 0 0 0 0

0.6 0 0 0 0 0

0.8 0 0 0 0 0

1.0 0 0 0 0 0

1.2 9.11(	 3) 0 0 0 0

1.4 1.78(-2) 9.64(-3) 0 0 0

1.6 2.-M-2) 1.55(-2) 9.27(-3) 0 0

1.8 4.48(-2) 2.78(-2) 1.89(-2) 1.31(-2) 8.88(-3)

2.0 6.10(-2) 4.30(-2) 2.97(-2) 2.05(-2) 1.39(-2)

2.2 '1-16( -2) 5.60(-2) 4.34(-2) 3.30(-2) 2.46(-2)

2.4 (.46(-2) 6.45(-2) 5.10(-2) 4.68(-2) 3.86(,'2)

2.6 7.35(-2) 6.83(-2) 6.25(-2) 5.67(-2) 5.06(-2)

2.8 7.22(-2) 6.65(-2) 6.20(-2) 6.14(-2) 5.79(-2)

3.0 6.99(-2) 6.00( -2) 5.74(-2) 5.76(-2) 5.88(-2)

3.2 6.25(-2) 5+96(-2) 5.62( -2) 5.56(-2) 5. ^3(-2)

3.4 5.93(-2) 5.77(-2) 5.60(-2) 5.36(-2) 5.2''((-2)

3.6 5.44(-2) 5.28(-2) 5.23(-2) 5.08(-2) 4.92(-2)

3.8 5.09(-2) 5.o4(-2) 4.99(-2) 4.91(-2) 4.76(-2)

4.o 4.91(-2) 4.76(-2) 4.72(-2) 4.62(-2,) 4.54(-2)

t



TABLE 9

GAMMA CROSS- TALK RESPON:3E MATRIX 	 - Cr ( Con' t )

E
Incident E,' -Pulse Height,( MeV),
Energy

(MeV) 2. 2 2.4 2.6 2.8 3.0

0.2 0 0 0 0 0

0.4 0 0 0 0 0

0.6 0 0 0 0 0

0.8 C) 0 0 0 0

1.0 0 0 0 0 0

1.2 0 0 0 0 0

1.4 0 0 0 0 0

1.6 0 0 0 0 0

1.8 0 0 0 0 0

2.0 9.31(-3) 0 0 0 0

2.2 1. (((-2) 1.21(-2) 8.38(-3) 0 0

2.4 3.07( -2) 2.34( -2) 1.63( -2) 9.-('T(-3) 0

2.6 4.41( -2) 3.66(-2) 2.-(2(-2) 1.76( -2) 9.96( -2)

2.8 5.19(-2) 4.43( -2) 3.6I(-2) 2.rj8(-2) 1.80( -2)

3.0 5.r1(-2) 5.18(-2) 4.40( -2) 3.64(-2) 2.80(-2)

3.2 5.79( -2) 5.53( -2) 5.10(-2) 4.53( -2) 3.'%2(-2)

3.4 5.49( -2) 5.38( -2) 5.11( -2) 4.75( -2) 4.34( -2)

3.6 4.98( -2) 5.08( -2) 4.92( -2) 4.66( -2) 4.43( -2)

3.8 4.66(-2) 4.69( -2) 4.69( -2) 4.56(-2) 4.41( -2)

4.0 4.46( -2) 4.39( -2) 4.29( -2) 4.20(-2) 4.,10(-2)



E
Incident
Energy

(MeV)

0.2

o.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

f.0

P. 2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.o

TABLE 9

GAMMA CROSS-TALK REPONSE MATRIX _ CY (Con't)

E'	 - Pulse Height (MeV)

rt 3.2 3. 4 3 3 4.o

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0' 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1.00(-2) 0 0 0 0

1. 83( -2) 9.90(-3) 0 0 0

2.95( -2) 2.03(-2) 1.05(-2) 0 0

3.74(-2) 2.99( -2) 2.03(-2) 1.02(-2) 0

4.12(-2) 3.`(3 ( -2) 3.11( -2) 2.36( -2) 1.58( -2)

4.24( -2) 3.94( -2) 3.59(-2) 3.09( -2) 2.44( -2)

3.96( -2) 3.99( -2) 3.87( -2) 3.61( -2) 3.18( -2)



TABLE 10

GAMMA CRASS-TALK EFFICIENCY MATRIX -.f T

E (MeV)	 fY

.2 .0044

.4 .0053

.6 .0062

.8 .0074

1.0 .0088

1.2 . o105

1.4 .0131

1.6 .o165

1.8 .0205
2 . 0 .026o

2.2 •0325
2.4 .o41

2.6 .051
2 .8 .064

3-0 . o8o

3.2 .loo

3.4 .125

3.6 .158
3.8 .200

4.o .250

MMI



TABLE 11

SYSTEM CHANNEL BOUNDARIES

Calibration Reference - 2.615 MeV = 4.00 volts

Bremsstrahlung Channels

Channel Lower Upper Width
Number volts volts (volts

1 0.345 0.427 o.o82

2 o.427 0.764 0.336

3 0.764 1.709 o.945

4 1.709 2.62; 0.918

5 2.627 5.491 2.864

Beta Channels

Channel Lower Upper Width
Number volts (Volts (volts)

1 0.296 0.709 0.413

2 0.709 1.727 1.018

3 1.727" 2.854 1.127

4 2.854 4.236 1.382

5 4.236 5.491 1.254
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I 

OLMOV

W00-15000-01(REF) f^R	 IR
OTE I

F? (Rs?^	
.10 'TYP

2,90 TIP

ik

DI

PLCS) (NOTE 4)

,P \ (Ru)

VIEW  A-A
N\00-14000-C)l (REF)
CONFORMAL COAT
BOTH SIDES of BOAPDS

P- 	
46	 12

Sr	
1 p

PE ROTE G. MA- - OFF
MOUNTING ACEAS AND
POT SCPF-\tJ.

NOTE 5

0

NOTE a

\flF-\lN b-b

'CND TO CONNEC I

PER- NOTE G.



A^-A

4 J	 3 2 1 1

N0 ` E5

_	 REVISIOIIS

IONC	 LTP	 DESCRIPTION DATE	 IPPROYEO

I . ASSEMFSLE d SOLDER PER NASA SPEC VIPC 200 -4 A I ADDED ITEMS 16 X34 TO L/M 4 F/D a.19.1L CA	 eN
2.C,AM CONTROLS, DIV OF WRY-WRIGNT INC, 2, /YEM 24 WAS AN547- G3ZR/O ,N 41AY •11•	 ;,y

WATERIOWN, MAS5.
3.lreM ZI	 m9s NASGo1.1r.P

5OND ITEM IZ TO ITEM 4 U5 ING ITEM 3G As	 g AUOLD 11IOD&N VIEW OF CA/^ACiruG, I-K•a7 S6 Lowb

4 BOND ITEM 21 TO TOP OF ITEMS G 9 7 AFTER
I+ K 64

I/t9 ^^^
INSTALLATION OF SPACF:RsI

-^5, 5IRINCj JIE ITEM 1170 ITEM 3 AND
CONNECTORS JI0I,J102 4 JI03 USING
ITEM 20

G. CONFORMAL COAT AND SECU,PE COM-

PoNFNTS	 PER 408-00060-
7 (e)t4me.MAL COAT !BOTH SIDES OF

BoAKD AND SECUPE COMPDNEN75 AND
WIPES	 ON	 PE5400	 PowEe	 5UPpLY
FIFE, 40P-00060. NIASr, OFF	 MOONTING
AREAS AND TACK	 SECURIT PET400
?w9 5t)PPL`/ IN THREE PLACES

g. ToRg0E	 -;CrF.vIs	 UNTIL	 RUBBER— COM-
PKFSSFS	 OUT	 hloUND	 ENTIPE MOUNTING
PERIPhERY.

^A.'__... 40
_
0—

GG RADE
 C^_

39 IG RADE N,FM-R, GRN

37

3ro RTV.102
I	 3.5

d4 v 24AW6 Y

M5902I-01c)_52 .

r	 ^ ►.IASl352000-l 2

LA

C

SoN.D To CONNECTOR.
PER- NOTE 6,

MAJOR	 NEXT ASSCMPLY
ASSY

AI /On- n[]nn

/ j 12 NI00-•10015-OZ
el'
2

_ II
10

_._ NIOO-10200_01.._.
N10O- 1001G - o6

—..

h 9 1.1100-10016-05
1 I 8 N100 -10o16-04
I 7 N100- I0016-03
5 G Nloo -IOOlre-02
I 5 N100- 1000 4-0 1
1 4 Moo- 10002-01

l REF 3 N100-10001-01

2
1 -01

-0
QUANTITY REQUIRED

ZONE ITEM CODE
(DENT NO.

PART OR
IDENTIFYING NO.

LIST OF MATERIAL

USED ON
r [a LNON

r.+c[p[C	 +rtm.Y[p	 W41 [NYN
S.O	 f,ole	

"oc!

NY

Axow
MACNIxap	IaNN[p	+NCt[Ln	 sr[u

a[puIo1+1
	CN[[

NACNINtp+UPIA
IINONIxa ANY ETW.I NCINar[ 41. . T. ____
CC[NTxIYITY tLT[[tN ANY YIAI{I aM TN[ -,.,,---,•..

O
O_

3E AsSY	 CALL OUT ON DWG Nloo-10300

5Y
NOMENCLATURE	 MATERIAL AND FINISH OR NOTE OR REF DES
OR DESCRIPTION

ARTS LIST

Lzip lz^RLBLARCH CENTER

COMPONUO ASSN 
A

I D 111817 [ W100 —10Q0Q 1

Z



6 1 5	 f 4	 1
ITEM 27	 REF –	 18 `.02 ^I

ITEM 26 REF
.NI RE	 Rr F - .,^	 -. TABLE I

—.^-_^ 	 -_'^ _
PIN NO. W_QE
(ITEM 0) (:=e

.6fI•10--^
+ __I.

VIOLET
8.00 MIN,....	 _ 2 I,LV

3 I (JPAY
TYPICAL WIRE INSTL 4 'VIOLET	 r

FOR Pi"t(S 0^ I^ l2	 SHIELD WIREOI N 

ITEM

DUN L 5DUN T TVIOLET,
	

I48 BLK9
BRAY

10 VIOLET

12 GRAY
^g	 ^^ SHIELD BLK	 _y_

CI

5EE DETAIL A,b4

B

.10

D

m o m-

D DETAIL C	 5EC7 D-D
YrTOM VIEW OF ITEM l9

AI

NEXT A$3j

,.^..,o 	 8	 7
8.00 MIN.

18 t .02

WIRE REF
ITEM 27 REF^^

TYPICAL WIRC- IH5TL
FOR PINS 4,5,6,7,8 ON ITEM 1°1

DETAIL A,

DI

NOT,E^

re 2 1



B
I 1151 M100-10017-02 PLA57/C

I Id NI00- 1001	 -0I CRYSTAL
1 13 N100- 10016-07 WSULATOR
I 12 N100- 10016 -01 CAP p
1 II NI00-1001	 -03 GA5WET O
I 10 N100-10010-05 5HIELD 0
I 9 NI00- 10010- 0Z 1415ULATOR I

8 N100- 10010-01 SPACER 0
7 NIOC- 10008-01 SPACER 0

1 6 I IJ100- 10007-02 COLLIMATOR Z
1 5 N100- 10007-Of COLLIMATOR
I 4 WI00- 1000(20 -OI WINDOW

3 NI00- 10005- 01 514IEW

I
T2

—01 Tu6E ASSY
—^ 1 ZONE ITEM CDDE

IDENT NO.
PAPT OR

IDENTIFYING NO.
NOMENCLATURE
OR DESCRIPTION

MATERIAL AND FINISH OR NOTE OR REF DES
QUANTITY REWIRED

LIST OF MATERIAL OR PARTS LIST

USEDON
vnDl Ltan

RLBLARCM CSNTLRUNLESS OTHERYIfE SPECIFIED
— a v^iit Dec	 I vatic DtetN^:^.	 ""'ta

LNVI[D	 IDNYtO	 f	 4NL0

u•	sr	 ea 1.•
Nal[ cc Ko	 .. P[N tM0 YIfT
1VNILC[ NOUOMMtff PtN YIL•fTPlt

YtCY1Y[D fVNIACt IIYtlN'
OIY[YYDYVNO NYO JOL[YLNCINO I .LNYIL•fTp•t

tCCtNTNICITJ t[T I.AlL MTOI	 aMa' Vo
1*1A G[MT[RLINC fNLLL MOT ItCL[O.t V1
TOTAL.NOKttON NttDINO

YD[tNItLI OYLt [IY INLN[It IYCLLMOPINtlI
t[ OfJYtOIfY[YYIWT .. I.

cowv crloN::a^ ^^ PH070MUMPLIER ASSY41YVGT	 Ti

aRa1M AtP

iN[Lt[D IT

ONALN [ ♦ J •/
LYON ONOVI O

MIL

D
CODE NNMT M6

118'17^8I

/^	 /^

V	 `^./1 ^./Y ,'	 0 ` '0 .10'NIy IT LDDL Y[Y YN fit'l MN[tp P[N Y^4lTLi

2

MAfOR I	 NEXT ASIEMSLY

4	 1	 3	 1
NOTES:
	 REVISIONS	 N

1. W-DER PER NPC 200- 4 	 DESN.RIPTIDN	 OATE AvPRDyEC

2.zmo 1'CEM 14 TO 'I'TEM \9 US1NG ITEM 29
5. BOND MM 15 TO MM l4 U5NG MM 30

(OMIT CA'(A`(t-s7)
4.60-47176M 14 AROUND C/RCUMFE'NCE AND ON

BOTTOM UP TO ITEM! /5 Ub/NG ITEM 3/
5. COAT IN51DE OF lTE"M 4 W1 7/-/ /TEM 3/

	
D

C

20';
I (Z .'

.7—



—.150 DI A SN0.0
C bORE ,285 DIA X..10'
5 HOLE5

D O

a	 o

50P	 \

7	
.20 R';:	 \

L	 '^	 I

(zYp)	 ,500(REF)

,..w 8	 ^ 7 ^	 ^ ^	 5	 ^ ^	 4

Y
DR1LL-\k 3\(.1100) X ?rCo2DEEP

	

A	
TAP 4-4-ONC-,Lb
(Z'(P 6 VLCS)

	^. 	 2.485	 320 (t {P)	 147

Y	
2,950	 .067

.25R	 16(tyP)

1\	.875
.12R(^'YP)	 ii

2.275

	

\	 147 DIA X.3\'I Dp	 I.500
'TAP G-52 HELbCD1L	 DIA	 ^+	 2, I5G
(T-(P 2 PLC5)

.447

W	

.I70It1P)
490	 1 125	

(1 0225	 3.355 -	 ,600

A	 1.200

5.050

5.500- 1.vZ5-20 THDX.550OP
(

	

(TYP^, 230	 2.265
REF)

	

(TY P)	 —^^	 127

62s	 _	 _	 .475

250

(TYP	
—1375

.\25 (N P) .S00

W. Fl 45° DIA

(7YP)

S eC^ION ^A- ^

A



C

447

^I
'.\(.^700)Xlo2DEEP
)NC-26

s2o(tyP)	 14`i
^(TYPG PLC--,)

1

41	 3	 2	 1
REVI SIOI45

A	 1	 ...,.-,.,1. GLASS PEEN PER AFRO 3pEG 1's -401	 :ONL LiR	 pfSCRIPTIDN	 ?ATE AP-PROYEO

2. SLEACII ALOO1t^lE 12005 PEC^SPECC^IA9-l$	 q iNeae4seo HOLE oln ro .bop 	 eN .
3. 1NSZAL.L HELICOWCZ AFTER Fml lb"	 (w4S .400.)	 IAA*^`^ IC of .

— .I 50 DI A'^H0.0
C WRE .285 DIA X..100 DP	 --1
5 NOLE5

D

2.275

fz 1_ _	 .-_.^_	 1 2.556

8

MAJOR I	 NEXT ASSEMBLY

—oi
-^^ ZONE ITEM CODE

I,DENT N0.
PART OR

IDENTIFYING NO.QUANTITY REQUIRED

LIST OF IAATEF

USED OM
PRw [NON

UNLESS OTHERWISE SPECIFIED,
1-00 00 if PLACI D.0	 t PL.C[ OlC

...I	 J:..1.
.NYL.ss 

NNO	 F—D
	

t;HRCDr
NOL[ TDL.R.NCt PROAND MI.i
.YRF.C[4.TP1.

Fl...1
O 	 I

.CC[NTRICITY W. T^I.N.NY OLIN ON TN.
S.- CINT.P , 1M[ tMALL MOT .... RB AH.

CONK [NON

N

NOMENCLATURE	 MATERIAL AND FINISH OR NOTE OR REF DESOR DESCRIPTION

ARTS LIST

^^ ^ R!alARCH CLNTlR

u C0N^R -- U70M	 A
SP^CTROME7ER

9 	 N0.
817 Nt00-100,02 t

R.Y. Q	 lemall

ot



MA)O" I	 NEXT ASS4

M

"1" .10
	 4	 i

11

..l ^,

I 

rj WAIMPI)
CURE .285	 [Al P

5URFACE
4 HOLM

e,—

ro

..............

3.004
2,550

i	 1	 ^	 .

.225	 „^.._-__	 5:050 -_._. _ -_ _..__._____-^ (

	

.



B

ml

4	 1	 3	 2	 1	 1
w,07E15%-	 REY;sI17N$

PEEN PER AF-90:'PEG \^d-4^'it	
EON! LTII - 	DESCRIPTION	 BAT!	 APPp}vEl

f'. eAXAC" A.^JM E 1'2005 P
I
-RCVA9 -18 = - {I 	 1

^3g

l cYP)
rk

T1l

D

1 Zvi	 I S..VVCK I (V r7'1SO HL	 JGL /VV/c/¢G

-r' ZONE ITEM CODE
IDENT NO.

PART OR
IDENTIFYING NO.

NOMENCLATURE
OR DESCRIPTION

MATERIAL AND FINISH OR NOTE OR REF DES
QUANTITY REQUIRED

LIST OF MATERIAL OR PARTS LIST
ITT PER
MAJOR

ASSY
NEXT ASSEMBLY OSEo ON

.nor cxon
^^	 RQHQARCH CQNTQR

A
A

UNLESS OTHE RWISE SPECIFIED

cDU. [xan- A.IAC. Dtc	 {IL.[t.1c_...	 .la
.naL[{xNlxao	 rnnYto	 1xt.xtD

llu—c	 a-w[[ali Ha HI {,^^ ,.

Y.CNIYi o {onl.C[ Ilxnx 1
DlxtNfla NINE •Mp ToL[n.MGIxO .tn YIL•/T D/

[CC[xlWitlir at T.lan AMY DI.1{1 DY 1NR
fArt [[NT [nLINI fN.LL MDT ltC[[D Ala
ror.L lxmc.ron n[.alxa

. LDIY...[Ix INCxt..INCLUOr...tl[D IIxNx

:.^.	 r[xax C0^/ER -TOP
SPECTROME`TER

{rnucT	 .rf
anao.... .,^.^:
CN[Cxto aY
On..x tr r
[xan ]nao.

MEB	 [ODE (DINT M0.

D 1 11817 N  .rLOVnoultnxlo-ttou
rxnc _D: saw nL•r,raa

E
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:?.000

e^
HOLES ts,
A 1.0501.4Go
B

DW,

T/.

;4 3J4

\N

WO"T IFACE WX 1.50 DIA FAR31DE
('2 HOLES)

5EE "GUE
11 -GOO	 DETAIL

.125

/.000

3.000

-5.150-

-- 4.150
I

L".c -1* 	8

-I

6.07:

17, 0 r)

^.20 R

z	
.12 P,

I

2,550

OGO

(REF) 

.50R
<42 o

C3 P,

,zp

IZR
(Typ)	 .500(REF))

SCALE: 2/I

1 128 DIA
12 "OU5

A
R C-Vi -P)T

LD 	 A 

.525

r. Aj

DP

lhy

BLI

PEA

RV

DRILL AZO MM
c5K
'TA,P 4-40 HEL
lNtTALL 358!
3/4 TO t -TURL
WET ?RtMF-V-,

REMOVE -TM ^



gmA

GYP)	 .525.750

AA

5	 4	 3
f4^?Cv:
I. G\ ASS PEEN PER NERo `.'^NFC. \ °40\
2. ^LE^^Gt1 M-OWAE \2005 PER`jPECC\IA
.5.1t,rbTALL 4 IEUCO\l-5 AF= CCR F\NISH

P4PIn5,'j

f

. - C'124 LL .441 L A, 7vAR t
v. ;Y' ana t5R X..480	 A

	

/ Y<•P G-52	 -,R'.j
`O

k-g 
'N:TALL 5585-06CN -:,2 r17, 4 PEvO
A^4 7' I TvRh ^E' oW ^ui^FlJ.cE ^a^^^
W'ET PRIMER FEk °';GEC. !J'WL-S^-BEI?',
F.EPAO` ^ y E TANG	

.400(REF)r
~.205 L tAT"RU	 t

i	 4 H(-'L(-:S
-+^	 f-+--•.i60(zYP)

2	 ^	 ^
r .slaps

LTA	 DESCRV tITI	 DATL	 A►PRD,ED
- -

G3
, 
.400

-.--,125(TYP)

Q'

	 C

I

I	
,ZSQ	

i
_^l	 L

u ^N ~ .300

1

-too

,

2.485(REF}
(	 M	 t— SEE DETAIL "7
F--__ , 	2.950

---- DRILL .14'2 DIAX BIZ DCEP
^K 120"f5°X.18r ;$o Dip,

FF.G o 52 HE? i - :^iLTHDX.240 DEEP
ts^TALI 5585-0000-7207, 9 REOD

--	 +-1	 (4 St-A0WU, 5 0PPGS, ,-,E) 514 TO 17SRN
BELOW SURFACE WITH WET PRIMER
PER SPEC WL-P-8585
ft4=MOV E I NIA G

^-- DRILL .120 D1ATn
C5K 120°*51 A.140+p0 D A,
TAP 4-40 HELL-COIL T"D THRU

e
l NbTAI-l. 3585 - 0404 - 0224, 3 REq D
3/4 TO I TURN bCLOW 5URFACE WIZ"
WET PRIMER PER SPEC MIL-P-8585
REMOVE TAVAG

I — OI GASE 70lb-76 RC	 A10 T& /	 Z

^O1 20NE ITEM CDOJ:
(DENT NO.

PART OR
IDENTIFYING NO.

NOMENCLATURE
OR DESCRIPTION

MATERIAL AND FINISH OR NOTE DR REF D!!5
OUANTITT REWIRED

LIST OF MATERIAL OR PARTS LIST
ITY PER
MAJOR

A,
NEXT ASSENELY USEOON

nna, [,ron

^L	 RRSLARCM CLKT^RUNLESS OTNERPISE SPECIFIED

coNn cxanA1100 —	 OHO a0 — OOQO f PiicT Rtc	 J nLAC[ ttc
ANCI[,

:N
e
[:„lN

N0.tTOL tn.NG[.tll Axa N,tT
,wr.ct ncuaNNn, ntn N,L•,TOU 	 {y /
Ei.[xu[x,Ni^iw'xioLi^ANC„tio :[ni.r`:,rw

[CC[xTnKITY ttT1[[M ANY NOOJ ON TN[
,Axl C[xT[nllMt fNALL Nai t[C[[0 Jlt
T."N'	 IxOK.TOn nt.alxa.LL.^...NUxucxt,.,xcLaat.x.L,tan,x„x

:,'.aatr.N
fTn YCt	 .Tf CAS E

SPEGTRQME^ER
aRa^. A.. °^
RnA[xtTtT

^
R	 !GN -1	 G

than avow	 0-71 100
SIXE
D

C0E[IR[NT NO.

11817 —10004
NtLO tTNROI, N[n NwfT>„nnrtr coeX ntn Nr,,,

ntn N,L..TM1I,

B

I

A

01
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2.80

•	 z

z,so

-+I4+-.00STHK

—0 1 SPACER
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uv^e-uo
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5	 4 1

52
^^ DIA

f

-03 GASKET
. YAU" 2/1

7	 I	 6

D
22

20R—,
(T' P 4 PLC9

C)

5.50

/— 15 DIA
Q HOLES

.12 R
('CYP 8 PLCS^

2 55
3.00

z7

^.12 (ZYP)

- OI GASKET
SCALE: VI

B

--	 5.50	 ----

t-+	 5.05	 ^..y___

22	 I ---2.95	
.15 DIA
5 HOLES

.20 R.
(Tva 5 PI r5)

.12 R

	

(Z`f P l0 PlCS^	
3.00

.50 R
O	

27
O

.l2 ^ z von

~-02 GASKET
SCACE^ 1^l

YAmit . I	 Himir A^

A

a

j

nohow
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L

I

.5-71 .0

9 157 •---
1.070G.In

DETAIL - 01
SCALE 2/1

1.000 K 20NC- 2 5
THREAD

.,

B

IA

I

I

f

	

8
	

7
	

6
	

5

1500

.030 	 `30°	 11	 - 1271.246 -	 - 125 DIA`cHRU
-_	 1—e}	 2 HOt_ES

	

A	 ---^\	 .250 25	 ^A ^	 ,125	 .,

DETA f	 (Ty
p)r

\	 SCALE 4/I 	 ^•	 .150

6
1
90

	

j' I	
I'	 I

	

i l l	 I^i

,920
},OO5	 1-.010

050	 .750	 .500'•000 R

DETNL — 04
SCAUE 2/1

I.ol o
150

	

n	 1.500

.127	 1.246 -	 120 D\A X,2bG OP
C5K 120°X.IS±:oi DIA

.250 125	
TAP FOR 4-4OtX_Z6

	

._ a	 +	 HCLICOILS
(2 I-IOLE5)

T_ p05^.750—.y ,00-{ ,.000R

	

I d	 `/I	 I.570
.736

.120 DIA'THRU
C ,K 120 °7A,18 f oo 01A
TAP FOP 4-40NC-26
HELICOILS
(2 NOLES)

L_I7 
156DIATHRu

.540 ' I 70

1230

•460 ^--

.500

DET W L -O6
5CM-t. 2/I
2 RE4 o

^—	 DA5 N0. i4 DIM
ITO	 ^^---	 -02. 20$

–03 .190
340 ^---

.120 01A. -TNRU
CSK 100° X.235 DI A

.273

DE.T A1L -- 02 ^-03
SCALE : -#/I

540 D
p

/A	 pap

	

01	 100

r.^

},005I	 i ^ .600 -

I 	 No

I
I 	 250+

.15D

•300 }:°0°0°5
^poo

ago -.^^•-1
DIA

*.010

9D0 
A.000

DET A\1 L — 0-7
SCA\.E; 2/1

DET AIL-05
Sc-A'-F- 2/1

,250 (STOCK)
^DIA

t#360R\LL(1orG5)MN'/ 250 DEEP
TAP ^-32 NC-ZA

.._30

165 (VA F-i
4t47 DRILL(. 0785) DIP, Y-2  50 OEE P
TAP 3-4SNC.-2A

orr ► u
MA"

DETAIL — 08	 ^a
SCALE; 2/I	 -oz

rf



A

41	 3	 2	 1	 1	 1

JOT E^j;	 REVISIONS

1. BLEACH ALODINE 12005 PER SPEC CVA "^-18 iollc 471	 DESCRIPTION	 DATE APOW_	 M
2.LN4^TAl\ NE\\CO1L5 AFTER FIN15H	 A IMCORPORATED W N0, NIOO.1 ,	 I'TG99+

U 100.3 , 4 W 100.13.

-,I ^5 MATHRU
ti NhLES

.150

,G90
1

VI- _ _ `̂

+OCO5 R	
t.o10

or)*000

x- 04

D

I

^--•.120 [^IA'fi:tE^OH	 1.OITO DIA

'rt
TAP FOR 4-40t1C 2E3	 ao	 408F	 iILLt b1L5	 .040
(2 1-IOLE5)	

FULL R 
(REF)^	 ISO DI A

{,00
O-.00

5o R
ICS LTI	 1	 ,9

- I 1	 1	 11	 1	 G30	 I	 1 .094 OIP. (TANGeNT -CO 50TTOM
u, p	 I I	 i	 I	 "_	 510	 SURI=ACE AS SNOW)

- t+^-y	
I	

I	 ,070

'^'^'.	 ►^°-• 1.095 DI P, ^	 .315 Dl A
.12.0 01 A I"RU 	-""1.40 0
C°jIG 120°X,18f` r,GA 	

^-	
DtA

TAP
HEI. V)' LS40 ^: 2E`
	

^E 1 A^1. - Og
(2 HOLES)	 SCALE% 2/ 1

«-,250 (5-ToCK)
DIA

I

B

12

°-^#86DRLLL(IQG^5IGIA K 250 DEEP I	 I II -

-TAG	 ^2NC - ZA 10

7.300

1
1 8

.500 1

1 5
1 4

1 3
^-,I85 (LaEx)

a-O

^ ^

'--it A•1 L4ILL -0785 DIAX•250( DEEP -0 -05 - - -02 -01 ZONE

1

ITEM IOENTNO,

TAP 3- `8NC-2A
QUANTITY REQUIRED
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