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Abstract 

A s t a b i l i t y  c r i te r ion  is found fo r  an i n i t i a l l y  s t a t i c ,  s t r a t i f i e d  f lu id  

subject t o  an e l e c t r i c  s t r e s s .  

viscosi ty  and space charge dis t r ibut ions are functions of the v e r t i c a l  s p a t i a l  

coordinate, with gradients directed parallel with the imposed e l e c t r i c  f i e l d  

in tens i ty  and gravitRtiona1 acceleration. 

perfect ly  insulat ing,  suf f ic ien t  conditions f o r  s t a b i l i t y  are found; the prin- 

c iple  of exchange of s tabi l i t ies  is  shown , and var ia t ional  pr inciples  derived 

fo r  the eigenfrequencies and, i n  the case of no space charge, f o r  the c r i t i c a l  

f i e l d  strength.  An experiment demonstrates i n s t a b i l i t y  i n  the dielectrophoretic 

l i m i t  of no bulk f r ee  charge. The property gradients are induced thermally, and 

incipience of i n s t a b i l i t y ,  as measured by the Schmidt-Milverton heat transfer 

technique, i s  successfully predicted by the theore t ica l  c r i te r ion .  

The equilibrium f l u i d  density,  permit t ivi ty ,  

In  the  l i m i t  where the f l u i d  is  



I. Introduction 

A. Background 

Careful observations of motions induced by e l e c t r i c  s t r e s ses  i n  t he  

bulk of s l i g h t l y  conducting l iqu ids  make it c lea r  t h a t  the  mechanisms f o r  

electromechanical in te rac t ion  are  diverse. 

t o  the va r i e ty  of e l e c t r i c a l  conduction processes t ha t  can dominate i n  

, highly insu la t ing  l iquids .  For an example, unipolar ions or iginat ing 

at electrodes can lead t o  a conduction current proportional t o  the loca l  

aet space charge. As a r e s u l t ,  space charge can accumulate i n  the  bulk of 

a supposedly homogeneous l i qu id  between capacitor p l a t e s  (293). 

c e l l u l a r  convection describe6 by Avsec and L u n t ~ ' ~ )  is  probably re la ted  t o  

such space charge e f fec ts .  

I n  p a r t ,  t h i s  can be t raced  

The bulk 

As a second example two o r  more species of ionized ca r r i e r s  or iginat ing 

i n ' t h e  bulk of the  l i qu id  can give a conduction current even wi th  ne t  l o c a l  

charge neu t r a l i t y ;  ohmic conduction i s  spch a case. Even i n  an ohnic f l u i d ,  

however, electromechanically induced motions can be t raced t o  property grad- 

i en t s .  

fhe poss ib i l i t y  of gradients i n  the conductivity, i s  highly successful i n  

It has been shown that a simple ohmic conduction model, including 

understanding motions resu l t ing  from the combined action of a thermal s t r e s s ,  

which induces the property gradients ,  and an e l e c t r i c  This c l a s s  

of bulk in te rac t ions  can be modeled by a s p a t i a l l y  varying e l e c t r i c a l  conduc- 

t i v i t y  and permit t ivi ty  (po la r i zab i l i t y ) .  The former accounts f o r  an accumu- 

l a t i o n  of bulk f r e e  charge and an attendent f r e e  charge force densi ty ,  while 

the l a t t e r  gives r i s e  t o  both f r e e  charge and dielectrophoret ic  force densi t ies .  (6) 

Studies have been made of t he  e f fec t  of e l e c t r i c  f i e l d s  on convective heat 
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trans fer. (7) Although the dtelectrophoretic kradient  i n  permit t ivi ty)  

mechanism i s  thought by some t o  be t h e  source of motions induced i n  thermally 

s t ressed  f lu ids  by the  f i e l d s ,  it i s  usually the  case t h a t  the  free charge 

forces due t o  thermally induced s p a t i a l  var ia t ion of e l e c t r i c a l  conductivity 

is t h e  dominant mechanism. 

B. Objectives 

A t  least super f ic ia l ly ,  the  ro le  of t he  e l e c t r i c  f i e l d  as it induces 

convection i s  similar t o  t h a t  of gravity.  

basic  s tudies  relate t o  s i tua t ions  similar t o  the c l a s s i c  Rayleigh-Taylor 

i n s t a b i l i t y  and Bgnard i n s t a b i l i t y .  (8) The onset of convection, with i t s  

concomitant influence on the heat t r ans fe r  i n  cases where.a thermal gradient 

i s  involved, occurs as an ins tab i l i ty . -  

Thus, it i s  not surpr is ing t h a t  

The f lu id- f ie ld  configuration t o  be considered here i s  shown i n  Fig. 1, 

where electrQdes are used t o  impose a perpendicularly directed e l e c t r i c  f i e l d  

in tens i ty  E(z) on an i n i t i a l l y  s t a t i c  l iquid.  

but nevertheless arranged i n  horizontal  s t r a t a  so t h c t  t hequ i l i l r i um density 

The f l u i d  i s  incompressible, 

p, viscosi ty  p, pressure p, space charge density q,  and permit t ivi ty  E are 

functions of z .  For present purposes, the mechanism giving rise t o  the  

l iqu id  inhomogeneity is  not of i n t e re s t .  For example, t he  equilibrium can be 

obtained by careful ly  quperimposing layers of l i qu id  which have d i f fe r ing  

properties.  The inhomogeneity can also be induced by a thermal gradient;  the 
analysis given here i s  appropriate, provided tha t  t he  thermal a f f u s i o n  t i m e  ( 8 ,  p.18) 

is  long coxpared t o  dynamical t i m e s  of i n t e r e s t ,  f o r  example, t he  t i m e  constant 

for an in s t ab i l i t y .  

Detailed a t ten t ion  i s  given elsewhere t o  the prediction of t he  c r i t i c a l  
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( 9 )  An f i e l d  f o r  t h e  onset of convection i n  the  configuration of Fig. 1. 

ohmic model i s  used t o  include the  e f f ec t s  of t he  e l e c t r i c a l  conductioh. 

To include the e f f ec t s  of a f i n i t e  e l e c t r i c a l  relaxation t i m e ,  it is  neces- 

sary t o  m a k e  a considerable number of approximations not required i f  the  f lu id  

i s  considered at the outset  t o  be perfect ly  insulating. 

In  the following sect ions,  development is confined t o  the perfect ly  in- 

sulat ing f l u i d .  T h i s  allows t h e  derivation of rather general conditions for 

s t a b i l i t y  and i n s t a b i l i t y  tha t  represent the l imit ing case regardless of the  

e l e c t r i c a l  conduction model. That i s ,  i f  a mobility model is  used t o  repre- 

sent e l e c t s l c a l  conduction, then t h e  derivations are the l i m i t  of zero mobility, 
f o r  
/ 

and If an ohmic conduction model is used, then they arg7xhe l i m i t  of zero 

conductivity. A variat ional  pr inciple  t o  describe t h e  s t a b i l i t y  of super- 

imposed f lu ids  i s  suggested by Char~drasekha$~’ P*436)and improved by S e l i  g10 . ) 
Here, t h i s  var ia t iona l  Drinciple f o r  determining eigenfrequencies is general- 

i z e d  t o  include the  e f f ec t s  of e l e c t r i c a l  forces. The pr inciple  of exchange 

of stabil i t ies i s  shown, thus making it possible t o  reduce the  prediction of 

i n s t a b i l i t y  onset t o  an eigenvalue problem i n  the  e l e c t r i c  f i e ld .  

Included i n  t h e  analysis as a l imit ing case i s  t h e  s i tua t ion  i n  which 

there i s  no space charge; i n s t a b i l i t i e s  are predicted having a purely dielec- 

t rophoret ic  nature. These r e su l t s  complement those f o r  the case where the  

applied f i e l d  is  directed perpendicularly t o  the gradient i n  permit t ivi t4 .  11 1 

A var ia t iona l  pkinciple i s  given f o r  t he  c r i t i c a l  imposed f i e l d  i n  t h i s  

dielectrophoretic case, and experiments are described i n  which t h e  gradient 

i n  permit t ivi ty  is induced by a thermal stress. 
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11. S t a b i l i t y  Criterion -- 

A. Equations of Motion 

The d is t r ibu t ion  of equilibrium space charge q (z )  i s  determined by 

the de t a i l s  of a given experiment. Even though the assumption t h a t  the f l u i d  

i s  perfect ly  insulat ing makes it possible t o  ignore the  or igins  of t h e  bulk 

charge, Gauss' l a w  requires t h a t  it be consistent with the equilibrium dis- 

t r ibu t ion  of E and E.  Thus 

where d( )/dz 2 D (  ) .  

S t a t i c  force equilibrium i s  possible because the  e l e c t r i c  force den- 

- 1-- 1 a € - - -  c 

F = qE - E*EV& + V(F E*E) 

has an equilibrium dis t r ibut ion which i s  i r ro t a t iona l  and i s  balanced by 

t h e  pressure. 

the quantity i n  parentheses w i l l  be included with t h e  pressure, p. 

The last  term i n  Eq. ( 2 )  i s  the gradient of a sca la r  and 

To invest igate  the s t a b i l i t y  of the s t a t i c  equilibrium, s m a l l  pertur- 

bations are denoted by 7 and $ respectively fo r  the veloci ty  and e l e c t r i c  

po ten t ia l ,  and by p ' ,  p ' ,  E '  and q' respectively f o r  t he  mass density,  pres- 

sure ,  permit t ivi ty ,  and free charge density. Thus, the l inear ized equation 

of motion becomes 
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where t h e  equilibrium terms are by def ini t ion 

uni t  vector i n  the  z direction. 

The f l u i d  is incompressible, 

- 
v*v 

balanced out,  and Tz is  the  

as reflected by the  equation of continuity 

= o  ( 4 )  

A t  the same t i m e ,  it is inhomogeneous, w i t h  the density,  permit t ivi ty ,  and 

free charge density of a given f l u i d  element constant. These three condi- 

t i ons  require 

where 

The perturbation equations are completed by writing Gauss' l a w  t o  l i nea r  

terms and t a k i n g  advantage of Eq. (1) 

Boundary conditions imposed by the electrodes at z = 0 and z = d, together 

w i t h  Eqs.  (3)  - (81, formulate the problem. 

The physical s i tua t ion  remains unaltered by a rotat ion of coordi- 

nates about the z axis, and hence, without loss of general i ty ,  can be considered 

as two-dimensional. 

dard form 

Thus, perturbation solutions are assumed t o  have the  stan- 

A 

9 = R e  $ ( z )  exp j (ut-kx)  ( 9 )  

In  terms of t h e  complex amplitudes, t he  conditions tha t  the veloci ty  and per- 

turbat ion po ten t i s l  vanish on the electrodes are 
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A h A 

v ss D v Z =  Q, = 0 at z = 0, d 
2 

A 

where Eq. (4 )  has been used t o  write the  condition on vx i n  

Thus, it is  convenient t b  work with the  variables v and 4. 

subs t i tu t ing  solut ions of t h e  form of Eq. (9) i n t o  Eqs. ( 3 )  

a set of ordinary d i f f e ren t i a l  equation i n  the  complex amp1 

A A 

z 

(10) 

A 

terms of vz. 

This is done by 

- (8) t o  obtain 

tudes of the per- 
A A h  A 

turbat ion quant i t ies .  

as functions of vz. 

nent of Eq. (3 )  f o r  p as a function of vz and 4. 

these amplitudes i n t o  the  z component of Eq. ( 3 )  gives 

Equations ( 4 )  - (7) are solved f o r  vx, p ,  E, and q 
A 

These expressions make it possible t o  solve the  x compo- 
h h A 

I n  tu rn ,  subst i tut ion of 

A A 

In  a similar manipdation, Eqs. (6)  and (7) eliminate E and q from Eq. 
h A 

(8)  t o  give a second equation f o r  v and Q, 
Z 

The eigenvalue problem i s  summarized by Eqs.  (10) - (12). 

B. Exchange of S t a b i l i t i e s  

Without restri t i n g  the equilibrium dis t r ibu t ions ,  a considerable 

ins ight  i n t o  the  nature 

be obtained by using judiciously combined in tegra ls  of Eqs. (11) and (12) and 

the boundary conditions. 

d conditions f o r  incipience of the i n s t a b i l i t y  can 

4€ 
A 

With t h i s  objective,  Eq. (11) i s  mult ipl ied by vz 
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h 

( the  complex conjugate of vz) and integrated over the  v e r t i c a l  extent of 

the  f l u i d  t o  obtain 

where 

and 

I3 
j W I l  = - 1, + 3r;+ I4 

d 

A 

+ 2k2DvZDp A - D[Dp(D2+ k2)]v4 dz 

d 
I = k2 J @+Ivz{ " 2  dz; = gDp - EDq - EDEDE 

0 
3 

n n " *  d 
I = k2 I vz [Dq@ + D&ED+]dz 

0 4 

Integrat ion by pa r t s  of the first term i n  the integrand of Eq. (14)  
" 

together w i t h  the  condition tha t  vz = 

I i s  pos i t ive  and r e a l  

0 at the  in tegra t ion  l i m i t s  shows t h a t  

1 

Similar, but  more complicated, manipulations as summarized i n  the Appendix show 

t h a t  I2 i s  also pos i t ive  and real 

0 

The e l e c t r i c a l  equation is handled i n  an analogous fashion. Multiplica- 
n 

t i o n  of Eq. (12) by k2i$*and in tegra t ion  gives 
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where the first two terms of Eq. (12) contribute 

d 

0 

while t h e  t h i r d  and fourth terms combine, and together w i t h  t he  l a s t t e r m ,  give 

d 

Integration of Eq. (21)  

I = k2 
5 

0 
n 

by pa r t s  with the boundary conditions on r$ gives 

d 

0 

a pos i t ive ,  real ,  function. Moreover, integrat ion of the  first term i n  Eq. 

(22) taken w i t h  t he  boundary conditions on + shows t h a t  
A 

* 
I = - I 4  

6 

Now, t h e  complex conjugate of Xq. (20) can be expressed i n  terms of I,, and 

then  I,, eliminated between the resu l t ing  expression and Eq. (13) t o  obtain 

- w211 + j w I  - I, 4. ww* I = 0 (25) 
2 5 

This expression shows that  i f  a perturbation is unstable,  it is s t a t i c a l l y  

unstable. 

t h e  real and imaginary parts of w. 

To see t h i s ,  a and 6 are defined as real quant i t ies  t h a t  represent 

w =  a + j S  
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Substi tution of t h i s  form i n to  Eq. (25) gives an expression with real and 

imaginary pa r t s ,  each of which must vanish. A l l  in tegra ls  i n  Eq. (25) are 

real. The imaginary par t  of Eq. (25) i s  

- 2aBI + a, = 0 
1 

Equations (18) and (19) show tha t  I, and I, are posit ive.  

I n  order f o r  Eq. (27) t o  be s a t i s f i e d ,  e i t h e r  6 > 0 (and the  system i s  

s tab le)  o r  Q = 0 ( i n  which case any i n s t a b i l i t y  has an exponentially grow- 

ing amplitude). 

t i on  of f l u i d  and charge, i n s t a b i l i t y  is incipient  at zero frequency. The 

principle of exchange of s t a b i l i t i e s  i s  valid.  

Thus, i f  an e l e c t r i c  f i e l d  i s  applied t o  a s tab le  configura- 

6. Incipience 

Now tha t  it has been established t h a t  the incipient  i n s t a b i l i t y  is 

s t a t i c ,  the  real par t  of Eq. (25) can be solved f o r  B with a = 0. 

This  expression is val id  so long as the  equilibrium is  unstable (6  < 01, 

because i n  t h a t  case it i s  known t h a t  a = 0. Note t h a t  i f  I is  negative, 

Eq. (28) does not give the  negative value of B required f o r  i n s t ab i l i t y .  A 

suf f ic ien t  condition f o r  s t a b i l i t y  is  I < 0,  a condition cer ta inly s a t i s f i e d  

i f  t he  integrand of I3 is everywhere negative i n  the f lu id ;  m< 0. 

3 

3 

Because 

of the  exchange of stabilities at zero frequency, it is possible t o  carry t h i s  

development fur ther  and be spec i f ic  about the f i e l d  required t o  make an equi l i -  

brium t h a t  is stable i n  the absence of e l e c t r i c  forces (Dp 0 eveSywhere)verge 

on instabi l i ty .  It has been established t h a t  as the  e l e c t r i c  f i e l d  is raised,  
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i n s t a b i l i t y  i s  incipient  with w = 0. 

by Eqs. (11) and (12) i n  the  l i m i t  of w * 0. 

vz/Jo remains f i n i t e  and equations (11) and (12) became 

The c r i t i c a l  condition is described 

In tha t  l i m i t ,  vz* 
n 

0 but 
A 

n n 

where 5 = vz/Jw is the z-displacement of the f lu id .  Since the  veloci ty  

approaches zero, the only boundary conditions remaining i n  the l i m i t  of 

i n s t a b i l i t y  onset are on the potent ia l .  
h n 

If the  in t eg ra l  terms are wri t ten using 6 instead of vz,  Eq. (25) becomes 

- w21; + jw1; - I' + I = 0 (31) 
3 5 

n 

where I' , I' and I' are the same as I , 12, and I except t ha t  vz is  re- 
1 2  3 1 3 

A 

placed w i t h  5. Eq 

t h a t  i s ,  as 

L 0 

I s  ' (31) shows tha t  the threshold occurs as I' = 
3 

d 

0 

Consider the  case where t h e  interact ion is  purely dielectrophoretic, with 

t h e  def ini t ion:  

an6 the  equilibrium condition &DE = - ED€, Eqs. (29) and ( 3 0 )  combined and 

expressed i n  terms of u give 
A 
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(34) 

 DE:)^ where Be' f(z) = - 
%UP 

T h i s  i s  the  standard Sturm-Liouville form with Be -* ('''an eigenvalue para- 

meter t h a t  must be' posit ive.  

be seen from Eq. (30 )  i f  it. i s  recognized t h a t  E D @ Q U  and tau. 
usual way, Eq. (34)  can be multiplied by u 

(1418 A 

oundary conditions are Du = 0 at z = O , d ,  as can 
h A  A A  

Thus, i n  the 
A *  

and integrated by pa r t s  t o  give 

B-' e = 1: []i:]' + k 2 1 ~ 1 2 ] d ~ / k 2  I$ /;l2f(z)dz (35 1 
0 0 

If it is assumed t h a t  BL1f(z) is  bounded i n  0 < z < d,  f ( z )  can be normalized 

so t h a t  i t s  m a x i m u m  value is  1. 

squared. 

determine B- more d i rec t ly ;  using Sturm's osc i l la t ion  theorem, (I4) gm upper 

bound can be found f o r  t he  lowest value of Bl'for which Eq. (34) has a solu- 

t i o n  t h a t  satisfies the  boundary conditions. 

- -  
Then B z ' i s  proportional t o  the  voltage 

Eq. (35) can be used as t h e  basis f o r  a var ia t ional  pr inciple  t o  

e 

This bound i s  

(361 

where fmin is  the minimum value of f ( z )  and 

t h e  m a x i m u m  and minimum values of E. 

-1 
s t a b i l i t y @ <  0 i s  equivalent to Be Since i n  an ac tua l  system, there 

is no lower l i m i t  on the  wavelengths, the l i m i t  of Eq. (36) can be taken as 

k -+ QO. Then the  bounds on the  value of Bi' 

and hin are respectively 

Also, the  suf f ic ien t  conditions f o r  

5 1. 

at which the  threshold is 

reached are 
-1 1 l L B e  - < - 

fmin 

In the  spec ia l  case where f ( z )  can be considered a constant, Bi' = 1 is  

the point of i n s t ab i l i t y .  
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D. Variational Pr inciple  f o r  Eigenfrequencies 

Emphasis has been given t o  inc ip ien t  i n s t a b i l i t y .  For purposes of 

f inding growth rates o r  o sc i l l a t ion  frequencies under conditions other  than 

those f o r  onset,  a var ia t iona l  pr inciple  provides a useful  s t a r t i n g  point.  

The derivation is' similar t o  that leading t o  Eq. (28). F i r s t ,  Eq. (11) is m u l -  

t i p l i e d  by vz and integrated from z m 0 t o  z = d. 

t h e  same procedure as i n  Sec. I I B ,  y ie lds  

A 

Integrat ion by parts, using 

jwIt = 

where t h e  in tegra ls  I through 

the  complex conjugation of vZ. 

and in tegra t ion  by parts gives 

A 
1 

I 3  
2 j w  + I 4  

- I  + -  (38) 

I4 are defined by Eqs. (16) - (19) without 
A 

Similarly,  mult ipl icat ion of Eq. (12) by $I 

I = O  
4 

(39) 

n 

where I is defined by Eq. (23) without t he  complex conjugation of 4. 
5 

The sum of E q s .  (38) and (39) i s  

I 
j w I  = - I + j+ 21, + j w 1 5  

1 2 Jw 
" 1 \  

and &#I i n  vz and 
n 

Now, consider the e f f e c t  on w of a r b i t r a r y  var ia t ions  6v 

(9 

Z 
h 

consistent with the boundary conditions. To first order terms i n  t h e  

var ia t ion ,  Eq. (401 becomes 

I 3  613 
6w[ jI + 7 -j151 = - jw611 - 61* + - + 261 + jwsIs 

1 3w J w  4 

Integrat ion by p a r t s  of each term on the r i g h t ,  and a recombination of 

terms, gives 



0 
> 

* h k2 A 

+ k2p(D2 - k2)vZ + 2k2DyDvZ - D[Dp(fl+ k2)vZ]+ -&rz + k2[DS@ + 
Jw 

d 
A P .  h h A 

+ 2k2 I 6$[Dqv2 - D(ED€vZ) - j w D ( C D 0 )  + juk2&@]dz (42) 
0 

h A 

Thus, f o r  a rb i t r a ry  var ia t ions  of vz and 4 the  right-hand side of Eq. (42) 

vanishes i f  Eqs. (11) and (12) are satisfied. Therefore, the condition f o r  
A h 

6 w  = 0 t o  f i r s t  order f o r  all small a rb i t r a ry  var ia t ions of 6vz and 6+ 

pat ib le  w i t h  t h e  boundary conditions i s  that vz and 4 be solut ions t o  the  

eigenvalue problem. 

c i e s  i s  therefore  possible.  

com- 
A h 

A var ia t iona l  procedure of solving f o r  the  eigenfrequen- 

111. Dielectrophoretic Heat Transfer Experiment 

A. Thermally-Induced I n s t a b i l i t y  

Examples wherein the e f f ec t s  of bulk f r e e  charge, q, can be ignored as a 

f l u i d  i s  subjected t o  combined thermal and dc e l e c t r i c a l  stresses are unusual. 

By cont ras t ,  i f  f i e l d s  of a l te rna t ing  po la r i ty  are used which have su f f i c i en t ly  

high frequency tha t  free charges do not have t i m e  t o  re lax  t o  t h e  bulk of the 

f l u i d ,  it is  possible t o  demonstrate dielectrophoret ic  bulk e f f ec t s .  The l i m i t -  

ing case q = 0 of t he  theory developed i n  Sec. I I C  is  applicable t o  t h i s  latter 

physical s i t ua t ion ,  provided the  f l u i d  i s  su f f i c i en t ly  viscous tha t  it does not  

react  i n  a parametric fashion t o  t h e  pulsat ing component of t he  applied f ie ld .  

I n  the experiment shown i n  Fig. 2, v e r t i c a l l y  d i rec ted  gradients i n  density 

and permi t t iv i ty  a re  provided by a temperature gradient.  

on t h e  top ,  therefore  DP is negative,  and t h e  s t a t i c  equilibrium is  stable i n  

the  absence of an e l e c t r i c  f i e ld .  I n  a non-polar l i qu id ,  the permi t t iv i ty  var ies  

wi th  temperature only because the  mass density changes, (I5) t h e  temperature de- 

pendence of permi t t iv i ty  given by the  Clausius-Mossotti r e l a t i o  

The l iquid is warmer 

612, p. 140) 
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dE 1 (E  - E o ) ( &  + 2s0) 
- =  - 
dP P 3 E o  (43) 

Liquids used are good insu la tors  and s u f f i c i e n t l y  vfscoua t h a t  a 60 Hz 

applied f ie ld  is  equivalent t o  a dc f ie ld  having t h e  same rms value. 

over, the  thermal diffusion time of t he  l iqu ids  is  su f f i c i en t ly  long t h a t  

More- 

heat conduction e fcec ts ,  not included i n  the  theo re t i ca l  developments, make 

a negl igible  contribution t o  the incipience of i n s t a b i l i t y .  

(16) The i n s t a b i l i t y  i s  detected by means of t he  Schmidt-Milverton technique. 

As t h e  e l e c t r i c  f i e l d  is  raised,  t he  i n s t a b i l i t y  manifests itself through t h e  

increase i n  the  heat t ransfer red  through the  l iqu id .  If the  Nusselt number, 

defined 
NU = Q/kc(AT/d), (44 1 

exceeds uni ty ,  convection i s  present due t o  the  incipience of  i n s t a b i l i t y .  

Here, Q i s  the  heat f lux,  kc i s  t h e  thermal conductivity, and AT is t h e  temp- 

e ra ture  drop across the  l iqu id .  

B. Procedure and Data Reduction 

Experiments consist  of measuring the  temperatures of the high temperature 

b a t h ,  lower e lectrode and m e t a l  base w i t h  various voltages,  V, applied t o  the  

electrodes bounding the  l iqu id .  

maintained i n  temperature t o  within l0C. 

i c e  and water. 

base measurements taken t o  within . 2 O  C. 

l i q u i d  is  usually i n  the range 85 - 105' C, and that across the  glass i n  the 

range 13 - 30' C. 

within 1%, while the l i q u i d  depth is about d = 3/16 inch. 

The high temperature bath i s  w e l l  stirred and 

The low temperature bath consis ts  of 

Temperatures are measured by means of thermistors w i t h  t he  two 

The temperature drop across t he  t e s t  

The voltage,  which ranges from 10 t o  25 Kv, i s  measured t o  



- 16 - 

The temperature drop across t h e  test l iqu id ,  the  applied voltage, and 

the  f l u i d  propert ies  comprises sufficient information t o  calculate  Bil . 
To a good approximation, E is  unaffected by the var ia t ion i n  E. 

D& and Dp are essent ia l ly  constant, f ( z )  = 1 and 

Then, because 

' B-' = - E2(D&)2/g&Dp 
e (45) 

where E = V/d, De = (d€/dp)(dp/dT)(AT/d) and Dp (dp/dT)(AT/d). 

Two l iqu ids  are phenylmethyl s i l i cone  f l u i d  (Dar Corning 550), and a dimethyl 

s i l i cone  

(45) are 

The 

f l u i d  (Dow Corning 200, 100 cs  grade). Data required t o  complete Eq. 

summarized i n  Table I (17) with d&/dp given by Eq. (42). 

value of Nu can be computed from the  temperature data  using the  zero 

voltage measurements as a cal ibrat ion.  

AT 

at zero voltage. 

Thus, MU = (AT/ATg) /(AT/ATg), where 

i s  measured 
0 

is the  temperature drop across the  g lass  p l a t e ,  and (AT/ATg) 
g 0 

C. Measurements Compared t o  Predictions 

The experimental values of Nusselt number as a function of Bil are sum- 

marized i n  Fig. 3. 

indicat ing no convection, u n t i l  Be 

t h e  i n s t a b i l i t y  occurs at Be' = 1.05 f 0.05. 

i n s t a b i l i t y  at Be' = 1 is w e l l  ver i f ied.  Note t h a t  curves for t h e  t w o  f lu ids  

should not be t h e  same beyond t h e  break point BL1 = 1, because t h e  v iscos i t ies  

of the  t w o  d i f f e r .  

For t h e  Dow Corning 550, t he  Nusselt number remains at unity,  

For t h e  Dow Corning 200 

Thus, t he  theo re t i ca l  prediction of 

-1 
reaches 1.00 2 0.05. 

e 

I V .  Concluding Remarks 

The recent l i t e r a t u r e  shows t h a t  bulk i n s t a b i l i t i e s  found i n  essent ia l ly  

the  configuration of Fig. 1 are important f o r  understanding conduction pro- 

cesses i n  highly insu la t ing  l iqu ids  (I8) and f o r  electro-optical  i m a g e  reproduction 
(19 ) 
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?‘!le ef fec ts  of f i n i t e  mobility o r  conductivity i n  cases involving space 

charge nre l i ke ly  t o  be important; nevertheless, the.  zero mobility (or zero 

conductivity) case developed here i s  s ignif icant  as t h e  li’miting case fo r  

more complicated and hence more specialized configurations. 

theore t ica l  r e su l t s  of, importance derived here include the  pr inciple  of ex- 

change of stabil i t ies,  the suf f ic ien t  conditions f o r  s t a b i l i t y ,  and t he  

var ia t ional  pr inciple  f o r  determining t h e  eigenfrequencies. A variat ional  

pr inciple  f o r  determining t h e  c r i t i c a l  conditions f o r  i n s t a b i l i t y  and t he  

experiments, as they are successfully correlated with the  theory, draws 

For future work 

spec i f ic  a t ten t ion  t o  the dielectrophoretic l i m i t .  

S i m i l a r  extensions of t he  theory are cal led f o r  t o  provide var ia t iona l  

pr inciples  f o r  t he  c r i t i c a l  f i e l d  i n  t h e  case of bulk free charge. 

-- 
This work was supported by the National Science Foundation under Grant GK-3347 

and the  National Aeronautics and Space Administration under Grant 
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V. Appendix 

The several s teps  required t o  reduce, the in t eg ra l  I .  of Eq. (15) t o  

F i r s t ,  I2 i s  rewrit ten a0 
2 

a posi t ive de f in i t e  form are summarized here. 

d 
A A 15 h 

I 2 = I 2 *{ D2[p(D2 + k2)vZ]  - 2k2D(pDv2) - k2p(D2 - k2)v2 - 2k2hrzW}dz (All 
0 

Further manipulations of t h e  integrand give 

d 
A A 

I = I ;2*[D2[p(D2 + k2)vZ] + k2p(D2 + k2)v2 - 
2 

0 

Now, t h e  first and last terms i n  t h e  integrand are integrated by par ts ;  

A 
From the  boundary conditions on v t he  first two terms vanish. 

t he  first term i n  the  integrand of Eq. (A3) is  integrated by parts. 

i f  t he  boundary conditions on DGZ are used, Eq. (19) follows. 

Once again, 
2 

Final ly ,  
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Table I: Properties of Fluids Used to Obtain Data of' Fig. 3 

Fluid 

Dow Corning 2o.Q 

(100 cs @ 23*C) 

_- - 
Cmf Ficisnt of 

Expansion 
CC/CCfOC 

T.5 x 10- 

9.6 x 10-4 

Mass Density w m 3  
LI1 

i.070 x 103 

0,968 x io3 

Permittivity 
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L i s t  of Figures 

Fig. 1 A n  i n i t i a l l y  s t a t i c  f lu id ,  stratified i n  the  z direction, is stressed 

by an e l e c t r i c  f i e l d  in tens i ty  E(z)  imposed by means of per fec t ly  con- 

ducting electrodes ( at z = 0,d) constrained t o  a constant po ten t i a l  

difference. .There is  an equilibrium dis t r ibu t ion  of mass density,  

viscosi ty ,  permit t ivi ty  and space charge i n  the v e r t i c a l  direction. 

Fig. 2 Experimental apparatus f o r  measuring heat t ransfer red  through l iqu id  C 

as a function of the e l e c t r i c  Bond number. A and B are, respectively,  

t h e  hot and cold temperature baths ,  D and F are metal electrodes used 

t o  impose the electric stress, G is a glass p la t e  t o  provide a thermal 

resistance for determining the heat t ransferred through C, H is  a m e t a l  

base at the temperature of B, and E is  the Plexiglas container and 

electrode support. 

Fig. 3' Nusselt number as a function of reciprocal  e l e c t r i c  Bond number i n  the 

experiment of Fig. 2. NU i s  defined by Eq. (441, while Bll i s  calcu- 

lated from physical parameters and measured voltages using Eq. (45). 

Circled data points are f o r  550 f lu id ,  while points i n  squares are f o r  

200 f luid.  Because the  average viscosi ty  of 550 f l u i d  is less than tha t  

of the 200 f lu id ,  BU increases faster f o r t h e  500 f lu id .  



t Z  

Fig . ,  1 An i n i t i a l l y  s t a t i c  f l u i d ,  s t r a t i f i e d  i n  the z direct ion,  is  s tressed 

by an e l e c t r i c  f i e l d  in tens i ty  E ( z )  imposed by means of perfect ly  con- 

ducting electrodes (at z = 0,d)  constrained t o  a constant potent ia l  

difference.  

v i s c o s i t y ,  permitt ivity,  and space charge i n  the  v e r t i c a l  direct ion.  

There is  an equilibrium distribution of mass density,  
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Fig. 3. Nusselt number as rs function of reciprocal. e l e c t r i c  Bond number i n  

the experiment of Fig. 2. NU is defined by Eq. (441, while Bil is 

calculated from physical parameters and measured voltages using Eq. 

(45). 

are f o r  200 f luid.  Because the  average viscosi ty  of 550 f l u i d  is less 

than  that of t he  200 f l u i d ,  Nu increases faster fo r  the 500 f luid.  

Circled data points are f o r  550 f lu id ,  whi le  points i n  squares 


