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Abstract

A stability ecriterion is found for an initially static, stratified fluid
subject to an electric stress. The equilibrium fluid density, permittivity,
viscosity and space charge distributions are functions of the vertical spatial
coordinate, with gradients directed parallel with the imposed electric field
intensity and gravitational acceleration. In the limit where the fluid is
perfectly insulating, sufficient conditions for stability are found; the prin-
ciple of exchange of stabilities is shown, and variational principles derived
for the eigenfrequencies and, in the case of no space charge, for the critical
field strength. An experiment demonstrates instability in the dielectrophoretic
limit of no bulk free charge. The property gradients are induced thermally, and
incipience of instability, as measured by the Schmidt-Milverton heat transfer

technique, is successfully predicted by the theoretical criterion.



Introduction

A. Background

Careful observations of motions induced by electric.stresses in the
bulk of slightly conducting liquids make it clear that the mechanisms for
eiectfomechanicai ihteraétion are diverse. In part, this can be traced
to the variety of electrical conduction processes that can dominate in

(1)

highly insulating liquids. For an example, unipolar ions originating
at electrodes can lead to a conduction current proportional to the local
net space cherge. As a result, space charge can accumulate in the bulk of

a supposedly homogeneous liquid between capacitor plates(2’3). The bulk

(1)

cellular convection described by Avsec and Luntz is probably related to
such space charge effects.

As a second example two or more species of ionized carriers originating
in the bulk of the liquid can give a conduction current even with net local
charge neutrality; ohmic condgction is such & case. Even in an ohmic fluid,
however, electromechanically induced motions can be traced to property grad-
ients. It has been shown that a simple ohmic conduction model, including
the possibility of gradients in the conductivity, is highly successful in
understanding motions resulting from the combinea action of & thermal stress,

(5)

which induces the property gradients, and an electric-field. This class

of bulk interactions can be modeled by & spatially varying electrical conduc-
tivity and permittivity (polarizability). The former accounts for an accumu-
lation of bulk ffee charge and an attendent free charge force density, while

(6)

the latter gives rise to both free charge and dielectrophoretic force densities.

Studies have been made of the effect of electric fields on convective heat
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(7)

transfer, Although the dielectrophoretic (gradient in permittivity)
mechanism is thought by some to be the source of motions induced in thermally
stressed fluids by the fields, it is usually the case that the free charge

forces due to thermally induced spatial wvarietion of electrical conductivity

is the dominaﬂt mechanism.

B. Objectives

At least superficially, the role of the electric field as it induces
convection is similar to that of gravity. Thus, it is not surprising that
basic studies relate to situations similar to the classic Rayleigh-Taylor
instebility and Bénard instability.(a) The onset of convection, with its
concomitant influence on the heat transfer in cases where.a thermal gfadient
is involved, occurs as an instability..

The fluid-field configuration to be considered here is shown in Fig. 1,
where electrodes are used to impose a perpendicularly directed electric field
intensity E(z) on an initially static liquid. The fluid is incompressible,
but-nevertheless arrangéd in horizontal st;ata so that theequilirium density
p, Viscosity u, pressure p, space charge density q, and permittivity € are
functions of z. For present purposes, the mechanism giving rise to the
iiquid inhomogeneity is not of interest. For example, the equilibrium can be
obtained by carefully superimposing layers of liquid which have differing
properties. The inhomogeneity can also be induced by a thermal gradient; the
analysis given here is appropriate, providgd that the thermal diffusion time(a’ p.18)
is long ccmpared to dynemical timeé of interest, for example, the time constant

for an instability.

Detailed attention is given elsewhere to the prediction of the eritical
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9)

field for the onget of convectioﬁ in the configuration of Fig. 1.
ohmic model is used to include the effects of the electrical c;nduction.

To include the effects of a finite electrical relaxation time, it is neces~-
sary to mske a considerasble number of approximations'not required if the fluid
is considered at the outset to be perfectly insulating.

In the following sections, development is confined to the perfectly in-
sulating fluid. This allows the derivation of rather general conditions for
stability and instability that represent the limiting case, regardless of thg
electrical conduction ﬁodel. That is, if a mobility model is used to repre-
sent electrical conduction, then the derivations argjzhe limit of zero mobility,
and if an ohmic conduction model is used, then they ar£7{he 1imit of zero
conductivity. A variational principle to describe the stability of super-

? p'h36)and improved by Selié}o)

imposed fluids is suggested by Chandrasekha£8
Here, this variational vrinciple for determining eigenfrequencies is general-
ized to include the effects of electrical forces. The prineiple of exchange

of stabilities is shown, thus making it possible to reduce the prediction of

instability onset to an eigenvalue problem in the electric field.

Included in the analysis as a limiting case is the situation in which
there is no space charge; instabilities are predieted having a purely dielec-
trophoretic nature. These results complement those for the casé where the
applied field is directed perpendicularly to the gradient in permittivjt§%l)
A variational principle is given for the critical imposed field in this

dielectrophoretic case, and experiments are described in which the gradient

in permittivity is induced by a thermal stress.
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Stability Criterion

A, Equations of Motion

The distribution of equilibrium space charge q(z) is determined by
the details of a given experiment. Even though the assumption that the fluid
is perfectly insulating makes it possible to ignore the origing of the bulk
charge, Gauss' law requires that it be consistent with the equilibrium dis-~

tribution of E and €. Thus

D(eE) = q (1)

where d( )/dz = D( ).

Static force equilibrium is possible because the electric force den-

12
sity( )
k] i o -l-‘-.-'.—— —1; ae —‘—-
F= g -3 EV€+V(2p'a—6EE) (2)

has an equilibrium distribution which is irrotational and is balanced by
the pressure. The last term in Eq. (2) is the gradient of a scalar and
the quantity in paréntheSes will be included with the pressure, p.

To investigate the stability of the static equilibrium, small pertur-
bations are denoted by v and ¢ respectively for the velocity and electric
potentiel, and by p', p', €' and q' respectively for the mass density, pres-
sure, permittivity, and free charge density. Thus, the lihea,rized equation

of motion becomes

12

T - gp'.i_z - Vp' + uvV3v + 2(Vu9)v

+ Vu x(Vxv)+ q'Eti_z - qV ~ %—(E-E)V&:' + EVe g% (3)
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where the equilibrium terms are by definition balanced out, and E; is the
unit vector in the z direction.

The fluid is incompressible, as reflected by the equation of continuity
Vev = O (4)

At the same time, it is inhomogeneous, with the density, permittivity, and
free charge density of a given fluid element constant. These three condi-

tions require

gltﬁ' = - v, Dy (5)- (7)

where (y,y') = (p,p'),(e,e*) and (a,q")

The perturbation equations are completed by writing Gauss' law to linear

terms and taking advantage of Eq. (1)

- eV%¢ + D(Ee') - DeDp = ¢ (8)

Boundary conditions imposed by the electrodes at z = 0 and z = 4, together
with Eqs. (3) - (8), formulate the problem.

The physical situation remsins ungltered by a rotation of coordi-
nates abouf the z axis, and hence, without loss of generality, can be considered
as two-dimensional. Thus, perturbation solutions afe assumed to have the stan-

dard form
¢ = Re g(z) exp J (wt- kx) (9)

In terms of the complex amplitudes, the conditions that the velocity and per-

turbation potentiel vanish on the electrodes are



v=Dv=¢ =0 atz=0,4d (10)

where Eq. (4) has been used to write the condition on v, in terms of v, .

Thus, it is convenient té work with the variables v, and ¢. This is done by
substituting solutions of the form of Eq. (9) into Egs. (3) ~ (8) to obtain

a set of ordinary differential equation in the complex amplitudes of the per-
turbation quantities. Equations (4) - (7) are solved for Vs P, €, and g
as functions of vz. Thege expressions make it possible to solve the x compo-

N

nent of Eq. (3) for p as a function of v, and ¢. In turn, substitution of

these amplitudes into the z component of Eq. (3) gives
JulD(pDv,) ~ pk?v_]%= D[u(D? - k*)Dv,]

- uk2(D%- k2)v_ + D[Du(D? + k2)v ] - 2k2Dubv.
Z z V4
: (11)

DEDe °

- k2g 22 v, - k%Dq¢ + k2E :i% v, + k2E o Ve " k?EDeD¢

In a similar manipulation, Eqs. (6) and (7) eliminate € and q from Eq.

A ~

(8) to give a second equation for v, and ¢

DEDe 7 , ED(DEVg) _ Dg 7

Jw "z jw Jw 'z =0 (12)

DleD¢] - k?e¢ +
The eigenvalue problem is summarized by Egs. (10) - (12).

'B. Exchange of Stabilities

Without restriecting the equilibrium distributions, a considerable
insight into the nature gnd conditions for incipience of the instability can
be obtained by using Judiciously combined integrals of Eqs. (11) and (12) and

{ “
the boundary conditions. With this objective, Eq. (11) is multiplied by v,
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)
(the complex conjugate of vz) and integrated over the vertical extent of

the fluid to obtain

I
3
I = =TI, +55+ I, (13)
where 4
_ _ A* Fal - ZA
Ii = / vz[D(psz), k pvz]dz (1k)
r = - ¢ v l- D[ﬂ(Dé— k?)D v ] + x2u(r?~ kz);
2 J Va2 ‘ 2z z
[o]
20 2, 1L2y10
+ 2k“Dv Dy - D[ Du(D*+ k )]vz dz (15)
A
I = K/ H}dvzlzdz; H = gDp - EDq - EDEDE (16)
o]
and
I = k2 f v, [Da¢ + DeED$ldz (17)

* o

Integration by parts of the first term in the integrand of Eq. (14)

together with the condition that v, = 0 at the integration limits shows that

Il is positive and real

1= ? p[lD;zlz + kzl;zlz]dz (18)
(e}

Similar, but more complicated, manipulations as summarized in the Appendix show

that I2 is also positive and real

I,= 7S ul] (0% + x )vzl + bk leZ| ]az (19)
0.

The electrical equation is handled in an snalogous fashion. Multiplica-

tion of Eq. (12) by k*¢*nd integration gives



I
6
—Is+3a= o . (20)
where the first two terms of Eq. (12) contribute

a
I = - k? I&*[D(eb@) - kze$]dz (21)
' o

while the third and fourth terms combine, and together with the lastterm, give

d
I, = k? j¢*[D(ED€vZ) - quz]dz (22)
0

Integration of Eq. (21) by parts with the boundary conditions on ¢ gives

I, = x? Je[]D@[z + kzlglz]dz; (23)
o]

a positive, real, function. Moreover, integration of the first term in Eq.
(22) taken with the boundary conditions on ¢ shows that
I = - I (24)

Now, the complex con jugate of Eq. (20) can be expressed in terms of I“ and

then I, eliminated between the resulting expression and Eq. (13) to obtain

-0l 4+ Jul -I,+w®I = 0 (25)
1 2 5

This expression shows that if a perturbation is unstable, it is statically
unstable. To see this, o and B are defined as real quantities that represent

the real and imaginary parts of w.

w= a +JB (26)
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Substitution of this form into Eq. (25) gives an expression with real and
imaginary parts, each of which must vanish. All integrals in Eq.'(25) are

real. The imaginary part of Eq. (25) is
- 2081 + oI, = 0 (27)

Equations (18) and (19) show that I, and I, are positive.

In order for Eq. (27) to be satisfied, either B > O (and the system is
stéble) or o= 0 (in which case any instebility has an exponentially grow-
ing amplitude). Thus, if an electric field is applied to a stable configura-
tion of fluid and charge, instability is incipient at zero frequency. The

principle of exchange of stabilities is wvalid.

C. 1Incipience

Now that it has been established that the incipient instability is

static, the real part of Eq. (25) can be solved for B with o = 0.

2 1/2
B = {iIz 1, +41,(1, +1,.)] ‘} /2(Ix +1) (28)

This expression is valid so long as the equilibrium is unstable (B < 0),
because in that case it is known that a = 0. Note that if 13 is negative,

Eq. (28) does not give the negative value of B required for instability. A
sufficient condition for stability 1is I3 < 0, a condition certainly satisfied
if the integrand of I3 is everywhere negative in the fluid; ¥ < O. Because
of the exchange of stabilities at zero frequency, it is possible to carry this
development further and be spécific about the field required to meke an equili-
brium that is stable in the absence of electric forces (Dp < 0 everyﬁhere)verge

on instability. It has been established that as the electric field is raised,
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instability is incipient with w = 0. The critical condition is described
by Eqs. (11) and (12) in the 1limit of w -+ 0. In that limit, v,* 0 but

vz/Jw remains finite and equations (11) and (12) become

' + EDED$ + Dgdp = O (29)

D[eD;f - kzeg + D[EDeg].- an = 0 (30)

~

where § = vz/Jw is the z~displacement of the fluid. Since the velocity
approaches zero, the only boundary conditions remaining in the limit of
instebility onset are on the potential.

If the integral terms are written using § instead of v _, Eq. (25) becomes

- 21! v T - (
- W'I) 4+ July - I 4T 0 (31)

~

where I;, I; and I; are the same as Il’ Iz, and I except that v, is re-
. 3

placed with £. Eq. (31) shows that the threshold occurs as I; = I5 .

that is, as
d d

f.qumz = f e[|D¢|2+k2|$|Z]dz (32)

o] o
Consider the case where the interaction is purely dielectrophoretic, with

the definition:.

- €glp. A~
U= - -——=—EF (33)

EDg

and the equilibrium condition €DE = - EDe, Egs. (29) and (30) combined and

~

expressed in terms of u give
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~ 2 . A
D [%-Du] - %-[1 - B;‘ £f(z)Ju = 0 (34)

E%(pe)?

h 1 -
vhere B_ f(z) = =2Dp

This is the standard Sturm-Liouville form with B: (13) an eigenvalue para-
meter that must be‘positiveslhgoundary conditions are Da = 0at z = O,d, as can
be seen from Eq. (30) if it is recognized that €D$“a and E<‘a. Thus, in the
usual way, Eq. (34) can be multiplied by 2% and integrated by parts to give
d d
B;‘ = [ %- []DG]‘ + k2|§12]dg/§2 J %-Ialzf(z)dz' (35)
o )
If it is assumed that B;lf(z) is bounded in 0 < z < d, f(z) can be normalized
so that its maximum vaiue is 1. Then B;lis proportional to the voltage
squared. Eq. (35) can be used as the basis for a variational principle to
determine B;l mofe directly; using Sturm's oscillation theorem,(lh) en upper
bound can be found for the lowest value of B;lfor which Eq. (34) has a solu-

tion that satisfies the boundary conditions. This bound is

B-e-1 < [("/d)z(emax/emin) * kz]/Kz fm:i.n (36)
where f . is the minimum value of f£(z) and €, . and ¢, are respectively
the maximum and minimum values of E. ‘Also, the sufficient conditions for
stability ¥ < 0 is equivalent to B;1 f_lf Since in an actual system, there
is no lower 1imit on the wavelengths, the 1limit of BEq. (36) can be taken as
k + . Then the bounds on the value of B;l at which the threshold is

reached are

B, £ F (37)

‘ _ -1
In the special case where f(z) can be considered a constant, Be =1 is

the point of instability.
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D. Variational Prineciple for Eigenfrequencies

Emphasis has been given to inqipient instability. For purposes of
finding growth rates or oscillation frequencies under conditions other than
those for onset, a variational principle provides a useful starting point.

The derivation is similar to that leading to Eq. (28). First, Eq. (il) is mul-
tiplied by ;z and inﬁegrated from z = 0 to z = d. Integration by parts, using
the same procedure as in Sec. IIB, yields

I

3
JoI = -1 4 T * I, (38)

vhere the integrals I through I, are defined by Egs. (16) - (19) without

the complex conjugation of v, . Similarly, multiplication of Eq. (12) by ¢

and integration by parts gives
JwI_+I = 0 (39)
5 b

where I5 is defined by Eq. (23) without the complex conjugation of ¢.

The sum of Egs. (38) and (39) is

I
= . P R + 1 40
ijl I2 o 2I, + Jjw s (40)

‘Now, consider the effect on w of arbitrary variations sz end 8¢ in v, and

A

¢ consistent with the boundary conditions. To first order terms in the
variation, Eq. (40) becomes

81

Is v 3
5:»[.111 + 375’ -315] = - JwsI - &I, + Tt 26T, + JulI, (k1)

Integration by parts of each term on the right, and a recombination of

terms, gives
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I

Sw[ I, + TE} -sz] = f 26vz~{,ij(psz) - jmkzpvz - Dlu(p?- kz)sz]

o .
+ k2u(p? - x? );z + 2k2DuD;z - D[Du(r*+ kz):;z]+ %—:—;ﬂ;z + k2[Dap + EDngl}dz
4d
+ 2k?2 J aatanZ - D(EDe:rz) - ,ij(eD;) + jwkzt»:c;]dz (L2)
N ,
Thus, for arbitrary variations of ;i and ; the right-hand side of Eq. (42)
vanishes if Eqs. (11) and (12) are satisfied. Therefore, the condition for
8w = 0 to first order for all small arbitrary variations of G;Z and 6; com-
patible with the boundary conditions is that ;z and ;.be solutions to the
eigenvalue problem., A variational procedure of solving for the eigenfrequen-

cies is therefore possible.

ITT. Dielectrophoretic Heat Transfer Experiment

A. Thermally-Induced Instability

. Bxamples wherein the effects of bulk free charge, q, can be ignored as a
fluid is subjected to combined thermal and de¢ electrical stresses are unusual.
By contrast, if fields of alternating polarity are used which have sufficiently
high frequency that free charges do not have time to relax to the bulk of the
fluid, it is possible to demonstrate dielectrophoretic bulk effects. The limit-
ing case q = 0 of the theory devéloped in Sec. IIC is applicsble to this latter
physical situation, provided the fluid is sufficiently viscous that it does not
react in a parametric fashion to the pulsating canpbnent of the applied field.

In the experiment shown in Fig. 2, vertically directed gradients in density
and permittivity are provided by a temperatﬁre gradient. The liquid is warmer
on the top, therefore DP is negative, and the static equiliﬁrium is stable in
the absence of an electric field. In a non-polar liquid, the permittivity varies

(15)

with tempersture only because the mass density changes, the temperature de-

pendence of permittivity given by the Clausius-Mossotti relatio 12, p. 1ko)
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ae _ 1 (a-eo)(e + 260)
dp P 3 éo

(43)

Liquids used are good insulstors and sufficiently viscous that a 60 Hz
applied field is equivalent tb a dec field having the same rms value. More-
over, the thermal diffusion time of the liquids is sufficiently long that
heat conduction effects, not‘inciuded in the theoretical developments, make
a negligible contribution to the incipience of instability.

The instability is detected by me;ns of the Schmidt-Milverton techniqueglé)
As the electric field is raised, the instability manifests itself through the

increase in the heat transferred through the liquid. If the Nusselt number,

defined
N, = a/k (a1/d), (k)

u
exceeds unity, convection is present due to the incipience of instability.
Here, Q is the heat flux, kc ig the thermal conductivity, and AT is the temp-

erature drop across the liquid.

B. Procedure and Deta Reduction

Experiments consist of measuring the temperatures of the high temperature
bath, lower electrode_and metal base with various voltages, V, applied to thé
electrodes bounding the liquid. The high temperature bath is well stirred and
maintained in temperature to within 1°C. The low temperature bath consists of
ice and water. Temperatures are measured by means of thermistors with the two
base measurements taken to within .2° C. The temperature drop across the test
liquid is usually in the range 85-- 105° C, and that across the glass in the
range 13 - 30° C. The voltage, which ranges from 10 to 25_Kv, is measured to

within 1%, while the liquid depth is about 4 = 3/16 inch.
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The temperature drop across the test liquid, the applied voltage, and
the fluid properties comprises sufficient information to calculate Be .
To a good approximation, E is unaffected by the variation in €. Then, because

De and Dp are essentially constant, f£(z) = 1 and

Y |
B, = - E*(De)*/geDp (45)
where E = V/d, De = (de/dp)(dp/aT)(AT/d) and Dp = (dp/aT)(AT/d).
Two liquids are phenylmethyl silicone fluid (Dow Corning 550), and a dimethyl
silicone fluid (Dow Corning 200, 100 cs grade). Data required to complete Eq.

(45) are summarized in Table I (17)

with de/dp given by Eq. (42).

The value of N, can be computed from the temperaﬁure data using the zero
voltage measurements as a calibration. Thus, N = (AT/ATg)O/(AT/ATg), vhere
ATg is the tempéraxure drop across the glass plate, and (AT/ATg) is measured

o
at zero voltage.

C. Measurements Compared to Predictions

The experimental values of Nusselt number as a function of B;l are sum-
marized in Fig. 3. For the Dow Corning 550, the Nusselt number remains at unity,
indicating no convection, until B;l reaches 1.00 ¥ 0.05. For the Dow Corning 200
the instability occurs at 3;1 = 1.05 + 0.05. Thus, the theoretical prediction of
instability at B;1 = 1 is well verified. Note that curves for the two fluids
should not be the same beyond the break point B;l =‘ 1, because the viscosities

of the two differ.

Concluding Remarks

The recent literature shows that bulk instabilities found in essentially

the configuration of Fig. 1 are important for understanding conduction pro-

cesses in highly insulating 1iquids(18) end for electro-optical image reproducéggg
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The effects of finite mobility or conductivity in cases involving space
charge are likely to be important; nevertheless, the zero mobility (Qr zero
conductivity) case developed here is-significant as the limiting case for
niore compliceted and hence more specialized configurations. For future work
theoretical results of-importancenderived here include the principle of ex-
change of stabilitiés,‘the sufficient conditions for stability, and the
variational principle for determininé Fhe eigenfrequencies. A variational
principle for determining the critical conditions for instability and the
experiments, as they are successfully correlated with the theory, draws
specific attention to the dielectrophoretic limit.

Similar extensions of the theory are called for tp provide variational

principles for the critical field in the case of bulk free charge.

This work was supported by the National Science Foundation under Grant GK-33h47
and the National Aeronautics and Space Administration under Grant

NGL-22-009~014#6.
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Appendix

The several steps required to reduce the integral I.z of Eq. (15) to
a positive definite form are summarized here. First, I2 is rewritten as
d

”~ * > A . ~ . ~ A
I = [ v, {szu(Dz + kz)vz] - 2k2D(usz) - k?u(p? - k’)vz - 2k2szDu}dz (A1)
(o]

Further manipulations of the integrand give

4

I = [ ;*{Dz[u(Dz + k2); ] + x%u(p? + kz); - hkzD(uD; )}dz (A2)
2 VA Z z 2
(]

Now, the first and last terms in the integrand are integrated by parts;

d

= 2 2 - L2
I2 v, Dlu(p® + k )vz] ki v, usz

o} o

d
~ A * ~ A
+ f {[- 1)?}‘;;1)[;1(1)2 +k%)v ]+ v, K*[u(0?® + k*)v,] + hkzulezlz}dz (A3)
o

From the boundary conditions on $z the first two terms vanish. Once again,
the first term in the integrand of Eq. (A3) is integrated by parts. Finally,’

if the boundary conditions on DQZ are used, Eq. (19) follows.
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Table I: Properties of Fluids Used to Obtain Data of Fig. 3

Coefficient of

Expansion Mass Density
Fluid cc/ee/°C kg /m? Permittivity
Dow Corning 550 7.5 X 10" 1.070 X 10% 2.90 g
(at 25°C) '
Dow Corning 200 9.6 X 107" 0.968 x 10° 2.73 €,

(100 c3 £ 239%)
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Fig. 1 An-initielly static fluid, stratified in the z direction, is stressed
by an electric field intensity E(z) imposed by means of perfectly con-
ducting electrodes ( at z = 0,d) constrained to a constant potential
difference. There is an equilibrium distribution of mass density,

viscosity, permifti#ity and‘spéce charge in the vertical direction.

Fig. 2 Experimental apparatus for measuring heat transferred through liquid C
as a function of the electric Bond number. A and B are, respectively,
the hot and cold temperature baths, D and F are metal electrodes used
to impose the electric stress, G is a glass plate to provide a thermal
resistance for determining the heat transferred through C, H is a metal
base at the tempersature of B, and E is the plexiglas container and

electrode support.

Fig. 3' Nusselt number as a function of reciprocal electric Bond number in the
experiment of Fig. 2. N is defined by Eq. (), while B;l is calcu-
lated from physical parasmeters and measured voltages using Eq. (45).
Circled data points are for 550 fluid, while points in squares are for.
200 fluid. Because the average viscosity of 550 fluid is less than that

of the 200 fluid, Nu increases faster for the 500 fluig.



Fig..1 An initially static fluid, stratified in the z direction, is stressed
by en electric field intensity E(z) imposed by means of perfectly con-
ducting electrodes (qt z = 0,d) constrained to a constant potential
difference. There is an equilibrium distribution of mess density,

viscosity, permittivity, and space charge in the vertical direction.
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Fig. 3. Nusselt number as a function of reciprocal electric Bond number in
the experiment of Fig. 2. N _is defined by Eq. (h), while B;1 is
calculated from physical parameters and measured voltages, using Eq.

: (hs):, Circled data points are for 550 fluid, while points in squares
are for 200 fluid. Because the average viscosity of 550 fluid is less

than that of the 200 fluid, Nu increases faster for the 500 fluid.



