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STABILITY AND DYNAMICS OF

ROTATING DIELECTROPHORETIC EQUILIBRIA

BY

R. T. Calvert and J. R. Melcher

Summagz

In the design of dielectrophoretic liquid orientation snd expulsion sys-~
tems for zero-gravity environments, maximum electromechanical effect of an
imposed electric field is obtained by concentrating the field gradients in
the neighborhood of liquid interfaces. 1In typical configurations, the elec-
tric field grédient plays the role of an electromechanical wall, with a stiff-
ness and inertia represented dynamically by electrohydrodynamic surface waves.
As an orientation systems rotates, the liquid motions are characterized by
these waves as they couple to inertial bulk oscillations and centrifugal
surface weves resulting from the rotation. A study is made of configurations
typified by an equilibrium in which a circular cylindrical column of inviscid
liquid undergoes rigid body rotation. The equilibrium is made possible, even
though the cylindrical interface is bounded from outside only by its wvapor,
because the interface is stressed by an essentially tangential axial electric
fieid intensity, with a strong gradient in the radial direction. Dispersion
equations are developed for the electrohydrodynamic centrifugal waves of small
amplitude. Conditions for incipience of instability and the frequencies of
normal modes of oscillation are given. Experimental observations, which demon-
strate the destabilizing influence of the rotation snd the effect of rotation

and electric field intensity on the normal mode frequencies, are in satisfac-
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tory agreement with the theory.

1. INTRODUCTION

Background; Electrohydrodynamics

The electrohydrodynamics of perfectly insulating polarized liquids has
received considerable attention because of its possibilities for solving prob-
lems of cryogenic fluid management in the weightless environments of space.

The electric field is used to replace the influence of gravity through the agent

of the Korteweg-Helmholtz force density (Stratton, 1941)

F= - 2 BEve (1)

where ﬁ.and e are the electric field intensity and permittivity, respectively.
This is the "dielectrophoretic" force density that remains in a classical

liquid if theré is no space charge, and if only the incompressible dynamics

are of interest, so that the electrostriction force density makes no observa-
ble contribution. (Melcher, 1963). In systems of homogeneous fluids, Eq. (1)
makes it clear that electromechenical coupling is limited to interfaces, where

€ suffers an ab;upt discontinuity. Hence, in the case in which E is tangential
to an interface between a liquid and its vapor, there is a surface force density

normal to the interface from liquid to vapor, given by

T = %—Ez (€ - ¢) (2)

where €, is the permittivity of free space.
Thus it is that the dynamics of electrohydrodynamic surface waves play a

fundamental role in dielectrophoretic fluid mechanics.
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Some fluid-field configurations that have been studied and that will
help to place the present work in perspective are shown in Fig. 1. As the
interface departs from one of the equilibria shown, it is subject to pertur-
bation electrical surface force densities of two types: i) "imposed field"
perturbations caused by the interface moving through a non-uniform imposed
electric field, and (ii) "self-field" perturbations created because deforma-
tions of the dielectric lead to changes in the electric field intensity at the
interface which; in turn, alter the electrical surface force density.

In Configuration (a) of Fig. 1, the equilibrium consists of a plane inter-
face stressed by & uniform electric field intensity having components normal
and tangential to the interface. Because the imposed field is uniform, the
electrohydrodynamics are due entirely to self-field effects. It is well known
that the perpendicular field tends to produce instability, while the tangential
field stiffens the interface for perturbations propagating along the field lines
but has no influence on those propagating across thekfield lines (Melcher, 1963,
Chaps 3 and 4). To be certain of observing these dielectrophoretic effects, it
is necessary to use ac fields with frequencies much greater than the reciprocal
relaxation time for free charges in the liquid (Melcher and Schwartz, 1968) and
(Devitt and Melcher, 1965).

Because the imposed field is uniform, perturbations from the circular cyl-
indrical static equilibrium of Fig. 1 (b) have the same self-field characteristics
as the plane interface in a tangential field. Perturbations independent of the
axial diréction are unaff9c£ed by EO’ while those propagating in the axial direc-
tion are stiffened (Nayyer and Murty, 1960).

By contrast, if coaxial electrodes are used to impose a radial field on a

circular cylindrical equilibrium, both self-field and imposed field effects are



Fig. 1.

(a)

(d)

Representaxzve static dielectrophoretic equilibria.

In (a) and (b), perturbations are of a purely self-field type.

In (c) - (£), imposed-field effects are present; in (c), self-
field effects are destabilizing and in (d) - (f) they are sta-
bilizing. Cases (e) and (f) are likely to be dominated by imposed-
field effects becauée the field gradients are concentrated in the

neighborhood of the interfaces.
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present. The self-field effects, as in the case of the plane interface in a
perpendicular field, tend to produce instability; the imposed field effects,
however, are stabilizing, because the imposed field (hence the radially direc-
ted surface force density) decays with radial distance. Thus, in configura-
tion (c¢) of Fig. 1, a modest electric field tends to make the equilibrium shown
stable, but a largé electric field produces instability (Reynolds, 1965).

Because of'the inherent tendency toward self-field-induced instability
caused by a normal electric field intensity, dielectrophoretic liquid orienta-
tion and expulsion systems are designed>to take advantage of fields imposed tan-
gential to the interface. However, because there is no self-field intersaction
between the field and those perturbations with hills and valleys parallel to
the lines of electric field intensity, it is necessary to engineer appropriate
gradients in the imposed fields for purposes of stabilization.

The essence of a field-gradient-stabilized system is shown in Fig. 1 (d).
The field experienced by the interface decreases as a portion of the liquid
falls. Thus, the tendency is for the equilibrium shown to be retained becsause
there is an attendant decrease in the downward-directed surface force density
(Eq. 2). Note that the dielectrophoretic surface force density does not "hold"
the liquid in place, but rather that the system is arranged so that hydrostatic
pressure maintains the static equilibrium. The electriec field serves only to
stabilize the equilibrium (Melcher and Hurwitz, 1967).

In Configuration (e) of Fig. 1, the field gradient stabilization is carried
to the ex£reme by concentraﬁing it in the neighborhood of the interface. The
field gradient is at once confined within a distance from the electrode edges on
the order of the plate spacing, s, and for a given Eo’ made inversely propor-
tional to s. Thus, at the expense of confihing the region of interaction, it

is possible to make s sufficiently small that the imposed-field effects dominate
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those due to the self-fields. Moreover, this type of arrangement makes it
possible to carry out liquidQvapor experiments dominated by electrohydrody-
namic forces even in static, earth-bound tests (Melcher, Guttman and Hurwitz,
1968).

Concentrated field configurations are the basis not only for the achieve-
ment of stable static equilibria, but also for slosh control (Melcher, Guttman
and Hurwitz, 1968) and flow confinement (Melcher, Hurwitz, Fax and Blutt, 1968).
This latter case is sketched as (f) of Fig. 1, where flow is between a ribbon
electrode at high potential with respect to a tank wall. Two of the "dielec-
trophoretic pipe" walls are electromechanical, allowing ingestion of adjacent
liquid, but preventing its expulsion in any direction except that of flow.

The electric field plays the same role with respect to these lateral walls as
gravity plays in free-surface channel flows. Thus, electrohydrodynamic surface
waves propagating on the walls of ‘the "pipe" are important in the same way that
gravity waves are essential in free channel flows (Rouse, 1946). If the ribbon-
wall spacing (a) is small compared to wavelengths of interest, the self-field
effects are negligible compared to the effects of the imposed concentrated-
gradient field. The following sections describe an investigation into the

nature of similar waves but with the fluid assuming a steady, rigid-body equi-
librium rotation.

Previous investigations (Grodzinsky, 1967)(Habip, 1967) and (Wong, 1966).
concerned with the electrohydrodynamics of rotating liquids relate to the
relatively small self-field effects and therefore'tend to suffer from a lack
of experimental evidence.

Rotational effects are important to dielectrophoretic liquid management in
space vehicles subject to controlled or uncontrolled rotations. The results are

also of interest in making voltege-controlled liquid gyroscopic devices. It is
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important to recognize that dielectrophoretic hydrodynamics is the complete
analogue of ferrohydrodynamics (Cowley, 1967) and so developments also apply to

analogous motions of a magnetized liquid.

Background: Rotating Fluids

As part of literature pertaining to the dynamics of rotating fluids, the
following sections'add'yet more examples to the "crowds of extremely interest-
ing cases" mentioned by Lord Kelvin in his original paper on the subject (Lord
Kelvin, 1910) (Chandrasekhar, 1961). From a basic point of view, these studies
relate to the manner in which electrohydrodynamic surface waves couple to inertial
waves with gyration frequency 2{l, in the bulk of the liquid, where { is the angu-
lar velocity of rotation (Chandrasekhar, 1961, pp. 85-86). In view of the Tay-
lor-Proudman theorem (Chandrasekhar, 1961, pp. 83-85, 87), it is not surprising
that instability manifests itself as overstability.

In the limit of an extremely large electric field intensity, the "dielec-
trophoretic wall" becomes infinitely stiff and the dynamics of most of the modes
reduce to the case of a fluid contained within a vessel having rigid walls and
rotating at constant angular velocity. Because of previous work, the phenomenon
under study might be referred to as "dielectrophoretic elastoid-inertia oscil-
lations and instability" (Fultz, 1959). However, it is the dynamics of a rotating
interface that is mainly of concern here, and a more accurate description of the
phenomenon under investigation is "dielectrophoretic-centrifugal waves and in-
stabilities” (Phillips, 1960). As will be seen, it is sometimes difficult to
distingui;h between inertial.oscillations and surface-wave modes; they can couple
and conspire to produce overstability. Recent review; concerned with rotating
fluid systems help to place this work in perspective (Brethertor et al, 1966)(Light-

hill, 1966).



Equilibrium Configurations

Electrodes and oriented liquid are shown in Fig. 2, in the two config-
urations (A) and (B)  to be dealt with. Configuration A, the circular elec-
trode over a second planar electrode, as shown in Fig. 2(a), permits experi-
mental investigation even in the face of an axially directed gravitational
acceleration, g. The electrodes constrain fluid motions to be perpendicular
to the axis of rotation, with the liquid assuming an essentially circular
cylindrical geoﬁetry, filling the region under the circular electrode. The
interface is in the fringing field region, and hence tends to be stable even
with electrodes and liquid undergoing rigid body rotation.

The equilibrium depicted in Fig. 2(b), Configuration B, is similar, except
that there are many electrodes at alternate polarities. The fringing fields in
the neighborhood of the interface at the radiug R ténd to stabilize the column
of liquid in spite of the rigid bo&y rotation of the entire system about the
axis. The electrodes are constructed from screens that permit the communica-
tion of liquid between sections. Thus, the motions are modeled by assuming
that the screens present a negligible resistance to the motions, and serve only
to impose a radial distribution of electric field intensity gradient concentrated
at the radius, R. ‘

Except for a geometric mnstant, the model for Configuration A is a special

cagse of B, with modes propagating along the axis of rotation ignorable.
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Fig. 2 a) Configuration A: circular electrode over a plane surface, with the fluid filling the
c cylindrical region between. The fringing fields tend to stabilize the circular interface,

! so that the equilibrium is possible even with rotation and gravity‘acting as shown.

/ b) Configuration B: A system of circular screen electrodes orient a column of liquid with

the same equilibrium radius as the electrodes. The screens permit communication of fluid

between sections. Rotation is about the axis of the cylindrical structure.
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2. THEORY OF DYNAMICS

Qutline

Coupling between the electric field and fluid is confined to the inter-
face. Therefore, it is convenient to represent the mechanical and electrical
bulk dynamics in terms of pressure- or stress-displacement relations at the

interface. At the butset, surface perturbations are assumed to tske the form

£(0,z,t) = BRe 2; exp J(wt-mp - kz) (3)

The coordinates (r,0,z,t) are measured from a frame of reference having the same
angular velocity 8 as the fluid, relative to the laboratory frame.

In the following subsections, the fluid pressure as well as electrical and
surface tension surface force densities are evaluated in terms of E. The dis-
persion equation for waves on the interface and in the bulk follows from the
condition that these radially-directed surface force densities balance. That
is,

1r(R+£)-1ro+Te(R+g)+TS(R+§) = 0 (4)

where T, Te and TS are the total fluid pressure, and the electric and surface
tension surface force densities, respectively. With £ = 0, the equation re-

quires that

7w (R) - Tt Te(R) + TS(R) = 0 (5)

Note that because Te > 0, for a negligible effect of surface tension, the
ambient pressure T exceeds that in the interior of the fluid.
In terms of solutions having the form of Eq. (3), the perturbation ampli-

tudes must obey the linearized expression remaining as Eq. (5) is subtracted from



Eq. (4).
A fod A (6
m+ T +T = 0 )
where the (r,0,z,t) dependence is removed by assuming solutions have the form

of Eq. (3).
Mechanical Pressure-Displacement Relations
In terms of the rotating frame coordinates, the linearized equations of

motion for the fluid (with Tz a unit vector in the axial direction) are (Chandra-

sekhar, 1961, pp. 83-85,87):

PoL -y x QI +Vp =0 ; T=ZoRriep+l (7
VT o= o (8)

Thus, viscosity and compressibility are ignored. The total pressure W includes

the perturbation pressure, p, and a constant, I , determined by the equilibrium

boundary conditions at the interface and the ambient pressure.
If solutions to Egs.(7) and (8) are assumed in the form Re p(r)exp j(wt- mO -kz)

Egs. (7) and (8) require that for w # 29,

r2D2; + rD; - ;(mz-& r?k?A%) = 0 (9)
where A%?= 1 - (20Q/w)? , p( ) = da( )/ar, and
;r = j'[wD; - 2:::52(;:/r)]/pmzA2 (10)

In Configuration A, the spacing (a) is sufficiently small to warrant ig-
What variations exist in

noring the dependence of £ on the axial direction, z.

the interface position with z are quasi-static in neture in that the profile is
Thus, the balance of surface forces

essentially independent - of the dynamics.
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in this case is takén as independent of z, and represented by an sverage over
the z dimension of the interface. As far as the mechanical motions are con-
cerned, this means that k = 0, and the appropriate solution to Eq. (9} that

is not singular at the origin is

o(r)-= oR(w? + 200)E (r/R)/m (11)

In the case of Fig. 2(b), the interfacial axial wavelengths 27/k are also
long compared to the plate spacing, s, but it is appropriate to include their

effects. The non-singular solution to Eq. (9) for this case is
N _ 24 |—2mQ : JkR -, R
p(r) = pw*R [}azz—-Jm(ijA) + = (JxrA)| € Jm(jkrA) (12)

with Jm the m'th order Bessel function of first kind.
The constants in these last two solutions have been adjusted so that
vr(r), as given by Eq. (10), satisfies the condition vr(R) = jwf . Finally,

the complex amplitude of the total pressure 7 evaluated at the deformed posi-

tion of the interface follows from Eq. (7) as

7R+ £) = pO?RE + p(R) (13)

A

where p is given by Eq. (11) or (12), whichever case is under consideration.

Electrical Stress-Displacement Relations

In the limit where self-field effects dominate, a simple model gives a
surprisingly good description of the electrical surface force density. As the
interface passes from the region between the electrodes, where the electric
field intensity is Eo’ to the field-free region beyond, the surface force den-
sity of Eq. (2) varies from a maximum of (€ -EE)E;/E to zero, as shown in Fig.

3. The field decay is represented to a good approximation'by the piecewise
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continuous model of Fig. 3, which represents the variagtion as being linear
over the range R - s/2 < £ < R + s/2, and constant elsewhere (Melcher, Gutt-
man and Hurwitz, 1968)(Melcher, Hurwitz, Fax and Blutt, 1968) and (Guttman,
1967) . |
The variastion of Te shown in Fig. 3 pertains to the case in which the
field is imposed by electrodes, each'with an edge at r = R. Thus, it applies
directly to configuration B, Fig. 2(b), and for small perturbations from
equilibrium (Ig' < s/2), the required dependence of ﬁe on E is simply

T = .
e

(e - e )E2(E/3) (14)

N

However, with Configuration A, the lower electrode exténds beyond the fringing
field region and assumes the position of the symmetry plane shown in Fig. 3,
It follows that.in the case of Fig. 2(a), the appropriate dependence of Te is
given by Eq. (1k) with s —» 2a.

In this latter case (Fig. 2a), the surface force density represents an
average over the axial length; the plane motion model ignores the axial depen-

dence of the interface position.

Effects of Surface Tension

The influence of surface tension is included as a correction, rather than
a first-order effect. In general, it depends on the manner in which the liquid
wets the electrodes. If the interface was composed simply of a circular cylin-
drical co;umn, with no electrodes to which to attach, the additional surface
force density would be (Lamb, 1932)

T = T (} %-+ §§-+

S

(15)

bU4!—'
[+%) 1+ 5]
o) K3
+
e
ml~
\—/

where T is the surface fension.
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In Configuration A of Fig. 2, the interface is observed to remain attached
to the edge of the upper electrode. Transverse motions are accommodated because
the lower electrode allows the interface to slosh unobstructed in and out. In
static equilibrium, the interface assumes a profile varying from that sketched
in Fig. 2(a) to a nearly perpendicular straight line, depending on the amount of
fluid oriented by the field, and by the field strangth relative to that of
gravity. With the vertical equilibrium, motions lead to a profile that is some-

what sinusoidal, with wavelength ha. Thus, the approximation is made that

£(0,z,t) = &(06,t)sin(2mx/Na) (16)

where N, the number of quarter wavelengths in the axial distance a, is 4. With
the interface extending out from under the upper electrode, its extent between
electrodes exceeds a, and it is expected that N in Eq. (16) should be taken as
somewhat larger than 4. Thus, the z-dependence in Eq. (15) is fixed by making

k in Eq. (3) 2n/Na. Substitution of Eq. (3) into Eq. (15) then gives

~ 2 2 ~
T = T [1 - m? —(f{' (%)] £/R? (17)
for Configuration A.
In the case of Fig. 2(b), it is expected that, as the interface moves past
the edges of the electrodes, initially it tends to attach, but finally breaks
away. Thus, there is an effective surface force density due to surface tension

A
which has a nonlinear dependence on £ similar to that of Te' somewhat as de-

?
picted by Fig. 3. Here, interest is confined to the secondary effects of sur-
face tension in experiments having the configuration of Fig. 2(a), and the

effects of surface tension are ignored in the case of Fig. 2(b).
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Dispersion Equations

Radial interfacial force equilibrium, as required by Eq. (6), can now

be expressed with terms linear in the arbitrary amplitude £. The resulting

~

expressions, which are homogeneous in £, are in general satisfied only if

the coefficients of & vanish. Thus, Egs. (6), (11), (13), and (1k4),(with

s * 2a) and (17) give the dispersion equation for Configuration A.

- e )E? 2.2
w?[pR] + «[200R] + m [pﬂ’R i, (_f_rz_g.)_.2+ I -wt - 1_41237)]= .

Of course, conservation of mass requires that m # 0.

Similarly, Eqs. (6), (12), (13) and (14) combine to give the dispersion

equation for Configuration B.

(19)

>
(e-—eo)Eo o
2 s

Dp(m,m,k) + l:szR -
where

2
pwJ (3krA)

D_{(w,m,k) = ,
p - 2mi? Jk -,
(-q—m = I, (JkRA) + &&= J1 (ijA))

The main caomplication of the rotation, the dependence of A [defined with Egq.
(9)] on w, is familiar from many problems concerned with inertial oscilla-

tions(Hahiv, 1967)(Chandrasekhar, 1961)(Fultz, 1959)(Phillips, 1960) and

(Bretherton, et al, 1966).
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3, AZIMUTHAL MODES (Configuration A)

Natural Frequencies

The purely azimuthal modes represented by Eq. (18) are conveniently
studied because of the simple quadratic dependence of the equation on w.

With the frequency of the m'th mode without rotation defined as

1
m(e-€_)E> : . 2
o ={"'—'°"°’u o +§§3_[(2g§)‘ +m -1‘ (20)

Eq. (18) shows that the natural frequencies exhibit a splitting chearacteris-

tic of the effect of rotation:

1
w = -Q¢ [92(1-m)+w;]’2;m=1',2,3.... (21)

Experimental observations of similar but purely hydrodynemic modes obtained on
the interfape between a cylindrical column of air and a surrounding, rotating
liqui¢ (Phillips,1960) have been successfully correlated with a dispersion
equation having a form similar to Eq. (21). 1In that case, with the heavier
liquid on the outside, rotation tended to augment the stability.

As must be expected for an equilibrium like that considered here, one that
places the heavy liquid "on top of" the lighter, surrounding, gas, the effect
of the rotation on all but the m = 1 mode is to produce instability. Further,
this tendeney for instability caused by rotational forces is in competition with
the forces that contribute to Wp s which, in the absence of surface tension, is

in direct proportion to the imposed electric field intensity.

Instability

For purposes of determining the critical field intensity Ec for incipience
of instability, as well as the critical mode number m, at which the instability
first occurs as Eo is reduced, it is convenient to write the dispersion equa-

tion (21) in the form
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1
/"
w = %. = —1+[1+ml=1)+ma (B+m2-1)]"" (22)
where
(e~ EO)E; . )
F = ‘r&_‘m_—— 9 o= ——QW and B = (QWR/NB.)

Instability sets in as the bracketed term of Eq. (22) goes to zero. As this
occurs, W= - 1 and the equilibrium is overstable in the rotating frame of
reference.

If R > a, then B > 1, and from Eq. (22) the condition of marginal

instability is
r = r(E)='1-%- a(m? + B) (23)

Consider that the angular velocity { has been established at a particular
value and EO set to mgke the equilibrium stable. Then, as Eo is decreased
through the critical value Ec, such that T = Fc, the electric perturba-
tion surface force density can no longer balance the perturbation rotational
forces and the equilibrium becomes unstable.

The maximum of Eq. (23) is Fc, and occurs at the critical mode number m,e
Because of the closed, circular nature of the surface, the mode number m must

be an integer, thus:

_1
m, = The closest integer to (20)" % (24)

However, in most situations, m is large and the influence of its discrete nature
on the conditions for instability can be ignored. Substitution of Eq. (24) into
Eq. (23)ithen yields the critical parsmeter rc’ and hence the critical electric

field intensity Ec'

w2 4 a 2 ) 227 hﬂva
Ec = -E—:—E; [%RQ - GT (p2%) - Wz (25)

1 2
where G = 27 & (%—)4 % 1.9. For E_ > E_ the system is steble.
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4. AXIAL MODES(Configuration B)

Natural Frequencies

By contrast with the two-dimensional (azimuthal) modes considered in
Sec. 3, three-dimensional modes are represented by an eigenvalue equation

(19), which is difficult to deal with. It assumes the normalized form

-1
W{[l - A%][ #m/1 - A%+ JkARJl;l(JkAR)/Jm(JkAR)]} = -1 (26)
vhere now I' = (e- eo)EgIQSpﬂzR and
1
w =201 - 427" (27)

The upper and lower signs in Egs. (26) and (27) are to be identified with each
other, and will be referred to as branches 1 and 2, respectively.

The m = O modes represent a special case, in that the branches of Eq. (26)
are then identical. For real values of 4>, solutions to Eq. (26) are conven-
iently pictured by plotting the left side of Eq. (26) as a function of A%.

Roots are those values of the abscissa in which the plot has the ordinate I' - 1.
As an example, Fig. U shows the case where kR = 0.5. 3ach root corresponds
to two eigenfrequencies, as given by Eq. (27), hence to two modes.

Most of the modes can be associated with inertial oscillations such as

would exist in the bulk of the liquid even if the interface was constrained by

a rigid wall. These are identified as Io in Fig. 4, and as the electric field

J

is made very large (I'+ =), they have eigenfrequencies that increase asymptoti-
cally, approaching those for the case of inertial oscillations in a rigid cir-

cular container. The remaining modes are denoted by"Co to indicate that they

J
are at least associatedwith electrohydrodynamic centrifugel waves of the type
discussed in Sec 3. By contrast with the inertial modes, the eigenfrequencies of

the modes C approach o ag [' + », For I' <1, two additional modes, C »
01,2 03,k
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Fig. 5 Eigenfrequencies for m = O modes with kR = 0.5 as a function of

the normalized applied electric field intensity. For I' <1,
. the centrifugal modes 003 and Coh display a purely exponential
growth, with the growth rate going to zero at T =1. The fre-

quencies of mode pairs are negatives.
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appear for resal values of A2 > O and from Eq. (27) it is clear that these are
unstable. The posit;ve eigenfrequencies are shown in Fig. 5 for the case of
"Pig. L.

As is typical.of inertial oscillations, eigenfrequencies approach zero with
increasing mode number. Hence there are an infinite number of modes having fre-
quencies within some neighborhood of zero. As '+ 1, the unstable modes 003,h

have growth rates that approach zero; these modes join the infinite number

having frequencies in the neighborhood of w = 0.

In the long-wave limit (kR + 0), the modes m # 0 approach those discussed
in Sec. 3(with I'suitably redefined by identifying s *+ 2a). It is helpful in
understanding the finite kR case to consider this long-wave limit in terms of
a plot analogous to that of Fig. 4, As KR+ 0, the m = 2 modes is represented
by the plot of Fig. 6. Now, the branches of Eq. (26) are not degenerate. For

I' <1, branch 2 accounts for both modes C.,. and C22, vhile for ' > 1, C,, is

21 22

given as a root of branch 1. Combining the long-wave limit of Eq. (26) with

Eq. (27) gives the eigenfrequencies of the m'th modes C as

ml,2

Y

w = =1F%F[1+m(l-1)] (28)

The eigenfrequencies illustrated in Fig. 7 are drawn for the m = 2 modes using
Fig. 6, but can also be obtained from Eq. (28) which holds for any mode m » O

in the limit kR + 0. HNote that overstability results as T is decreased below
0.5, with the roots joining at B in Figs. 6 and 7, and then represented by com-
plex values of A% 1In the long-wave limit these complex values of A? are easily
found because the Bgssel's functions can be represented by polynomials. But,
with kR finite, the problem of finding modes with A? complex requires solving
Eq. (26) with Bessel's functions of a complex argument. Fortunately, most of
the modes are represented by roots to Eq. (26) having real values of A2 » with

graphical solutions illustrated in Fig. 8 for the case kR = 0.5.
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The effect of a finite kR is to make evident an infinite set of inertial
modes ImJ which in the characteristic manner decrease in frequency magnitude
as the mode number increases. As for the m = 0 modes, the effect of raising
the electric field intensity is to increase the inertial oscillation frequencies.
The frequencies of the first two inertial modes are shown in Fig. 9 as functions
of the normalized electric pressure, r.

Although solutions labeled C2,1—h are denoted by a C for centrifugal modes,
examination shows that these four have properties of both the inertial and the
centrifugal modes; they are of a hybrid character. With I' = 0, modes 022 and
Czh are oscillatory, while modes 023 and 021 combine to give overstabilities.
and underdamped modes. As ['is raised, this latter pair of modes Join at B in
Fig. 8 and become oscillatory. However, with a further increase in I', point A
is reached and mpdes 023 and Czh Join to become underdamped and overstable.
Solution for the eigenfrequencies of these last two modes beyond this level of I
requires numerical solution of Eq. (26) with A%, and hence the frequency, complex.
Of course, A% is also complex for the 021’3 modes with ' below point B, but small
argument approximations of the Bessel's functions make it possible to find these
roots analytically.

The frequencies for the four C modes are shown in Fig. 9. Note that the
overstability caused by raising T beyond point A has a growth rate, and oscil-
lation rate that approaches zero as T' = 1. As for the unstable m = 0 modes,
this pair joins the infinite number in the neighborhood of zero frequency as

r »1.
As T is increased to infinity, the modes C22 and 021 have eigenfrequency

megnitudes that approach infinity, as is expected for the inertial modes as
the electrohydrodynamic walls become infinitely stiff. Note, however, that

the mode 022 remains oscillatory throughout the full range of I'; for PJ*
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it has the character of an inertial oscillation, whileAfor ' + o, it assumes
the properties of a centrifugal mode.

Although no claim is made here that all modes and all possible wavelengths
21/kR have been examined, it appears that a sufficient condition for stability

of all modes is I'> 1. Certainly if ' <1, there are modes of instability.

5 EXPERIMENTS

Apparatus

In order to observe incipient instability and normal mode oscillations for
Configuration A (Fig. 2a), the rotating tank and drive assembly shown in Fig. 10
is used. The two electrodes are brass and the upper disc is beveled on its lower
surface 0.7 of a degree from the center to the outer rim, to minimize the collec-
tion of bubbles in the center region. The electrodes are contained in a plexi-
glas tank which is mounted on a shroud and shaft assembly. A dc motor is geared
to the shaft by means of two gear-belt reduction units, and the angular velocity
is measured with a magneto-tachometer. The speed of the motor is varied from
zero to 100 rpm by means of two rheostats. One of the rheostats is driven by
a slow-speed ac motor and gear box for the purpose of bringing the rotating tank
up to the desired velocity in a gradual and continuous manmer.

The tank and drive assembly, the pressure transducer system, and the high-
voltage supply are the essential components. The transducer is designed to
excite the normal modes in the rotating frame of reference. A tube is intro-
duced through the bottom electrode into the region between the upper and lower
disc electrodes, and is connected to a fluid trap, as shown. The trap likewise
is connected to the hollow, vapor-filled shaft which supports the tank assembly.

At the lower end of the shaft is a rubber bellows assembly which has a

thin polished disc cemented to the bottom. The bellows is driven with a loud-
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Fig. 10 Apparatus for obseryation of oscillations and instability with
Configuration A (Fig. 2a). The upper electrode radius R = 8.5 cm
and electrode spacing a = 5 mm or T mm. The rotational speed ranges

from fr = 0 - 100 rpm while the appiied potential is O - 24 KV at
Loo Hz.
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speaker-amplifier-oscillator system by means of a plunger in contact with the
polished disc. Although the lbudspeaker and plunger are fixed, the bellows
asgsembly is free to rotate. When the transducer system is in operation, the
upper connecting tubing is filled with liquid, and the remaining tubing sheft,
and bellows are filled with vapor. As the tank rotates and the loudspeaker
cone moves in and out with a frequency f, the plunger drives the rotating bel-
lows in the axial direction. Thus, tﬁe rotating fluid is pulsed in the rotating
frame of reference with the frequency, f, of the oscillator.

The high voltage V° necessary to maint;in the electric field intensity
Eo = Vo/a between the electrode® is transmitted through a pair of slip rings
and brushes mounted on top of the rotating tank. Fields of alternating polar-
ity which have a frequency much greater than the reciprocal relaxation time are
used to avoid effects from free charges that can arise in the fluid through
relaxation phenomena. Also, fluid interactions at the liquid-gas interface
involving the second harmonic of the imposed fields are minimized by making the
frequency high; 400 Hz is used. In computing the electrical force, the ac field
is considered as a de¢ field having the same RMS value.

For the study of oscillations and dynemic instability, it is essential
that the liquid be relatively inviscid. Freon 113 is used with properties sum-

marized in Table I (Du Pont Bulletin B-2, 1966).

Instability

The instability experimrents consist of measuring the critical voltage
Vc = Eca ‘of impending instability as a function of the rotational speed fr = Q/en
for two values of electrode separation; a = 5mm and a = T mm.
he bottom electrode is covered with a layer of Freon 113. Then, with the
voltage applied, the portion of the liquid unaer the top disc electrode becomes
unstable and bridges to the disc (due to self-field effects and the perpendicular

field as discussed in connection with Fig. la). Thus, the liquid forms a circu-



-@]l-.

lar cylinder with an essentially vertical wall. The power supply voltage
V, is increased to its maximum value of 24 KV to reinforce the fluid "wall".
The tank assembly is set in motion at a very low rotational speed, end then
gradually brought up to desired speed in about three to four minutes.

When the tank has been rotating at the desired speed for a few minutes,
Vo is reduced graduﬁlly until the rotating fluid wall becomes unstable. As
observed visually, the fluid bulges out slightly and then the majority of the
fluid between the electrodes is ejected outward to the walls of the plexiglas
tank. Occasionally, small amounts of fluid will be expelled from the rotating
fluid wall at a voltage above that (vc) at which the majority of the fluid is
lost. For voltages between this '"premature' voltage aﬁd V,» the fluid wall is
observed to be more nearly vertical.

The measurements, for a = 5 mm, are presented in Fig. 11 with confidence
bounds based on several repeatea measurements. Similar results are found for
a= Tm (Calvert, 1968). Three lines indicate the predictions of Eq. (25)
with surface tension effects included to various degrees. The agreement between
experiment and theory is better than would be expected from the approximate
nature of the simple concentrated field gradient and surface tension models.

The total effect of surface tension is even less at the wider spacing of a = 7 mm
and can be ignored for practical purposes at high values of the rotational velo-

cities.

Normal Modgs

Normal mode frequencieé are exhibited as the resonance frequencies of the
driven fluid. These resonances are measured for the m = 1,2, and 3 modes as
functions of the applied voltage for three values of rotational speed fr. The
data are presented in Fig.l2 for a = 5 mm, with a similar result obtained for
a =T mm (Calvert, 1968). -

Visual observations are used to identify the modes and to detect the reso-
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nances. The voltage is set at a constant value, and the frequency is increased
until the first mode appesrs. This is detected in the labor;tory frame by ob-
serving an envelope of uniform "wobbles" on the fluid surface. As the frequency
is tuned past resonance, the envelope subsides. When the frequency is further
increased, the secoﬁd mode appears}

The mode numbers (m) are verified in fhe laboratory frame of reference by
viewing the fluid surface throﬁgh the side of the tank, where the surfac® is
observed to move in and out at a rate slow enough to measure with a stopwatch.
This corresponds to a frequency fz which is ;elated to the mode number m, the

rotational speed fr, and the rotating frame exciting frequency f = é%' by

the relation

gl = || +nle_| (29)

- Measurements on the lower resonance frequency of a mode pair are made
using a similar technique. Low frequency data are limited due to amplifier
capabilities and the difficulty of detection. However, the three lower modes
are found and identified for two values of V° with fr = 30 rpm. It is noted
from Eq. (21) that the lower frequency is negative for sufficiently large E0

and for this case Eq. (29) becomes

|£

z' |£] - m]frl (30)

For experiménts conducted at a speed fr = 50 rpm, no reliable data are obtained
for the lower frequencies due to the limitations on the_exciting equipment.

The predictions based on Eq. (21) are_included with Fig. 12. The agree-
ment between experiment and observation lends further support to the simple
quasi-two-dimensional model. For the m = 1 and m = 2 modes, the high frequency
shift predictioné given by Eq. (21) are found to be in excellent agreement. The

m = 3 mode shifts are experimentally found to be somewhet greater than predicted.
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SUMMARY AND FURTHER REMARKS

Although the addition of electric stresses to systems of rotating fluids
seems at first a complication, at least for the azimuthal modes which charec-
terize the dynamics of Configuration A, the dielectrophoretic interaction makes
possible a class of centrifugal modes that can be meaningfully represented by
a simple model. The model is certainly simpler than that investigated by
Phillips (Phillips, 1960) for similar ordinary centrifugal waves. This can
be traced to the fact that the equilibrium is cylindrical rather than annular;
the electromechanical wall makes possible modes thet can be described by a
single basic solution for the radial dependence of velocity. Aléo, self-field
effects can be ignored and this reduces the representation of the electric
stresses to a simple matter. The experiments support the simple model: it
seems clear that the essential aspects of the dynamics in Configuration A are
well ;epresented. Experimental work is called for to study Configuration B,

but it is not clear how effects of gravity can be removed in this case.

This work is supported by NASA Grant NGL-22-009-01L#6.
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Table I  FLUID PARAMETERS FOR FREON 113

Mass Density

Permittivity

Surface Tension

Relaxation Time

Viscosity

B

'3

e

1.56 X 10

2.1

1.9 X 10~

10 sec.

0.6 cp

kg/m

nt/m
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FIGURE CAPTIONS

Fig. 1 Representative static dielectrophoretic equilibria. In (a) and (b)),
perturbations are of a purely self-field type. In (c)-(f), imposed and
self-field effects are present; in (c), self-field effects are de-
stabilizing and in (d)-(f) they are stabilizing. Cases (e) and (f)
are likely to be dominatedvby imposed-field effects because the field

gradients are concentrated in the neighborhood of the interfaces.

Fig. 2 a) Configuration A: Circular electrode over a vlane surface, with
the fluid filling the cylindrical region between. The fringing fields
tend to stabilize the circular interface, so‘that the equilibrium is
possible even with rotation and gravity acting as shown.

b) Configuration B: A system of circular screen electrodes orient a
column of liquid with the same equilibrium radius as the electrodes.
The screens permit communication of fluid between sections. Rotation

is about the axis of the cylindrical structure.

Fig. 3 Electric surface force density Te experienced by the interface as a
function of radial position, &.

Fig. 4 Graphic representation of the roots to Eq. (26) which are either
purely imaginary or real. Branches 1 and 2 are degenerate, so that
each solution for A2 represents two eigenfrequencies; kR = 0.5 and
m = 0. The corresponding eigenfrequencies are given in Fig. 5.

Fig. 5 Eigenfrequencies for m = 0 modes with XR = 0.5 as a function of the
normalized applied electric field intensity. For I' <1, the centri-
fugal modes 003 and Coh display a purely exponential growth, with the
growth rate going to zero at ' & 0. The frequencies of mode pairs

are negative.



‘Fig. 6

Fig. T

Fig. 8

Fig. 9

Fig. 10

- D

Long-wave limit of Eq. (26) for m = 2 modes. This characterizes
those modes m > 1 and allows an identification of the eigenfre-
quencies in terms of the branches of Eq. (26) in the limit where

the inertial oscillations are suppressed (kR =+ 0).

Eigenfrequencies for modes m # O, kR + 0. The particular numbers

are for the-m = 2 modes, but the plot characterizes higher order

modes.

Graphic representation of roots to Eq. (26) which are either purely

real or imaginary. kR = 0.5 and m = 2. Modes 023 and 021

from overstable to stable at B as T is raised, while 023 and Ceh

switch

become overstable at A as T is raised still further.

Eigenfrequencies as a function of normalized electric field intensity
showing coupling of inertial oscillations and electrohydrodynamic
.centrifugal waves to produce overstability at A. Points A and B are
to be identified with the respective points in Fig.>8.

Apparatus for observation of oscillations and instability with Config-
uration A (Fig. 2a). The upper electrode radius R = 8.5 cm and elec-
trode spacing a = 5 mm or 7T mm. The rotational speed ranges from

f. = 0 ~ 100 rpm while the applied potential is 0- 24 KV at 400 Hz.
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Fig. 11 Critical voltage Vc for inecipient overstability as a function of the

Fig. 12

rotational speed f_ with a = 5 mm. The theoretical curves show the
effect of surface tension, T, on the prediction, with N a function of

the wetting.

Resonance f;equencies a8 viewed in the rotating frame for norma; modes
as a function of the voltage with the rotational frequency fr as a
parameter, Electrode spacing a = 5 mm. With fr = 50 rpm,higher order
modes are unstable to the left of the point where the curves are broken

off.

a) m=1mode, b)m=2mode, ¢ )m = 3 mode



