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FOREWORD

This report was prepared by the Aero-Space Mechanics
Branch, Structures and Mechanics Engineering Department, Huntsville
Operations, Chrysler Corporation. The work reported was authorized
by NASA Contract NAS8-21290 issued by the Dynamics Analysis Branch,
Dynamics and Flight Mechanics Division, Aero-Astrodynamics
Laboratory, Marshall Space Flight Center, Mr. James G. Papadopoulos
was the program Contracting Officer's Representative. The theoretical
derivations and the numerical analyses were conducted by the authors.
These numerical analyses were programmed on Chrysler's G, E, 415
computer by Miss Nancy J. Tate. The purpose of the study reported
herein was to determine methods of computing the effects of the aero-
dynamic loading caused by variations in the local angle-of-attack on
the dynamic response of launch vehicles. The methods were then applied
to the Saturn V launch vehicle. Suggestions are made for including
additional phenomena in the analysis.
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ABSTRACT

This report describes a study in which the effects of
flexible body aerodynamics on launch vehicles are determined.
The First Order Method For Flexible Bodies was developed to
determine the aerodynamic forces that act on vehicles, A
method of determining the structural flexing response to these
forces is included. An analysis of vehicle dynamic response in
the low frequency range is developed. Sample calculations of
the Saturn V vehicle are given. Recommendations for further
refining these theoretical methods are discussed.

i1




Section

II

III

I

- TABLE OF CONTENTS

- Title
IntroductiOn

Determination of the Aerodynamic Forces Acting
On a Flexible Vehicle

Structural Flexing Response of a Vehicle to
Aerodynamic Forces

Integrated Vehicle D:ynarnics
Conclusions and Recommen&iatigné
Réfereﬁces

Appendix A

Appeﬁdix B

Appendix C

Appendix D

Appendix E

Appendix F

iv

Page

33

59
69
71
72
74
77
80
97

117




»»»»»

Figure No.
2-1

2-2

2-4

2-5

2-6

2-8

2-9

LIST OF ILLUSTRATIONS

Title
Flexible Body Coordinate System

The First Order Method Apphed to a Rigid
10° Half-Angle Cone at ¢ = 0,1 rad

The First Order Method Apphed to the ngld
Saturn V Vehicle at ¢ =0

The First Order Method Applied to the Rigid
Saturn V Vehicle without Fins at o= 0,1 rad

The First Order Method Applied to a Flexed
Cone '

Frustum Simulation of the Saturn V Fin-
Shroud Combination

The First Order Method Applied to the Flexible
Saturn V Vehicle as the Angle-of-Attack Varies
from ©@¢=9,720 to o = 8° :

The First Order Method Applied to the Rigid
Saturn V Vehicle at ¢ = 0,1 rad

The First Order Method Appli.éd to the Flexible
Saturn V Vehicle with the Deflection Shown in
Figure (3-8)

The First Order Method Applied to the Flexible
Saturn V Vehicle with the Deﬂectmn Shown in
Figure (3-9)

Local Normal Force Distribution Determined
from the Rigid Body Data Multiplied by the
Liocal Angle-of~Attack of the Flexible Saturn
V Vehicle with the Deflection Shown in Figure
(3-10)

Page

20
21
23
24,
25

26

28

29

30

31

T, s L



P oo

Rt

LRt

B

Rty

F ey i

2, et

Figure No,

2-12

3-4
3-5

3-6

3-7

3.9

3-10

3-11

LIST OF ILLUSTRATIONS (CONTD)

Title
Local Normal Force Distribution Determined
from Rigid Body Data Multiplied by the Local
Angle-of-Attack of the Flexible Saturn V
Vehicle Shown in Figure (3-11)
Forces Acting on a Rigid Body
Flexible Beam Loading

Illustration of the Incremental Aerodynamic
Loads Caused by Flexing ‘

Saturn V Mass Distribution at Time t = 79 sec
Saturn V Stiffness Distribution

Safurn V Incremental Slope Derivative with

Respect to o,

Saturn V Incremental Slope Derivative with

- Respect to W

Saturn V Incremental Displacement Derivative

with Respect to  u,

Saturn V Incremental Displacement Derivative

- with Respect to ¥

Saturn V Incremental Displacement Derivative
with Respect to o, Using Rigid Body Aero-
dynamic Terms Modified by the Local Angle-
of-Attack :

Saturn V Incremental Displacement Derivative
With Respect to W Using Rigid Body Aero-
dynamic Terms Modified by the Local Angle-
of-Attack

Yaw Plane Dynamics

“vi

Page

32

34

36

4]

48

49

50

51

52

53

55

56

60




&

4
'

ety

i TS,

TR

Symbol

A

NOMENCLATURE

Axial force, 1b
Axial force on the section (xnt1 ~ Xp.1 )/2, 1b

Parameter at station xx defined by equation (3-61), ft/rad

- Parameter at station xk defined by equation (3-58), 1/rad

Parameter at station xi defined by equation (3-55), 1/ft rad
Parameter at station xi definéd by équatioh (3-62), slug ft/lb
Parameter at station xy defined by equation (3-59), slug /lb
Parameter at station xk defined by eduation (3-56), slug /1b £t
Pressure coefficient

Bending stiffness, 1b £t2

Gimbaled thrust, 1b

Frequency response function of wind velocity to vehicle normal
acceleration, 1/sec

‘F'requency response function of wind velocity to engine gimbal

angle, rad sec/ft

Frequency response function of wind velocity to vehicle yaw
angle, rad sec/ft

Integration constant defined by equation (3-58), 1/rad
Integration constant defined by equation (3-59), slug /1b

Integration constant defined by equation (3-61), ft/rad
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1AX
1By
IBX )
IMy
MLy

IMLLy

LCG

Integratioh constant defined by equation (3-62), slug ft/1lb
Moment of inertia, slug £t2

Parameter at station k defined by equation (3-67), slug ft/rad
Parameter at station k defined by equation (3-68.), slug ft2/rad E
Parameter at station k defined by equation (3-69), slug2 ft/1b
Parameter at station k defined by equation (3-70), slug2 £t2 /1b
Parameter at station k defined by equation (3-71), slug
Parameter at station k defined by equation (3-72), slug ft
Parameter at stétion k defined‘ by equation (3-73), slug Sftz
Length of vehicle, ft |
Distance from nose to the center of gravity of the vehicle, ft
Free stream Mach number

Vehicle bending moment at station xi, ft1lb

Pitching moment about the center of gravity, ft 1b

Flexible body pitching moment about the center of gravity for the

kth iteration, ftlb

Derivative of the rigid body pitching moment about the center of :
gravity with respect to the rigid body angle-of-attack, ft 1b /rad

Derivative of the incremental pitching moment about the center of
gravity caused by bending due to the aerodynamic loading with
respect to the rigid body angle-of-attack for the kth jteration,

ft 1b /rad : '

Derivative of the incremental pitching moment about the center

of gravity caused by bending due to the acceleration loading with
respect to the vehicle normal acceleration for the kth iteration,

b sec?
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Flexible body normal force for the kth ite‘ration, klb
Normal force, 1b

Local normal force at station Xy, 1b /£t

Local rigid body noxrmal force, 1b /ft

Derivative of the rigid body normal force with respect to rigid
body angle-of-attack, 1b /rad

Derivative of the incremental normal force caused by bending
due to the aerodynamic loading with respect to the rigid body
angle-of-attack for the kth 1tera‘c10n, 1b /rad

Derivative of the incremental normal force caused by bending
due to the acceleration loading with respect to the vehicle normal
acceleration for the kth iteration, 1b sec /f‘c

Derivative of the rigid body local normal force with respect to
rigid body angle-of-attack, 1b /ft rad

Derivative of the incremental local normal force caused by bending
due to the aerodynamic loading with respect to the rigid body angle-
of-attack for the kb iteration, 1b /ft rad

Derivative of the incremental local normal force caused by bending
due to the acceleration loading with respect to the vehicle normal
acceleration for the ktP 1terat1on, b sec?/ft? rad

Parameter defined by equation (3-76) for the kth jteration, ft/rad
Parameter defined by equation (3-74) for the kth iteration, 1/rad

Parameter defined by equation (3~77) for the kih iteration, slug ft/1b

‘Parameter defined by equation (3-75) for the .kﬁh iteration, slug /1b

Body radius, ft

Parameter defined by e}quation.(4—39), rad

Parameter defined by equation (4-39), rad
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i‘ Rg Parameter defined by equa.tidn (4-39), rad
* S1 Parameter defined by equation (4-20), ft 1b /rad
‘g B . So Parameter defined by eqtiation (4-21), 1b sec?
i S3 Parameter defined by equation (4-22), ft 1b /rad
[ :
h ’le, Parameter debfined by equation (4-23), 1b /rad
} : ’ : ) Parameter defined by equation (4-24), 1b sec?/ft
} e : - Tj Parameter defined by equation (4-25), 1b /rad
B v _Vehicle velocity, ft/sec
}t‘ o ‘Vm - Free stream velocity, ft/sec
}» : _ - Vw Wind velocity, ft/ sec
o - Vo - Steady sfate component of wind velocity, defined by equation
} S (4-31), ft/sec
_: V.l ' Harmonic: component of wind velocity, defined by equation (4-.1),
E o ft/ sec
Y‘ Xn,i Parameter defined by equation (2-55)
& o Yn,i Parameter defined by equation (2-56)
: % - 2y - Parameter defined by equation (2-76)
. aé . Control gain defined by equation (4-5)
{ A ay Control gain defined by eﬁugtion (4-5), sec
' } - aj , Parameter defined by equation (2-52), ft/sec
L by Pafameter defined ‘by equation (2-70), ft/sec
% f Supersonic bso;u,rce strength, ft¢/sec
5& f/ ' ber;lvative. of supersonic source strength with respect to distance, '

ft/sec
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T2

gl

Second derivative of supersonic source strength with respect
to distance, 1/sec

Body station index
In section II, supersonic doublet strength, £t2/sec
In sections III and IV, mass of vehicle, slug

In section II, derivative of supersonic doublet strength with
respect to distance, ft/sec

In section II, second derivative of supersonic doublet strength
with respect to distance, 1/sec

In sections III and IV, mass distribution, slug/ft
Station index

Arbitrary point in space

Dynamic pressure, 1b /ftZ

Radial coordinate in flexible body coordinate system, ft
Radial coordinate at station, x,, ft

Parameter defined by equation (4-39), 1/sec
Parémeter defined by equation (4-39), 1/sec
Disturbance velocity in the x direction, ft/sec
Disturbance velocity in the X direction, ft/sec
Disturbance velocity in the r direction, ft/sec
Disturbance velocity in the y direction, ft/sec
Disturbance velocity in the ¢ direction, ft/sec
Disturbance velocity in the z direction, ft/sec

Normal acceleration of the vehicle, ft/sec?
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| Symbol
W Transient component of the normal vehicle acceleration
defined in equation (4-35), ft/sec?
\35/1 ‘ Harmonic component of vehicle normal acceleration defined
in equation (4-35), ft/sec?
& w2 Harmonic component of vehicle normal acceleration defined
§ in equation (4-35), ft/sec2
1 x Flexible body axial coordiﬁate, ft
Xn Flexible body axial coordinate at the nfP index, ft
13 x Ia section II, cartesian coordinate, ft
X In section IV, distance from vehicle nose to angular sensor, ft
Xcg ‘Distance from vehicle-nose to vehigle center of gravity, ft
% v Cartesian coordinate used in beam analysis, ft |
£ Cartesian coordinate, ft
4 z Normal vehicle velocity, ft/sec
4 ‘E Cartesian coordinate, ft
Az Flexible displacemént from the % axis, ft
) a Angle-of-attack, rad
o r Rigid body angle-of-attack, rad
o Contribution of the wind vector to the vehicle angle-of-attack, rad
8 In section II, Mach number parameter
B In sections III an IV, engine gimbal angle, rad
‘3 BT Transie’nt component of engine gimbal angle defined in equation
(4-62), rad
% 81 Harmonic component of engine gimbal angle defined in equation
: (4-62), rad
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Harmonic component of engine g1mbal angle defined in equation

(4-62), rad
In section II, ﬂexible body circumferential coordinates, rad

Phase angle of the wind velocity to normal acceleration
frequency response function, rad

Phase angle of the wind velocity to engine gimbal angle frequency

reSponse function, rad

Phase angle of the wind velocity to body yvaw angle frequency
response function, rad

Distance along body axis, ft

In éeétion I, distqrbance véloéity potential, ftzlsec
In sections III and v, vehicle-yaw angle, .ra.d
Vehicle angular velocity in yaw plane, ré.d/sec

Vehicle angular acceleration in yaw plane, rad/secz

‘Transient component of vehicle yaw angle defined in equation

(4-32), rad

Time derivative of transient component of yaw angle defined
in equation (4-33), rad/sec

Second time derivative of transient component of yaw angle
defined in equation (4-34), rad/sec? :

Harmonic component of vehicle yaw angle defined in equation
(4-32), rad

Harmonic component of vehicle yaw angle defined in equation
(4-32), rad ‘ "

Axial flbw disturbance velocity potential, £t2 /sec
Cross flow disturbance velocity potential
Parameter defined by equation (2-48)

Circular frequency, rad/sec
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I. INTRODUCTION

Numerous studies have been made of various aspects of the static
and dynamic characteristics of launch vehicle control systems and
structures. The objective of these studies has been to determine whether
vehicle control systems would properly control the vehicles or whether
vehicle structures would fail, In many of these studies the incremental
aerodynamic forces generated by vehicle flexing were not considered,
since some other aspect of vehicle dynamics was being scrutinized. When
the incremental aerodynamic forces were considered, the general practice
of describing these forces was to use the rigid body local normal force
derivatives with respect to the rigid body angle-of-attack multiplied by

. the local angle-of-attack caused by flexing. This approach implicitly

assumes that the local normal force acting at a given body station on a
flexed body is the same as the local normal force that would act at this
station if that portion of the vehicle forward of the station were rigid, and
were at the same angle-of-attack as the vehicle at the station being con-
sidered. o '

In this study a method of computing the local aerodynamics forces

“acting on a launch vehicle is derived that includes the effects of a flexed

forebody. The need for this study was recognized by James G. PapadoRoulos,
and this study is an outgrowth of his work in references 1 and 2. It also
utilizes an earlier study by Werner K. Dahm, described in reference 3, in
which he included the effects of gross body flexing in the Slender Body
Method. The technique derived here is a development of the First Order

‘Method of supersonic aerodynamics described by Antonio Ferri in

reference 4 and Milton D. Van Dyke in reference 5. The significance of

the First Order Method for Flexible Bodies, which includes the effects

of forebody displacement, can bé seen in the fifth figure of section II. In
this case calculations were made by the method developed in this study for
a 10-degree half-angle cone whose forebody is at 0.1 radian angle-of-
attack and the aft portion (due to flexing) is at zero angle-of-attack. The
forebody induces a large negative normal force on the afterbody, which

is greater in magnitude than the positive normal force acting on the fore-
body. If the rigid normal force coefficient derivatives were used to predict
the aerodynamic loading on this bent cone, the normal force on the forebody
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would be zero, This approach not only would result in errors in accuracy
but also would fail to describe the aerodynamic phenomena that are acting
on the body. Therefore, ‘the First Order Method for Flexible Bodies that
was developed in this study provides valuable insight into the mechanism
¢f launch vehicle behavior, besides improving the accuracy of numerous
control and structural calculations,

This study also includes an analysis of structural bending response
of vehicles to aerodynamic forces. The deflections are shown to be
determined by three terms. The first is the rigid body aerodynamic
loading. The second is the incremental aerodynamics loading caused by
vehicle flexing which is due to aerodynamic loading. The third term is
the aerodynamic loading caused by the vehicle flexing which is due to the
D'Alembert, or inertia, forces. An iterative procedure between the aero-
dynamic analysis is required to determine these two incremental
aerodynamic loads due to flexing. This procedure results in equations
representing the aeroelastic vehicle deflections, slopes, and bending
moments that are linear in terms of the angle-of-attack of the rigid center
line of a vehicle and the normal acceleration of the vehicle., This simple
representation reduces the analysis of the integrated dynamics of a vehicle
to manageable proportions,

The integrated dynamics of a vehicle is the third analysis performed
under this study. This analysis is highly simplified and is included to
illustrate how the results of the previous two analyses can be utilized in
a more general dynamic analysis of a vehicle. It also indicates the signifi-
cance of the incremental aerodynamic loading on vehicle dynamics in a
limited frequency range. The analysis consists of four equations that
describe body yawing, normal body translations, engine gimbal, and
bending, Frequency response functions are derived that are applicable
below the control frequency of a vehicle.
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II. DETERMINATION OF THE AERODYNAMIC FORCES
ACTING ON A FLEXIBLE VEHICLE

A method of computing the aerodynamic forces that act on a
flexible axially symmetric body is developed in this section. The flexing
of the body results in a variation in angle-of-attack along the body. The
analysis is applicable when the cross flow along the body caused by winds

~is uniform and the variation in angle-of-attack is due only to gross body
* flexing. It is also restricted to supersonic cases where aerodynamic

terms can be assumed to be independent of time. The aerodynamic effects
of body fins are included by increasing the body diameter.

The analysis is based on the well-known First Order Method of .
aerodynamics described by Ferri in reference 4 and Van Dyke in
reference 5. The exact tangency condition and the exact pressure relation
are used here. The usual First Order Method, which is applicable to
supersonic attached flow fields about bodies of revolution, is based on a
cylindrical coordinate system. In deriving the First Order Method for Flex-
ible Bodies, the equation of the velocity potential is written in cartesian
coordinates. It is then transformed into the flexible body cylindrical
coordinate system. The First Order Method is then developed to satisfy
this equation and the flexible body boundary conditions. This yields the
disturbance velocity potential from which the velocity components are
obtained. The velocity components yield the pressures on the body surface.
These pressures are then used to compute the aerodynamic forces and
moments that act on the body. '

Consider the cartesian coordinate system (X, ¥, and Z) of Figure 2-1.
The free stream velocity, Ve, lies in the ¥ = 0 plane. The angle-of-attack
with respect to the x axis is the angle in the ¥ = 0 plane between the free
stream velocity vector and the x axis. The velocity components (U, V, and W)
in the X, ¥, and Z directions are given by:

W = Vecosa + _g_cb: (2-1)

) X

v o= 09 (2-2)
3Y :

— P
w = Vsinoa + ——-—2—_— (2-3)
3%
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Figure 2-1. Flexible Body Coordinate System




where ¢ (x, y, z) is the disturbance velocity potential. The disturbance

g o potential must satisfy the equation of the velocity potential;
a2 2 |
237 ¢ 3% ¢ 0 ¢’ 4
i -y 33,-2+ 352= 0 | (2-4)
where
p= VMt -1 ' (2-5)

The velocity potential must also satisfy boundary conditions imposed by
- a body that is placed in the coordinate system.

A cartesian or cylindrical coordinate system is a convenient choice
for a rigid body. However, in determining the aerodynamic characteristics
of a flexible body, it is more convenient to use the inherent coordinate system

: of the flexible body as shown in figure 2-1, This coordinate system will
be defined in terms of the X, ¥, Z cartesian coordinate system, and the

o ~ equation of the velocity potential will be transformed into the flexible body

2 coordinate system.

Let the body flex in the ¥ = 0 plane and let the nose of the body
remain at the origin of the X, ¥, Z coordinate system. Further restrict
the deflections of the center line of the flexible body, A4 Z (X)), to be small
compared to the body radius. Consider a point, p. Pass a plane through
% ' point p perpendicular to the flexible body center line. The distance along

~ the center line of the flexible body to this plane is the x coordinate. The
'~ distance, in the constructed plane, from the x coordinate to point p, is
the r coordinate, Now consider a line defined by the intersection of the
constructed plane and the ¥ ¥ = 0 plane. The angle between this line and the
r coordinate is the 6 coordinate.

The flexible body coordinates (x, r, 8 ) are given in terms of the
rigid body coordinates (%, ¥, Z) by the following equations. The_se equations
are restricted to cases where the slopes of the flexing body, ("'"“")r = O
and the body center line deflections, A%, are small,

i x =X+ (q=) _ o7 (2-6)
r = +V/§2 422 (2-7)
6 =tan"! X - (2-8)

Z
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" The derivatives of the bent body coordinates with respect to the rigid

body coordinates are:

dX a2z —

e (5o &9

I -0 (2-10)
X

96 _

= =0 » | (2-11)
9 X

5= = 0 , (2-12)

2L = gin 0 (2-13)
5

gf - cos 0 (2-14)
¥ r .

ox . (dz)r - 0 (2-15)
0z dx .

3L = cos 0 (2-16)
0%

9 0 sind

a.z = - T . (2"17)

In order to obtain the velocity potential equation, equation (2-4), in terms
of the bent body coordinates, the partial derivatives of the potential in
terms of the bent body coordinates will be derived, From the chain rule:

39 2-18
> o ( )

e
r

d
]

we

)
Ix X 9




From equations (2-9), (2-10), and (2~11), this reduces to

i -

3;=[1+<.df )'Z ] 22 (2-19)

! 9 dx2/. . -

I’ The second partial derivative with respect to ¥ is:

) | ) 2 2 dz 2

7 s (42Z)5 94 .2 dx2r=0.il+ dz | Z a9

w2 8":22r“_0 0x2" Ty x dx“r=043x

- Restricting this to small values of curvature, —3—-—;—2 , yields:

L5

éif (;3 ZE )
N2 2 —

- 78__4): o ¢ . o\o x2/r =0 - 9 ¢ (2-21)
ax4 9 %2 9 x 3 X

iff For the partial derivatives with respect to y, consider

g;; 96 . 8% B¢ ., dr 3¢ , 36 B (2-22)

i ’ 0y 3y X 3y r 3 Y 58

i Substituting equations (2-13) and (2-14)

L

k o ¢ sin 8 9 ¢ cos 0 9 ¢ .

k = , 2-23
g; oY dr ¥ T 50 ‘ ( )
,5 Taking the second derivative of equation (2-23)

2 . 2
5; 079 =sin293 4+ 8ing cosg 3¢ _8ing cosp 3§ ¢
b Y 9 ré T 210 ré 3 9
[ :
[ 4 Co80 sin ¢ 32¢+cosz’e 36, cos? 2 (2-24)

B r gear T a1 vy B

s’ _ _cos b gin 0 3 ¢
2 0 0
7
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This reduces to

p2¢ _ 2 g 9 2¢ cos20 3 ¢ , 2sindcosd 24
8"§2~5m 8r2+ T dr * r dr 96
cos? 0 929 2 cos Osin 6 3 ¢ (2-25)
YTRTT 2 r2 5 0

For the partial derivatives with respect to the Z coordinate

2¢ _8x d¢ s r 3¢ .06 B¢ 2

9% 3 Z2 9 x 3 Z 3 r 0%Z 38 (2-26)
 From equations (2-15), (2-16), and (2-17)

) (d’i) 3 ¢ 3 ¢ sing 9 ¢ .

= —— (o] 6 - Z-

= a%/r=0 3 x 7 75 x50 (2-27)
. Taking the second derivative yields:

32¢_ (d?) 9 (dE) ¢ ¢  gin® 3¢

=5 = — 5= -~ 4 cOS8 6

57 d r=0 3 x dX/r=0 X or T 3 6

d7z 3 ¢ 3¢ sinb 9 ¢
—_— —_Z — 6
sin ¢ 9 (df.) K 3% 4coso 290 . sine 9 ¢ (2-28)

2 2 2
-~ (4dF sin o6 9 ¢ (g_;z"_ ¢ 2 3 ¢
(d'i)r.—.o " 5 w50 + cos 8 d':'c')r~03r9x + cos“ 0 3ol

- + -
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Restricting this to small values of curvature,(%——;—z), yields:

BT

22¢ _ 24 3%¢ _ 2sinb cosd 32 sin%0 3 ¢

¢
= COSs +
- 5 EZ ’ 5ré T aT 98 r

ar

e in2 8 22 in 6
o ;. sin 2¢+ 28inb cos® 3¢ (2-30)
- r2 36 rl 39

Equations (2-21), {2-25), and (2-30) give the derivatives of the velocity
_ potential in terms of the bent body coordinates. Substituting these equations
~into the equation of the velocity potential, equation (2-4) yields:

[Rpe———
P et

2 a2 ¢ 32 ¢ (sin? 6+ cosZ 8) 5 ¢
-8 + (sin“ ¢ + cos? 8 + -
i 3x2 ( n? ) 3 ré r o r
) 2
(2 sin 6 cos § —2 sin 6 cos 6) 3 ¢ + (sinze + cos2 6 ) 82¢
; T . 3 T 2 382
- 2
T _ (2 sin 6 cos ® — 2 sin 6 cos 8) 9 ¢ .2 3\dxe/r=0 1 cose 3¢
_ =B —_— (2-31)
. , T 38 ? x
Combining terms yields:
2 (2-32)
’ r=20
29, 32@+¢a¢+1 929, 2 aMX/TTT o2 e
axz 3r2 T 3T 2 32 d x 3 x

Fcr small values of the derivatives of the curvature with respect to the x
cocordinate, this can be written:

2 02, o2 2
- 87 ¢ L 3% L 1 8<1>+1~2 32‘1’:0 ; (2-33)
3xé 3 ré T 3T ¢ 50

This equation, ,Written in bent body cylindrical coordinates, is of the same
form as the equations of the velocity potential written in rigid body cylindrical
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coordinates. The First Order Method of developing solutions for this
equation is described in references 4 and 5. It will be developed here
for this equation which is written in flexible body coordinates.

' The velocity components u, v, and w in the x, r, and © directions
are determined by the following equations:

394 3 ¢cC
u= Vo cosa + FRr + 3 % (2-34)
v = V. sina cos 8 +-42_ 4 ¢ (2-35)
ar a h N .
1 c
w= -V sina sine + a—a%— (2-36)

where ¢, is the axial flow disturbance potential and P is the cross flow
disturbance potential. The sum of these two potentials yields the total
disturbance velocity potential, ¢ . ' b

The potentials must satisfy the boundary conditions at the surface of
the body. The boundary conditions require that the flow at the surface be
tangent to the body surface. This requirement is written:

(d r) :(_L) ’ (2-37)
d x R u R o
where R is the body radius at station x.

Subs.ituting equations (2-34) and (2-35) yields:

ada 3 €
dr Vo sing <cos g + 071 +9r
(dx>R a 8dc (2-38)
Vo €OS o +'5—x- +3_x R

This equation can be written as

| (-d—l; V cos o';)R+ (Sl_i‘ —%%)R + (‘—iﬁ ‘M)R = (V sin o cos 6) R+(—gif—)R

d=x dx dx 9 x

or

+(3¢ C)R . (2-39)
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This equation is satisfied exactly if the two potentials satisfy the following
equations:

P
e e

. 3

dr _(3sa) _ (£L£ a ) ]

(dwi cos OL)R < . r)R % 5 %/r (2-40)
. C (dr 1 ;8¢c),_( 1 BQC)

(Vo sina)r —(dx cos 6 ax /R cos0 3 r/R (2-41)

A solution of equation (2-33) that satisfies the axial flow boundary
. conditions as given in equation (2-40) is:

. 0
¢4 (¥, r) = Jf(x - Br coshz)dz (2-42)
cosh~1_%_

Br : v ‘ B
Fe : where £(0) = 0 for pointed bodies. Thé proof of this is given in appendix A.

_ The axial flow velocity perturbations in the axial and radial directions
are obtained by taking the derivatives of equation (2-42):

%

0
3¢ a f/(x- Br coshz)dz - f(0)
5 x — = (2-43)
* -1 X \2
i cosh = %X B r (73_1:) -1
5 BT -
’ | (=)
d3¢a _ B Jf(x- grcoshz)coshzdz+ f£(0) g r
= - | (2-44)
o -1y T Z_ 2
h — -

For pointed bodies, f is zero at x - Br cosh z = 0, Thus, thé last terms
in equations (2-43) and (2-44) are zero. Let equations (2-42), (2-43), and
(2-44) be written as series: :

11
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cosh"lw
n ‘ n,i |
pa (Xpy Th) = Z f (xn - g rn cosh z) dz (2-45)
i=z2
cosh wn, i1
cosh"lq;n i
392\ _ , |
5w) ° Z f (x, - Br, cosh z) d= (2-46)
n i=2 )
cosh %h i -1
cosh—llli
n _ n,i ‘
< d¢a ) = - BZ /f/ (xy, - B r, cosh z) cosh z dz (2-47)
8 r n i =2 . 1 )
cosh™- Y

n,1i-1

where %, r, is a point on the surface of the body (x;, vy is the body
nose, x, =0, r‘l = 0) and

. i i (2-48)
n,1i g T, .

For values of z such that
-1 < -1 _
cosh wn,i o1 z < cosh ‘pn,i (2-49)
Let f(x, - 8 r, cosh z) be represented by

f(x, - Brpcoshz)=2aj [(Xn" B r,coshz) - (x, - g1, an,i-l)]

(2-50)
i-1
+.Zzaj [(xn' BTy ¥n,j )~ n- BTy l!’n,j-l)]
J:

12
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This can also be written: (2-51)

i
- Brncoshz)= Brn[~ai COShZ+,ZZ(aj -aj_l)‘lfn,j-l]
J = \

f(x

where aj = 0. The derivative of equations (2-50) and (2-51) with respect
to the argument (x,, - 8 r, cosh z) is:

/

f (x,- gr,coshz)=a, (2-52)

1

for values of z specified by equation (2-49). Thus equations (2-46) and

(2-47) can be written:

n
a¢a> o ( -1 -1 )
( ). igz a; \cosh o i " cosh o i-1 (2-53)
n
5 2 2
(§a>=~BZ a»i(‘l’ n,i -l gV oni-1 -} ) (2-54)
¥’ n i=2

DefineXyp j and Yp j as

- -1 -1 .
X = cosh™ Y ni - cosh Yn, i1 (2-55)

3

/ 2 / 2
Yo,i v ¥n,i -1 /¥ ni.1 -l (2-56)

Substituting these expressions yields:

n,i

n
(B*La) =L 2% ' (2-57)
dx/, i=2 |
3¢ n
(, a) S B Y an¥n (2-58)
0 ¥/p i=2

13
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To determine the coefficients, a;, substitute equations (2-57) and
(2-58) into equation (2-40). ‘

n n
dr _ 8 . ﬂ) ‘ .
(—& v cos a)nd i Z: % YT (dx n Z_: 2i Xn, i (2-59)
i=2 i=2
dr n -1 4
—— R r . _
- (d - V cos oz)n - Zz ai[.ﬁYn,1 + (’&';)n Xn,1] (2-60)
Ay - ' r=

dr |
st (5), Xaun

The axial flow perturbation velocities can be determined from equations
(2-57) and (2-58) from the coefficients determined by equation (2-60).

A solution of equation (2-33) that satisfies the cross flow boundary

conditions is:
o

¢o (x,r, 6) =~ cos 68 fm(x - Br cosh z) cosh z dz (2-61)
cosh-! x ‘
. Br

where m(0) is zero for pointed bodies. A proof that equation (2-61) is a
solution of equation (2-33) is given in appendix B.

The‘ cross flow velocity perturbation potentials in the axial, radial,
and circumferential directions are obtained by taking the derivatives of
equation (2-61):

3¢ ¢ 0/ m(0) cos 9(_51;—)
= -cos 68 )m'(x - B r cosh z)cosh z dz + : (2-62)
cosh™! x ’ g r
Br
: ' )
B2 =t coso Bzfm/(x - gr cosh z) cosh® z dz - m(0) cos 66\8 r

J x T
. / X \2 2-63
cosh"l X _ ('é;) -1 ( )

Br

14
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1 5 ¢ sin 08 /m(x - Br cosh z) cosh z dz
r 20 r

cQSh-1 T

Br

(2-64)

For pointed bodies, m is zero 2t x - Br cosh z = 0, Thus the last terms
in equations (2-62) and (2=63) are zero. Let equations (2-61), (2-62),
(2-63), and (2-64) be written as series: : :

n cosh’]'an,i
9 ¢ (%n, T, 8) = - cosbB Z m(xy, - Brpcosh z) cosh z dz (2-65)
i=2 -1 '
h
cos lpn,i -1
COSh-l wn i
n , ! .
(3¢ C) = - cosbB m’ (x, - 8 r, cosh z) cosh z dz (2-66)
9 X i=2 ' ‘
n ! COSh_l wn,i -1
-1
cosh™ n, i
n ¢
(_2_%9_) - cos @82 Z /m’(xn - Br, cosh z) cosh? z dz (2-67)
a o i=2 ,
' — cosh~lvy
) n,i-1
-1
. cosh "¢ n, i
1 ( 3A¢ C) - 8inb 4 Z /m(xn - g Ty cosh z) cosh z dz (2-68)
Ty ¢ n n i=2 1
cosh™ " ¢ n.i=
,i=
where x,, r, is a point on the body surface (xj,r;,6 is the body nose,
x; =0, r; =0)and ‘I’r,i is given by equation (2-48). For values of z
such that v
cosh] < z:< cosh™! (2-69)
Yp,i-1° 2% Yon,i

let m(xp -

B rp cosh z) be represented by




m(x, - Br, cosh z) = by [ (xp= Brpcoshz)-(x,-8r, ¥y . 1)]
i il
1 (2-70)
i i-1 ' ‘
F L b [6n = Bra¥n, ) - o - Sxn ¥, 5o0)]
= ,

This can also be written:
m(x, - B r, cosh z) = Brn[ b; cosh z + Z (b - bj ) ll)n’j - 1] (2-71)
J=

" where by = 0. The derivative of equations (2-70) and (2-71) with respect
to the argument (x, - g rn cosh z) is:

/

m” (x, - 8 r, cosh z) =by A ' : ' - (2-72)

for values of z 'Specified by equation (2-69). Thus equations (2-66), (2-67),

g and (2-68) can be written:
ER I (34"3) - - cos08 Y by f TN g -1 (2-73)
. 3x /n - IZZ 1 v n,i N u) n,i -1 _ -
29.6) - L oq op 2 -1 -1
(31' D=3 cos 68 IZZ b; { cosh ‘pn,i- cosh q’n,i-l

(2-74)

, 2 . / 2
o n,id¥n, i1 -¥n, i-1 ¥n,i-1 -1 ‘
1 (3 ¢\ _ 1 , -1 o
: Tn( se),_i no 8 I;Zg'bl(COSh Vp,i - cosh Yn,i-1
: (2-75)
2 2
L F¥iv Vg1l -wn,i-l‘/—;n1-l 1)
1
Sl 2 2
! +<2 Zz(bJ j-DV ;- 1.)(Jw ni "L -ﬁnl 1 1>z
: v J= ' )

- 16
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Defining 2, , as
’

7 .= v N¥E L1 v sz ~1 (2-76)

n, 1 n, i n, i n,i-1 n,i-1

and substituting equations (2-55), (2-56), and (2-76) into equations
(2-73), (2-74), and (2-75) yields:

(8¢C) = - cos 9B Z b Yn 1 (2-77)
9% /n i=2
, n
(acb c) .1l cos 0 8% T by (Xpj +Zn;) (2-178)
dr n 2 i=2 ! ¢

n i
1 [ 1 . 2 . , .
-;- (—W)n = E‘ sin 66 igz[z 3 j;z(b‘] - bJ - 1) lp n,J - 1 Yn, i

- b; 3Xn,i + Zn,i$ ]

To determine the coefficients, bj, substitute equations (2-77) and (2-78)
into equation (2-41):

(2-79)

) |
Z(VOO Sinasn: '" B.Zzbi ;2(_3__)_1;)1‘1 Yn,i + B n, ' n 1)% (2"80)
vl o= )
-2(V sina)_ Z ; (d__.;) Yo 48 (Kp it Zn,i)i
by = = == ' (2-81)
¢ |2 ( B Bt 7, |

Thus the cross flow disturbance components can be determined from
equations (2-77), (2-78), and (2-79) using the coefficients from equation
(2 81).

17




The flow velocity at station n is determined by equations (2-34),.
(2-35), and (2-36):

3¢a.) (a«tc).
% u = P - -
{ n= Ve CO8 0 pn+ (—--a|x / + TR ; (2-82)
8¢a> (a¢ c)
v - + . 2-83
" ( 9r/n Or/n : ( )
& :
} = - i i L— a¢ Y ' 2~
Won Ve sin g, sin ¢ +‘ - (_5‘9_)11 ( 84)

These velocity components can be determined from the perturbations
given by equations (2-57), (2-58), (2-77), (2-78), and (2-79).

The forebody axial force at station n is given by:

| "
| A= [(rn 41 rn)z — (rn, T . 1)2]q /cpn(e )dq (2-85)
A 2 /

The total forebody axial force is given by:

N=1
A= ) Ay (2-86)
n=2

The local normal force per unit length at body station n is given by:

g m
N;; =-29q7r, /;;pn( p) cos 6 dg (2-87)

0
The total normal force is given by:

R

N -1 x -x
NF = Z N/n( n+12 n - 1) (2-88)
n=2

a

B

s

The pitching moment about the center of gravity is given by:

‘ 18
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N-1 , ' x - X
MF = ) Nn(L-LCG-xn)(n*'l n“l) (2-89)
n=2 2

The center of pressure, measured from the base, is given by:

MF ,
LCP = LCG + NF : (2-90)

The forebo,dy axial force at a station, Ap, on the local normallforce
per unit length, Np, is determined by the pressure coefficient, The exact
expression for the pressure coefficient is:

N

. Y- 1
2 Y-1.,2 Ul + v.2 4+ w2
Cryp = —— §1+.-_- l-._n ' n n . -

pn = T2 5 Mw( = 1} (2-91)

The pressure coefficient is determined from the velocity components
given by equations (2-82), (2-83), and (2-84).

These results, which are based on the First Order Method,
should reduce to the results of the Slender Body Method of reference 3
when the slend2r body restrictions are imposed. It is shown in appendix C
that the method developed in this study does reduce to Dahm's method
with these restrictions,

A flow diagram describing the numerical analysis of the method
developed here and the computer program of this numerical analysis is
given in appendix D. This appendix also includes a description of the
input data required for the program.

In order to check the validity of the program, calculations were
made of the normal force on a rigid cone with a half-angle of 10 degrees
and a base diameter of 3.52 ft, These computations were made with a
dynamic pressure of 760 1b/ft® and an angle-of-attack of 0, 1 radian.
They compared with the &nown results of the Slender Body Method and
with known results of exact calculations, This comparison is shown in
figure (2-2). The agreement between the computer program of the study
and the exact solution is quite good, A similar comparison is shown by

Van Dyke in reference 5 hetween the First Order Method and exact results,

Computations were also made of the aerodynamic characteristics
of the rigid Saturn V vehicle in order to compare the results of the program
with wind tunnel results, Figure (2-3) shows the computed pressure coef-
ficient along the rigid Saturn V vehicle at zero angle-of-attack and at a
Mach number of 2.0, Also shown are wind tunnel results from reference 6.

19
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2 Ao 5

* A flexed cone, shown in figure (2-5), was selected for this purpose. The

As stated in the introduction of reference 6, the discrepancies between
theory -and experiment are largely due to the flow separations that are
observed in wind tunnel tests but are, in general, not accounted for in
aerodynamic calculations, Figure (2-4) shows the local normal force
distribution of the rigid Saturn V vehicle (without fins) at 8 degrees angle-
of-attack, Mach number of 1.7, and a dynamic pressure of 760 1b/£t2,
Also shown in this figure are wind tunnel results of reference 6. As in
the previous case, the discrepancies between the calculations and experi-
mental data are primarily due to flow separation.

In order to determine the general behavior of the First Order Method
for Flexible Bodies, calculations were made for a body of simple geometry,

aerodynamic characteristics of this cone were computed with the program
developed during this study. The aerodynamic characteristics of the fore-
body agree well with known results. The effects of flexing are shown on the
afterbody. The forebody induces a turn into the stream which is straightened
by the afterbody. This straightening produces a normszl force on the after-
body that is opposite in direction to that acting on the forebody and is greater
in magnitude than that on the forebody. If rigid body aerodynamic deriva-
tives with respect to angle-of-attack multiplied by the local angle-of-attack
were used to determine the aerodynamic forces acting on the flexed body
(which is the usual procedure), the computed normal force on the afterbody
would be zero and the total body normal force would be that generated by the
forebody. Thus the method derived in this study provides not only greater
cbmputing accuracy in determining the aerodynamic characteristics of flex-
ible bodies but it also describes phenomena that have been generally ignored.

The First Order Method for Flexible Bodies developed in this section
was then used to compute the aerodynamic characteristics of the rigid and
flexed Saturn V vehicle., All these calculations were made at a Mach
number of 1. 70 and at a dynamic pressure of 760 1b/£t2, In these calculations,
an axially symmetric shroud was added to the Saturn V body to generate the
local normal force that, in reality, is generated by the vehicle fin-shroud

~combination. This shroud is shown in figure (2-6). A theoretical justifi-

cation for this method of simulating fins is given in references 3 and 7.

Local normal force calculations were made for a flexed Saturn V
vehicle whose nose was at an angle-of-attack of 9. 72 degrees and whose
gimbal station was at an angle-of-attack of 8 degrees. The intermediate
angles-of-attack may be determined from the deflection polynomial given
in figure (2-7). The results of these calculations and rigid body calculations
at 8 degrees angle-of-attack are compared in this figure. The effects of the
flexed body can be seen as the discrepancies between the two curves.
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The local normal force distribution of the rigid Saturn V vehicle
at an angle-of-attack of 0,1 radian is given in figure (2-8). The normal
force for this condition is 2, 783x105 1b and the pitching moment about
the center of gravity is 1, 261x108 ft 1b, Figures (2-9) and (2-10) show
the local normal force distribution determined by the First Order Method for
Flexible Bodies of the Saturn V flexed as shown in figures (3-8) and (3-9)
respectively. The normal forces for these deflections are -1, 490x1 03 and
2.721x103 1b and the pitching moments are 1. 900x107 and -2, 954x105 ft
b respectively, ’

For purposes of comparison, flexible body calculations were also
made using the rigid body local normal force derivatives with respect to

" rigid body angle-of-attack multiplied by the local angle-of-attack at each

body station. These calculations were made at a Mach number of 1. 70
and a dynamic pressure of 760 1b/ft%, Figure (2-11) shows the results

-of these calculations made for the vehicle deflected as shown in figure

(3-10). Figure (2-12) shows the results for the vehicle deflected as shown
in figure (3-11). The normal forces are 2, 647x10% 1b and 5, 477x102 1b
respectively, The pitching moments are 1,981x107 ft 1b and -3. 243x105
ft Ib respectively.

. The deflection curves shown in figures (3-8) and (3-10) are almost
identical as are those shown in figures (3-9) and (3-11). However, there is
a considerable variation between the local normal force distribution shown
in figures (2-9) and (2-11). Differences are also shown between the data
in figures (2-10) and (2-12). There are also differences between the re-
sultant body normal forces that correspond to the two deflections.” Thus
there is a significant difference in the local normal force distribution and
the total body normal force computed by the First Order Method and that

. computed by modifying rigid body data to account for local angle-of-attack,

However the pitching moment about the center of gravity of the Saturn V
vehicle at a Mach number of 1. 70 computed by both methods is almost
identical, Considering the differences in the local normal force distribution,
this is considered by the authors to be a coincidence,

In the following section, it is shown that the data in figures (2-9) and
(2-11) can be used to determine the incremental aerodynamic loading caused
by bending which is due to aerodynamic forces, The data in figures (2-10)
and (2-12) can be used to determine the incremental aerodynamic loading
caused by bending due to the normal acceleration of the vehicle,
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'III. STRUCTURAL FLEXING RESPONSE OF A VEHICLE
TO AERCDYNAMIC FORCES

The rigid body aerodynamic loads and the D'Alembert, or inertial,
loads due to the normal acceleration of the vehicle cause the vehicle to flex.
This flexing generates incremental aerodynamic loads due to the aerodynamic
forces and incremental aerodynamic loads due to the normal acceleration,

In the previous section a method was derived that facilitates the calculation
. of these incremental loads. In this section a method of calculating the vehicle
flexing that is due to this loading is developed., An iterative procedurc
between these two analyses is described that determines the resultant in-
cremental aerodynamic loads and the resultant deformation of the vehicle.

RN T
ok

The analysis that follows is applicable to cases where the linear
accelerations due to the rotational accelerations of the vehicle are negligible
K compared to the normal acceleration of the center of gravity of the vehicle.
R It is further restricted to cases where static beam theory, modified to in-

' clude D'Alembert forces, is vahd

The following derivation is the first iteration. In this iteration, the
vehicle flexing is caused by the rigid body aerodynamic forces and the
D'Alembert forces. The incremental aerodynamic forces are zero. The
forces acting ¢n the vehicle are illustrated in figure (3-1). The structural
bending moment acting on the vehicle is:

; : s o, : :
g M (x) = J (N, -wm' ) (x-€)de 7 (3-1)
R 5 |
where M1 (0) = 0 and My (L) = 0. Since, for small angles, the local normal

force of a rigid body is a linear function of angle-of-attack, this equation
: can be written: :

. xX a /7 . . . >4
Mi(x) = & jo ‘I;Iarri {x -€)yde -w g m/’(x - )de (3-2)

Thus the structural bending moment for small angles is a Simple linear
function of rigid body angle-of-attack and normbil acceleration,. Consider
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the loading and coordinate system of figure (3-2). From the mechanics of
structures, the flexing of the vehicle is determined by

2 .
,d._zi_ = . M1 (x) , )
dx El(x) - (3-3)

Substituting equation (3-2) into equation (3-3)

2 X y ‘ X
’
dY! = - 0. 1 Ny (x -e)de +w _L m” (x-e)de (3-4)
dx El da . EI
' 0 ' 0
Let
= X N .
Aw=-t [ 2N e | (3-5)
0 T
= x
By (x) = E}I J m’ (x-¢) de - (3-6)
. ) O .

where A] (0) = O, ]—?;1 (0) = 0. Then equation {3-4) can be written:

2 _ - .
dyy _ A voo -
T2 - oy Al(x) +w By (x) | (3-7)

Integrating yields the following expansion for the body slopes:

X _ X - :
dy1 . oy f Aj(e)de + W f By(e)de - (3-8)
Let
X _ |
Of Aq(e)de =Ki(x)+GA1 (3-9)
x -
J By(<)de =B +Gp, (3-10)
0
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where Ay (0) = 0 and Bj (0) = 0. Substituting yields:

The displacements are determined by integrating this equation:

x ‘ Y3 x v -
y1 = G, %J A (e)de +xGA1§+_W %f ET(g)de+xGB2 (3-12)
0 0
.Let
X .
j _A—(e) de =A1(X)+HA1 {3-13)

0

x .
f, B(e) de B (x) + Hp; ' (3-14)
0.

where A1(0) = 0 and B} (0) = 0. Egquation (3-12) can be written:

Yi= %y ‘{AI (x) + XGAi + HAl} +w {Bl(x) +xGp; + HB]} (3-15)

The displacement and slope of the flexing vehicle is linear in terms of the
rigid body angle-of-attack and normal vehicle acceleration., The first terms
in equations (3-11) and (3-15) give the flexing caused by the rigid body aero-
dynamic forces and the second terms: yield the flexing generated by the
normal acceleration. The terms G and H are integration constants that
position the body with respect to the rigid body coordinate system of figure
(3-2). These constants are evaluated by the requirement that the total body
mass not translate or rotate with respect to the rigid body coordinate sys-
tem. The translational and rotational requirements for the flexing caused
by the rigid body aerodynamic forces are:

L . '
f m’ {Al (x) +x Gag + HA1} dx (3-16)
0 : o ’

- |

o
1]

L o . _
m’ {Al (x) +x Gay + HAI} x dx he ' (3-17)
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The requirements for the flexing caused by the D'Alembert forces are:

L
f m” {Bl (x) + x GB1 + HBl} d x (3-18)
0 .

3
3

o
}]

o
il

L
f m” {Bl (x) + x Gpy + HBl} x dx (3-19)
0

Consider the following definitions:

IA; = f m’ Al (x) dx (3-20)
5 _ N
I .
IAX) = J m’ Aj (x) x dx (3-21)
i 0
8 L
IB] = f m” Bj (x) d x (3-22)
4 0 A : '
S L 7
- IBX; = f m” By (x) xdx : 7 (3-23)
0 .
C L
IM; = J m” dx (3-24)
0
L
IMLj = f m’ xdx (3-25)
0 : : .
IMLLj= f m’ x2dx | : (3-26)
0 ' - :
Substituting these equations into equations (3-16), (3-17), (3-18), and
(3-19) yields:
Gap IML] + Hap IM) = - I4] - (3-27)
¢
GAj IMLL; + HAp IMLy = - IAX] (3-28)
P Gp; IML; + Hp; IM; = - IB} : | (3-29)
Gpp IMLL] + Hp) IML; = - IBX) : (3-30)

£
1
4
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Solving these equations for the integration constants yields:

IAX1 IM] - 1A] IMIg

Gaj >
IML,“ - IM; IMLL
- _ IA] IMLL) - IAX) IML)
! Al ® TML,Z-M] IMLL]
5 : ' IBXy 1°41 - IB] IML
Gpy = 12 1 1 IMLy
e ’ : IMLl - IMl IMLL]_
. Hp, = IB] IMLL] - IBX] IML1

i

2
IML;” - IM; IMLL,

Consider the following definitions:

(R ey

Pix) = Ap(x) +Gay

Qi(x) = Bi(x) +GCpy
P1(x) = Aj(x)+x GA] + HAp
Q) (x) = B1(x)+xGp]+ Hg,

Substituting equation (3-7) into equation (3-3), rewriting equation (3-7),
and substituting equations (3-35), (3-36), (3-37), and (3-8) into equations
(3-11) and (3-15) yields:

N7 = - 0y EI(x) Al (x) - w EI(x) B (x)
: e dz = = ‘
1 Y]_ _ L

el G Al (x) + w By (%)

d¥l = o, B (x)+w Q) (x)

dx
. V1 = G4 P (x)+wQ1 (%)
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(3-31)

(3-32)

(3-33)

(3-34)

(3-35)
(3-36)
(3-37)

(3-38)

(3-39)

(3-7)

(3-40)

(3-41)
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From figures (3-1) and (3-2), the local angle-of-attack along the vehicle for
the first iteration is:

% (x) = %+ dYL (3-42)
dx

Substituting equation (3-39) yields the following expression for the first

iteration angle~of-attack distribution along the body: '

%3 (x) = ot ap Ppo(x) +WQ (x) (3-43)

For selected values of rigid body angle-of-attack and normal acceleration,

"the local normal force for the flexed vehicle can be computed by the flexible

body aerodynamic method of the previous section. However, 2 more general
representation is required that is valid over a wide range of rigid body angles-
of-attack and normal accelerations. This general representation is obtained

by observing in equation (3-43) that the local angle-of-attack distribution is
determined by the summation of the curves, or terms. Because of the linearity
of the aerodynamic equations, the local normal force can be described as the
sum of three terms, each one being generated by a term in the equation of the
local angle-of-attack distribution, This yields the following equation:

/ s 4
7 N; 3N 3N v
N{ (x) = i___a:r(x) o ) o+ 2L () L (3-44)
The term —331:;3-(—}9- is the rigid body local normal force derivative with

respect to the rigid annfle of-attack.  The term 3§.1_(£) is the first iteration -
of the incremental normal force derivative with respgct to the rigid body angle-
of-attack caused by the flexing (or local angle-of-attack distribution) that is due
to aerodynamic forces. It is determined by the flexible body aerodynamic
analysis of the previous section using Pj(x) as the local angle-of-attack distri-
bution. ANl is the first iteration of the incremental local normal force
derivativeawith respect to normal acceleration caused by the flexing that is due
to the normal acceleration, It is also determined by the flexible body aero-
dynamic program. In this incidence, the local angle-of-attack distribution is
given by Q1 (x).

Digressing briefly, a physical interpretation will be made of the terms
in equation (3-44). Consider figure (3-3). Illustration A shows a rigid model
placed at a positive angle-of-attack in a wind tunnel and held motionless, The
local normal force distribution acting on this model is given by _LISI.I_ e
In illustration B, a flexible model (suspended at the base) is placed 151 a wind
tunnel and also held motionless, The rigid body centerline is positioned with
respect to the flexed body by the requirements of translational and rotational
mass distribution, The rigid body angle-of-attack, %r, is determined by the
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B. INCREMENTAL LOADS DUE TO AERODYNAMIC FORCES
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C. INCREMENTAL LOADS DUE TO ACCELERATION

Figure 3-3, [Illustration of the Incremental Acrodynamic
‘ - Loads Caused by Flexing
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angle this axis makes with the flow stream. The local normal force
distribution is given by { 9 N.r.. + _g@T.k %y where k is a sufficiently
large iteration, In illustration C, a flexible model (suspended at the
base) is placed in a wind tunnel and oscillated up and down with the rigid
centerline held horizontal, The condition shown is when the model is
motionless at the lower extremity of its cycle. Here it is at zero angle-
of-attack and has a positive acceleration., The local normal force dis-

tribution is given by -5-;“:;1{ w where k is a sufficiently large iteration,

Returning to the first iteration, the body normal force and pitching
moment about the center of gravity can be obtained from equation (3-44).

Consider the following definitions:

L Vs
B-Nl - Ny dx
Tar = "'5'07';
0
L ’
) N1 f INL g4
o0 1 %0 r
0
‘AL ’
N} - aN1 d
oW AW
0
L
5 MAy [ 3 Np
aar -~ J W; (Xcg - X) d x
0
oL ,
IMAL _ 9 N1 (xcg - ¥) d x
%0, T 0“ dor
L /
s MA1 _ o N1 -
-5 - f % (xcg - x) d x
0 3

Then the first iteration of the body normal force can be written:

Lol

Ny = (8 4-—-1—)°‘r+—g§-r-\3"/
Oy (Xr w
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(3-48)
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(3-50)
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and the first iteration of the pitching moment about the center of gravity
can be written:

Map = (AMAr 4 2MAL) . M

o 0y 9 W

After completing this first iteration, the second must be performed,
then the third, etc, The following is a derivation of the kth jteration of
determining the flexible body aerodynamic characteristics and displacements
once the k - 1th iteration has been carried out. The procedure is identical
to the first iteration except that the incremental aerodynamic loads obtained
in the k - 1th iteration are used in developing the relations of the kth jteration,
Actually the first iteration can be considered a special case of the general kih
itoration where the incremental loads for the k = 0 case are all zere.

For the kth iteration, the expression that determines the structural
bénding is:

My (%) = op f (E +-_3Ek-l> (x-c) de -WJ (m’-.g_\'.x'lli:.l)
0 1

(x-e) de (3-53)

As in equation (3-7), the second derivative of the flexible body displacement is:

2 = = ‘
%}; = % Ak (x) + W B {x) (3-54)
where

X /7

= . . 1 aNr 8Nk-1> ‘ 5

Al\ (u) =om —E—-i f (—5&-1—' + —m; (X ~E ) d € (3 55)
0

ol 1 x N/

By (%) = L ( ’-.3__k_-_.L) (x- ¢) de (3-56)
ke G<) B f R S :
0

where Ak(O) = 0 and lgk(O) = 0, The vehicle slope is given by:

dyk . o, {7&1{ (x) + GAk} + W {Ek(x) +G13k} (3-57)

dx
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where
X =
Al = | Ax(e)de - Gay (3-58)
0
— x =
Bk(x) = f Bi (¢) de - Gpi (3-59)
0 .

and Ky (0) = 0 and By (0) = 0. As in equation (3-15) the vehicle displace-
ment is given by! » '

vk = % {Ak(x) + x GAp + HAk}; + % {Bk(x) ¥ x GBk.k+‘HBk} (3-60)
where '
. ,_
Ag(x) = [ Br(e)de - Hpy | » (3-61)
0 | -
. X :
' Bir(x) = f Bk (e ) de - Hpy ' . (3-62)
0

and Ay (0) = C and By (0) = 0, From the mass translation and rotation require-
ment; :

IAX ) IMk - IAx IMLi (3-63)
IMLK? - IMk IMLLyk ‘

Gap =

. IAKk IMLLy - IAX) IMLic | , 364
HAk IMLYZ - 1Mk IMLLK | (3-64)

IBX1 IMk ~ IBx IMLxk

0

Gk = ' 365
Bl TMLyZ - IMy IMLLy (3-65)
_ - IBk IMLLj - IBXk IMLk )
H = —— 3-66
Pk TMI32 - IMp IMLLg (3-066)
where
L |
IAx = I m’ Ak (x) d x : (3-67)
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L ;
IAXE = | m’Ax@)xdx | (3-58)
; 0 ' : ‘ '
IBy = f m’ Bk (x) dx ' (3-69)
: IBXK = j m” By (x) xdx 7 o (3-70)
- M - [ "’ ax R - o e
o o 0 | :
o :
: ML = [ mimdx . Y N )
,; | 0 | |
IMLLk = - I ‘m’ x%dx R (3-73)
{ - Let
Pt = Ax ) +Gag f e
— | T (x) = By (x) +Gpy ' o | ' (3-75)
N P = Ag(®) + x Gag t Hay E | C(3-76)
Qk (x) = By (%) +x Gy + Hpy , ' : | ‘ (3-77)
: ‘Subst1tut1ng equation (3-54) into equation (3 3), rewriting equation (3-54),
and substituting equations (3-74), {3-75); (3 76), and (3 77) into equations
(3-57) and (3~ 60) yields:
M = - op EL(x) Ay (%) - W EI(x) By (x) LT (3-78)
dz k | =A 7= | o v : )
‘_1.}}.:2_ = Op Ak (x) + W By (x) , ‘ (3-54)
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yk = o Pk (x)+ % Qg (x) o . (3-80)
: The local angle-ﬁof—at}tack‘ along the vehicle of the kth jteration is;

o ) = op+ SXE o _» ey
Substituting equation (3-77) yields:
%) = Ot % Py (o) + 9 By () : SRR (3-82)

. The local normal force of this iteration ié:

Nk (%) = ) Nr(x) ot 3 Nk (x) o I ON (%) & B A (3-83)
(X.r ) a(y_r . 9 ¥ . v
“Here _31\1_2_(;) is the rigid body local normal force derivative w1th respect

“to the ;1g1d angle-of-attack. _§__1\_1_15(_X) is the kth iteration of the mcremental
local normal force derivative w1th respect to the rigid body angle- of-attack
caused by flexing that i due to aerodynamic forces. It is determined by
the flexible body agerodynamic program,using. Pk (x) as the angle-of-attack
d1str1but10n —BM) is the second iteration of the incremental local normal
force derivative with respect to normal acceleration caused by flexing that

is due to acceleration. It is also determined by the aerodynamxc program B
 of the previous section,using Qk (x) as the angle-of-attack.

The kth iteration of the body normal force and pitching moment about
the center of gravity can be obtained from equation (3-83), Consider the
- following definitions: -

L

3Nr 3 Nf a | S
T ' f 8ar dx. : » o ' (3-84)
3 Nic L 3 Nk | o ' ' o
= dx | | , (3-85
aur OJ' Bar 7 : » L N ‘).,
, , o L . P | 7 : | - -
ANk f 2Nk gy - o (3-86)
o w oW , ‘ , , - - ,
5 I
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T IMA . N ,
§ J o ‘ 3-87
b —_— = (Xcg - X) vdx . ( )
N : o
L
i /7 . . I
IMA 9 Nk . ~
. *—a——ark = f o, (reg - %) dx (3-88)
0 ‘
L
IMAK _ 3 N , | |

Then the kth iteration of the body normal force is:

8 o Nk - ( 3 Nr + K Nk) o+ ANy & ‘ , (3-90)
- ’ ' dor u AW o

" and the kth iteration of pitching moment is:

IMAy | BMAk)‘o;r_l_ 3MAK

= 3_
MAk ( 20 do oW ( 1)

T

A numerical analysis was made of the kth iteration and a flow diagram
was prepared. The flow diagram is given in appendix E along with a listing
of the computer program. Instructions for loading the inputs to the program
and sample inputs and outputs are included.

Calculations were made to determine the parameters in the slope

, and deflection equations of the Saturn V.vehicle at maximum dynamic pres-
. . ‘sure. Th1s dynamic pressure is 760 1bs/ft2 and the Mach number is 1. 70.
' ' The mass distribution-and bending stiffness are given in figures (3-4) and-
(3-5). In the first iteration, the rigid body: local normal force derivatives
were obtained from figure (2-8). These are the necessary parameters of
the first iteration. The iteration procedure was then carried out the second
and third time. The process converges rapidly and the third iteration
appears to prov1de sufficient accuracy for the purpose of this study. The
P - vehicle slope and deflectlon parameters P3(x) Q3(x) P3(x) and Q3(x) of

' the third iteration are g1ven in figures (3-6), (3-7), (3-8), and (3-9). The"
. : incremental aerodynamic force distributions, determined by the First
% ‘ - Order Method for Flexible Bodies, that correspond to- thcse flexing conf1gu~
rat1ons are g1ven in flgures (2-9) and (2-10).
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The rigid body normal force derivative with respect to the rigid
body angle-of-attack, ..'.gw, is 2, 783%106 1bs/rad; and the rigid boudy
pitching moment derivative with respect to the rigid body angle-of =
attack, —mes, is 1, 261x108 £t 1b/rad. The third iteration of the in-
cremental txbrce derivative (determined by the flexible body methods of
Section II) with respect to the rigid hody anaglﬁ-ﬂf -attack that is caused
by bending due to the aerodynamic loading, "’J‘&“‘F , 18 «1, 49x105 ib /rad,
The corresponding pitching moment derivative, ,"’ ‘A_3 , is 1,90x107
ft 1/rad, The third iteration of the incremental normal force derivative
with respect to the normal acceleration of the vehicle that is caused by
bending due to the normal a(:celerations,.—.-—,:? , i 2.72%x103 1b secl/ft.
The corresponding pltchmg moment derivat ve, '%93 , is =2, 95x105

For purposes of comparison, aeroelastic calculations were made
of the Saturn V vehicle using the rigid body local normal force derivatives

multiplied by the local angle-of-attack to simulate the flexible body aero-

dynamic forces, For the third iteration, this resulted in local normal for ce

~ distributions shown in figures (2~11) and (2-12) which correspond to the

deflections shown in figures (3-10) and (3-11),

‘This third iteration of the incremental normal force derivative
(determined by modifying the rigid body data to account for the local
angle-of-attack distribution) with respect to the rigid body an g;le ~of - attack
that is caused by bending due to the aerodynamic loadmg, "'“6"i-' is 2. 68x104
lb/rad. The corresponding incremental pitching moment derivative,

3, is 1.993x107 ft Ib/rad, The incremental normal force derivative
with” respect o the normal acceleration of the vehicle that is caused by
bending due to the normal acceleration was also determined using m gwe
rigid body data, This resulted in a value of 5. 4% J.O2 b sec?/ft for~

The corresponding pltchmg moment derivative, —5 w , is ~3,25x105 1b secz.

The aerodynamic characterxstxcs of a flexible hody as well asg the

; body flexing itself are seen to be functions of normal vehicle acceleration

as well as the rigid body angle-of-attack. Thus, in order to assess the
full significance of the flexible body aerodynamic methods of section II,
the dynamics of the vehicle must be analyzed This dynamic analysis will

be performed in section IV,

However, some indication of the significance of the flexible body
local normal furce distribution determined by the First Order Method of
this report, as compared with the use of the rigid body local normal force
derivatives multiplied by the local angles~ of-attack, can be determined
from static considerations,

=
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Consider that the normal acceleration of the vehicle is zero. This -
case is demonstrated in figure (3-2), illustration B. The effects of bovcly
flexing are exaggerated in this case since the terms that are multiplied
by the rigid body angle-of-attack are generally of opposite signs to those
; v multiplied by the normal acceleration. . And, in general, the rigid body
i angle-of-attack will have the same sign as the vehicle normal acceleration,

The effects of flexible body aerodynamics with zero normal acceleration
i can then be considered an upper limit on the values that will be encountered .
1 in flight.

Consider equations (3-82), (3-90), and (3-91) for the third iteration
with w = 0 and the vehicle at the maximum dynamic pressure.

0300 = {1 + 75 (00} o, (3-92)
,‘ | _feNy | N3 |
5 o S Y | - (3-93)

MA3 :{

3 MA 3
i S MA3}qr (3-94)

3qr o r

aopcy . - camwssdy ok o
Prr wa LIRS ot i Y PR

7 Consider equation (3-93). Usin;g flexible body aerodYnamics
= yields P3(0) = 0.137. Thus, the incremental loading caused by bending
: ' due to the aerodynamic forces increases the angle-of-attack at the nose
13.7%. Using modified rigid body aerodynamics yields P3(0) = 0. 139.
. ' , This results in an increase in the angle-of-attack at the nose of 13.9%.

Consider equation (3-93). Flexible body aerodynamics yields
-3 = - 1.49x10° Ib/rad, which results ina decrease in,the body normal
force of 5.4%. Modified rigid body aerodynamics yields o = 2 68x104
1b/rad, which increases the vehicle normal force 1.0%.

d
Flexible body aerodynamics yields _g\élria = 1.90x107 ft 1b/rad.

_From equation (3-94), the incremental pitching moment caused by bending
{ ; due to aerodynamic forces results in an increa’sael\/}g the pitching moment
: of 15.1%. The modified rigid body data yields -z~ = 1, 99x107 ft 1b/rad.
The corresponding increase of pitching moment is 15.8%. Considering
the differences in the local normal force distribution between figures (2-9)
and (2-11) and between figuifes (2-10) and (2-12), this close agreement
~ for the incremental pitching moment determined by the two aerodynamic
methods is considered fortuitous in the case of the Saturn V vehicle. ‘

3 Nz’._
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»

» The flexible body aerodynamic data applied to equations (3-93)
and (3-94) results in a forward shift in the center of pressure of
approximately 0.30 calibers. The modified rigid body aerodynamic data
results in a corresponding shift of 0,20 calibers. ’ '

et

e
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IV. INTEGRATED VEHICLE DYNAMICS

In order to fully assess the significance of the flexible body aero-
dynamic loads, determined by the iterative procedure described in sections
II and III, it is necessary to perform a dynamic analysis of the vehicle,
This is required because the normal acceleration of the vehicle is a factor
in the incremental aerodynamic loading caused by body flexing.

A basic dynamic model of the vehlcle used in this study is only
valid at frequencies below the control frequency of the vehicle since filters
are not included. The objective of this analysis is to illustrate how the
effects of flexible body aerodynamlcs can be incorporated into a yehicle -
dynamic analys1s and also to determine the significance of the flexible body
aerodynamic analysis of section II compared with rigid body aerodynamzc
terms modified to account for variations in load angle-of-attack,

Frequency response functions will be determined for a vehicle where
all motion takes place in the yaw plane. ' This is illustrated in figure (4-1).
The angular momentum equation is: : ' '

‘,I $ = MAy - (L-xcg) F{ B + %}Y;- (L)} I (4->1)
I P MAk +‘(L—'xcg) F {B +%;(L)} =0 - (4-2)

The translational momentum equation is;

mi = Ne+F {g + 2w} (4-3)
mi - Ne-F {g + 2 (1)} =0 | (4-4)

The control equation is:

EERTRIEE IR (#-5)
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Figure 4-1, Yaw Plane Dynamics
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Substituting equation (4-5) into equations (4-2) and (+4-4) yields:

I '-I\/I_Ak+(L-ng)F iiloi. +;:O_d_Y(;:)+.11? *)il_y(L)i =0 (4-0)
! dx dx
m\;}—Nk-F ;"'o ¢+"10£1_Y_(>-<)+-‘tl -¢+9_X(L): = 0 (4-17)
dx dx
Fro.n equation (3-79)
d - == . e
= & = o Pr(®) + ¥ Q (%) (4-8)
D (L) = wp Pr(L) + W Qg (L) (4-9)
dx
The rigid body angle-of-attack is determined by:
o = ¢ +ay-2/Va (4-10)
Substituting into equations (4-8) and (4-9) yields:
dy . = == - .
E’, (%) = ¢ Pr(X) + WOk (X) + (aw - 2/Ve ) Pk (%) (4-11)
L (L) = ¢ P (L) £ W Qe (L) + (% w - 5/ Ve ) Py (L) (4-12)
Repeating equations (3-90) and (3-91):
Nk = o (}Nr 5 ﬂ) ¥ v 2Nk (3-90)
ar xr W
MA = o (MBI MAK) 4w SRRk (3-91
an T oty oW
Substituting equation (4-10) yields:
Ne =0 (3RF 4 )+ W 2EE (- 2V ) (£ LK) gy
\ T T J W Ny ar

6l




+ (ow=2/Vy )

MAE = b (g MK Ll

:hlr ‘V\H'l 1 )W

(J MA ;. + ;'MAI.)

™ 53 2 (4-14)

Substituting equations (4-11), (4-12), (4-13), and (4-14) into cquations
(4-6) and (4-7) yields:

1;': _ ‘_:‘(‘;MAr i+ IJMAk) - TJIVI‘Ak T .. )(QI\AAr+ _,MAr)
dayp d0ge W So oy da

+ (Lexcy) F 3 ag ¢ +tay b+ (g Pr (X) + Py (L)) ¢ + (agQk (X) + Qk(L))w

+ (3o Pk (%) + Pk (L)) (a w - 2/V, )i =0 (4-15)
MW - ¢ (:ﬁ! +ﬂ) -W_J_N_k_ =4 lW-z'/\[l‘)('Nr_*_ ';Nk)
oo, 90, dwW Jop Sy

3 3% b + a1§ + (ag Pk (%) + Pr(L)) ¢ + (ap Qk (X) + Qk (L)) w
+ (a0 Pk (%) + Pk(L)) ( oy - z/Ve )s : P (4-16)

Collecting terms:

"MAy 0 MAk)

ol )

I §+ (L-xcg) Fal ¢ + 3 - (
= : of

4 (L-Xcg) Fao + ‘L-ng) F

(a0 Pk (x) + f’k(L))$ b +3—MWA1< + (Loxcg) F (a0 Qx (x) + Qk(L)) ii'v =

: 3 (aMAr ; L MAr)

- - F(L-xcg) F (a0 Pk (x) + Pk (L) )z
ot r Jar

law - 31V, ) (1=1D

Faj ;+; (fNr - ka) + Fag + F (ag 51((§)+f>k(L))$:
‘).'Ir L‘l;‘r

3’—115 M+F(aoQ(§)+6k(L))$ W =

" % (_GN: 3 er) + F(ag Pk (x) + 'ﬁk(L))f Ui & Vi ) (4-18)
T do
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Consider the following definitions:

A x2 = I, = Xcg (4-19)

st = - (g 2MAK) 4 (Lexcg) Flaoll+ Pi(R)) + Pi(L))  (4-20)
o r g

S2 = - =K 4 (Loxcg) F (ag Qu(®) + Ok (L) ) (4-21)

s3 = - (2 MAr 4 MAr) ;. (L.-xcg) F (a0 Pk (%) + Pi(L)) (4-22)

J‘J.r o 5 of

Ty - wof Mr 4+ 205} 4+ F (ao (1+ Pe(®) ) + Pr(L)) (4-23)
o r our

T, 2 _:L\’\;,lﬁ - M+ F (agQk (X) + Ok (L) ) (4-24)

T3 = (=E + ZK) 4 F(ap PR + Pr(L)) (4-25)
Ja T 30.1-

Substituting these expressions into equations (4-17) and (4-18) yields:

] $+a1bx2F $+S] ¢+S2w = -S3 ( aw - 2/V,, ) (4-26)
alF $+T] ¢+Taw = -T3(aw-2/Vw) (4-27)
or

T21¢ +a] T2 Ax2Fé +S1 Tp6 +S2T2w = -53T2 (4 w- 2/Vy) (4-28)
a1 S2 F§+52T1 +S2Taw = -S2T3 (aw-2/Va) (4-29)

Subtracting equation (4-29) from (4-28) yields:

S2T3-53 Tz)

T2 1§ +a1F (T2 axp - S2) § +(51T2-S2Tn) 4= (2212

(Vw - 2) (4-30)
where o = Vw/V. . Consider the following expressions:

VW = VWO + V'Wl sin w t (4-31)
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I

= ¢T+¢’lsin wt+ ¢ cos wt (4-32)

= ; Tt w rplcos wt-w b sin w t (4-33)
= b T - W 2 b1sin w t - we ¢ 2 cos uwt (4-34)
W= wrptw sinwt+\.x./2 cos wt (4-35)

Substituting these equations into equation (4-30) yields:

a . ) : Ta =82 T
Talip +al F(T28x2-82) ¢ +(S1T2-S2T)) ‘.)T=(§Z_f3 S3 2)

V.

(Vwo - 2) (4-36)

SpT3-S3T =
-T21 2 ¢1-a1 F(T2 tx2 -S2)w ¢2+(51T2-S2T1) 49 :(_Z_V&__;_—Z‘) le (4-37)

x

=2s.] 2 v2t+a)] F(T2 Ax2-S2)w ¢ 1 +(51T2-S2T1) ¢2 = O (4-38)

Let the transient solution be represented by:

bp = Ry eTlt+ Ry eT2t+ R3 (4-39)
_ =21 F(T24x2-52) + ~/ alz FZ(TZ sz-Sz)z- 4T21(S1T2-S2T)) 4-40
W Z 121 b
T (521'3 - S3Tz) (Vwo -z ) (4-41)
Ve S1 T2-S2T)
R = rZ(:ZT(O)'R:S)‘ ’}'T(O) (4-42)
(x2~ 1'1)
(1 - 1)

To determine the constants ¢] and ¢ in the steady state solution, rewrite
equations (4-37) and (4-38):
S2T3-S3T2

L ) Vwl (4-44)

(51T2-52T1 - Tzlu?) ¢ -a1F(T2 6x2-52) » ¢ 2 =(

a] F(T24x2-S2)w ¢ 1 + (S1T2-S2T1 - T21w2) ¢p=0 (4-45)
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Solving these equations yields:

by 1/V, (S2T3-53T2) (S1T2-S2T1 - T2lu?)

= 2\2 2 72 ( Y (4-46)
Vwl (S1T2-S2T1 - T2lu“)® + aj*F< (T2 Ax2 - S2)°
02 -1/Vw (S2T3-S3T2) a) F (T2 ax2 - S2) o (4-47)
Vwl (51T2-52T1 - T21ué)2 + a2 FZ (T2 Axp - S2)= .2

The absolute value of the frequency response function, F b V (w), of
wind velocity to rigid body pitch angle is:

‘F ;,\.(u)‘ - +f(—1) 2, (_1_2_) ‘ (4-48)

le

and the corresponding phase angle is:

=1 - 92/Vw
= t: ——— et 4.-4¢
v ( .32/Vw) ( /)

The frequency response function of wind velocity to normal body
acceleration will now be determined. Substituting equations (4-31), (4-32),
(4-33), and (4-35) into equation (4-27) yields:

aj]F %+ Ty ¢+ Tz wr = ’V—T3 (Vo - 2) (4-50)
ca}F wipg+ Tl ¢1+ Tz wy = %3_ Vel (4-51)
ta]F wd 1+ Ty ¢+ T2 wp = 0 (4-52)
This yields:

wp = 21T 4. =TLogp ZD3 0 (Vwo - 4 (4-53)

T2 T2 2%,

wl - 4 ay Fuo V2 ¥ 11 $1 = Ad (4-54)
Vwil T2 Vwl T2 Vwl T2 Vo




w2 . ayFe "1 1 % (4-5%)
Vwl 12 Vwl T2

Where ]/ Vw] and ¢2/Vw)] are determined by equations (4-46) and
(4-47). The absolute value of the frequency response function, Fg |
of wind velocity to normal vehicle acceleration is given by: o

ipx;},\.(d)l - +f($\1“)2 " (%)2 435

and the corresponding phase angle is:

- 1 - w2 [ Vwl
= t N
e le)

W, V

To determine the frequency response function of wind velocity to
engine gimbal angle, substitute equation (4-11) into equation /4-5):

B = ag {1 + ?’k(i)} b+ al ¢+ agQk(X) W + ap Pk(X) (« w- 2/ V. ) (4-58)

Substituting equations (4-31), (4-32), (4-33), and (4-35) yields:

i . {1 * Ek("‘)} ST +al T +agQu(X) wr+ag Pr(X) (Vwg-2)/V. (4-59)
k 1 B o= ¢ _ ‘ )] i - \Vl d - ;
—L = 14P =1 -2a; v 22 4 L) e 4.5 Bls
Vel 9 3 k(%) Vwl Y Ve ® Qe(x) 75, + 2oPk(x) / V,  (4-60)
Py ; = = s 1 Tl o T \VZ .
a 1 + Pg(x) — 4 a] U e + 3oQK(X) =k (4-61
Vel o) k() Vwl 1 Vwl o~k Vo )
where
;= B+ By sinwt+ By cos wt (4-62)

The functions ¢ | / Vw1, ¢ 2/ Vwl, W1/ Vwl, and W2 / V) are deter-
mined from equations (4-46), (4-47), (4-54), and (4-55). The absolute
value of the frequency response function of wind velocity to engine gimbal
angle is

2

2
lF‘z,v(A)|= +f(%) % (-52'-) {<-63)

Vwi
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and its corresponding phase angle is:

8 - -1 (- B /V\V =
2 v = tan —27-—L (4-6-
E S le)

A numerical analysis was made of equations derived in this
section. This analysis and a listing of the computer program made
from the numerical analysis is given in appendix F. Sample inputs
and outputs are also included in this appendix.

Saturn V dynamic calculations were made in the low frequency
range at maximum dynamic pressure. These calculations were made using
only rigid body aerodynamic data and thcy were also made using this data
and the incremental data caused by bending. _This flexible body data was
obtained from the First Order Method for Flexible Bodies. The absolute
value of the wind velocity to yaw angle frequency response function at

0= 0, | Fs v (0)|, obtained from rigid bedy data was 5. 71x10-% rad sec/

ft. Using the data from the Firsi Order Method for Flexible Bodies
yields |F ¢ (0) | = 7.18x10-4 rad sec/ft. This is an increase of 17. 8%.
The absolute values of those frequency response functions at « = 0.2
rad/sec is essentially unchanged. However, the phase lag for the rigid
body aerodynamic case is 0. 55 rad; and, for the flexible body aerodynamic
case, it is 0. 62 rad.

The rigid body aerodynamic data yields 3.20 sec for the absolute
value of wind velocity to normal vehicle acceleration frequency response
function, :F\;}, ¢ (0}, at © = 0. Including the flexible body data yields
‘ F\'{,’V(OM = 3.63 sec. -This is an increase of 0. 13%. These absolute
values are virtually unchanged at w= 0.2 rad/sec. The rigid body data
yields a phase lag at this frequency of 0.27 rad. The flexible body aero-

dynamic data results in a corresponding phase lag of 0. 34 rad.

An absolute value of the frequency response function of wind
velocity to engine gimbal angle at w = 0, | F‘;,V(O);,of 4.91x10-% rad sec/ft
was computed using rigid body aerodynamic data. A corresponding value
of 6.42x109 was obtained when data from the First Order Method for
Flexible Bodies is included. Including flexible body data increases the
absolute value of the frequency response function by 30.8%. Atw = 0.20
rad/sec, the phase lag for the rigid body aerodynamic case is 0. 30 rad.
The flexible body aerodynamic data yields a phase lag of 0. 36 rad.
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Saturn V dynamic calculations were also made using flexible
body data obtained by multiplying the local rigid body normal force
derivatives by the local angle-of-attack. In the frequency range con-
sidered, the Saturn V frequency response functions that were obtained
were very similar to those computed using the data from First Order
Method for Flexible Bodies. This is because of the similarity of the
pitching moment about the center of gravity obtained from the two
methods. As stated previously, this similarity of the pitching moment
is considered by the authors to be a coincidence in the case of the Saturn V
vehicle.




V. CONCLUSIONS AND RECOMMENDATIONS

The following conclusions were reached as the result of this study:

® The equation of the disturbance velocity potential has been
formulated in flexible body coordinates (see equation (2-33))
and is in the same mathematical form as in cylindrical
coordinates.

. As a result of this similarity in form, the First Order Method
described by Ferri and Van Dyke has been extended to deter-
mine the aerodynamic characteristics of flexible bodies.

. The First Order Method for Flexible Bodies developed in
this study is shown in appendix C to be compatible with
Dahm's Slender Body Method for flexible bodies.

. The First Order Method for Flexible Bodies yields results
that are significantly different from those obtained using rigid
body data modified to account for variations in local angle-of-
attack. This is shown in figure (2-5) and by comparing figure
(2-11) with (2-9) and by comparing figure (2-10) with figure
(2-12).

® The characteristics of flexible bodies are linear in terms of
the rigid body angle-of-attack and the normal acceleration of
a vehicle. This is shown in equations (3-7), (3-39), (3-40),
(3-41), (3-43), (3-44), (3-51), and (3-52).

° The flexible body aerodynamic forces significantly affect the
performance of a vehicle. Static considerations indicate the
pitching moment about the center of gravity is increased more
than 16% for the Saturn V vehicle at the maximum dynamic
pressure. A dynamic analysis indicates that the Saturn V
flexible body aerodynamic forces can increase the engine
gimbal angie by 30%.

. Flexible body calculations were made using the First Order
Method for Flexible Bodies and also using rigid body data
modified to account for variations in local angle-of-attack.
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These two methods gave different results for the local

normal force distribution. However, these differences
occurred in relation to the Saturn V center of gravity,

at time t = 79 sec, such that similar pitching moments

are computed by both methods. This similarity in pitch-

ing moment resulted in similar vehicle dynamic response
calculations. This is considered to be a fortunate coincidence
in the case of the Saturn V vehicle.

The following recommendations are based on the results of
this study:

. Wind tunnel tests should be conducted on bent models of
simple geometry. These models would consist of com-
binations of ogives, cones, cone frustums, and cylinders.

. The First Order Method for Flexible Bodies should be
applied to the flexible bodies currently being studied in
wind tunnel tests by Aero-Astrodynamic Laboratory of
MSFC.

. A noniterative computing scheme should be devised for
computing the aeroelastic response of a flexible vehicle.

» The First Order Method for Flexible Bodies should be extended
to the Hybrid Method for flexible bodies.

° The First Order Method for Flexible Bodies is prcbably valid
for non-uniform cross flow. This should be investigated.
Extensions should be made if necessary.

° The methods of this study should bc integrated into a more
exact dynamic simulation.

° The methods of analyzing separated flows developed by Korst
should be included in the flexible body aerodynamic analysis.

. The First Order Method for Flexible Bodies should be ex-
tended to include time dependent terms.
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APPENDIX A

The fact that equation (2-42) is a solution of equation (2-33) is
demonstrated in this appendix. Consider equation (2-42):

0
¢, (x, 1) = J' f(x - Br coshz)d =z (2-42)
cosh-1 -;—
5r

Taking the derivative with respect to x yields:

0
- j f'(x- r coshz)dz - £ (0) (2-43)

=] =X
cosh —:. By /(_’_{_)2 -1

r

P

For pointed bodies, the source strength, f, is zeroatx -8 r coshz = 0.
Thus the last term in equation (2-41) is zero. Taking the second derivative

yields:

0
2
) $ a V4 7/
wrees = J‘ f (x- Brcoshz)dz - f(0) (A-1)
=]re = 3 X =
h “ ==
CcOSs e ur\/( D‘I) = ]
Taking the derivatives of equation (2-41) with respect to r yields:
0
¢ /
e < PR J.f(x—brcoshz)coshzdz+ £ (0) (bi) (2-44)
T T
cosh-1 _x_r fT_ ;]
o) 5
wd-f) —
0 2
32 4a 2 | ¢~ é h h2zdz -1 (0) ("i> (A-2
=g~ = B (lx—xcrcos z) cosh® zdz - £ (0)g \B: -2)
- X
comt X T
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Taking the derivatives of equation (2-42) with respect to © yields:

= 0 (A-3)

—362 = 0 (A-4)

Substituting equations (A-1), (2-44), (A-2), and (A-4) into equation
(2-33) yields:

0 0
ot 2 e 2
_ g2 f (x- rcoshz)dz+ g f (x- Br cosh z) cosh“zdz
cosh™} =S cosh-l X
B r B r
- 0 >
B / v 4 [ ( x ) _1]
= r f (x -8 rcoshz)coshzdz=+ £f(0) § Zr (A-5)
-1 x
cosh . " / (i) 2
Br/ -1
0 0
32 = inh2 8 g
B8 f (x- Br cosh z) sinh“zdz - — f (x-8r cosh z)coshzdz
cosh-1 X : cosh-1 X
Br Br
_ (a) 7 xX 2
= £ ¢ (0) (e_r) il (A-6)
: f/ . 'nh 0 B 4 X 2
- = f (x- 87 cosh z) sinh z = — £(0) (B—r) s 1 (A-T)
cosh~1 X
Br
g 7 / 2 = B .7 2
S p.a = X
= £ (0 (B—r) -1 — £ (0) J (rr) - (A-8)

which proves that equation (2-42) is a solution of equation (2-33).
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APPENDIX B

The fact that equation (2-61) is a solution of equation (2-33) is
demonstrated in this appendix. Consider equation (2-61):

bolx, r,8)=-cosb E fm(x- Br cosh z) cosh zdz (2-61)
cosh” 13%-

where m (0) = 0 for a closed pointed body. The function m(x- B r cosh z)
must be chosen to fit the boundary conditions of the body. Consider the
derivative of equation (2-61) with respect to x:

—?C = -cosb b J’ m/(x- fr cosh z) coshzdz + Eg‘g-)
3 e
cosh -B-?
cos ¢ (&)
(2-62)
(JL)Z =
p T

The last term is zero since m(0) = 0. Taking the second derivative with
respect to x yields:

o
——}—(2—‘ = - cosf B f m” (x-prcoshz) coshzdz+—-(—) ( (B-1)

1. . X
cosh~ g (
Taking the cross derivative with respect to x and r yields: (B-2)
2 : : (%)°
— € = 4t cosb B 2 j m//(x- g r coshz) coshzzdz- E;L(D os uB BY

T
cosh-1 X / (x )2_1

g r

The first and second derivatives with respect to r are given by:
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0
P =4 cos® 22 J m” (x- 8r cosh z) coshzzdz-xl(-o-)

ar T
cosh-1 X
Br
x \ 2
s )
el (2-63)
J (%)%
0
—Z—' 2¢ c = - cos ¢ :3 j‘ m//(x-fr cosh z) COShSZdZ + IL/-LQ)
cosh-1 X
Br
3
X

CcOSs 2 (ir)

> (B-3)
J (%) = 1
And the second derivative with respect to © is:

0

v
—Z— = +cos 8 B m(x- £ r cosh z) coshzdz (B-4)

cosh-1 X
ET

Substituting equations (B-1). (2-63), (B-3), and (B-4) into equation (2-33)
yields:

0
7 a g2
- cos 88> f m (x- Br cosh z) coshzsinhzzdz+ch5—‘ '
cosh-1 -
B r

0

7

0
m (x- 8 r cosh z) cosh®zdz - %zii J m(x-8 r cosh z) coshzdz=

cosh-1 -fi; t cosh-1 Txi'
B 2 ]
o) eons 02 (e3) L(3) 21
< —— (B-5)
I (3

Rearranging:

15




0
- cosft B s [b’m ’(x- B r cosh z) cosh z sinh?‘z- —} m’(x - [ rcosh z)
cosh-1 X
Br
(coshz + sinh® Z)] dz - C%S—U B J' [B m’(x - Ir cosh z) sinh%z- —ll- m
cosh-1 —51-_

; () [(2)? ]
- m’(0) cos o & \Fr/ L\Fr) -l

(x - £r cosh z) cosh z ] dz = ~ —— (2-45)
2
X
J (%)
Integrating this equation:
- _(._;)_s_ 62 m” (x- 8 r cosh z) cosh z sinh z - 5:—25: E m(x- 8 r cosh z)
" (%) &) (&) ]
cosh —_ = X
sinh z] o’ SR mr/(O) cos 0 2 g r) <B 1‘) -1 (2-46)
Mo,
0 J (&)
m’ (0) cos ¢ Ez (%) \/ (_E{T') 2_1 m (0 x —«2——
o 8 . m(0) 0 BJ (X_\2.
- : cos (B r) i
=
2
, X
~m (0) cos @ 52 (lz 1‘) \/ (-?—I) -1 (2-47)

r

Since m (0) = 0, the second term in equation 2-47) is zero. The left side of
the equation is then equal to the right side, which proves that equation (2-37)
is a solution of the equation of the velocity potential, equation (2-33). This
equation is written in bent body coordinates and is valid only for bodies with
small curvature and with small rates of change of curvature.
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APPENDIX C

The extension of the First Order Method developed for flexible
bodies will reduce to Dahm's result ( reference 3) when the slender body
restrictions are applied. This result is demonstrated in this appendix.
The pressure coefficient in the slender body theory is:

3¢
, (35);

Cp= -=mg™— (C-1)

Thus, only the partial derivative of the cross flow disturbance potential
with respect to x need be considered. In slender body theory for bent
bodies, this derivative is given by:

i -og 0 2 akte i
( .()R i B0 Ve G4(R€ sin @) (C-2)
X R dx

The expression for the derivative in the First Order Method will
be shown to reduce to this expression when the slender body restrictions are

=8 o " - :
applied. These restrictions require that ! and ((_]_'.> are negligibie in
X dx
i n

satisfying the boundary conditions. Consider equations (2-77) and (2-56):

& n
(—'5—5) = -cos8E I bj Yn,j (2-77)

X /n =
2 2
Yn,i~ "n, 1 -1 - "l‘n,]. -1 -1 R
The slender body restrictions yield:

R . Bt 11 | (C-3)

Substituting equations (C-3) into (£-77) yields:

ik




bi (xi - %j.1) (C-4)

AT
P
R
+
(g}
(o]
w
a
n[/:J

Now consider equation (2-80):
- d
2(V.sin a), = -6 ) by z(a_r_) Yo i +8(Xn,it Zn, -1)% (2-80)
S X/n
From the slender bedy restrictions (g—;)“ is negligible and Xy, §°° 7 n i-
Thus equation (2-80) can be written:

- n
(Vo sin g4)p = - 1/2 ;:,ZZ_ bi Zn,i (C-5)
Ie=ng

From equation (2-76)

‘ 2 : 2 )
Zai= Ymif¥mit - oy Vai-or (2-76)
Applying the slender body restricticns yields:
s\ e T 2
Zyi = (_\_u..__\_L) = (_”‘_n___\.L_-L) (C-6)
£ Tn F In

Substituting this expression into equation {C-3) yiclds:

n

ro 2 (V. sinalp=-1/2 ) b }(xn R L VS 1)22 (C-7)
)
Likewise:
, n+l C-8)
réi1 (Ve sin@lgyy=-1/2 2 b z("nﬂ - %)% - (Rpy1m X4-1)
{=2 )
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Subtracting equation (C-8) from equation (C-7):

s 2 .
r§+ 1 (Vo sina), 4 - . (Vo sina ), =+ 1/2 by 4 1(x, 4 1~ xn)2
n 2 5 n 5
-1/221 by 3(xn+l-xi) —(xn+1-xi_l)$+l/22‘ big(xn—xi) (C-9)
¥ =2 i=2 '

(xp - x5 . l)zs

rnZH(vm sina), 4] - l'n2 (Vo sina), = + 1/2b,41 (xp41 - xn)2

(C-10)
n
*L b; (x4 1 - x ) (x5 'xi—l)
Dividing by (x, 4 ] - Xp):
(C-11)

. : 2 RS n
re, 1 (Vo sina)y 4 )- r¢(V=sina),
- = = =1/2bp (xp+1- xp) + ) bj (xi-%i.1)

n+1 n f=2

Since 1/2 by (Xpn+1- Xxn) is small compared with the sum, equation (C-11)
can be substituted into equation (C-4) to yield:

- . Vs . 2 e
(—_«. c) _ cos® grn +1 (Ve sina)y 4 1 -ty (Vo sino)y (C-12)
" In Xn +1 -~ *n

which is equivalent to equation (C-2). Thus, applying the slender body
restrictions to the First Order Method reduces it to the Slender Body
Method for flexible bodies.
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APPENDIX D

This anpendix contains the material used to compute the aero-
dynamic characteristics of a bent body as derived in section II.
Specifically, it contains a definition of the key terms and the significant
equations of the numerical analysis. It also contains a flow diagram
of the analysis and a listing of the computer program. Sample input and
output data are included. This computer program determines the following
aerodynamic parameters of a bent axially symmetric body in the supersonic
regime:

The pressure coefficients around the body at each station
Local normal force per foot

Total normal force forward of a given body station

Total body normal force

Total forebody axial force

Total body pitching moment

Body center of pressure

The following parameters must be input to the program:

Body velocity

Specific heat ratio

Dynamic pressure

Body length

Distance of the center of gravity from the body base
Mach number

Body geometry and local angle-of-attack at various body
stations

The computation sequence used in this program requires that the
last two body statio: = be identical; that is, X(NB) = X(NB-1), R(NB) =
R(NB-1), and ALP(NB) = ALP(NB-1).
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Sxmbol
U

CP
QNFP
QNPS1
QNPS2
QNPS

ONF
QMF

QNS

QMS

GAM

QL
QLCG
QM

ALP
QLCP
QLCS

DEFINITION OF SYMBOLS

Definition

Axial velocity component (ft/sec)

Radial velocity component (ft/sec)

Pressure coefficient

Local normal force per foot (lb /ft)

Local normal force per foot caused by area change
from slender body theory (1b /ft)

Local normal force per foot caused by bending from
slender body theory (lb /ft)

Local normal force per foot from slender body theory
(Ib /ft)

Total normal force forward of station N (lb )

Total pitching moment about the center of gravity
(ft/1b )

Total normal force forward of station N from slender
body theory (lb )

Total pitching moment about the center of gravity from
slender body theory (ft/1b )

Free stream velocity (ft/sec)

Specific heat ratio

Dynamic pressure (lb /ftz)

Vehicle length (ft)

Distance between body center of gravity and base (ft)

Free stream Mach number

Distance of body station from body nose (ft)

Radius of body at body station (ft)

Local angle-of-attack at body station (ft)

Distance between center of pressure and base (ft)

Distance between center of pressure and base from
slender body theory (ft)
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SOLUTION OF EQUATIONS

1. BET - \/QM? - 1
—— X (N)

5. ZSIM ="\/ZNIM? - 1

4. ZNI =

x(N) - {x@ - BET (RD]}

BET [R(N)]

5. zSI = "\ [ZNIZ - 1

6. XB(I) = ZNIM(ZSIM) - ZNI (ZSI) +
7. YB(I) = ZSIM - ZSI

8. ZB(I) = ZNIM [YB(I)] - 1/2 XB(I)
9. SBX = SBX - Bg;ﬁ;(”

0. BN - 5BX + 2L ALEOU

11.  SBY = SBY + BET [B(I)] [YB(I)]
12. SBZ = SBZ + BET? [B(I)] [ZB(I)]

82

In(2NIM + ZSIM) -

In(ZNI + ZSI)




13.

14.

155

16.

7

18-

19

20.

Zs

L.

23,

24.

25.

U=V + SBY {cos[mo.on - 0.01)]}
W = {SBZ - V[ALP(N)]} sin [7‘((0.02J - 0. 01)]
GAM
GAM - 1 24 w2| | GAM -1
PO) - CRvaWE [” B (‘ ' LJZ‘” 3

QNFP - QNFP - 0. 04 TT(Q) [R(N)] CP(J) cos[Tr(o. 02J + 0. 01)]

R(N+1) - R(N-1) |
X(N+1) - X(N-1) |

QNPSI1 = 4 7T (Q) ALP(N) R(N) [

) > [ALP(N+1) - ALP(N-1) ]
QNPS2 = 2 7T (Q) R(N) [ X(N+1) - X(N-1)

QNPS - QNPS1 + QNPS2
QNF - QNF + 1/2 QNFP[X(N+ 1) - X(N-l)]
QMF = QMF - 1/2 QNFP [X(N) - QL+ QLCG][X(NH) . X(N-l)]
QNS = QNS + 1/2 QNPS [X(N+l) - X(N-l)]

QMS = QMS - 1/2 QNPS [X(N) - QL + QLCG] [X(N+l) - X(N-l)]

QMF
QLCP = QLCG + ONF
QMS
QLCS = QLCG + QNS
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COMPUTER FLOW DIAGRAM

INPUTS

IPRT, QM, V, GAM, Q, QL, QLCG, NB, X(N), R(N), ALP(N), (52 values N)

Y
PRINT INPUTS

R

7= 3.14159265358979323846

QNF = 0

QMF = 0

QAF = 0

QNS = 0

QMS = 0

QAS = 0 B(l) = 0, CN(l) = 0, A(l)=0

BET - v QM2-1

NBM = NB-1

GA = GAM/(GAM - 1.0)
DO 100 N=2, NBM

-

DRDX = {R(N) - R(N-1)} /{X(N) - X(N-1)}
PNIM = X(N)/ {BET R(N)}

PN(1) = PNIM

PSIM =+ PNIM%-1

DO10 I=2, N

PN(I) = [X(N) - {X(I) - BET R(I)}] /{BET R(N)}
PSI = « PN(I)’Z-I

XBN(I) = In {PN(I) + PSI} - In{PNIM + PSIM}
YBN(I) = PSI - PSIM

ZBM(I) = PN(I) x PSI - PNIM x PSIM

PNIM = PN(I)

10 PSIM = PSI
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DO20 I=2, NM
= SA + A(I) [BET x YBN(I) + DRDX x XBN(I)]
20SB =SB + B(I) [2DRDX x YBN(I) + BET{ XBN(I) + ZBN(I)}]
A(N) = - {DRDX x V + SA} / {BET x YBN(N) + DRDX x XBN(N)}

B(N) = - {2V x ALP(N) + BET x SB} /[ 2BET x DRDX x YBN(N)
+ BET2 {XBN(N) + ZBN(N)} ]

DO 30 I1=2, N

30 CN(I) = CN(I-1) + {B(I) - B(I-1)} PN(I-1)

SAX = 0

SAR = 0

SBX = 0

SBR = 0

SBT = 0

DO40 I =2, N
SAX = SAX + A(I) x XBN(I)
SAR = SAR - BET x A(I) x YBN(I)
SBX = SBX - BET x B(I) x YBN(I)
SBR = SBR + 1/2 BETZ B(I) {XBN(I) + ZB (1)}
40SBT = SBT + 1/2 BET? [2CN(I) x YBN(I) - B(I) {XBN(I) + ZBN(I)}]

Y
DO50 J =1, 50
U =V +SAX + SBX x cos {1 (0.02 J -0.01)}
VS = SAR + [V x ALP(N) + SBR] x cos {n (0.02 J - 0.01)}
W = [SBT - V x ALP(N)] sin{m -(0.02 T - 0.01)}

50 CP(J) = (2/(GAM x QM2)} x {[1+ -@’FQMZ(l .
Vv

U2+ vs2 + we

!
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Gl = 1/4[{R(N +1) + R(N)}%- {R(N) + R(N-1)} 4 Q
G2 = - 2QR(N)
SCP - 0
SCPC = 0
DO 60 J =1, 50
SCP =SCP + 0.02 x 1 CP(J) :
60 SCPC = SCPC + 0.027 - CP(J) cos [n- (0.02J - 0.01)]
AN = Gl x SCP
QNFP = G2 x SCPC

v

QNPS1 = 47 Q ALP(N) R(N) DRDX
QNPS2 = 21 Q R(N)2 [{ALP(N+1) - ALP(N-1)} /{X(N+1) - X(N-1)}]

QNPS - QNPS1 + QNPS2
QAF = QAF + AN

QNF = QNF + 1/2 QNFP {X(N+1) - X(N-1)}

QMF = QMF - 1/2 QNFP {X(N) - QL + QLCG} x {X(N+1) - X(N-1)}

QNS = QNS + 1/2 QNPS{ X(N+1) - X(N-1)}
100 QMS = QMS - 1/2 QNPS {X(N) - QL + QLCG} x{X(N+l) - X(N-1}}

v

QLCP = QLCG + QMF/QNF
QLCS = QLCG + QMS/QNS

v

PRINT
N, A(N), B(N), QNFP, QNPS1, QNPS2, QNPS, CP(J) for each N

QLCP, QLCS, QMF, QNS, QMS, QAF for N = NB

each N QNF, X(N), R(N), ALP(N)
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PREPARATION OF DATA

The GE-415 FORTRAN Routine 4831-1108 has the capability of
making a series of consecutive runs. The input for this routine consists
of a Production Control Card, Title Card, two cards of initial data, and
one data table.

Production Control Card

The first card presented for each production run must be the
Production Control Card, which specifies in column 10 the number of
runs contained within the production run.

Title Card

The title card is a card which lets the user identify the runs. The
computer will print whatever is punched on this card. The title card must
be present in every run even if it is blank.

Data Cards

There are two input data cards. Card 1 contains NB, the number
of cards contained in the data table, and IPRT, a print option. Card 2
contains V, GAM, Q, QL, QLCG, and QM. The definitions of the above
symbols are given in the section on definition of symbols.

Data Table

A data table must be presented for each run in a production run.
The number of cards in the data table is equal to NB which is listed on the
first data card of each run. The values given are X, R, and ALP. The
definitions of the values contained in the data table are given in the section
on definition of symbols.

Data Presentation

The form of the data to be presented for Computer Routine 4831-1108
must be submitted as shown below.
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Production Control Card Format (8110)
NRUNS

Title Card Format (80H)

First Data Card Format (8I10)

NB
IPRT

Second Data Card Format (8L10. 4)

\'
GAM
Q

QL
QLCG
QM

Data Table Format (8E10. 4)

X (N)
R (N)
ALP(N)

All of the above data must be presented for the first of a series
of consecutive runs. For each subsequent run, omit the Production Control
Card.

The deck for a production run is prepared by simply stacking the
runs consecutively with the table being the last card of a run and the title
card as the first card of the next run.
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O 0w

104

1111

101

102

?
103

60N

FORTRAN PROGRAM LISTING

JORLVTATFE 412
PX
JFORTRAN,NPT
ENDOPT
SFTMEM p00NONON
PROARRAM NUMBRER = 4K<1=1108
PROGRAM NAME = | OCAl AMGLE=NF=-ATTACK AERODYNAMICS PROGRAM
DIMENSION X(250),R(72290),ALP(250),R(25N),XB(25N)Y, YR(250),ZH(Z50)
DIMENSION PN(25N0),At250),CN(250),XRN(25N), YRN(25N),ZRBN(25N),CP (1)
CN(1) = 0.0
Rt1y = n,0
A(1Y = 0,N
PRINT OK
IRUNS = 0
RFAD 5nNN,NRUNS
PRINT 104 ,NRUNS
FORMAT (10X, 37HTHE “UMRFR OF RUNS TN RE PROCESSED [S,1%)
PRINT 9K
JRUNS = JRUNS + 1
PRINT AND
RFAD 1111
PRINT 1111
FORMAT (BOM
1 )
PRINT ®wN2
RFAD 50N ,NR, |PRT
PRINT 1Nn1,NR, IPRT
FORMAT (10X,4HNR y 15,10X,4HIPRT, 15)
RFAD 501,V,GAM,N,0L,QLCG,0M
PRINT 102,V,GAM,Q,01 ,O0LCG, QM
FORMAT (10X, 4HV yF16,R,BX,4HGAM ,F1A.R,5%,4HN yF16.R/
1 1NX,4HNL.  ,F16.8,5X,4HQLCG,F16.8,2X,4HAM  ,F16,.8)
Do 2 N = 1,NB
RFAD S01,X(N),RIN),ALP(N)
PRINT 103,X(N),R(N)Y,ALP(N)
FORMAT (10X,4HX yF16.R,5X4HR VF16.B,9X4HALP LF16,R)
PRIMT QR
PRINT 600
FORMAT (20X58HLNCAL ANGLE=-OF-ATTACK AFRNDYNAMICS PROGRAM, 4K1-11(
18/7)
Pl = %,141592651%6

QNF = NOMF = QAF = QMS = QMS = 0AS = 0.0
HET = SART(NM##2-1,1)
NRM = NR < 1

GA = GAM/(GAM=-1.0)

DN 100 N = 2,NRM™

DRDX (RINY=R(N=1)Y/(XIN)=X(N=1))

PNIM X(N)/(RET#R(N))

PN(1) = PNIM

PSIM = SQRT(PNIMa#2-1,0)

DO 10 1 = 2N

PN(T) = (X(N)=(Y(])-BFT#R(])))/(BFT#R(N))
PST = SQRT(PN([)Y##22-1,0)

XRN(]) ALOG(PN(T)Y+PSI)-ALOG(PNIM+PSIM)
YRN(]) PSI-PSIM
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IRNC]Y = PN(])#PS[-PNIMePS]M™
PNIM = PN(])
P~ = PSI
[F ¢IPRT ,EQ, 0)Y GO TN 10
PRINT 1001, XBN(T),YENITY7ZBNCT)
1001 FORMAT (SXY,3HXBN F1AR.OX-JRYRN,E16.8,5%, *tHZRN k1A, ,R"/)
17 CONTINUF
SA = S8 = 0.0
NM 2 N - 1
DO 20 | = 2,NM
SA = SA+A(]I®(RFT®YENC(T)I+DROX2XHNITY)
SR = QE4R(II#(2.0#NRDXEYRN(I)+BRET*(XBN(T)+ZHENCT)))
€ ¢IPRT kA, NY GO TO 20
PRINT 1Nn0?2,SA,SR
1002 FORMAT (5%,3HSA ,F14.B,5X,3HSK ,F1A.B/)
20 CONTINUF
A(NY = =(DRNDX#V+SAY/(HFTaYBN(N)+DRNX2XKBN(N))
BINY = =(2,N8VaALP( Y )+RFTaSR)Y/ (72, NaRET&aNRI'X=YRN(N)+RETss)
#(XRN(N)+7ZRN(NY)Y)
DO 30 1 = 2,N
CN(T) = CN(I=1)+(R(1)=B(]=-1))«PN(]=1)
[F ¢IPRT LEN, 0)Y GO TN 30
PRINT 5055
5055 FORMAT (10X,2HCN/)
PRINT 2Nn1,CN(1),CN(2)
In CONTINUEF
SAX = SA4R = SKXx = SR = SRBRT = (0.n
DN 40 | = 2,N

-

SAX = SAX+AC(])YeXBN(T1)

SAR = SAR=-AFT#A(])YaYRBN(])

SkX = SRX=-RFTeR(])YsvYBN(I])

SRR = SRR+N,5#RET#a2#R (1) s (XBN(1)+Z2RN(]))

SRT = GRT+N,53RBFTew2a (2 0sCN(I aYRNC[I=RETY#(XKN(T)#ZRNC]) )

[F (IPRT ,EN., NY GO TO 40
PRINT 1003,SAX,SAR,S8X,SHER,SRART
10N FNARMAT (55X, 3HSAX,F1A,R,5X,3HSAR.F1A.3,5X, SHSRY ,F1A A,
1 OX s 3HSBY  F1~,R,5X,3IHSKT ,E1A.8/)
4an CONTINUF
DO 50 JU = 1,50
U = V+SAX+SRX#CAS(PI&#(N,02%)=-".01))
VS = SAR+(V#ALP(N)+SRBR)Y«COS(PI&#(N.N?2#)=-N,C1))
W = (SHT=VeALP(N))#SIN{P]#(0,02%0~-0.01))
CP(J) = (2.0/(GAMeQM=#D))a((1.0+((GAM=1.,N0)/2.,N)eQMea?x
1(1.0=((U:za24VSeuc2ewna)/Vea2)))uala-1.0)
IF (IPRT .EN, 0)Y GO TO 50
PRINT /77,U,W,VS
777 FORMAT (10X, 3HU yF16.8,5X, 3HW yF1A,R,5X,3HVS ,E16.H87)
50 CONTNUF
Gl = N, P58 ((RIN+1)+R(N))#22-(R(M)+R(N=-1))#n2)x0
G? = -2.08Q#*R(N)
SCP = SCPC = n.,N
DO A0 J = 1,50
SCP = SCP+0.02«P =P (J)
i 60 SCPC = SCPC+0.N2«P[«CP(J)#CNS(PI#(N.022J-0,"1))
! AN = (31#SCP
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200

2011

2N

207

2022

232%

PLEK

100

2Nn4
501

QR
5N1
502

93
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QMEP = G 2#SCPC

QNPR]1 = 4,.NeP[#N&A| P(MNY#R(N)=DRNY

QNPE? = . NP [#N2R (P )eaPa ( (ALP(MN+1)=ALPIN=1))/(X(N+1)=-X(N=1)))
QNPS = NNPS1+NNPS2

QAF = GAFe+AN

ONF = QNF 0. 580NFPatXINe1)=X(N=1))

AME = OMF=-0,5#QNFPa(X(N)=-NL+QICRY)# (X (Ne1)=X(N=-1))
ONS = QNS+N , S5#QNPSaEX(N+1)=X(N=-1))

OMS = QOMS=(0.5#QMPSa(X(IN)-QL+QLCG)# (X (N+1)=-X(N-1))

PRINT 200N

FORMAT (63X 3HN =,18/7)

PRINT 2Nn11

FARMAT (1)Xs2HCR/)

PeINT 2N01,CP

BRIAT 502

FORMAT (1NE13.5)

PRINT 2n2,QMFP,NNPSY,QNPS2,0NPS
FORMAT (1NX,5HQNFP ,E1A,8,5%,~HANPSY ,F1A K, 85X ,5HQNPSZ . F16.8,5X,5H0
\NPS ,F16.88/77)

PRIANT 2022,A(N),B(N)Y,ANF

FORMAT (1NX,5HA yE16.8,5%, KA »yF16,R,5%,5HANI y FY& LB L)
PRINT 2323, X(N),RINYJALP(N)
FNJVAT (qu.‘7“‘ p&!h-b05X1LHQ UF]“.“.L)X';‘HALP of'lf'.'i//)

[F ¢(]IPRT .FQ. OY GO TN 100
PRINT ¢2N3,NAF,0MF,QMS,0QMS
FORMAT (10X,9HNAF ,F1A,8,5X, -HAMFE yF1A .4 ,5X,5HNS yE168.8,5X,5HEQ
MS WF16.8/77)
C(\\YI\“;
QLCP = NLCG+(NMF/ONF)
QLCS = NLCG+(QMS/QNS)
PRINT 203,0AF ,QMF,Q8S,0QMS
PRINT 204,QLCP,NLCS
FORMAT (10X,5HQLCP ,E16.8,5X 1 “HALCS »E1A.5%//)
FAORMAT (RI10)
FANRMAT (1H1)
FANRMAT (BF10.4)
FORMAT (/77)
[F (IRUNS = NRUNS) 1,99,99
STNP 1
ENIL‘
JFOUJ




SAMPLE INPUT

THE NUMBER NF RJ S TN RE PROCFSSFD IS 1

sy
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LOCAL aNGLF=0OF=ATTACK AERODYNAMICS PROGRAM,

SATIRN

69 1PRT

N.164R000NF+N4
N,348343N0r+N3
A,.00NAN0NOF +0ND
1,15410000-¢01
N.30B3N0NAOF«+01
n,3Is5NAN00N0k+N
n.,4000N000NF+01
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N,21670000F+N?
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0,6400000N0F+N2
1,.68000009F +07
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N.7600N0000F+N?
N.8009N0Q0NJF+N2
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7.B3NQ0NQNJF+N2
1,93n000NQF+N?
1,980000N00F+02
N.1030N0N0++03
N,10800000FK+03
1,11370000F«03
N,1170000NF«03
N.,12107000F+03
1.,124518010F«03
1.12501800F+03
N,12851800F+03
0,13251800F+03
7.13651800F+03
N,14N0518NNF+N3
N,14347700F+03
N,144N00N0F+N3
2,147000N0F+03
0,150000NNF+N3
),15500000F +N3
0,1650N00NF+03
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0.2500000NF+1
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N.2892nNnnNnNF«+11
0.445700NNE+r1
n.64150n0NE+nN1
N.64150N0NF+n1
N.64150N00E+N1
1.641500n0F+01
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1.86470N0NE«+N1
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N,.1950N00N0% +0 23
nN,2100000N0F N3
)1,2300N00QF 03
1,2500N00N0F +03
N1,280000NNF+N3
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APPENDIX E

The computation of the structural flexing of the vehicle is described
here. The necessary equations are derived in section III. Key terms are
defined and the significant equations of the numerical analysis are given.
Also described are the flow diagrams of the numerical analysis and a listing
of the computer programs. Sample input and output data are included.

This computer program determines the parameters AKBB, BKBB,
PKB, QKB, PK, QK which must be evaluated for the following equations:

k
Zx—"z = AKBB 9 + BKBB W
dyk =
T PKB a. + QKB w
yk = PKa,+ QKW

The input for this program consists of:
e Rigid body normal force distribution

e Incremental aerodynamic loading caused by body flexing due to
aerodynamic forces

e Incremental aerodynamic loading caused by body flexing due to
normal acceleration

® Body mass distribution
® Body stiffness distribution
This computer program is based on simple beam theory. It is used in

conjunction with the flexible body aerodynamic program in an iterative proced-

ure to establish the deflections and the aerodynamic characteristics of a flexi-
ble body.
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Smbol

XNPRA
XNPKA

XNPKW
XJ

XMP
El
XL

X

DX

DJ

DL
XNPRAN
XNPKAN
XNPKWN
XMPN
EIN

¥ -

)N

AKBB
BKBB
GAK
HAK
GBK
HBK
PKB

Pr

QKB

QK

DEFINITION CF SYMBOLS

Definition

Derivative of rigid body local normal force distribution (1b/ft rad)

Derivative of incremental local normal force distribution caused
by bending due to aerodynamic forces (1b/ft rad)

Derivative of incremental local normal force distribution caused
by bending due to normal acceleration (secz)(lb secz/ftz)

Distance from nose, where the three parameters above are input,
at station J (ft)

Body mass distribution (slug /ft)

Body stiffness (ft¢ 1b)

Distance from nose, where the two above parameters are input,
at station L (ft)

Distance from nose (ft)

Interpolation parameter

Interpolation parameter

Interpolation parameter

Value of XNPRA at station XN (1b/ft rad)

Value of XNPKA at station XN (1b/ft rad)

Value of XNPKW at station XN (1b secZ/ft2)

Value of XMP at station XN (slug /ft)

Value of EI at station XN (ftZ 1b)

Ratio of X(N)/X(N-1)

Distance from nose at station N (ft)

Partial derivative of d§k/dx? with respect to oy (1/ft)

Partial derivative of d§k/dx2 with respect to W (seczlftz)

Integration constant

Integration constant (ft)

Integration constant (lb/secz)

Integration constant (l/secz)

Partial derivative of dyk/dx with respect to o,

Partial derivative of yk with respect to &, (ft)

Partial derivative of dyk/dx with respect to W (ft/secz)

Partial derivative of yk with respect to W (1/sec2)
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10.

3 5 B8

12.

135

SOLUTION OF EQUATIONS

X(N) - XJ(J-1)

DJ =
XJ(J) - xJ@3-1)

X(N) - XL(L-1)
XL(L) = XJ(L-1)

DL =

XNPRAN = (1-0J){XNPRA(J-1)} + DJ{XNPRA(J)}

XNPKAN = (1-DJ){XNPKA(J-1)} + DJ{XNPKA(J)}

XNPKWN = (1-DJ) {XNPKW(J-1)} + DJ{XNPKW(J)}

XMPN = (1-DL){XMP(L-1)}+ DL{XMP (L)}

EIN = (1-DL){EI(L-1)} + DL{EI(L)}

EINM = EIN

(XIAXK) (XIMK) - (XIAK) (XIMLK)
XIMLKZ - (XIMK) (XIMLLK)

=

(XIAK) (XIMLLK) - (XIAXK) (XIMLK)

HAK
XIMLK? - (XIMK) (XIMLLK)

GuK = _(XIBXK) (XIMK) - (XIBK) (XIMLK)
XIMLK? - (XIMK) (XIMLLK)

Bk = _(XIBK) (XIMLLK) - (XIBXK) (XIMLK)

XIMLK® - (XIMK) (XIMLLK)

PKB(N) = AKB(N) + GAK
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14,  PK(N) = AK(N) + X(N) GAK + HAK

15.  QKB(N) = BKB(N) + GBK

16.  QK(N) = BK(N) + X(N) GBK + HBK
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COMPUTER FLOW DIAGRAM

INPUTS

XNPRA(J), XNPKA(J), XNPKW(J), XJ(J), J=1, JB
XMP(L), EI(L), XL(L), L=1, LB

X(Nj, N=1, NB

JB, LB, NB

v

PRINT INPUTS

l

Al=A2=A3=A4=A5=A6=B1=B2=B3=B4=B5=B6=A7=A8=A9=0
J=L=2
DO 100 N=1, NB

]

DXzX(I\Hé_) X(1) Dx:X(NB);X(N-l) DX=X(N+1)£X(N-1)
= !
e e
-
,0
<>
' L= L+1—+
- 54

X(N) - XJ(J-1)

DJ
XJ(J) - XJ(J-1)

X(N) - XL(L-1)
XL(L) - XJ(L-1)

l 101

DL

I S50 L Ly e e O O — 3 e




XNPRAN = (1-DJ) XNPRA(J-1) + DJ XNPRA(J)
XNPKAN = (1-DJ) XNPKA(J-1) + DJ XNPKA(J)
XNPKWN = (1-DJ) XNPKW(J-1) + DJ XNPKW(J)
XMPN = (1-DL) XMP(L-1) + DL XMP(L)
EIN = (1-DL) EI(L-1) + DL EI(L)

-

XR = 0
Y

Al = AFKBB(N-1) # (EINM / EIN) # XR
A2 = ASKBB(N-1) * (EINM / EIN) Y
A3 = AKB(N-1)
A4 = AK(N-1)
A5 = XIAK
A6 = XIAXK
Bl = BFKBB(N-1) * (EINM /EIN) # XR
B2 = BSKBB(N-1) # (EINM / EIN)
B3 = BKB(N-1)
B4 = BK(N-1)
B5 = XIBK
B6 = XIBXK
A7 = XIMK
A8 = XIMLK
A9 = XIMLLK

&
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l

AFKBB(N) Al - (X(N)/EIN) (XNPRAN + XNPKAN) DX
ASKBB(N) A2 + (X(N)/EIN) (XNPRAN + XNPKAN) DX
AKBB(N) AFKBB(N) + ASKBB(N)
BFKBB(N) Bl + (X(N)/EIN) (XMPN - XNPKWN) DX
BSKBB(N) B2 - (X(N)/EIN) (XMPN - XNPKWN) DX
BKBB(N) BFKBB(N) + BSKBB({N)
AKB(N) A3 + AKBB(N) * DX
BKB(N) B3 + BKBB(N) * DX
AK(N) A4 + AKB(N) * DX
BK(N) B4 + BKB(N) * DX
XIAK A5 + XMPN * AK(N) DX
XIAXK A6 + XMPN # AK(N) * X(N) * DX
XIBK B5 + XMPN * BK(N) * DX
XIBXK B6 + XMPN * BK(N) * X(N) * DX
XIMK A7 + XMPN * DX
XIMLK A8 + XMPN * X(N) * DX
XIMLLK A9 + XMPN * X(N)2 * DX
EINM EIN

v

PRINT

N, X(N), L, J, XNPRAN, XNPKAN, XNPKWN, XMPN, EIN,
AFKBB(N), ASKBB(N}), AKBB(N), BFKBB(N), BSKBB(N),
BKBB(N), AKB(N), BKB(N), AK(N), BK(N), XIAK
XIAXK, XIBK, XIBXK, XIMK, XIMLK, XIMLLK

100 CONTINUE

v

GAK = [ XIAXK * XIMK - XIAK *XIMLK] / [XIMLK? - XIMK * XIMLLK ]

HAK = [XIAK * XIMLLK - XIAXK * XIMLK ]/ [ XIMLK? - XIMK *
XIMLLK]

GBK = [ XIBXK * XIMK - XIBK *XIMLK 1/ [XIMLK? - XIMK * XIMLLK ]

HBK = [XIBK#XIMLLK - XIBXK *XIMLK ] / [ XIMLK? - XIMK *

XIMLLK]

l
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l

PRINT

GAK, HAK, GBK, HBK

M

.

DO 1000 N = 1, NB
PK B(N) = AKB(N) + GAK
PK(N) =  AK(N) + X(N) * GAK + HAK

QKB(N) = BKB(N) + GBK
QK(N) BK(N) + X(N) * GBK + HBK

:

PRINT
X(N), PKB(N), PK(N), QKB(N), QK(N), N=1, KB

1000 CONTINUE
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PREPARATION OF DATA

The GE-415 FORTRAN Routine 4831-1109 has the capability of
making a series of consecutive runs. The input for this routine consists
of a Production Control Card, Title Card, Control Card, and three data
tables.

Production Control Card

The first card presented for each production run must be the Pro-
duction Control Card, which specifies in column 10 the number of runs
contained within the production run.

Title Card
The title card is a card which lets the user identify the runs. The
computer will print whatever is punched on this card. The title card must

be present in every run even if it is blank.

Control Card

This card contains the values of JB, LB, and NB which determine
the number of cards in the three data tables. JB = number of cards in data
table 1; LB = number of cards in data table 2; NB = number of cards in
data table 3.

Data Tables

There are three input data tables. Data Table 1 contains XNPRA(J),
XNPKA(J), XNPKW(J), and XJ(J). Data Table 2 contains XMP(L), EI(L),
and XL(L). Data Table 3 contains X(N). The definitions of the above symbols

are given in the section on definition of symbols.

Data Presentation

The form of the data to be presented for Computer Routine 4831-1109
must be submitted 3 shown below:

Production Control Card Format (8I110)

NRUNS
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ccensecutive runs.

Title Card

Control Card
JB
LB
NB

First Data Table
XNPRA(J)
XNPKA(T)
XNPKW(J)
XJ(J)

Second Data Table
XMP(L)
EI(L)

XL(L)
Third Data Table

X(N)

Format (80H)

Format (8I10)

Format (8E10. 4)

Format (8E10. 4)

Format (8E10. 4)

All of the above data must be presented for the first of a series of

For each subsequent run, omit the Production Control

The deck for a production run is prepared by simply stacking the

runs consecutively.

106



FORTRAN PROGRAM LISTING

JOR,TATE 4R
LFORTRAN,DPT
ENDNPT
PROGRAM NUMRER - 4871-1109
PROGRAM NAME - LQOCAl VFHICLF NEFLFCTION PRNGRAM
DIMENSION XNPRACIODNDY ,XNPKA(T100) , XNPKW(100)Y,XJl1N0N) , XMP(11)N)
DIMENSION X(t100),AFKBR(100),ASKRB(100),AKRR(10N0AY KRFKBK(11111)
DIMFNSINN BSKBR(100),RKRB(1N0),AKR(10N), BKKCINNY ,AK(L10(),RK(1n0)
DIMFNSINON PK(100),QkB(100),0K(100).PKR(100),XLCINN),F](10N)
PRINT 9R
IRUNS = 0
READN 500,NRUNS
PRINT 104,NRUNS
104 FORMAT (10X37HTHE NIIMRFR 0OF RUNS T0 RBRF PROCESSED IS, 19%)
1 PRINT 98
IRUNS = JRUNS + 1
PRINT ANO
6NN FORMAT (20X43HLNCAL VEHICLE DFFLECTION PRNGRAM, 4RS81-110Y//)
READ 1111
PRINT 1111
1111 FORMAT (8NH
1 )
PRINT 97
READ 500,JR,LB,NB
PRINT 101,J8,LR,NR
101 FORMAT (10XPHJB,110,5X?2HLR,I10,5%X2HNB, 110)
ba 2 J-= IDJB
RFAD 501 XNPRACJ) »XMNPKA(J) s XNPKWEJY» XJ(J)
2 PRINT 102, XNPRA(JY,XYNPKA(J) ,XNPKW(JY  XJ(J)
1N2 FORMAT (10X5HXNPRA,F16.B.,5X5KHYNPKA,F1A.R,S5X5HXNPKW,F1A.5,
1 5X5HXJ yF16.8)
D 3 L = 1,LB
READ 501,XMP(L)YET (i ), XL (L)
3 PRINT 103, XMP(L)YETCLY,XL(L)
10T FORMAT (10XS5HXMP WF16.8,5X5KE ] WyF16.R,5X5HX| »E16.8)
DO 4 N = {,NB
READN 501, X(N)
4 PRINT 105,X(N)
1N8 FORMAT (10XSHX ,F16.R)
PRINT 9R
PRINT 600
Al = A2 2 A3
A7 = AB = A9
2
2

"nan
fen }
2

J

L

D 100 N = 1,NB
LFE EXENY=X(EY 6T 850) GO TQ 5
DX = (X(N+1)-X(1))/2.0
Gnh YO 7

5 IF (X(N)=X(NB)Y .LT, 0.0) GO YO 4
DX = (X(NB)=X(N-1))/2.0
GN YO 7

6 DX = (X(N+1)=-X(N=1))/72.0

7 IF ¢XJ(J)=X(N)Y .GE, 0.0) GO YO &
J = J + 1
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Gn YO /
9 IF ¢XL(L)=X¢NY .GF, 0.0) GO 7O 11
e & B e
GO YO 9
11 DJ ® (X IN)=XJ(J=1))/Z(XJCI)=XJ(I=1))
DL =2 (X(NY=XL(L=-1))/Z(XL(L)=-XJ(L=-1))

XNPRAN = (1.,0-DJ)#XNPRA(J=1)+NJ#XNPRA(J)
XNPKAN = (1.,0=DJ)sxXVPKA(J=1)+NJaXNPKA(J)
XNPKWN = (1.0=-DJ)*XNPKW(J=1)+DNJ#XNPKW(J)

XMPN = (1.0=DL)#XMPtL-1)+NL=#XMP(L)
EIN 3 (1.0-DLY#FI(L-1)+DL=EI(L)

IF tN - 1 ,LE., 0) GA Y0 8

[F (N -2 ,6T, 0) GN T0O 10

XR = 0,0
Gn YO 12

1 XR = X(N)/X(N-1)

12 A1 = AFKBR(N-1)#(FINM/FIN)#XR
A? = ASKBB(N=-1)#(EINM/FIN)
A3 = AKRB(N=1)
Ad = AK(N=-1)
A = X]AK
Ak = X]AXK
B1 = RFKBR(N-1)#(EJNM/FIN)2XR
B? = RSKBB(N-1)#(FINM/FIN)
B3 = RKB(N-1)
R4 = BRK(N-1)
B5 = X|BK
B6 = XY[RXK
A7 = X]MK
AR = X][MLK
AS = X[MLLK

8 AFKRBRB(N) = A1=-(X(N)/EIN)#(XNPRAN+XNPKAN)#DX

ASKRB(N) = A2+ (X(N)/EIN)=*(XNPRAN+XNPKAN) =X

AKBB(N) = AFKBB(N)+ASKBR(N)
BFKRB(N) B1+(X(N)/EIN)# ( XMPN=-XNPXKWN)=*D)
BSKRB(N) B2=(X(N)/EIN)# ( XMPN=-XNPKWN)=#DX
BKRB(N) = BFKBB(N)+RSKRRB(N)
AKRIN) = A3+AKRR(N)&DX
BKBIN) = B3+BKBR(N)=#DX
AK(N) = A4+AKB(N)#DY
BK(N) = B4+BKR(N)#*DY
XTAK = AS+XMPN#AK(N)Y#DX
XTAXK = AH+XMPN=AK(NMY#X (N #DX
XIBK = RS+XMPN&#RK(N)=#DX
XIRYK = BA+XMPN#BK(M)#X(N)#DX
XIMK = A7«XMPNaDX
XIMLK = AB+XMPN#X(N)%DX
XIMLLK = AQeXMPN#X(N)#u2#DX
EINM = EIN
PRINT 106,NsL»J
1Nh FORMAT (10X3KHN =,15,10%X3HL =,15,10X3KRJ =,157)
PRINT 107.XtN),XNPRAN, XNPKAN, XNPKWN , XMPN
107 FORMAT (S5XAHX yF16 . B, 5X6MHXNPRAN,E16.8,5X6HXNPKAN,E16.8,
1 SX6HANPKWN,F1€, ,5XAHXMPN ,E16.R)
PRINT 10N8B,EIN,AFKBB(N),ASKBR(N),AKBR(N),RFKRR(N)
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1N0R FORMAT
1

(5X6HEIN
5X6HAKRR

yF16,.8,5X6KHAFKBR
WF16.8,5X6HBFKBR

y£16.8,5X6HASKRE
»E16.8)

PRINT 109 ,BSKRR(N),RKRR{N),AKR(N),BRKB(N),AK(N)

109 FARMAT
1

(5XAHBSKRB
5X6HBKR

yF16.8,5X6HRKRB
yF16.8,5X6HAK

yE16.8,5X6HAKK
yE16.8)

PRINY 110,BK(N),XTAK,XTAXK,X][RK,XIBXK

110 FORMAT
1

(5X6HBK
5X6HX1RK

F16.B,5X6HX]AK
yF16.8,5X6HX[RXK

yE16,.8B,5X6HX] AXK
yE16.8)

PRINT 1099, XIMK,XIMLK,XIMLLK
FORMAT (Sx8H4XIMK ,F16.8,5X6HX]IMLK
CONY INUE

GAK
kA K
3RK
HRK =
PRINT 111,GAK,HAK,GRK,HRK

1099
10n

(XTAXK#X IMK=XTAKsX[MLK)/(XIM K#22-X]MKaXTM| [ K)
(XTAK#X IMLLK=-XTAXK#XIMLK)/(XIMLK##2=-xXMKeX][M_LK)
(XIBXKaX IMK-XTRK&XIMLK)/(XIM Keu2=-X]MKaX][M_[K)
(XIRK*XIMLLK-Y]RXK#XIMLK)/(XIMLKa#2-X]IMKaX[MLLK)

111 FORMAT
1

(SX6HGAK
SX6HHBK

yF16.8,5X6HHAK
WF16.8/77)

DO 1000 N = 1,NR
PKRIN) = AKR(N)+GAK
PK(N) = AK(N)+X(N)=sRAK+HAK
NKR{N) = BKB(N)+GRK
QK(N) = BKIN)+X(N)&nBK+HBK
PRINT 112,N
FORMAT (10X3HN =,15//)
PRINT 113,PKR(N),PK(N),AKB(N),QK(N)
113 FORMAT (5X6HPKR yF16.8,5X6KPK
1 5X6HEK LE16,8,5X6HY

CONT INUF

PRINT 97

FORMAT (1H1)

FORMAT (B110)

FORMAT (8F10,4)

FOARMAT (//)
IF t1RUNS -
STOF 1

EMND

s E0J

112

100N

GH
50n
501

97
NRUNS)Y 1,99,99
99

109

v E16.8.,5X6HGRK

» X(N)
+E16.8,5X6HAKR
1 E16,87/)

E16.8,

WE16,8,

IE’ﬁcﬁ'

yE16. B, SX6HXTIMLLK,F16.,5/7/)

yF16.R,
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APPENDIX F

This appendix contains the necessary information to determine
the integrated vehicle dynamics of a flexible vehicle. It contains a
flow diagram of the numerical analysis of the equations derived in
section IV. It also contains a listing of the computer program and
sample inputs and outputs.

This computer program determines the absolute values and
phase angles of the following flexible vehicle frequency response
fuactions:

® Wind velocity to vehicle normal acceleration
® Wind velocity to engine gimbal angle
™ Wind velocity to vehicle yaw angle

The input for this program consists of:

® Flexible body aerodynamic terms

® Flexible body slope parameters

] Mass data

° Engine thrust and control parameters

This flexible body control program is based on a basic control
analysis. It is valid only at frequencies below the control frequency of
the vehicle. However it does include flexible body aerodynamic terms
and it also includes the effects of vehicle flexing on the attitude sensors.
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Symbol

XNRAN
XNKAN

XNKWN

XMRAN
XMKAN

XMKWN

XI
XL
XCG

XM

AO

Al
PKBXB
PKBL
QKBXB
QKBL
DELW
WB
ABFPV

ABFWV

ABFBV

DEFINITION OF SYMBOLS

Definition

Rigid body normal force derivative, 1b /rad

Derivative of the incremental normal force caused by
flexing due to the aerodynamic loading, 1b /rad

Derivative of the incremental normal force caused by
flexing due to the acceleration loading, 1b sec?/ft

Rigid body yawing moment derivative, ft 1b /rad

Derivative of the incremental yawing moment caused by
flexing due to the aerodynamic loading, ft 1b /rad

Derivative of the incremental yawing moment caused by
flexing due to the acceleration loading, 1lb /sec’

Moment of inertia, slug ft2

Vehicle length, ft

Distance from vehicle nose to the center of gravity, ft

Gimbled thrust, 1b

Vehicle velocity, ft/sec

Vehicle mass, slug

Control gain

Control gain, sec

Flexing parameter at I. U.

Flexing parameter at vehicle base

Flexing parameter at I. U., ft/sec?

Flexing parameter at base, ft/sec?

Incremental frequency, rad/sec

Frequency cutoff, rad/sec

Absolute value of the frequency response function of wind
velocity to yaw angle, rad sec/ft

Absolute value of the frequency response function of wind
velocity to vehicle normal acceleration, 1/sec

Absolute value of the frequency response function of wind
velocity to engine gimbal angle, rad sec/ft
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SOLUTION OF EQUATIONS

S1 = - (XMRAN + XMKAN) + (XL - XCG) F [AO(1 + PKBXB) + PKBL/

S2 = - XMKWN + (XL - XCG) F [AO(QKBXB) + QKBL |

S3 = - (XMRAN + XMKAN) + (XL - XCC) F [AO(PKBXB) + PKBL!

T1 = XNRAN + XNKAN + F[AO(1 + PKBXB) + PKBL]

T2 = XNKWN - XM + F[AO(QKBXB) + QKBL

T3 = XNRAN + XNKAN + F[AO(PKBXB) + PKBL

— asz(m)-surz)] [Sl(TZ)—SZ(Tl)-TZ(XI)(wz)]
[Sl(TZ)-SZ(Tl)-TZ(XI)W2]2 + A12F2[T2(XL—XCG) - 32]2 w?

== -[‘—l,-{SZ(T3)—S3(TZ)}Al(F){TZ(XL-XCG)-SZ}w]

[surz)-sz(n)-rz(xx)wz]2 * AlZFZ[TZ(XL—XCG)-SZ]sz

2
ABFPV = + VI;HIVZ + PH2V

-1 =PH2V
THPV = TAN ===
PH1V

AL(F) (W) [__guz_v] =71 [PH” ] -[ L _]
12 12 T2(V)

- AL(F) (W) [ PH1V ]_ == [PHZV ]
T2 T2

W1V

W2v
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13.

14.

15.

16.

L5

18.

ABFWV = 4 JW1V® + wav?

THWV = TAN [

BET1V

-W2V ]
W1V

+ AO (PKBXB)

BET2V

[AO + AO(PKBXB)

PH2V + A1(W) (PH1V) + AO(QKBXB) (W2V)

[ A0 + AO(PKBXB) = PH1V - A1l(W) (PH2V) + AO(QKBXB) (W1V)

ABFBV

THBV = TAN"! [

-BET2V

BET1V

]

= J BETIVZ + BET2V

o~

2




COMPUTER FLOW DIAGRAM

INPUTS

XNRAN, XNKAN, XNKWN, XMRAN, XMKAN, XMKWN
XI, XL, XCG, F, VvV, XM, AO, Al, PKBXB, FKBL, QKBXB, QKBL,

DELW, WB
PRINT INPUTS
Sl = -(XMRAN + XMKAN) + (XL-XCG)* F * (AO(1+PKBXB) + PKBL)
S2 = -XMKWN+(XL-XCG)*F *(AO*QKBXB+QKBL)
S3 = -(XMRAN + XMKAN) + (XL-XCG) * F * (AO * PKBXB + FKBL)
Tl = XNRAN+XNKAN+F *(AO (1+ PKBXB)+ PKBL)
T2 = XNKWN-XM+F*(AO*QKBXB+QKBL)
T3 = XNRAN+XNKAN#*F *(AO* PKBXB+ PKBL)
w == DELW
—~——
w = W+ DELW
PHIV = [(1/V)(S2*T3-S3%T2)(S1*T2-S2%T1l-T2*XI*W2)] /
[(S1% T2 -82%T1 - T2 *XI%W2)2+ A12 % F2%(T2 * (XL-XCG)-52)2#W2]
PH2V = - [(}/V)(S2%T3 - T2)*A1*F#*(T2%(XL-XCG)-S2) W] /

[(S1#T2 - S2#T1 - T2#XI*W2)24A12%F2#(T2%(XL-XCG)-S2)2+W2 |
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ABFPV =
+ J PH1VZ + PH2V2

S [_Eﬂz_V]

PHIV
WIV = Al#F#W# PH2V/T2-T1%*PHIV / T2-T3/(T2%V)
W2V = -Al*F#*W#%PHIV/T2-T1*PH2V /T2
ABFWV = _ [W1v2Z + w2v2
THWV = tan-!l [' WZV]
WiV

BET1V = [AO+AO*PKBXB | *PH1V - Al1*W#*PH2V+AO*QKBXB*W1V
+AO*PKBXB/V

BET2V = (AOC+AO*PKBXB)*PH2V+Al*W=PH1V+AO*QKBXB*W2V

ABFBYV = fBE'rlv?- + BET2V2
ik

- o1 l’-BET?.v
THBV = t =BET2V
A ITBETIV

l

PRINT

W, PH1V, PH2V, ABFPV, THPV, ABFWV, THWV, ABFBV, THBYV

PRINT S1; 52, 53, T1, T2, I3
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PREPARATION OF DATA

The GE 415 FORTRAN Routine 4831-1110 has the capability of
making a series of consecutive runs. The input for this routine con-
sists of a Production Control Card, Title Card, and four data cards.

Production Control Card

The first card presented for each production run must be the
Production Control Card, which specifies in column 10 the number of
runs contained within the production run.

Title Card

The title card is a card which lets the user identify the runs.
The computer will print whatever is punched on this card. The title
card must be present in every run even if it is blank.

Data Cards

There are four input data cards. Card 1 contains XNRAN, XNKAN,
XNKWN, XMRAN, and XMKAN. Card 2 contains XMKWN, XI, XL, XCG,
and F. Card 3 contains V, XM, AO, Al, and PKBXB. Card 4 contains
PKBL, QKBXB, QKBL, DELW, and WB. The definitions of the above
symbols are given in the section on definition of symbols.

Data Presentation

The form of the data to be presented for Computer Routine 4831 -
1110 must be submitted as shown below:

Production Control Card Format (8110)

NRUNS

Title Card Format (80H)
First Data Card Format (8E10. 4)

XNRAN
XNKAN
XNKWN
XMRAN
XMKAN
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Second Data Card Format (8E10. 4)

XMKWN
Xi

XL
XCG

F

Third Data Card Format (8E10. 4)

v

XM

AO

Al
PKBXB

Fourth Data Card Format (8E10. 4)

PKBL
QKBXB
QKBL
DELW
wWB

All of the above data must be presented for the first of a series
of consecutive runs. For each subsequent run, omit the Production
Control Card.

The deck for a production run is prepared by simply stacking the
5 runs consecutively.

R )
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mn o

FORTRAN PROGRAM LISTING

+JOR,TATE
.PX
FORTRAN,OPT
ENLOPT
PROGRAM NUMRFR = 4R%1-1110
PROGRAM NAME =~ INTERRATFD VFKWICIE NYNAMICS PROGRaM
PRINT 3R
IRUNS = 0
READ 570,NRUNS
PRINT 104,NRUNS
1Né& FORMAT (10X37HTHE NI'MRFR 0OF RUNS T0 BF PRACESSED I1S.11%)
1+ PRINT SR
IRUNS = [RUNS + 1
PRINT ANQ
ANN FORMAT (20X4AHINTEGRATED VEHITLE DYNAMICS PROGRAM, 4niy-1111,7)
READ 1111
PRINT 1111
FORMAT (B0NH

,-
s
"

PRINT 47

READ =01, XNRAN, XNKAN , XNKWN, XMRAN , XMKAN

PRINT 101, XNRAN, XNKAN, XNKWN, XMRAN, XMKAN
1M1 FORMAT (10XSHXNRAN,F16.8,5XSHXNKAN,F1A 5 ,5X5HXNKWN,F1~. %,

1 S5X5HYMRAN,E16 . R, SXSHXMKAN ,F1A,R)

READ 501,XMKWN,X],XI . XCG,F

PRINT 102, XMKWN,X1.XL,XCG,F
1N2 FORMAT (1NXSHXMKWN,F16.8,5X5KX] LE1AL R, SYHHYXI ==5

% S5X5HXCH yEF16.R,5X5KF ,F16.R)

READ 501,V,XM,AN,A1,PKBXR

PRINT 1n3,V,XM,A0,41,PKRXR
103 FORMAT (10X5HV F1E6.R,5X5HXM +E15,8,5x5KHAN LEIH .8,

1 SXSHA1 +F16.8,5X5HPKRXR,F14.8)

READ 501 ,PKBL,QKBXB,QKRL,DEL W, W=

PRIMNT 105,PKRL,NKRXP,0KRL ,DFLW,WR
105 FORMAT (1NXS5HPKRL ,F16.8,5X5HRKAXR,E146.8,5X5HOKRL ,F16.4,

1 SXSHDELW ,F16.8,5X5HWB F16.8)

PRINT 9R

PRINT 400

S1=z - (XMRAN+XMKAN)+(XL-XCG)=#F=(A0=(1,N+PKRXR)+PKK[)

S?2 = -XMKWN+(XL-XCG)=F=(AD20KRXR+0«RL)
S35 = -(XMRAN+XMKAN)+ (X| -XCG)*F2#(ANSPKRXR+PKH)
T1 = XNRAN+XNKAN+F#(AD=(1,0+PKBXB)+PKRL)
T2 = YNRWN-XM+F%(AN#NKRYR+QKRL)
T? = XNRANSXNKANGFa(AD2PKRYXH+PKRL)
W = ~DELMW
2 W = We+llFLW

PHIV = ((1,0/V)#(SP2eT3-SSaT2)s(S1#T2-828T1-ToexleWsn2))/
1((S1372-S2aT|-TReX[sWasD)saDeAnn aFaaa(TO(XL-XCG)-S2)nalapyas/)
PH2V =-((1,0/V)8(SPT3-S3#T2)sA1eFal(T2%(XL-XCGY~S- )*W)/
1((S18T7/-S2eT1=-T2aX[eWsn2)asPeAlanPaFaals(TO8 (XL ~XCG)-S/)raseyes’)
ARFPV = SQRT(PHIV#a2+PHIVR=?)

THPV = ATAN(-PH?V/PH1V)

W1V = A1 :5FaWsPH2V/T2-T1#PHIV/T2-TL/(T7%V)

W2V = -A1sFsWaPHIV/T2=-T18PK2V/T?
ARFWYV = SART(WiVea2+W2VesD)
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THWV = ATAN(-W2V/W1V)

BET1V = (AN+AN#®PKRBRXRZ)#PHI1V-A1:WaPH2V+Aj#QKRXRewlVeAll&PKIXH/V
BFET2V = (AN+AN#PKBRXH)#PHPV+ALl:WaPHIV+ANSQKKEXReW2Y
ARFRV = SQRT(RET1V#s2+RFT2Vx=2?2)

THRYV = ATAN(-BET2V/RET1V)
PRINT 106,W,PH1V,PKH2V,ABFPV, THPY
1Nk FORMAT (1)X5HW ,F16.R.5X5HPH1Y ,F1A.R,5X5HPH2Y ,F14 A,
1 SXSHARFPVIL16-“'HXHHTHDV ,F’.h,ﬁ)
PRINT 1Nn7,ARFWV, THWY,ARFRV, THRY
107 FORMAT (10XSHARFWV,F16.3,5X5HTHWY ,F16.5,5X5HARFRY,F1A_ 7,
1 5X5HTHEV ,F16.R)
PRINT @7
[F (wRkr - W ,GE, 0.0) GO TO ?
PRINT 4900,S1,S82.S3
PRINT 901,T1,72,73
Inn FORMAT (10X5HS1 »F16.R,5X5KHS2 yF1A . R,5%5HS? E1h.377)
901 FORMAT (19X5HTH ,E16.R,5X5HT? JF1A.R,5X5HT? JE1R LR 7))
IF (IRUNS - NRUNS)Y 1,089,909
98 FORMAT (1H1)
SNn FORMAT (8110)
5N4 FORMAT (RE10.4)
97 FORMAT (/7)
96 STOP 1
END
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