General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

WYLE LABORATORIES - RESEARCH STAFF

REPOR'T NUMBER WR 67-18

PROPAGATION OF ONE AND TWO

 DIMENSIONAL WAVES OF FINITE AMPLITUDE

FOREWORD

The present report can be regarded as an extension of the previous one by the author (see Bibliography, (1)), which dealt with the propagation of waves of finite amplitude in thermoviscous media, but only in one space dimension. The natural extension of those results, which contained many fundamentally new facts and relations, is to a physically more realistic, but mathematically much more difficult, higher dimension. We thus give an outline below, section by section, underlining those results of ours which seem to be as significant as the ones obtained in the one-dimensional case.
1.0 This introductory section gives a new derivation of Burgers' equation for a one dimensional framework of reference; treating, however, the case where fluid der sity is not constant. Thus, a stream function or potential is introduced, for the purpose of motivation in the higher dimensional case, and c measure of the deviation from the exact results is obtained.
2.0 Section two contains a concise collection of those known analytical results which are used in the sequel.
3.0 As a by-product of the present investigation, it wes found possible to obtain an exact analytical char acterization of finite amplitude wave propagation in a periodically driven tube. The result is reduced to a form which shows its relation to and connection with the well known results for propagation in a lossless medium.
4.0 As a first logical step in extending one dimensional results to higher dimensions, we are considering propagation in pipes of variable cross sections. Thus, here we derive the necessary extensions of Burgers' equation to the use of propagation in a pipe the cross-section of which is location-dependent. These equations are found to be generally "Burgers'-type"; that is, second order, parabolic and nonlinear, but with non-constant coefficients and also an additional term. These seemingly slight differences, however, change the nature of the equations to such an extent, that no analytical treatment seems to be presently possible. This difficulty is discussed in detail in Appendix II.
5.0 In an effort to find an analytical method for handling variable cross sections, we are discussing here the time dispendent case; where the cross sectional area changes with time. An explicit solution is computed here, in terms of a rather complicated infinite series. The limiting cases are discussed in particular; it is shown that the behavior of the model solution is very realistic.
6.0 This section is devoted to showing why, despite a statement by one of the original solvers of Burgers' equation to the contrary, it is unrealistic to treat Burgers' equation as a model in the three (or even two) dimensional cases.
7.0 Here we are deriving, somewhat analogously to Section 1, the governing Navier-Stokes type equations for propagation in two dimensions.
8.0 Section 8 is devoted to a completely new and physically inspired generalization of Burgers' equation. Solutions are obtained and discussed; and it is shown that in this case elliptic functions make their appearance.
9.0 Another entirely new, and this time three-dimensional (although axially symmetric) pair of equations is given here as a quasi-linear approximation. The method and the solutions, which are given explicitly, are couched in terms of a potential function, similar to the one obtained in Section 1. The main purpose of this section is to give a somewhat simple illustration of the development in Section 10.
10.0 As a culmination of our effort, we are giving here a new way of generalizing Burgers' equation, for frameworks of reference similar to those in Section 9. As one of the most important features of this model, it is shown that a stochastic interpretation is possible; and that one can prescribe the initial and/or boundary conditions for the acoustical field in terms of random functions. As it happens so often in the case of a physically correct model, a rather simple, and quite new method of solution is also derived.

SUMMARY

The present report, an extension of "Propagation of Waves of Finite Amplitude in Thermo-viscous Media," (NASA CR-643, November 1966) by the author, consists of the analytical description of three subjects: a) the propagation of piston driven periodic acoustic waves of finite amplitude in a cylindrical tube, b) the same waves in a pipe of variable cross section (where the cross sectio: "is both time and location dependent) and e) an extension of the analytical methods employed for the one dimensional case to two spatial dimensions. Several explicit solutions are given and discussed.

TABLE OF CONTENTS

Page Number
FOREWORD ii
SUMMARY iv
table Of CONTENTS v
1.0 INTRODUCTION 1
2.0 PREVIOUS RESULTS 7
3.0 PROPAGATION OF PERIODIC PISTON MOTION 9
4.0 GENERALIZED ONE DIMENSIONAL EQUATIONS 13
5.0 THE CASE OF VARIABLE GEOMETRY 18
6.0 THE THREE-DIMENSIONAL CASE: BURGERS' EQUATION 23
7.0 TWO-DIMENSIONAL NON-LINEAR WAVE EQUATIONS 28
8.0 A DIFFERENT GENERALIZATION 31
9.0 FIRST PROPAGATION MODEL EQUATION 34
10.0 SECOND PROPAGATION MODEL EQUATION 39
11.0 DIRECTIONS FOR FUTURE RESEARCH 47
REFERENCES 48
APPENDIX I 51
APPENDIX II 65

1.0 INTRODUCTION

In our previous report (Reference 1), we have given rational arguments to show why Burger's equation,

$$
\begin{equation*}
v_{t}+v v_{x}=\delta v_{x x} \tag{1}
\end{equation*}
$$

is an appropriate analytical vehicle for the description of the propagation of waves of finite amplitude in thermo-viscous media. One of the most important reasons was that Equation (1) is one of the very - very few nonlinear partial differential equations for which an exact and complete analysis can be given (References 2 and $3)$.

The essential purpose of this Introduction, at the head of a report which still relies heavily on Burgers' equation, is to give yet another analysis of how one can estimate the usefulness of this equation and the magnitude of the errors introduced by using it, in preference to a more complete equation or set of equations.

Let us start from the pair of equations

$$
\begin{align*}
& v_{t}+v v_{x}+\frac{2}{\gamma-1} a a_{x}=e v_{x x} \tag{2}\\
& a_{t}+a_{x} v+\frac{\gamma-1}{2} a v_{x}=0 \tag{3}
\end{align*}
$$

This pair was used by Riemann (Reference 4) and by Earnshow (Reference 5), in the case $\boldsymbol{e}=0$, to obtain the description of nonlinear one dimensional propagation in a lossless medium; and it was arrived at by Lighthill (Reference 6) in his now classical paper, as the next-to-the-last step in his sequence of approximations to obtain an appropriate analytical vehicle for the examination of the structure of weak shocks in thermo-viscous media. Lighthill, in his analysis, reduced the pair (2)-(3) to Equation (1). This is exactly what we shall do alsci; however, in contrast to his physical order of magnitude arguments, we shall give a more mathematical analysis.

Let us begin with our definitions; for the details, see our previous report (Reference (1). The meaning of the various symbols in Equations (1)-(3) is the following:
v particle velocity
a local sound speed
x displacement

+ time

$$
\begin{array}{ll}
\gamma & \text { ratio of specific heats } \\
e, \varepsilon & \text { iffusion (thermo-viscous) constants }
\end{array}
$$

The subscripts, as usual, denote partial differentiations with respect to the independent variable involved.

The substitution

$$
a=a_{0}\left(\frac{p}{p_{0}}\right)^{\frac{y-1}{2}}
$$

in Equations (2)-(3), replacing the local sound speed functions by a density function ρ and in terms of the ambient values a_{0} and ρ_{0}, reduces (2)-(3) to the system

$$
\begin{align*}
& v_{t}+v v_{x}+k^{2} \rho^{\gamma-2} \rho_{x}=e v_{x x} \tag{4}\\
& \rho_{t}+(\rho v)_{x}=0 \tag{5}
\end{align*}
$$

where the non-negative quantity k^{2} is given by

$$
k^{2}=a_{0}^{2} \rho_{0}^{1-\gamma} .
$$

Equation (5) gives the impetus to introduce a stream funetion ϕ, defined essentially by a desire to satisfy (5):

$$
\phi:\left\{\begin{align*}
\rho & =\phi_{x} \tag{6}\\
v & =-\frac{\phi_{t}}{\phi_{x}}
\end{align*}\right.
$$

Then, of course, Equation (5) is completely satisfied; we now have to satisfy (4).
With the foreknowledge available in connection with the solution of Equation (1), we now assume that our stream function ϕ satisfies the linear diffusion equation

$$
\begin{equation*}
\phi_{t}=c_{1} \Phi_{x x}, \tag{7}
\end{equation*}
$$

for some diffusion constant c_{1}.

Because of the first part of our definition (6), however, the density function p also satisfies this diffusion equation

$$
\begin{aligned}
& \phi_{x t}=c_{1} \phi_{x x x} \\
& \text { i.e., } \\
& p_{t}=c_{1} p_{x x}
\end{aligned}
$$

Furthermore, for the particlis velocity function v we naw find from this last relation and from (6) and (7)

$$
\begin{equation*}
v=-\frac{\Phi_{t}}{\varphi_{x}}=-c_{1} \frac{\Phi_{x x}}{\varphi_{x}}=-c_{1} \frac{\rho_{x}}{\rho} \tag{8}
\end{equation*}
$$

This is a most reasonable and encournging iesult. For if $k^{2}=0$ in Equation (4) which is the one that we are seeking to satisfy - then the value of $c_{1}=2 e$ in (8) satisfies (4) exactly. This we know from knowing the exact solution of Burger's equation. On the other hand, if $k^{2} \neq 0$, it is reasonable to assume that the combination of P_{x} and p as given in (8), will give an acceptable approximation for the last term on the right hand side of (4), for some value of c_{1}; particularly since the most interesting values of γ lie between 1 and $2(\gamma=1.41$ for air).

If we use v, as given by (8), in Equation (4), than the following arrangement is possible:

$$
\begin{aligned}
& -c_{1} \frac{\rho \rho_{x}-\rho_{x} \rho_{t}}{\rho^{2}}+c_{1}^{2} \frac{\rho_{x}}{\rho \rho_{x x}-\rho_{x}^{2}}+k^{2} \rho^{\gamma-2} \rho_{x}=- \text { e } c_{1} \frac{\rho^{2} \rho_{x x x}-3 \rho \rho_{x} \rho_{x x}+2 \rho_{x}^{3}}{\rho^{3}} \\
& \rho^{2} \rho_{x t}-\rho \rho_{x} \rho_{t}-c_{1}\left(\rho \rho_{x} \rho_{x x}-\rho_{x}^{3}\right)-\frac{k^{2}}{c_{1}} \rho^{\gamma+1} \rho_{x}=\epsilon\left(\rho^{2} \rho_{x x x}-3 \rho \rho_{x} \rho_{x x}+2 \rho_{x}^{3}\right) \\
& \rho^{2}\left(\rho_{x t}-\epsilon P_{x x x}\right)-\rho P_{x}\left(p_{t}+\left(c_{1}-3 \epsilon\right) P_{x x}\right)+\left(c_{1}-2 \epsilon\right) \rho_{x}^{3}-\frac{k^{2}}{c_{1}} \rho^{\gamma+1} \rho_{x}=0 \\
& \left(c_{1}-\epsilon\right) \rho^{2} \rho_{x x x}-\left(2 c_{1}-3 \epsilon\right) p p_{x} \rho_{x x}+\left(c_{1}-2 \epsilon\right) p_{x}^{3}=\frac{k^{2}}{c_{1}} \rho^{\gamma+1} \rho_{x}
\end{aligned}
$$

The values

$$
c_{1}=\frac{n}{2}: \quad n=0,1,2,3,4
$$

lead to special cases, with correspondingly special physical assumptions. Note, however, that we used assumption (7) only in passing from the next to the last line in (9) to the last one. It is possible to proceed otherwise; for instance, to rowrite the third line of (9) in the form

$$
\left(\frac{\rho_{f}-e \rho_{x x}}{\rho}\right)_{x}-\left(c_{1}-2 e\right)\left[\rho_{x} \rho_{x x}-\frac{\rho_{x}^{3}}{\rho}\right]=\frac{k^{3}}{c_{1}} \rho^{\gamma} P_{x}
$$

If we take $c_{1}=2$ e here, then we see that instead of (7), p now has to satisfy a nonlinear parabolic equation

$$
p_{t}-\in p_{x x}=\frac{k^{2}}{2 c_{1}(\gamma+1)} \rho^{\gamma+2}
$$

While this would yield an exact solution, the analysis of the last equation is quite difficult and therefore we shall abandon this avenue of investigation.

By assumption (7), we have that p satisfies

$$
P_{x t}=c_{1} P_{x x x}, \quad c_{1}>0
$$

Let us recall that, for increasing values of c_{1}, the solutions of the heat equation approach bounded values in a manner which is usually of the exponentiali, damped type. Furthermore, derivatives p_{x} of the solution approach 0 for increasing c_{1}. With this in mind, let us write (9) in the form

$$
\begin{equation*}
\rho^{2} \rho_{x x x}-\frac{2 c_{1}-3 \epsilon}{c_{1}-\epsilon} \rho \rho_{x} \rho_{x x}+\frac{c_{1}-2 \epsilon}{c_{1}-\epsilon} \rho_{x}^{3}=\frac{k^{2}}{\left(c_{1}-\epsilon\right) c_{1}} \rho^{\gamma+1} \rho_{x} \tag{10}
\end{equation*}
$$

and consider the effect of letting c increase. Clearly, since by the preceding argument the numerator of the right hand side of (10) is bounded, it becomes very small for $c_{\text {, large; }}$ in fact, it is of the order $\circ\left(c_{1}^{a}\right)$, where $a<2$. Therefore, choosing

$$
\begin{equation*}
c_{1}=\delta>\left[1 ; \epsilon ; k^{2} M^{\gamma+1} M_{x}\right] \tag{11}
\end{equation*}
$$

where

$$
\begin{aligned}
& M=\max p \text { in some region } R \\
& M_{x}=\max P_{x} \text { in the same region }
\end{aligned}
$$

we reduce (10) to

$$
\begin{equation*}
\rho^{2} \rho_{x x x}-2 p p_{x} \rho_{x x}+\rho_{x}^{3}=0 \tag{12}
\end{equation*}
$$

This expression can be integrated; using the letter p for the upcoming functions (of t) of integration, we obtain

$$
\rho p_{x x}-p_{x}^{2}=\rho p_{1}(t)
$$

or

$$
\begin{equation*}
p\left(\frac{p_{x}}{p}\right)_{x}=p_{1}(t) \tag{13}
\end{equation*}
$$

Letting now

$$
p=e^{u}
$$

(13) becomes

$$
u_{x} u_{x x}=p_{1}(t) e^{-u} u_{x}
$$

which can again be integrated:

$$
\frac{1}{2} u_{x}^{2}=-p_{1}(t) e^{-u}+p_{2}(t)
$$

and thus

$$
\begin{equation*}
\frac{u_{x}}{\sqrt{p_{2}(t)-p_{1}(t) e^{-u}}}=\sqrt{2} \tag{14}
\end{equation*}
$$

One more integration, and a transformation from u back to ρ gives us

$$
\begin{equation*}
\rho=\frac{p_{1}(t)}{p_{2}(t)} \sin ^{2}\left[\frac{\sqrt{-p_{2}(t)}}{2}\left(\sqrt{2} x+p_{3}(t)\right)\right] \tag{15}
\end{equation*}
$$

where we must have $p_{1}(t)<0$ and $p_{2}(t)<0$.
This function then is the justification for the assumptions made on ρ a priori, for an appropriate choice of the arbitrary functions $p_{1}(t)$. In particular, let us note that p, as given by (15), is a non-negative function; a fact which further corroborates the appropriateness of our choice of ρ as a solution of the diffusion equation; for as we mentioned in our previous report (Reference 1), the value of v in terms of the logarithmic derivative of ρ (formula (8)) pre-supposes a non-negative ρ.

Our conclusion, therefore, is the following: if ρ satisfies

$$
P_{x t}=\delta P_{x x x}
$$

with δ given by (11), and

$$
v=-\delta \frac{\rho_{x}}{f},
$$

then Equation (5) is satisfied identically. Furthermore v then satisfies the Burgers' equation

$$
v_{t}+2 v v_{x}=\delta v_{x x},
$$

while the magnitude of error in using an approximation like this for Equation (4) is

$$
E=\left|\frac{v^{2}}{2}+\frac{k^{2}}{\gamma-1} \exp \left[-\frac{\gamma-1}{\delta} \int v d x\right]+(\delta-\varepsilon) v_{x}+G(t)\right|
$$

where G may be freely chosen, (i.e., if the error is small at any given instant, it will remain small - for the particular \times under consideration - for all time). We have also shown here that E is negligible for a δ chosen large enough, in some region of interest R.

With this, we have now the above additional argument for the use of Burgers' equation, as the analytical vehicle for the description of propagation of waves of finite amplitude in thermo-viscous media.

2.0 PREVIOUS RESULTS

It will be convenient to reassemble here, in a rather compact form, the results of our previous study (Reference 1). We shall do this with a minimum of elaboration, mentioning only those aspects of that study which will be used in the sequel.

Let us consider a pipe of arbitrarily large radius, one end of which contains a large piston. The pipe itself extends to infinity in both directions. If one prescribes the motion of the piston by

$$
\begin{equation*}
x=g(t) \tag{16}
\end{equation*}
$$

and assumes that it moves with at most sonic velocity, then, if the fluid velocity function is $v=v(x, t)$, we have a boundary condition of the type

$$
\begin{equation*}
v(g(t), t)=g^{\prime}(t) \tag{17}
\end{equation*}
$$

The expansion of v in (17) about $x=0$ in a Taylor series yields

$$
\begin{equation*}
v(g(t), t)=v(0, t)+g(t) v_{x}(0, t)+\sum_{n=2}^{\infty}\left\{\frac{\partial^{n}}{\partial_{x}^{n}} v(0, t) \frac{g^{n}(t)}{n!}\right\}=g_{(18)}^{g^{\prime}(t)} \tag{18}
\end{equation*}
$$

In [1], we estimated the error incurred by neglecting the summation in the center of equality (18). In this manner we are led to a boundary condition of the form

$$
\begin{equation*}
v(0, t)+g(t) v_{x}(0, t)=g^{\prime}(t) \tag{19}
\end{equation*}
$$

for our Equation (1).
This development naturally led us to inquire about solutions of (1) satisfying

$$
\begin{align*}
& v_{t}+v v_{x}=\delta v_{x x} \\
& v(0, t)=a(t), \quad v_{x}(0, t)=b(t) \tag{20}
\end{align*}
$$

The most general solutions then turned out to be

$$
\begin{equation*}
v(x, t)=\frac{-2 \delta \sum_{n=1}^{\infty} \frac{K^{(n)}(t)}{\delta^{n}} \frac{x^{2 n-1}}{(2 n-1)!}+\sum_{n=0}^{\infty} \frac{[a(t) K(t)]^{(n)}}{\delta^{n}} \frac{x^{2 n}}{(2 n)!}}{\sum_{n=0}^{\infty} \frac{k^{(n)}(t)}{\delta^{n}} \frac{x^{2 n}}{(2 n)!}-\frac{1}{2 \delta} \sum_{n=0}^{\infty} \frac{[a(t) K(t)]^{(n)}}{\delta^{n}} \frac{x^{2 n+1}}{(2 n+1)!}} \tag{21}
\end{equation*}
$$

where

$$
\begin{align*}
& G^{(n)}(t)=\frac{d^{n} G}{d t^{n}}, \\
& K(t)=\exp \left[\frac{1}{2 \delta} \int^{t} D(\tau) d \tau\right], \tag{22}
\end{align*}
$$

with

$$
D(t ; \delta)=D(t)=\operatorname{det}\left|\begin{array}{ll}
a(t) & 2 \delta \tag{23}\\
b(t) & a(t)
\end{array}\right| .
$$

Now the formula (21) was shown to be applicable, in particular if the condition (19) was simplified by taking $v(0, t)=0$, to a large variety of situations. For example, if one assumed piston motion described by

$$
\begin{equation*}
G(t)=\left[1+2 \sum_{k=1}^{\infty} e^{-k^{2} t}\right]^{-1}, \tag{24}
\end{equation*}
$$

it was possible to derive the classical solution of Fay from our results, as a very special case. The formula that we used - as a reduction of (21) - was

$$
\begin{equation*}
v(x, t)=-2 \delta-\frac{\partial}{\partial x}\left\{\ln \left[\sum_{n=0}^{\infty}\left[(G(t))^{-1 / 2}\right]^{(n)} \frac{x^{2 n}}{\delta^{n}(2 n)!}\right]\right\}, \tag{21'}
\end{equation*}
$$

in which G represents the piston displacement.

3.0 PROPAGATION OF PERIODIC PISTON MOTION

The results of Fay which we mentioned previously were quite limited in the following sense: he sought only the most stable periodic wave forms in the propagation. No wonder, therefore, that such waveforms arise from as "gentle" a piston motion as that described by (24). However, it is natural to inquire what the situation is when the piston motion is periodic; a task to which we are devoting our present section. Since we are not interested in shocks, we shall take

$$
\begin{equation*}
G(t)=\exp [-\alpha \cos \omega t] . \tag{24'}
\end{equation*}
$$

Then, aiming at obtaining the form of $\left(21^{\prime}\right)$, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left[G^{-\frac{1}{2}}(t)\right]^{(n)}}{\delta^{n}} \frac{x^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty} \frac{\left(\exp \left[\frac{a}{2} \cos \omega t\right]\right)^{(n)}}{\delta^{n}} \frac{x^{2 n}}{(2 n)!} \tag{25}
\end{equation*}
$$

In order to perform the differentiations in (25), we write $\exp \left[\frac{a}{2} \cos \omega t\right]$ as a
series of modified Bessel functions, utilizing the formula

$$
\begin{equation*}
\exp [z \cos \omega t]=I_{0}(z)+2 \sum_{k=1}^{\infty} I_{k}(z) \cos (k \omega t) \tag{26}
\end{equation*}
$$

We shall also need the integral of this expression with respect to t :

$$
\begin{equation*}
\int_{0}^{\dagger} \exp [z \cos \omega \tau] d \tau=+I_{0}(z)+2 \sum_{k=1}^{\infty} \frac{I_{k}(z)}{k \omega} \sin (k \omega t), \tag{26'}
\end{equation*}
$$

which is a well defined expression even for $\omega=0$. We rewrite now (25) in terms of (26), to obtain

$$
\sum_{n=0}^{\infty}\left\{\left[I_{0}\left(\frac{\alpha}{2}\right)+2 \sum_{k=1}^{\infty} I_{k}\left(\frac{\alpha}{2}\right) \cos k \omega t\right]^{(n)} \frac{x^{2 n}}{\delta^{n}(2 n)!}\right\}=
$$

$$
\begin{aligned}
=\exp \left(\frac{a}{2} \cos \omega t\right)+2 \sum_{n=1}^{\infty} & \left(\sum _ { k = 1 } ^ { \infty } (- 1) ^ { n } I _ { k } (\frac { a } { 2 }) \left[(k \omega)^{2 n-1} \sin k \omega t+\right.\right. \\
& \left.\left.+(k \omega)^{2 n} \cos k \omega t\right] \frac{x^{2 n}}{\delta^{n}(2 n)!}\right\}
\end{aligned}
$$

Because of the uniform convergence, we may interchange the order of the summations, and rearrange the series:

$$
\begin{aligned}
=\exp \left(\frac{a}{2} \cos \omega t\right) & +2 \sum_{k=1}^{\infty} \frac{I_{k}\left(\frac{a}{2}\right) \sin (k \omega t)}{k \omega}\left\{\sum_{n=1}^{\infty}(-1)^{n} \frac{(k \omega x)^{2 n}}{\delta^{n}(2 n)!}\right\}+ \\
& +2 \sum_{k=1}^{\infty} I_{k}\left(\frac{a}{2}\right) \cos (k \omega t)\left\{\sum_{n=1}^{\infty}(-1)^{n} \frac{(k \omega x)^{2 n}}{\delta^{n}(2 n)!}\right\} .
\end{aligned}
$$

Both inner series yield the same cosine function:
$=\exp \left(\frac{a}{2} \cos \omega t\right)+2 \sum_{k=1}^{\infty}\left\{I_{k}\left(\frac{a}{2}\right)[\cos (k \omega \Delta x)-1]\left[\frac{\sin (k \omega t)}{k \omega}+\cos (k \omega t)\right]\right\}_{(27)}$
(We are using here the notation: $\delta^{-\frac{1}{2}} \equiv \Delta$). Multiplication of the two bracketed terms in this series allows us to write it as the sum of four series; in particular, the two arising from the products of (-1) with $[\sin (k \omega t)] / k \omega$ and with $\cos (k \omega t)$, yields from (26) and (26'),

$$
\begin{equation*}
+\left(I_{0}\left(\frac{a}{2}\right)+1\right)-\exp \left[\frac{a}{2} \cos \omega t\right]-\int_{0}^{\dagger} \exp \left[\frac{\alpha}{2} \cos \omega \tau\right] d \tau \tag{28}
\end{equation*}
$$

To reduce the trigonometric products, we use the identities:

$$
\begin{aligned}
& \cos (k \omega \Delta x) \sin (k \omega t)=\frac{1}{2}[\sin k \omega(t+\Delta x)+\sin k \omega(t-\Delta x)] \\
& \cos (k \omega \Delta x) \cos (k \omega t)=\frac{1}{2}[\cos k \omega(t+\Delta x)+\cos k \omega(t-\Delta x)] .
\end{aligned}
$$

Thus, we obtain for the sum of the other two series the expression

$$
\begin{aligned}
& -I_{0}\left(\frac{a}{2}\right)[t+1]+\frac{1}{2}\left\{\exp \left[\frac{a}{2} \cos \omega(t+\Delta x)\right]+\exp \left[\frac{a}{2} \cos \omega(t-\Delta x)\right]\right\}+ \\
& \quad+\int_{0}^{t}\left[\exp \left[\frac{a}{2} \cos \omega(\tau+\Delta x)\right]+\exp \left[\frac{a}{2} \cos \omega(\tau-\Delta x)\right]\right] d \tau
\end{aligned}
$$

Therefore, (27) can te written as the sum of the following: the first term in (27), together with (28) and (29). Some further simplifications yield in this way an expression which can be written in the following symmetric form:

$$
\begin{align*}
t-I_{0}\left(\frac{a}{2}\right) & +\frac{1}{2}[(F(t+\Delta x)-F(t))+(F(t-\Delta x)-F(t))] \\
& +\frac{1}{2} \int_{0}^{t}[(F(\tau+\Delta x)-F(\tau))+(F(\tau-\Delta x)-F(\tau))] d \tau \tag{30}
\end{align*}
$$

where

$$
\begin{equation*}
F(s)=\exp \left[\frac{a}{2} \cos \omega s\right] \text {. } \tag{31}
\end{equation*}
$$

To recapitulate: expression (30) is the transformed form of (25), with $G(t)$ given by (24). Thus, the solution of (1), with the piston condition (24'), is given, according to (16), by the product of (-2δ) with the logarithmic x-derivative of (30). This takes the form

$$
\begin{equation*}
v(x, t)=\frac{\frac{2}{\Delta}\left[\left[F^{\prime}(t-\Delta x)-F^{\prime}(t+\Delta x)\right]+[F(t-\Delta x)-F(t+\Delta x)]\right]}{M+[(F(t+\Delta x)-F(t))+(F(t-\Delta x)-F(t))]+\int_{0}^{t}[(F(\tau+\Delta x)-F(\tau))+(F(\tau-\Delta x)-F(\tau))] d \tau} \tag{32}
\end{equation*}
$$

where

$$
M=2\left[t-1\left(\frac{a}{2}\right)\right]
$$

The suggestiveness of (32) is obvious: the two types of waves, so well known from linear theory, are both present. However, because of the viscous mechanism, they contain a "damping" - in fact, it is clear here how increased viscosity ($\delta \rightarrow \infty \Rightarrow \Delta \rightarrow 0$) reduces the propagation to zero. Moreover, the nonlinearity of the mechanism and/or of the medium are represented in a conceptually rather simple form. Note that shocks depend on the values of t and a in particular.

4.0 GENERALIZED ONE DIMENSIONAL EQUATIONS

As a first step in generalizing results obtained for the one dimension, we would like to discuss the question of propagation in a pipe with variable cross section. We derive the necessary equations here.

Burgers' equation is valid for non-linear waves in constant cross-section pipes:

$$
\begin{equation*}
v_{t}+v v_{x}=\frac{\delta}{2} v_{x x} \tag{33}
\end{equation*}
$$

where

$$
\begin{array}{ll}
v=a+u-a_{0} & \text { excess wavelet velority } \\
x=x-a_{0}^{\dagger} & \text { moving reference system } \\
\delta=\frac{1}{\rho_{0}}\left[\frac{4}{3} \mu+\mu_{v}+(\gamma-1) \frac{k}{c_{p}}\right] & \text { diffusivity }
\end{array}
$$

We shall now derive an equation for waves traveling in a pipe whose cross-sectional area (A) is a function only of its distance from the origin ($A(x)$). Plane, cylindrical, spherical, and exponential horn waves, are particular cases of this equation.

For the flow of a perfect gas in a pipe of area $A(x)$ the following equations can be written:

$$
\begin{align*}
& A \rho_{t}+(A \rho u)_{x}=0 \tag{34}\\
& A \rho\left(u_{t}+u u_{x}\right)=-A p_{x}+\rho \delta\left(A u_{x}\right)_{x} \tag{35}\\
& \rho=\rho_{0}\left(a / a_{0}\right)^{\frac{2}{\gamma-1}} ; p=P_{0}\left(a / a_{0}\right)^{\frac{2 \gamma}{\gamma-1}} \tag{36}
\end{align*}
$$

The above equations can be rewritten as follows:

$$
\begin{align*}
& \rho_{t}+u p_{x}+p_{x}=-\rho u A_{x} / A \tag{37}\\
& u_{t}+u u_{x}+p_{x} / p=\delta u_{x x}+\delta u_{x} A_{x} / A \tag{38}
\end{align*}
$$

Using Equations (36), Equations (37) and (38) become:

$$
\begin{align*}
& a_{y}+v a_{x}+\frac{\gamma-1}{2} a u_{x}=-\frac{A}{A}\left(\frac{\gamma-1}{2}\right) a u \tag{39}\\
& u_{y}+v u_{x}+\frac{2}{\gamma-1} a a_{x}=\delta\left(u_{x x}+\frac{A}{A} u_{x}\right) \tag{40}
\end{align*}
$$

Defining $f=A_{x} / A=(\ln A)_{x}$, the following particular cases are noticed:

$$
\begin{array}{ll}
\frac{A_{x}}{A}=f=0 & \text { Plane waves } \\
\frac{A_{x}}{A}=f=1 / x & \text { Cylindrical waves } \\
\frac{A_{x}}{A}=f=2 / x & \text { Spherical waves } \\
\frac{A_{x}}{A}=f=\beta & \beta=\begin{array}{l}
\text { constant Exponential horn waves: } \\
A
\end{array} \tag{44}\\
&
\end{array}
$$

Setting:

$$
r=\frac{a}{\gamma-1}+\frac{u}{2} ; \quad s=\frac{a}{\gamma-1}-\frac{u}{2}
$$

Substituting a, u with r, s in Equations (39) and (40) and then taking s_{\dagger} from Equation (40) and substituting it into Equation (39) it is found:

$$
\begin{equation*}
r_{t}+(a+u) r_{x}=\frac{\delta}{2}\left[r_{x x}-s_{x x}+f\left(r_{x}-s_{x}\right)\right]-\frac{f}{2}\left(\frac{\gamma-1}{2}\right)\left(r^{2}-s^{2}\right) \tag{45}
\end{equation*}
$$

Making the assumption that $s \simeq s$ if terms of order $\left(v \omega / a^{2}\right)(\mathrm{V} / a)$ are neglected with respect to the terms of order $\left(v \omega / a^{2}\right)$ or (U / a) as Lighthill suggested, r and s reduce to:

$$
\begin{equation*}
r=\frac{a}{\gamma-1}+\frac{u}{2} \tag{46}
\end{equation*}
$$

$$
\begin{equation*}
s \simeq s_{0} \simeq \frac{a_{0}}{\gamma-1} \text { Hence, } s_{x}=s_{x x}=0 \tag{47}
\end{equation*}
$$

Introducing the excess wavelet velocity (v):

$$
\begin{equation*}
v=a+u-a_{0} \approx \frac{\gamma+1}{2} r+\frac{\gamma-3}{2} s_{0}-a_{0}=\frac{\gamma+1}{2} r-\frac{\gamma+1}{\gamma-1} \frac{a_{0}}{2} \tag{48}
\end{equation*}
$$

So that:

$$
\begin{equation*}
r=\frac{2 v}{\gamma+1}+\frac{a_{0}}{\gamma-1} \tag{49}
\end{equation*}
$$

and finally, substituting Equations (57) and (55) in Equation (53), it is found:

$$
\begin{equation*}
v_{t}+\left(a_{0}+v\right) v_{x}=\frac{\delta}{2}\left[v_{x x}+f v_{x}\right]-\frac{f}{2}\left[\frac{\gamma-1}{\gamma+1} v^{2}+a_{0} v\right] \tag{50}
\end{equation*}
$$

Before rearranging the terms of Equation (50) it is useful to make some considerations on their origin and their importance. First, we recall that v is the excess particle velocity ($v=u+a-a_{0}$) equal to the particle velocity (u) plus the local variation of the speed of sound ($a-a_{0}$) originally due to the non-linear terms $u p_{x}, \rho u_{x}$, $u u_{x}$ and P_{x} / p of Equations (37) and (38). Thus v is at most of the order of $2 u$, i.e., much smaller than a_{0} hence, v^{2} will be neglected with respect to $a_{0} v$. This is proper and consistent with the other approximations made so far. It is also evident that the terms multiplied by f are due to the change in crosssectional area; $f=0$ reduces Equation (50) to Equation (33) for the constant crosssectional area if $X=x-a_{0} t$ is introduced in Equation (50). The effect of a changing area comes both through the mass conservation equation (37) and the momentum conservation equation (38). In Equation (50) the term multiplied by $\delta \mathrm{f}$ comes from the momentum while those multiplied by f only come from the mass conservation equation. If we think of v as an approximate sine wave we know that $v_{x x}=-(2 \pi)^{2} v / \lambda^{2}$ where λ is the wave length. Thus, the effect of an area increase as introduced through the mass conservation ($-f a_{0} v / 2$) has the same effect as an increase of diffusivity in a constant area propagation ($\delta v_{x x} / 2$) but while the effect of diffusivity decreases as the wave length (λ) increases, the effect of an area change, as introduced through the mass conservation, depends only on the area change and not on the frequency of sound ($-\mathrm{f} a_{0} v / 2$). On the other hand the effect of the area change as introduced through the momentum conservation equation ($\delta f{ }_{f} \times / 2$) is out of phase with respect to the undistorted wave and contributes directly to its distortion. However, also this effect decays with increasing wave lengths. Thus, if we conclude that:

$$
\left\{\begin{array}{l}
\frac{\delta}{2} v_{x x}=0\left[\frac{\delta}{2}\left(\frac{2 \pi}{\lambda}\right)^{2} v\right] \tag{51}\\
\frac{\delta}{2} f v_{x}=0\left[\frac{\delta}{2} f\left(\frac{2 \pi}{\lambda}\right) v\right] \\
\frac{f}{2} a_{0} v=0\left[\frac{f}{2} a_{0} v\right],
\end{array}\right.
$$

then, defining (c.p.s.) the sound frequency in cycles per second, we could neglect $\delta v_{x x} / 2$ if:

$$
\frac{2 \pi}{\lambda} \ll f \Rightarrow(c . p . s .) \ll \frac{f a_{0}}{2 \pi}
$$

We could neglect $\delta v_{x x} / 2$ and $\varepsilon f v_{x} / 2$ if:

$$
\frac{\delta 2 \pi}{\lambda} \ll a_{0} \Rightarrow \quad(\text { c.p.s. }) \ll \frac{a_{0}^{2}}{2 \pi \delta}
$$

While we could neglect $f a_{0} v / 2$ if:

$$
\frac{\delta 2 \pi}{\lambda} \gg a_{0} \Rightarrow \quad(\text { c.p.s. }) \gg \frac{a_{0}^{2}}{2 \pi \delta}
$$

or

$$
\delta\left(\frac{2 \pi}{\lambda}\right)^{2} \gg a_{0} \Rightarrow(\text { c.p.s. }) \gg \frac{a_{0}^{3 / 2}}{2 \pi}\left(\frac{f}{\delta}\right)^{1 / 2}
$$

Concluding, the equation for the propagation of high intensity sound in a pipe of varying cross-sectional area ($\mathrm{A}(\mathrm{x})$) is:

$$
\begin{equation*}
v_{t}+\left(a_{0}+v-\frac{\delta A_{x}}{2 A}\right) v_{x}=\frac{\delta}{2} v_{x x}-\frac{A_{x}}{2 A} a_{0} v \tag{52}
\end{equation*}
$$

For plane waves, using Equation (41)

$$
\begin{equation*}
v_{t}+\left(a_{0}+v\right) v_{x}=\frac{\delta}{2} v_{x x} \tag{53}
\end{equation*}
$$

For eylindrical waves, using Equation (42)

$$
\begin{equation*}
v_{t}+\left(a_{0}+v-\frac{\delta}{2 x}\right) v_{x}=\frac{\delta}{2} v_{x x}-\frac{a_{0}}{2 x} v \tag{54}
\end{equation*}
$$

For spherical waves, using Equation (43)

$$
\begin{equation*}
v_{t}+\left(a_{0}+v-\frac{\delta}{x}\right) v_{x}=\frac{\delta}{2} v_{x x}-\frac{a_{0}}{x} v \tag{55}
\end{equation*}
$$

For exponential horn waves, using Equation (44)

$$
\begin{equation*}
v_{t}+\left(a_{0}+v-\frac{\beta \delta}{2}\right) v_{x}=\frac{\delta}{2} v_{x x}-\frac{\beta a_{0}}{2} v \tag{56}
\end{equation*}
$$

The substitution $X=x-a_{0}{ }^{\dagger}$ transforms Equation (53) to Burgers' equation and it can approximately be used in the solution of Equation (56), but it is not useful in Equations (54) and (55) because there the independent variable x appears explicitly. In any case, however, it is clear that the solutions of Equations (54)-(56) are involved in almost insurmountable difficulties; and such is the case, a fortiori, for Equation (40). Thus, in the next section we shall discuss an approach based on a different generalization; one which shows more promise of being tractable. However, in Appendix II, we are giving a brief discussion of why even an apparently very simple case such as (56) involves great difficulties.

5.0 THE CASE OF VARIABLE GEOMETRY

In Section 3.0 we have obtained an explicit expression for propagation induced by a periodic piston. However, all of the preceding solutions were obtained under the assumption that we have a simple geometry: that is, flow in a one dimensional lossless pipe. The question arises, however, as to what the situation is when the pipe has a variable, or indeed a time-dependent geometry. Note that Section 4.0 treated the location dependent situation and, in general, that is simpler than the time-dependent one, discussed here. For example, suppose that we have a solid fuel rocket, in which the waves propagate down the "pipe" which is the central core; however, in the course of this propagation the walls of this "pipe" get used up, so that the geometry changes continuously. It is because of such considerations that the present section is included here. The main connection between what we have here and the other parts of our work is that here too we are using Burgers' equation; furthermore, in deriving it, we shall follow once again the guidelines given by Lighthill.

Let us consider one dimensional flow in a vessel of time-varying cross-sectional area $A(t)$. As our flow quantity, let us choose the flow velocity u, which we shall assume to depend on the independent variables $X=(x-c t)$ and t, so that we shall have a moving frame of reference. Thus, at time $t=t_{0}$ and at the point $x=x_{0}$, the velocity will be given by

$$
u_{0}=v\left(x_{0}-c t_{0}, t_{0}\right)
$$

and at that (moving) point $X_{0}=\left(x_{0}-c t_{0}\right)$ the cross sectional area will be $A_{0}=A\left(t_{0}\right)$. In order to make our theory agree with the customary linear theory, we shall take

$$
\text { c }=\text { local soundspeed. }
$$

We are interested in waves of finite amplitude, and thus have to take convection into account. This means that

$$
u=\frac{d X}{d t}
$$

will not vanish along individual wavelets; rather, it will be proportional to the fluid velocity itself. Now the energy density in the system is

$$
v^{2}=A u^{2}
$$

so that, following Lighthill, we obtain the appropriate relation

$$
\begin{equation*}
v_{T}+v v_{X} \approx 0 \tag{57}
\end{equation*}
$$

$$
\begin{array}{lll}
\text { where } & v & =A u \\
\text { and } & T & =\int \frac{d t}{\sqrt{A(t)}} . \tag{58}
\end{array}
$$

If we consider dissipation also, the right hand side of (57) has to be replaced by a quantity proportional to it, i.e.,

$$
\begin{equation*}
v_{T}+v_{X}=\delta(T) v_{X X} \tag{59}
\end{equation*}
$$

We followed here the derivation given by Lighthill, so that we shall be able to trace back the significance of the various quantities.

As we have seen, the solution of (59), for $\delta(T)=\delta_{0}=$ constant, is given by

$$
\begin{equation*}
v=-2 \delta_{0} \frac{{ }^{\theta} X}{\theta} \tag{60}
\end{equation*}
$$

where θ is a positive solution of

$$
\begin{equation*}
\theta_{T}=\delta_{0} \theta_{X X} \tag{61}
\end{equation*}
$$

Without any regard to possible boundary and/or initial conditions, let us take for a solution of (61) the function

$$
\begin{equation*}
\theta(X, T)=1+2 \sum_{n=1}^{\infty}(-1)^{n} e^{-n^{2}\{\alpha+\delta T]} \cos n X \tag{02}
\end{equation*}
$$

which is Jacobits 4th Theta function, with α an arbitrary (non negative) constant. The advantage in taking this solution is that there is a rather simple expression for the logarithmic derivative of it; i.e., using (62), (60) becomes

$$
\begin{equation*}
v(X, T)=-2 \delta \sum_{n=1}^{\infty}\{\cosh [n(\alpha+\delta T)] \sin n X\} \tag{63}
\end{equation*}
$$

with α still arbitrary. (In any specific situation it could be used to satisfy an initial condition, for instance.)

In order to analyze expression (63), we must relate it to an experimentally observable quantity, such as the pressure P. Let us assume therefore an adiabatic type compression, so that

$$
\frac{P}{P_{0}}=\left(\frac{\rho}{P_{0}}\right)^{\gamma}
$$

where, as before, γ is the adiabatic constant and ρ is density. Let us also write

$$
P=P+P_{0}
$$

where p is excess, while P_{0} ambient pressure. Furthermore, if in this one dimensional system we denote particle displacement by y, then

$$
\begin{equation*}
y_{T}=u \tag{64}
\end{equation*}
$$

Also, from the principle of conservation of mass we have that

$$
\frac{p}{\rho_{0}}=\frac{1}{Y_{X}}
$$

Connecting all these relationships, we arrive at

$$
\begin{equation*}
p=P_{0}\left[\left(y_{x}-\gamma-1\right]\right. \tag{65}
\end{equation*}
$$

Using now (57), (64) and (65), we note that

$$
\begin{equation*}
P=P_{0}\left\{\left[\frac{\partial}{\partial X} \int^{t} \frac{v(X, T)}{A(t)} d T\right]^{-\gamma}-1\right\} \tag{66}
\end{equation*}
$$

We can perform the integration indicated in (66), for an average value A of $A(t)$, from (63), and then differentiate the result, to obtain

$$
P=P_{0}\left\{\left[f(X)+\sum_{n=1}^{\infty} n \ln \left[\tanh \frac{n}{2}(\alpha+\delta T)\right] \cos n X\right]^{-\gamma}-1\right\}(67)
$$

with f an arbitrary function of location. Note that the condition of zero excess pressure can be satisfied by this function; for we can set it equal to the negative of the summation +1 at time $t=0$. Furthermore, the arbitrary constant α can be used to satisfy yet another condition. However, to see the situation somewhat more clearly, lè us introduce a normalizing f and take $\alpha=0$. We can then rewrite (67) as an infinite product:

$$
P=P_{0}\left\{\left[\ln \prod_{n=1}^{\infty}\left[\frac{\tanh n \delta T / 2}{\tanh n \delta / 2}\right]^{n \cos n x}\right]^{-\gamma} \quad-1\right\}
$$

Let us observe the following: As

$$
A(t) \longrightarrow 0
$$

$$
\begin{aligned}
& T \quad=\int \frac{d t}{\sqrt{A(t)}} \longrightarrow \infty \\
& \text { Tanh T } \longrightarrow 1
\end{aligned}
$$

$$
\ln [\tanh \mathrm{T}] \longrightarrow 0
$$

also. We see then, from (67), that because $\gamma>0, \mathrm{P}$ increases without bound; so that

	Cross Sectional area $\longrightarrow 0$
implies	
	Excess pressure $\longrightarrow \infty$

which is certainly a reasonable conclusion. On the other hand, as

$$
\begin{gathered}
A(t) \longrightarrow \infty \\
T=\int \frac{d t}{\sqrt{A(t)}} \rightarrow 0 \\
\tanh T \rightarrow 0^{+} \\
\ln (\tanh T) \longrightarrow-\infty
\end{gathered}
$$

This, in turn, implies that as

$$
\begin{aligned}
& \text { Cross sectional area } \longrightarrow \infty \\
& \text { Excess pressure } \longrightarrow \text { Absolute minimum. }
\end{aligned}
$$

Of course, there are several other conclusions that could be drawn from this model - however, more research seems to be indicated. In particular, the complicated nature of the nonlinear mechanism. as exhibited in (67) and in (67) would indicate the necessity of a parametric study by computer. A first step was indeed taken in this direction; some results are given in Appendix I.

6.0 THE THREE-DIMENSIONAL CASE: BURGERS' EQUATION

The two basic papers in connection with Burgers' equations are those of \mathbf{E}. Hopf and J. D. Cole, mentioned in the Bibliography. In the latter, the following statement is made: Since

$$
v=-2 \delta \frac{\theta_{x}}{\theta},
$$

where

$$
\theta_{t}=\theta_{x x},
$$

is a solution of Burgers' equation

$$
v_{t}+v v_{x}=\delta v_{x x}, \quad v=v(x, t),
$$

we can extend this to the three-dimensionalrealm quite simply; however under certain restrictions. Namely,

$$
u=-2 \delta \frac{\Delta \phi}{\phi}, \Delta \phi \equiv \varphi_{x}+\phi_{y}+\phi_{z},
$$

where

$$
\phi_{t}=\delta \Delta^{2} \phi, \quad \Delta^{2} \phi \equiv \phi_{x x}+\phi_{y y}+\phi_{z z}
$$

is a solution of the three-dimensional Burgers' equation

$$
u_{\dagger}+u \Delta u=\delta \Delta^{2} \cdot 1, \quad u=u(x, y, z, t)
$$

Unfortunately, it turns out that the restrictions mentioned by Cole are quite severe indeed so much so, that the three dimensional solution given above has no practical value. Thus, this section is devoted to illustrate and to prove that point; and, in doing so, would point out a need for the introduction of a new approach. To approach this question formally, let us state and prove the following

Theorem:
If $\phi=\phi(x, y, z, t)$ is a function such that
$\phi_{t}=\phi_{x x}+\phi_{y y}+\phi_{z z}$
and $u=(x, y, z, t)$ is a function such that

$$
u_{1}=u_{x x}+u_{y y}+u_{z z}-v u_{x}-v u_{y}-v u_{z} \text {, }
$$

then these two partial differential equations are in general not connected by

$$
u=-2 \frac{\Phi_{x}+\Phi_{y}+\Phi_{z}}{\phi}
$$

Proof:
We shall use a concise vector notation. Thus, let

$$
\begin{aligned}
& \overrightarrow{\mathrm{e}}=(1,1,1) \\
& \vec{\Delta}_{u}=\left(u_{x}, u_{y}, u_{z}\right) \\
& \Delta_{u}^{2}=u_{x x}+\dot{u}_{y y}+u_{z z}
\end{aligned}
$$

then we have

$$
\begin{aligned}
& \Phi_{t}=\Delta^{2} \varphi \\
& u_{t}=\Delta^{2} u-u(\overrightarrow{\mathrm{e}} \cdot \vec{\Delta} u)
\end{aligned}
$$

and

$$
u=-\frac{2}{\phi}(\vec{e} \vec{\Delta} \phi)
$$

Now

$$
\begin{aligned}
u_{t} & =-\frac{2}{\phi}\left(\overrightarrow{\mathrm{e}} \cdot \vec{\Delta} \phi_{t}\right)+\frac{2}{\phi^{2}}(\overrightarrow{\mathrm{e}} \cdot \vec{\Delta} \phi) \phi_{t} \\
& =-\frac{2}{\phi}\left(\overrightarrow{\mathrm{e}} \cdot \vec{\Delta}\left(\Delta^{2} \phi\right)\right)+\frac{2}{\phi^{2}}\left(\overrightarrow{\mathrm{e}} \cdot \vec{\Delta}_{\phi}\right) \Delta^{2} \phi \\
& =-\frac{2}{\phi} \Delta^{2}\left(\overrightarrow{\mathrm{e}} \cdot \vec{\Delta}_{\phi}\right)+\frac{2}{\phi^{2}} \Delta^{2} \phi(\overrightarrow{\mathrm{e}} \cdot \vec{\Delta} \phi)
\end{aligned}
$$

and

$$
\begin{aligned}
\vec{\Delta}_{u} & =-2 \vec{\Delta}\left(\vec{e} \cdot \frac{\vec{\Delta} \phi}{\phi}\right) \\
& =+\frac{2}{\phi^{2}}\left(\vec{e} \cdot \vec{\Delta}_{\phi}\right) \vec{\Delta} \phi-\frac{2}{\phi} \vec{\Delta}\left(\vec{e} \cdot \vec{\Delta}_{\phi}\right)
\end{aligned}
$$

by direct expansion and recombination.

$$
\begin{aligned}
\vec{e} \cdot \vec{\Delta} u= & \frac{2}{\phi^{2}}(\vec{e} \cdot \vec{\Delta} \phi)^{2}-\frac{2}{\phi} \vec{e} \cdot \vec{\Delta}(\vec{e} \cdot \vec{\Delta} \phi) \\
-u(\vec{e} \cdot \vec{\Delta} u)= & +\frac{4}{\phi^{3}}(\vec{e} \cdot \vec{\Delta} \phi)^{3}-\frac{4}{\phi^{2}}(\vec{e} \cdot \vec{\Delta} \phi)(\vec{e} \cdot \vec{\Delta}(\vec{e} \cdot \vec{\Delta} \phi)) \\
\Delta^{2} u= & -2 \vec{\Delta} \cdot \vec{\Delta}\left(\vec{e} \cdot \frac{\vec{\Delta} \phi}{\phi}\right) \\
= & \vec{\Delta} \cdot\left(\frac{2}{\phi^{2}}(\vec{e} \cdot \vec{\Delta} \phi) \vec{\Delta} \phi\right)-\vec{\Delta} \cdot\left(\frac{2}{\phi} \vec{\Delta}(\vec{e} \cdot \vec{\Delta} \phi)\right) \\
= & \frac{2}{\phi^{2}}(\vec{e} \cdot \vec{\Delta} \phi) \Delta^{2} \phi+\vec{\Delta} \phi \cdot \vec{\Delta}\left(\frac{2}{\phi^{2}}(\vec{e} \cdot \vec{\Delta} \phi)\right) \\
& -\frac{2}{\phi} \Delta^{2}(\vec{e} \cdot \vec{\Delta} \phi)-\vec{\Delta}(\vec{e} \cdot \vec{\Delta} \phi) \cdot \vec{\Delta}\left(\frac{2}{\phi}\right) \\
= & \frac{2}{\phi^{2}}(\vec{e} \cdot \vec{\Delta} \phi) \Delta^{2} \phi-\frac{4}{\phi^{2}}(\vec{e} \cdot \vec{\Delta} \phi) \vec{\Delta} \phi \cdot \vec{\Delta} \phi \\
+ & \frac{2}{\phi^{2}} \vec{\Delta} \phi \cdot \vec{\Delta}(\vec{e} \cdot \vec{\Delta} \phi)-\frac{2}{\phi} \Delta^{2}(\vec{e} \cdot \vec{\Delta} \phi)+ \\
& +\frac{2}{\phi^{2}} \vec{\Delta} \phi \cdot \vec{\Delta}(\vec{e} \cdot \vec{\Delta} \phi)
\end{aligned}
$$

$$
\begin{aligned}
=-\frac{2}{\phi} & \Delta^{2}(\vec{e} \cdot \vec{\Delta} \phi)+\cdot \frac{2}{\phi^{2}}(\vec{\epsilon} \cdot \vec{\Delta} \phi) \Delta^{2} \phi+ \\
& +\frac{4}{\phi^{2}} \stackrel{\rightharpoonup}{\Delta} \phi \cdot \vec{\Delta}(\bar{E} \cdot \vec{\Delta} \phi)-\frac{4}{\phi^{3}}\left(\boldsymbol{E} \cdot \vec{\Delta}_{\phi}\right) \vec{\Delta}_{\phi} \cdot \vec{\Delta} \phi .
\end{aligned}
$$

Summarizing then, (if $\phi_{t}=\Delta^{2} \phi$)

$$
\begin{aligned}
& u_{t}=-\frac{2}{\phi} \Delta^{2}(\bar{e} \cdot \bar{\Delta} \phi)+\frac{2}{\phi^{2}}(\vec{e} \cdot \bar{\Delta} \phi) \Delta^{2} \phi
\end{aligned}
$$

$$
\begin{aligned}
& \Delta^{2} u=-\frac{2}{\phi} \Delta^{2}(\vec{e} \cdot \vec{\Delta} \phi)+\frac{2}{\phi^{2}}\left(\vec{e} \cdot \vec{\Delta}_{\phi}\right) \Delta^{2} \phi \\
& -\frac{4}{\phi^{3}}\left(\vec{e} \cdot \vec{\Delta}_{\phi}\right) \bar{\Delta}_{\phi} \cdot \bar{\Delta}_{\phi}+\frac{4}{\phi^{2}} \bar{\Delta}_{\phi} \cdot \bar{\Delta}\left(\mathbf{e} \cdot \bar{\Delta}_{\phi}\right)
\end{aligned}
$$

Before analyzing these equations we note that if we are dealing with one space dimension; i.e., E_{1},

$$
\begin{gathered}
u_{t}=-\frac{2}{\phi} \phi_{x x x}+\frac{2}{\phi^{2}} \Phi_{x} \phi_{x x} \\
-u(\vec{e} \cdot \stackrel{\rightharpoonup}{\Delta} u)=-u u_{x}=+\frac{4}{\phi^{3}}\left(\phi_{x}\right)^{3}-\frac{4}{\phi^{2}} \phi_{x} \phi_{x x} \\
\Delta^{2} u=u_{x x}=-\frac{2}{\phi} \Phi_{x x x}+\frac{2}{\phi^{2}} \Phi_{x} \Phi_{x x} \\
-\frac{4}{\phi^{3}}\left(\phi_{x}\right)^{3}+\frac{4}{\phi^{2}} \Phi_{x} \phi_{x x}
\end{gathered}
$$

which, as Hopf has shown, are perfectly consistent. However, for more than one space variable, consider those terms which have ψ^{3} in their denominators. We must have,

$$
\begin{aligned}
& -\frac{4}{\phi^{3}}\left(\mathbf{E} \cdot \vec{\Delta}_{\phi}\right)^{2}=\frac{4}{\phi^{3}}\left(\mathbf{t} \cdot \mathbf{\Delta}_{\phi}\right) \mathbf{\Delta} \cdot \cdot \vec{\Delta}_{\phi} ; \phi \neq 0 \\
& \Rightarrow \quad\left(\mathbf{E} \cdot \bar{\Delta}_{\phi}\right)^{2}=\bar{\Delta}_{\phi} \cdot \vec{\Delta}_{\phi}=\left\|\bar{\Delta}_{\phi}\right\|^{2}
\end{aligned}
$$

But, we know that

$$
\begin{aligned}
\left(t \cdot \bar{\Delta}_{\phi}\right)^{2} & =\left(\phi_{x}+\phi_{y}+\phi_{z}\right)^{2} \\
& \neq \phi_{x}^{2}+\phi_{y}^{2}+\phi_{z}^{2}=\|\bar{\Delta}\|^{2}
\end{aligned}
$$

Thus, ti spf's substitution may not be directly extended into two and three space variables. In fact, this can be done only if the flow field is assumed to be completely irrotational.

We thus conclude that the extensions of the solutions of Burgers' equation to a three dimensional domain is not feasible. Alternatives are discussed in the next two sections.

7.0 TWO-DIMENSIONAL NON-LINEAR WAVE EQUATIONS

We shall start our discussion of problems in a dimension higher than the first by an appropriate derivation of the equations employed.

Hoving a flow which, for physical reasons, admits an axis of symmetry, let \times be the distance along this axis measured from a reference point and y the distance from this axis. By definition, there will be no flow normal to both x and y and the mass and momentum conservation equations reduce to the following ones:

$$
\begin{align*}
& \rho_{1}+u \rho_{x}+v \rho_{y}+\rho v_{x}+\rho v_{y}=0 \tag{68}\\
& u_{y}+u u_{x}+v u_{y}+p_{x} / \rho=\delta\left(u_{x x}+u_{y y}\right) \tag{69}\\
& v_{y}+u u_{x}+v v_{y}+p_{y} / \rho=\delta\left(v_{x x}+v_{y y}\right) \tag{70}\\
& \delta=\frac{1}{\rho_{0}}\left[\frac{4}{3} \mu+\mu_{r}+(y-1) \frac{k}{c_{p}}\right] \tag{71}
\end{align*}
$$

The above equations are exact except for the definition of the diffusion coefficient (δ). By introducing δ, the energy conservation equation is not considered explicitly. The diffusive effect of heat transfer is however taken under consideration by the fixctor: $(\gamma-1) \mathrm{k} / \mathrm{c}_{\mathrm{p}} p_{0}$. Lighthill has shown that the above approximation is equivalent to neglecting terms of order $\left(v \omega / a^{2}\right)(\mathrm{V} / a)$ with respect to terms of order ($v \omega / a^{2}$) or (V / a), where $v=\mu / \rho, \omega$ is the sound frequency, a is the local speed of sound, and V the sound velocity amplitude. All the following developments of Equations (68), (69), and (70) will imply this approximation.

The diffusion coefficient (δ) was amply discussed from basic principles in our previous report. The conclusions are that δ can be estimated accurately enough for engineering purposes, but the accuracy of the estimate is different for different media. Its final value, however, needs experimental verification for each medium and frequency zange which an be achieved by measuring the absorption coefficient or by comparing calculated and distorted plane waves.

The next approximation is to assume isentropic process in a perfect gas:

$$
\begin{equation*}
\frac{p}{p_{0}}=\left(\frac{\rho}{p_{0}}\right)^{\gamma}=\left(\frac{c}{a_{0}}\right)^{\frac{2 \gamma}{\gamma-1}} \tag{72}
\end{equation*}
$$

The above assumption is in contradiction with a $\delta \neq 0$. However it is a well established fact that entropy generation is a second or third order phenomenon from which it follows that Equation (73) holds even for shocks with Mach numbers up to 1.5 to 2.0. Equation (72) establishes a direct correspondence between p, p, and the locai speed of sound a. This leads to the following relationships:

$$
\begin{align*}
& \rho_{t}=\rho_{a} a_{t}=\frac{2}{\gamma-1} \frac{\rho_{0}}{a_{0}}\left(\frac{a}{a_{0}}\right)^{\frac{2}{\gamma-1}-1} \\
& \rho_{x}=\rho_{a} a_{x}=\frac{2}{\gamma-1} \frac{\rho_{0}}{a_{0}}\left(\frac{a}{a_{0}}\right)^{\frac{2}{\gamma-1}-1} a_{x} \\
& \rho_{x}=P_{a} a_{x}=\frac{2 \gamma}{\gamma-1} \frac{\rho_{0}}{a_{0}}\left(\frac{a}{a_{0}}\right)^{\frac{2 \gamma}{\gamma-1}-1} a_{x} \tag{73}
\end{align*}
$$

Similar relationships can also be written for ρ_{y} and p_{y}. Substituting Equation (73) and similar into Equations (68), (69), and ${ }^{y}(70)$, it is found:

$$
\begin{align*}
& a_{f}+u a_{x}+v a_{y}+\frac{\gamma-1}{2} a\left[u_{x}+v_{y}\right]=0 \tag{74}\\
& u_{y}+u u_{x}+v u_{y}+\frac{2}{\gamma-1} a a_{x}=\delta\left[u_{x x}+u_{y y}\right] \tag{75}\\
& v_{y}+u v_{x}+v v_{y}+-\frac{2}{\gamma-1} a a_{y}=\delta\left[v_{x x}+v_{y y}\right] \tag{76}
\end{align*}
$$

Evidently the above equations constitute a system of three nonlinear partial differential equations in the variables $a=a(x ; y ; t) ; u=u(x ; y ; t) ; v=v(x ; y ; t)$, where a is the local speed of sound $u d$ and v are the components of the local particle velocity.

The above system can be reduced to a system of two nonlinear partial differential equations in two unknowns (the excess wavelet velocity in the x and y directions) which, for the ore dimensional case reduce to Burgers' equation. Again, the error introduced can be shown to be of order ($\nu \omega / a^{2}$) (V/a) with respect to orders ($\nu \omega / a^{2}$) or $(\mathrm{V} / \mathrm{a})$; we demonstrated this in a previous report.

The method is similar to that used to derive the equation for spherical and cylindrical waves (Section 4.0) but somewhat more complicated. The result is:

$$
\begin{align*}
& v_{t}+\left(U+a_{0}\right) U_{x}-\frac{\delta}{2} U_{x x}+\left\{\left(\frac{V}{2}+\frac{a_{0}}{2}\right) v_{y}+\frac{v U_{y}}{\gamma+1}-\frac{\varepsilon}{2} U_{y y}\right\}=0 \tag{77}\\
& V_{t}+\left(V+a_{o}\right) v_{y}-\frac{\delta}{2} v_{y y}+\left\{\left(\frac{U}{2}+\frac{a_{0}}{2}\right) U_{x}+\frac{U v_{x}}{\gamma+1}-\frac{\delta}{2} v_{x x}\right\}=0 \tag{78}
\end{align*}
$$

where $U=a+u-a_{0}$

$$
V=a+v-a_{0} \quad \text { excess wavelet velocity in the } y \text { direction }
$$

Changing the fixed reference system ($x ; y$) to a system moving with the wave ($X=x-a_{0}{ }^{t} ; Y=y-a_{0} t$) it is found:

$$
\begin{align*}
& U_{t}+U U_{X}-\frac{\delta}{2} U_{X X}+\left\{\left(\frac{V}{2}+\frac{a_{0}}{2}\right) v_{y}+\left(\frac{V}{\gamma+1}-a_{0}\right) U_{y}-\frac{\delta}{2} U_{Y Y}\right\}=0 \tag{79}\\
& V_{t}+V V_{Y}-\frac{\delta}{2} V_{Y Y}+\left\{\left(\frac{U}{2}+\frac{a_{0}}{2}\right) U_{X}+\left(\frac{U}{\gamma+1}-a_{0}\right) v_{X}-\frac{\delta}{2} V_{X X}\right\}=0 \tag{80}
\end{align*}
$$

It can be noticed that Equations (79) and (80) reduce to Burgers' equation for the one dimensional case. It should also be noticed that, the excess wavelet velocities cannot be neglected in comparison with the speed ot sound in rionlinear problems in general.

8.0 A DIFFERENT GENERALIZATION

As a method of approach to any of the pairs of equations (75-76), (77-78) or (79-80), one might try the following.

We nave seen in Section 6.0 that no physically meaningful solutions can be constructed for the equation

$$
v_{t}+v v_{x}+v v_{y}=\delta v_{x x}+\delta v_{y y}
$$

On the other hand, the above mentioned pairs of equations suggest that one try to solve, as an interim step, the equation

$$
\begin{equation*}
v_{t}+v v_{x}=\delta v_{x x}+\delta v_{y y} \tag{81}
\end{equation*}
$$

We would like to discuss this problem briefly here.
If the second term on the right hand side of (81) is missing, then we have a Burgers' equation which we know how to solve. Furthermore, it is precisely this last term which shows the dependence of v on a second spatial variable y. This suggests that we try to find solutions for (81) in terms of solutions of Burgers' equation. In particular, let us assume that

$$
\begin{equation*}
v=k \frac{\theta_{x}}{\theta} \tag{82}
\end{equation*}
$$

where k is constant, while θ is same as yet unspecified positive function. Then, after mar: transformations, (81) becomes

$$
\begin{equation*}
\left(\frac{\theta_{t}-\delta \theta_{x x}}{\theta}\right)_{x}+(k+2 \delta)\left(\frac{\theta_{x}}{\theta}\right)^{3}=\delta\left(\frac{\theta_{x}}{\theta}\right)_{y y} \tag{83}
\end{equation*}
$$

It is clear from (84) why, in the absence of its right hand side, the assumptions

$$
\begin{align*}
& \theta_{t}=\delta \theta_{x x} \tag{84}\\
& k=-2 \delta \tag{85}
\end{align*}
$$

in (82) solve Burgers' equation.
Suppose, however, that in (83) we keep assumptions (84), but dispense with (85) and leave the constant k undetermined for the moment; then denoting

$$
\begin{equation*}
k_{1}=\frac{k+2 \delta}{\delta} \tag{86}
\end{equation*}
$$

Equarion (83) becomes

$$
\begin{equation*}
w^{\prime \prime}=k_{1} w^{3} \tag{87}
\end{equation*}
$$

where

$$
\begin{equation*}
w=\frac{{ }_{x}^{x}}{\theta} \tag{88}
\end{equation*}
$$

and where the primes denote differentiations with respect to y. Without going into details of the solution, let us observe that (87) can be solved in the foilowing way:

$$
\begin{equation*}
w(y)=w_{0} C_{n}\left(\frac{1}{\sqrt{2}}, \sqrt{k_{1}} w_{0} y\right) \tag{89}
\end{equation*}
$$

Here w is the value of w at $y=0$, while C_{n} is the elliptic cosine function. From (89), thus, w_{0} is an arbitrary function of X and of t, so that - with 88 we have

$$
\begin{equation*}
w(y)=\frac{\theta_{x}(x, y ; t)}{\theta_{0}(x, y ; t)}=w_{0}(x, t) C_{n}\left[\frac{1}{\sqrt{2}} \sqrt{k_{1}} w_{0}(x, t) y\right] \tag{90}
\end{equation*}
$$

From (90),

$$
\begin{equation*}
\theta=F(y, t) \exp \left[\int^{x} w_{0}(\zeta, t) C_{n}\left[\frac{1}{\sqrt{2}}, k_{1} w_{0}(\zeta, t) y\right] d \zeta\right] \tag{91}
\end{equation*}
$$

where F is an arbitrary function. In order for this analysis to be complete, we must choose F and w_{0} so that (91) wili satisfy its assumed Equation (84).

Note, however, that we need only take $k=1$ in (82) in order for $w=v$. Thus, (90) says that if on the line $y=0$ there exists a periodic boundary excitation, then it will remain periodic. Furthermore, if it is not periodic on $y=0$, the elliptic cosine functions will make it nearly so at large distances from the plane of $y=0$. Finally, this periodicity, as well as an exponential type - although quite complicated - damping exists also; the first with respect to x, the second with respect to t. (This can be seen by noting that θ is a solution of the heat Equation (84); and by noting that the logarithmic derivatives of such solutions behave very much like the Jacobian Zeta functions, which are periodic in x and damped for $+\rightarrow \infty$).

What this qualitative analysis can show, then, is that an investigation of Equation (81) from a quantitative point of view might be quite rewarding; and that, furthermore, Equation (81) is an acceptable analytical vehicle on a posteriori grounds.

9.0 FIRST PROPAGATION MODEL EQUATION

In the past several years a great deal of effort, including that presented here, has been expended on Burgers' equation. It is well, we think, to recall the circumstances why this happened.

Burgers' introduced his mode! in 1942. As a matter of fact, he gave as a model a pair of equations, involving partial and ordinary derivatives. He then obtained some approximate results from those, after reducing them to the simple equation that is named for him today. These results were well reseived, but not too much was done with them, because the exact solution of that equation was unknown. It was only after 1956 and 1957, when Cole and Hopf, respectively, published their solutions, that so much work began to be based on this equation. There exists work in a great many fields, which has as its aim the reduction of problems to Burgers' equation.

This is of course not surprising. After all, the number of physically significant nonlinear partial differential equations, for which an exact solution is known, is extremely small - probably less than a dozen.

The success of Burgers' was due to two factors. First, the equations that he postulated turned out to be excellent analytical vehicles. Secondly, the approximate solutions he had originally obtained were also very good.

Let us put a stress on the point that he postulated his equations, instead of deriving them from, say, the Navier-Stokes equations. In the meanwhile, of course, the justification of a derivation has been completed also. However, since no equations are exact, it seems to be a very reasonable approach to postulate equations, note what the consequent solutions are and then on these a posteriori grounds, to lay a proper formulation under the analytical vehicle used.

It is exactly this which we shall address ourselves to now: namely, the postulations of equations and a brief examination of their solutions. Thus, in this section, we will give the brief description of a particular set of equations, intended to serve as a model for other, more appropriate, sets. It was chosen for illustration because of its particular simplicity; for more details, see the paper by Kampe' de Feriet.

Let us consider the physical model of sound radiation from a uniformly distributed source on the ground, with say, radial coordinate x, vertically upwards, in the direction of increasing y. All motion will be assumed to take place in a plane parallel to the plane of $x y$.

In a nondimensional system of units, ur.aer the assumptions of incompressibility and non-viscousness, an irrotational motion will define a velocity potential ϕ (see formula (6), for example, which is a quasi-potential) such that the two velocity components u, v are related to it by

$$
\begin{align*}
& v(x, y, t)=-\Phi_{x}(x, y, t) \tag{92}\\
& v(x, y, t)=-\Phi_{y}(x, y, t), \tag{93}
\end{align*}
$$

while ϕ itself satisfies

$$
\begin{equation*}
\phi_{x x}+\phi_{y y}=0, \tag{94}
\end{equation*}
$$

because of the incompressibility condition.
Furthermore, since we expect the vertical velocity component to be of periodic type in time, while undergoing exponential damping with increasing altitude, we also postulate for ϕ the equation

$$
\begin{equation*}
\Phi_{y}=\phi_{t+}, \tag{95}
\end{equation*}
$$

which, incidentally, also agrees with the linear approximation.
Let us observe now that the function ϕ, which depends on the three variables $x, y, t, \phi=\phi(x, y, t)$, is considered as a function of two variables (x and y) in (94), and of two other variables (y and t) in (95). Thus, as a consequence, ϕ also satisfies

$$
\begin{equation*}
\phi_{t+t+}+\phi_{y y}=0 ; \tag{96}
\end{equation*}
$$

an equation known in connection with the transverse vibrations of a bar.

It is rather simple to obtain solutions for the pair (94-95). One can start from the four simplest ones, i.e.,

$$
\phi= \begin{cases}e^{-\lambda y} & \cos \lambda x \cos \sqrt{\lambda} t \tag{97}\\ e^{-\lambda y} & \cos \lambda x \sin \sqrt{\lambda t} \\ e^{-\lambda y} & \sin \lambda x \sin \sqrt{\lambda_{t}} \\ e^{-\lambda y} & \sin \lambda x \cos \sqrt{\lambda t}\end{cases}
$$

Linear combinations of these give two superposed waves, well known from linear acoustical theory, with one going towards $x=\infty$, and the other in the opposite direction. That is, if

$$
\begin{align*}
\Phi=e^{-\lambda y} & \{\cos \sqrt{\lambda}+[A(\lambda) \cos \lambda x+B(\lambda) \sin \lambda x]+ \\
& +\sin \sqrt{\lambda+}[C(\lambda) \cos \lambda x+D(\lambda) \sin \lambda x]\}, \tag{98}
\end{align*}
$$

then

$$
\begin{equation*}
\phi=\phi_{1}+\phi_{2}, \tag{99}
\end{equation*}
$$

where

$$
\begin{align*}
& \phi_{1}=\frac{A(\lambda)+D(i)}{2} \cos (\lambda x-\sqrt{\lambda} t)+\frac{B(\lambda)-C(\lambda)}{2} \sin (\lambda x-\sqrt{\lambda} t) \\
& \phi_{2}=\frac{A(\lambda)-D(\lambda)}{2} \cos (\lambda x+\sqrt{\lambda} t)+\frac{B(\lambda)+C(\lambda)}{2} \sin (\lambda x-\sqrt{\lambda} t) \tag{100}
\end{align*}
$$

(Compare these, for instance, to the results we obtained for the velocity functions, with particles excited by a periodic-type piston motion; formula (32)).

Thus, the general solution of the pair of equations (94-95) can be written as

$$
\begin{equation*}
\phi_{1}(x, y, t)=\int_{0}^{\infty}\left[e^{-\lambda y} \cos \lambda x \cos \sqrt{\lambda t}\right] f(\lambda) d \lambda \tag{101}
\end{equation*}
$$

where the integrand contains in brackets the first function of (97); and also a Φ_{2}, Φ_{3}, Φ_{4}, which are identical to (101) except that in the integrand the other functions of (97) are used. In fact, it is possible to combine all these, so that, using complex notations, we have

$$
\begin{align*}
& \phi(\cdot, y, t)=\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}= \\
& =\int_{-\infty}^{\infty} \exp \left[i y \lambda-t|\lambda|-x \lambda^{2}\right] f(\lambda) d \lambda \tag{102}
\end{align*}
$$

This is a rather good representation, for it can be shown that every non-negative solution of (94-95) which is Lebesgue integrable on

$$
\begin{align*}
-\infty<x & <\infty \\
y & >0 \\
+ & >0 \tag{103}
\end{align*}
$$

can be expressed in the form (102).
According to this, then, we have from (92), (93), and (102) that the velocity components will be given by integrals of the form

$$
\begin{align*}
& u(x, y, t)=\int_{-\infty}^{\infty} \exp \left[i y \lambda-t|\lambda|-x \lambda^{2}\right] \lambda^{2} f_{1}(\lambda) d \lambda \tag{104}\\
& v(x, y, t)=\int_{-\infty}^{\infty} i \exp \left[i y \lambda-t|\lambda|-x \lambda^{2}\right] \lambda f_{2}(\lambda) d \lambda \tag{105}
\end{align*}
$$

Note that, in general, the real component of (104) will be the same as the imaginary component of (105) and vice versa. This means, of course, that while one component contains in it motion which is essentially periodic propagation, the other will contain damping.

With this, we are now ready to pass on to our next model.

10.0 SECOND PROPAGATION MODEL EQUATION

We will now consider an axisymmetric flow, dependent on radial and longitudinal locations as well as on time. We will use for our velocity components u and v :

$$
\begin{align*}
& u=u(r, y, t)=\text { longitudinal component } \tag{106}\\
& v=v(r, y, t)=\text { radial component }
\end{align*}
$$

We will further assume that v is completely determined by u but not vice verse. In particular, on the basis of previous developments, we shall postulate the relationship connecting u and v :

$$
\begin{equation*}
v(r, y, f)=-2 \delta \frac{u_{r}(r, y, r)}{u(r, y, r)} . \tag{107}
\end{equation*}
$$

which of course is in keeping with our previous results. As a consequence, we also have, for $\delta=$ constant,

$$
\begin{equation*}
u(r, y, t)=K(y, t) \exp \left[-\frac{1}{2} \int^{r} v(R, y, t) d R\right], \tag{108}
\end{equation*}
$$

where

$$
\begin{equation*}
K(y, t)=\text { arbitrary, } \tag{109}
\end{equation*}
$$

so that the longitudinal component does not completely depend on the radial one. The physical meaning of this can be clarified by means of the following diagram:

In the neighborhood of the sound source there is a negligibly small vertical velocity component, and themotion is essentially one dimensional. However, as we proceed forward from the source, three dimensional dissipation, with its attendant vertical velocity component, takes place. The position where this begins to become significant is essentially dependent on what the horizontal component was initially; and
therefore, the vertical one ought to be completely determined by it. On the other hand, the values of the horizontal component ought not depend on the nature or values of the particular three dimensional dissipation that is present, except in so far as the conservation of the total energy is concerned. These considerations are well reflected in formulas (107)-(108). Note that when the horizontal component is very large, $u=\infty$, then almost no radial motion exists (formula (107)), unless the radial component is such that

$$
u_{r} \rightarrow \infty \quad \text { as } \quad u \rightarrow \infty
$$

Un the other hand, from formula (108) we have that, essentially the larger the total loss of energy from the horizontal component to the radial one is, the smaller the horizontal component (and, of course, its energy content) becomes. From the same formula we also see that if the medium is such that no radial component can be sustained, then the total energy remains and resides in the horizontal one.

We will now further assume, on the basis of our previous work, that the vertical component satisfies the equation

$$
\begin{equation*}
v_{r}+v v_{r}=\delta v_{r r} \tag{110}
\end{equation*}
$$

for the same δ as in (107) and (108), and that the horizontal one is propagated according to the linear approximation,

$$
\begin{equation*}
u_{t+}=c^{2} u_{r r}, \tag{111}
\end{equation*}
$$

which is the linear wave equation.

We observe that once again, as in the previous model, both u and v are functions -f the three variables r, y, and t. However, in their defining relationships (110) und (111) this is not apparent; (110) contains differentiations in time and radially, while (111) uses time and the longitudinul directions

Let us differentiate now (107), once with respect to t and twice with respect to r. We arrive at

$$
\begin{aligned}
& u_{t}=\left[K_{t}(y, t)-\frac{1}{2 \delta} K(y, t) \int^{r} v_{t}(R, y, t) d R\right] \exp \left[\int^{r} v(R, y, t) d R\right] \\
& u_{r r}=\left[\frac{1}{4 \delta^{2}} v^{2}(r, y, t)-\frac{1}{2 \delta} v_{r}(r, y, t)\right] R(y, t) \exp \left[\int^{r} v(R, y, t) d R\right],
\end{aligned}
$$

so that

$$
\begin{gather*}
u_{t}(r, y, t)-\delta u_{r r}(r, y, t)= \\
=-2 \delta\left[\frac{K_{t}(y, t)}{K(y, t)}+\int v_{t}^{r}(R, y, t)+\frac{1}{2} v^{2}(r, y, t)-\delta v_{r}(r, y, t)\right]\left(\frac{K(y, t)}{-2 \delta}\right) \times \\
\quad \times \quad \exp \left[\int v(R, y, t) d R\right] \tag{112}
\end{gather*}
$$

If we observe that interpation of (110) will yield

$$
\begin{equation*}
\int_{v_{t}}^{r}(R, y, t)+\frac{1}{2} v^{2}(r, y, t)=\delta v_{r}(r, y, t)+A(y, t) \tag{110'}
\end{equation*}
$$

with $A(y, t)$ an arbitrary function, and if we identify the first term in the first bracket of (112) as $A(y, t)$, then we see that the right hand side of (112) has to vanish. This implies then that

$$
\begin{equation*}
u_{t}=u_{r r} ; \tag{113}
\end{equation*}
$$

so that the longitudinal velocity component u, in addition to satisfying (111), also satisfies (113). This part therefore points the way immediately for the computation of u and of v.

Let us cellect these results and consider them in terms of a potential, in a way similar to the previous section: We say that there exists a potential $\phi=\phi(r, y, t)$, such that

$$
\left\{\begin{array}{l}
u(r, y, t)=\phi(r, y, t) \tag{114}\\
v(r, y, t)=-2 \delta \frac{\phi_{r}(r, y, t)}{\phi(r, y, t)}
\end{array}\right.
$$

where ϕ satisfies both

$$
\left\{\begin{array}{l}
\phi_{t+}=c^{2} \phi_{y y} \tag{115}\\
\phi_{t}=\delta \phi_{r r}
\end{array}\right.
$$

for some viscosity number δ and wave number c.
-
It is rather interesting to compare (115) to (6), where we were considering or:: dimensional propagation with velocity component v and with a density function p. There we had a potential ϕ_{x} also, satisfying only the second equation of (115):

$$
\left(\phi_{x}\right)_{t}=\delta\left(\phi_{x}\right)_{x x}
$$

and with

$$
\begin{aligned}
& \rho(x, t)=\phi_{x}(x, t) \\
& v(x, t)=-\delta \frac{\Phi_{x x}(x, t)}{\phi_{x}(x, t)}
\end{aligned}
$$

which indeed is a striking similarity.
Let us see now how we could obtain solutions for (115). It seems that we can proceed as in the previous section, and write for our fundamental solutions

$$
\begin{equation*}
\theta(r, y, t)=e^{-k t} \cos _{\sin }\left(\sqrt{\frac{k}{\delta}} r\right) \cosh \left(\frac{k}{\sinh } y\right) \tag{116}
\end{equation*}
$$

where in (116) we mean any of the four variations possible. The general solution can then be written as

$$
\begin{equation*}
\delta(r, y, t)=\sum_{i=1}^{i=4} \int e^{-\zeta t} \cos \sin \left(\sqrt{\frac{\zeta}{\delta}} r\right) \cosh \sinh \left(\frac{\zeta}{c} y\right) P_{i}(\zeta) d \zeta \tag{117}
\end{equation*}
$$

From (117) we obtain the formulas for the velocity components u and v :

$$
\begin{equation*}
u(r, y, t)=\sum_{i=1}^{i=4} \int e^{-\zeta t} \cos \left(\sqrt{\frac{\zeta}{\delta}} r\right) \cosh \left(\frac{\zeta}{c} y\right) P_{i}(\zeta) d \zeta \tag{118}
\end{equation*}
$$

and

$$
\begin{align*}
& \sum_{i=1}^{i=4} \int \sqrt{\zeta} e^{-\zeta+(-\sin)}(\cos)\left(\sqrt{\frac{\zeta}{\delta}} r\right) \cosh \left(\frac{\zeta}{\sinh } y\right) P_{i}(\zeta) d \zeta \\
& v(r, y, t)=-2 \sqrt{\delta} \frac{1=4}{\sum_{i=1}^{i=4} \int e^{-\zeta t \cos } \sin \left(\sqrt{\frac{\zeta}{\delta}} r\right) \cosh \left(\frac{\zeta}{\sinh } y\right) P_{i}(\zeta) d \zeta} \tag{119}
\end{align*}
$$

To illustrate one of the features of the solution, in the absence of any boundary conditions, let us return to the solutions which are the simplest ones conceptually, i.e., 116. If we use one term only - which is extremely crude, because it does not allow, among other things, any nonlinear interaction - then we have

$$
\phi(r, y, t)=e^{-k t} \cos \left(\sqrt{\frac{k}{\delta}} r\right) \cosh \left(\frac{k}{c} y\right),
$$

with k. some characteristic number. Then we have

$$
\left\{\begin{array}{l}
u(r, y, t)=e^{-k t} \cos \left(\sqrt{\frac{k}{\delta}} r\right) \cosh \left(\frac{k}{c} y\right) \tag{120}\\
v(r, y, t)=2 \sqrt{k \delta} \tan \left(\sqrt{\frac{k}{\delta}} r\right)
\end{array}\right.
$$

The one important feature which is illustrated here is that along the central axis of the sound source, normal to the source, there is a zero radial component at all times. In the general solution this would of course become a funnel, perhaps of exponential type, such that at the throat it is just a point, but widens out as it proceeds. Throughout the entire length of this funnel, the propagation is essentially one dimensional.

To give a somewhat more comply ans: of the general solution (118)-(119) is difficult in the absence of bounsive and/e initicl restrictions, which are tasks for the future. However, let wism the following generalizations which are possible within this rather simple mathematical framework of reference:

1) In the first equations of (115), we can take $c=c(r)$, because the differentiations there are not in the radial directions. This would mean that we are not assuming the uniform applicability of the wave equation throughout the entire width of that we are considering; rather, the type of wave motion would depend on our relative location in the cross-section.
2) Similarly, in the second equation of (115) we may take the diffusion constant δ as a function of y, for the same reason that we would allow c to depend on r. Physically, this would allow us to treat flows where dimensional diffusion takes place selectively; for instance, there may be very little scottering of the wave at the source, with significant increases at far ther distances.

As a concluding point on possible generalizations let us remember that as early as 1872, Boussinesq - followed later by Reynolds - announced his view that most flows of the nonlinear nature ought to be handled by statistical methods. The latter even gave appropriate equations for such frameworks of reference.

Now there are many possibilities in obtaining appropriate probability distributions for so-called random solutions. Random solutions themselves can arise as consequences of either a probabilistic equation, or probabilistic boundary conditions, or probabilistic forcing functions; or, indeed, from any combinations of those.

It seems very clear, that while one has to depend to a large extent on deterministic descriptors, it is nevertheless necessary, in order to understand the nature of physical phenomena, that at least the boundary conditions for many of these things ought to be stochastically described. This is because one can, in the strict sense, correlate experiment and theory only by means of averages; for it is averages which are observable. It so happens that if the typical integral in (117),

$$
\begin{equation*}
\phi(r, y, t)=\int e^{-\zeta t} \cos \left(\sqrt{\frac{\zeta}{\delta}} \dot{r}\right) \cosh \left(\frac{\zeta}{c} y\right) P(\zeta) d \zeta \tag{121}
\end{equation*}
$$

is replaced by

$$
\begin{equation*}
\bar{\phi}(r, y, t)=\int e^{-\zeta t} \cos \left(\sqrt{\frac{\zeta}{\delta}} r\right) \cosh \left(\frac{\zeta}{c} y\right) d P(\zeta) \tag{122}
\end{equation*}
$$

where (122) is a Stieltjes - Riemann Integral, then (122) still satisfies our equation. However, it does so in a greatly generalized sense; for on the one hand it admits quite discontinuous, indeed even discrete, boundary and/or initial values; and, if the function P is of bounded variation, then (122) can be interpreted as a stochastic generalized integral and the solutions obtained from it as probabilistic ones.

It is interest to point out here that besides the new physico-mathematical formulation given to our problem in this section, another novelty arises also: and this in the method of the general solutions. To show this, let us consider again the set (115):
a) $\left\{\begin{array}{l}\phi_{t+}=c^{2} \phi_{y y} \\ \phi_{t}=\delta \phi_{r r}\end{array}\right.$

It is well known that all of the solutions of (115a) can be expressed in the form

$$
\begin{equation*}
\phi(y, t)=\bar{F}(y+c t)+\bar{G}(y-c t) \tag{123}
\end{equation*}
$$

where \bar{F} and \bar{G} are arbitrary functions. This is true when ϕ depends on y and t alone. Here, however, while r does not appear in (115a) explicitly, it is nevertheless an independent variable; so that actually (123) should be

$$
\begin{equation*}
\phi(r ; y, t)=F(r ; y+c t)+G(r ; y-c t) \tag{123'}
\end{equation*}
$$

We separated r by a semicolon here, to show that in this context it appears as a parameter only.

Let us introduce the change of variables

$$
\begin{align*}
& y+c t=z_{1} \\
& y-c t=z_{2} \tag{124}
\end{align*}
$$

in order to rewrite (123') further as

$$
\begin{equation*}
\phi\left(r ; z_{1}, z_{2}\right)=F\left(r ; z_{1}\right)+G\left(r ; z_{2}\right) \tag{125}
\end{equation*}
$$

Now, however, the ϕ of (125) has to satisfy (115b) also; which implies that F and G have to satisfy it too. Thus, because of (124),

$$
\begin{equation*}
\phi_{t}=c \phi_{z_{1}}-c \phi_{z_{2}} \tag{1<6}
\end{equation*}
$$

and thus (115b) becomes

$$
\begin{equation*}
c\left(\phi_{z_{1}}-\phi_{z_{2}}\right)=\delta \phi_{r r} \tag{127}
\end{equation*}
$$

In terms of the constituent functions F and G of ϕ (127) can be written as

$$
\begin{equation*}
c\left(F_{z_{1}}-G_{z_{2}}\right)=\delta\left(F_{r r}+G_{r r}\right) \tag{128}
\end{equation*}
$$

because F does nc. depend on z_{2}, nor does G depend on z_{1}. Let us make (128) more explicit, while rewriting it:

$$
\begin{equation*}
\left[F_{z_{1}}\left(r ; z_{1}\right)-\frac{\delta}{c} F_{r r}\left(r ; z_{1}\right)\right]-\left[G_{z_{2}}\left(r ; z_{2}\right)+\frac{\delta}{c} G_{r r}\left(r ; z_{2}\right)\right]=0 \tag{129}
\end{equation*}
$$

Evidently, in (129), the first bracket does not depend on z_{2}, nor does the second bracket depend on z_{1}. Then as far as these two variables are concerned, each bracket is constant; i.e., they are functions of r alone. In this way we obtain a separation of variables, which in explicit form says that F and G have to satisfy, respectively, the heat equation and its adjoint:

$$
\begin{align*}
& F_{z_{1}}-\frac{\delta}{c} F_{r r}=P_{(r)} \tag{130}\\
& G_{z_{2}}+\frac{\delta}{c} G_{r r}=P_{(r)} \tag{131}
\end{align*}
$$

A solution of these equations, with appropriate boundary conditions imposed on them, is the future task we mentioned above.

11.0 DIRECTIONS FOR FUTURE RESEARCH

The intention of the present report was to extend the results of our previous one (see Reference 1) from the analytical treatment of the one dimensional nonlinear acoustical field to that of higher physical dimensions. In the course of this, as it often happens, several new by products of significance - connected with the previous research - arose, and they are included here. This is why we are proposing, as one possible extension of our one dimensional results,

1. The exact solution (now possible) of the unapproximated piston problem.

As a second avenue in one-dimensional investigation, we would take the results of Section 5, and analyze them more carefully; both by computers and analytically. However, to return to the higher dimensional case: the task of
2. The solution of Equation (81), which was shown to be possible (section 8.0) ought to be carried out.

This solu : on would give a physically significant generalization of Burgers' equation, and because of the possibility of an analytical solution, it is expected that important insights into the effect of higher dimensions could be gained.

Finally, as the third large area of investigation, which seems to be of importance on account of the results of Section 10.0, is the investigation of the physical assumptions
3. Investigation of the Physical Assumptions leading to equations such as 107-110-111, and
4. A qualitative analysis of the solutions of the system of Equations (115), from the viewpoint of acoustical theory.

All four of the above endeavors seem to be important tasks. We would conclude by saying, however, that the most immediate - and most striking - results would probably emerge from carrying (2) of the program above.

REFERENCES

1. E. Y. Rodin, Propagation of Waves of Finite Amplitude in Thermoviscous Media, NASA CR-643, (Nov. 1966).
2. E. Hopf, Commun. Pure Appl. Math. 3, 201, (1950).
3. J. D. Cole, Quart. Appl. Math., 9, 225, (1951).
4. B. Riemann, "Über die Fortpflanzung ebener Luftwellen van Endlicher Schwingungsweite," Abhand. der Gesell. der Wiss . zu Göttingen, Matematisch - physikalishe Klasse 8, 43, (1860).
5. S. Earnshaw, Proc. Roy. Soc. Long. 9, 590, (1858).
6. M. J. Lighthill, Surveys in Mechanics, Cambridge University Press, Cambridge, England, (1956).
7. J. M. Burgers, Advances in Applied Mechanics, Academic Press, (1948).
8. M. Kac, Probability and Related Topics in Physical Sciences, Interscience Publishers, (1959).
9. M.D. Donsker, The Conference on the Theory and Applications of Function Space Integrals, MIT Press, (1949).
10. P. A. Lagerstrom, J. D. Cole, and L. Trilling, "Problems in the Theory of Viscous Compressible Fluids," Ceiif. Inst. of Techn. Monograph, (1949).
11. J. S. Mendousse, J. Acoust. Soc. Am. 75, 51, (1953).
12. Z. A. Gol'dberg, Akust Zh. 2, 235, (1956).
13. D. T. Blackstock, J. Acoust. Soc. Am. 36, 534, (1964).
14. R.D. Fay, J. Acoust. Soc. Am. 3, 222, (1931).
15. J. M. Burgers, Nor linear Problems in Engineering, Academic Press (1964).
16. J.M. Burgers, "Functions and Integrals Connected with Solutions of the Diffusion or Heat Flow Equation," University of Maryland Technical Note BN 398, (1965).
17. P. D. Lax, Nonlinear Hyperbolic Systems of Conservation Laws, Nonlinear Problems, The University of Wisconsin Press, (1963).
18. W. F. Anies, Nonlinear Partial Differential Equations in Engineering, Academic Press, (1965).
19. D. V. Widder, Annali di Matematica 42, 279, (1956).
20. R. Courant and D. Hilbert, Methods of Mathematical Physics, Interscience Publishers, (1962).
21. P. R. Garabedian, Partial Differential Equations, John Wiley and Sons, (1964).
22. Handbook of Mathematical Functions, ed. by M. Abramowitz and 1. A. Stegun, National Bureau of Standards Applied Mathematics Series 55, (1964).
23. Beyer, R. T., and Narasimhan, V., "Note on Finite Amplitude Waves in Liquids," J. Acoust. Soc. Am., (April, 1957).
24. Blackstock, D. T., "Lagrangian One-Dimensional Equations of Hydrodynamics for a Viscous, Thermally Conducting Fluid," J. Acoust. Soc. Am., Vol. 33, (Sept . 1961).
25. Blackstock, D. T., "Connection Between the Fay and Fubini Solutions for Plane Sound Waves of Finite Amplitude," J. Acoust. Soc. Am. 39, (June 1966).
26. Burnett, W. A., Ackerman, E., "Propagation Distortion of Bands of Large-Amplitude Acoustic Noise 1, Theoretical Analysis of the Plane Wave Case," WADD TR 60-232, (May 1960).
27. Courant, R., and Friedrichs, K. O., Supersonic Flow and Shock Waves, Interscience, (1948).
28. Gol'dberg, Z. A., "Propagation of Plane Acoustic Waves of Finite Amplitude in a Viscous Heat-Conducting Medium," Soviet Phys. - Acoust., Vol. 5, No. 1, pp. 117-119, (1959).
29. Raelson, V. J., "Solutions for Nonlinear Plane Wave Equations of Acoustics by the Method of Functicnal Interrelationships of Dependent Variables," AMRL-TDR 63-64, (June 1963).
30. Rodin, E. Y., "Investigations in Nonlinear Acoustics," Wyle Laboratories Research Report WR 65-10, (May 1965).
31. Sperry, W. C., "Fundamentals of Nonlinear Acoustics," AMRL-TDR-63-62, (June 1963).
32. Sperry, W. C., "Perturbation Solutions for Nonlinear Plane Wave Equations of Acoustics," AMRL-TDR-63-63, (Jurie, 1963).
33. Widder, D. V., and Hirschmann, I. I., The Convolution Transform, Princeton University Press, (1955).
34. J. Kampe' de Fe'riet, Partial Differential Equations and Continuum Mechanics, edited by R. E. Langer, Madison, Wisconsin, (1961).

APPENDIX I

As a first attempt at evaluating the usefulness of formulas (67) for the excess pressure p in a pipe of variable cross section,

$$
\begin{equation*}
p=P_{0}\left\{\left[f(X)+\sum_{n=1}^{\infty} n \ell n \tanh \frac{n}{2}(\alpha+\delta T) \cos n X\right]^{-\gamma}-1\right\} \tag{67}
\end{equation*}
$$

a limited parametric study by computers was performed for the series in (67). The reason for this is that it is rather difficult to establish convergence properties of the series. It may converge, as it probably does, for certain ranges of T and X, depending on α and on δ. Clearly, the limit of the $n^{\text {th }}$ term is zero, but this is only necessary for convergence and not sufficient; however, none of the well known tests seem to be applicable to this series. It also ought to be pointed out that divergent values of the series are acceptable because of the negative exponent; indeed, in equilibrium, the series must diverge.
We considered the series form (67), with $\alpha=J$ (probably unrealistic) and $\delta=10^{-2}$ (probably too big). The computer experiment was finite; Table 1 gives the flow chart. From the results it appears that $\alpha=0$ corresponds to equilibrium conditions and that for this value the series tends to diverge. A few sample printour pages are reproduced, following the flow chart.

Thus, the series used was

$$
\begin{gathered}
S=\sum_{n=1}^{\infty} n \ln \left[\tanh \frac{n}{2}(.01 T)\right] \cos n X \\
0 \leq X \leq 2 \pi \quad 0<T<1
\end{gathered}
$$

The selected printouts show variation of T and of X on the range above.

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS - 1963

CAEF NUMAFR $2 T=$ n. $29999999999797930-02 \quad x=$ n.62日9185307179570n-01

 SUM OF FIRST 0.29999999999999987 O3 TERUS IS -0.1982274707396702003

 SIJM NF FIRST 0.7997999979999999 O3 TFRYS is -0.1394972704797138 n nh

SUM OF FIRST $0.9979999997999990 \cap$ Ti TFRMS IS $-0.343 A 102142923040001$

APPENDIX II

In Section (4.0) we discussed the question of generalizing the one dimensional Burgers' equations, to include the possibility of propagation in a pipe of variable cross section. In this Appendix we point out the difficulties involved in attempting a solution for any but the simplest of even the regular geometries.

In that section we stated that if the area A is given as a function of location, $A=A(x)$, then Equation (52) replaces Burgers' equation:

$$
\begin{equation*}
v_{t}+\left(a_{0}+V-\frac{\delta}{2}\left(\frac{A_{x}}{A}\right)\right) v_{x}=\frac{\delta}{2} v_{x x}-\frac{\delta}{2} a_{0}\left(\frac{A_{x}}{A}\right) V \tag{A52}
\end{equation*}
$$

Also, we have four (4) particular cases of interest. They are:

Case 1

(Spherical)

Case 2

Case $3 \quad \frac{A_{x}}{A}=c_{0} \quad$ (Exponential)
Case $4 \quad \frac{A_{x}}{A}=0 \quad$ (Planar)

We will treat cases 4 and 3. The former reduces to Burgers' equation, while the latter, simple as it is, remains intractable in our present framework of reference.

To simplify (A52), set $\dagger \rightarrow K+$

$$
\begin{gathered}
V \rightarrow p V ; \\
V_{t}+\left(a_{0} K+K \rho V-\frac{K \delta}{2}\left(\frac{A_{x}}{A}\right)\right) V_{x}=\frac{K \delta}{2} v_{x x}-\frac{K \delta}{2} a_{0}\left(\frac{A_{x}}{A}\right) V
\end{gathered}
$$

Now if $K=\frac{2}{\delta}$, then we obtain

$$
V_{1}+\left(\frac{2 a_{0}}{\delta}+\frac{2 \rho}{\delta} V+\left(\frac{A_{x}}{A}\right)\right) V_{x}=V_{x x}-a_{0}\left(\frac{A_{x}}{A}\right) V
$$

while if $\rho=\frac{\delta}{2}$, then

$$
v_{t}+\left(\frac{2 a_{0}}{\delta}+V+\left(\frac{A x}{A}\right)\right) v_{x}=v_{x x}-a_{0}\left(\frac{A_{x}}{A}\right) v
$$

or

$$
V_{t}+V V_{x}=V_{x x}-\left(\frac{2 a_{0}}{\delta}+\frac{A}{A}\right) V_{x}-a_{0}\left(\frac{A x}{A}\right) V
$$

which is a somewhat simpler form of (A52). We will use it as a working equation. In these terms then the 4 cases become the following:

Case 1: $\quad V_{t}+V V_{x}=V_{x x}-\left(a+\frac{2}{x}\right) V_{x}-\frac{\beta}{x} V$

Case 2: $\quad V_{t}+V v_{x}=v_{x x}-\left(a+\frac{1}{x}\right) v_{x}-\frac{\beta}{x} V$

Case 3: $\quad V_{t}+V V_{x}=V_{x x}-\alpha V_{x}-\beta V$

Case 4: $\quad V_{t}+V V_{x}=V_{x x}-a V_{x}$

Let $X=\psi(x, t)$

$$
T=t
$$

Then the following relations hold:

$$
d V=V_{X} d X+V_{T} d T
$$

$$
\left\{\begin{array}{l}
v_{t}=v_{x} \psi_{t}+v_{T} \\
v_{x}=v_{x} \psi_{x} \\
v_{x x}=v_{x} \psi_{x x}+v_{x x} \psi_{x}
\end{array}\right.
$$

Let

$$
\begin{aligned}
x=\psi=x-\alpha+; \psi_{x} & =1, \psi_{x x}=0 \\
\psi_{t} & =-a
\end{aligned}
$$

Thus,

$$
\begin{gathered}
v_{T}-a v_{X}+v v_{X}=v_{X x}-a v_{X} \\
v_{T}+v_{X}=v_{X X}
\end{gathered}
$$

and we succeeded in reducing this case to Burgers' equation .s
Next consider

$$
\begin{equation*}
v_{t}+V v_{x}=v_{x x}-a v_{x}-\beta v . \tag{A55}
\end{equation*}
$$

To simplify, let us try

$$
\begin{aligned}
& X=x-a t \\
& T=t ;
\end{aligned}
$$

so that

$$
\left.\begin{array}{l}
v_{t}=v_{T}-a v_{x} \\
v_{x}=v_{x} \\
v_{x x}=v_{x x}
\end{array}\right\}
$$

and therefore

$$
v_{T}+v v_{X}=v_{X X}-\beta v
$$

Suppose we now let

$$
V=e^{-\beta T},
$$

which implies

$$
\begin{aligned}
& v_{T}=e^{-\beta T} u_{T}-\beta e^{-\beta T} u \\
& v_{X}=e^{-\beta T} u_{X} \\
& v_{X X}=e^{-\beta T} u_{X X} \\
& e^{-\beta T} u_{T}-\beta e^{-\beta T} u+e^{-2 \beta T} u_{U}=e^{-\beta T} u_{X X}-\beta e^{-\beta T} u
\end{aligned}
$$

and finally

$$
u_{T}+e^{-\beta T} u_{u_{X}}=v_{X X}
$$

a form which still has a variable coefficient.
If we rewrite our last equation as

$$
\begin{equation*}
u_{T}=\frac{\partial}{\partial x}\left(u_{X}-e^{-\beta T} \cdot \frac{u^{2}}{2}\right) \tag{A57}
\end{equation*}
$$

then it is not hard to show that the trial transformations

$$
\begin{align*}
u & =\frac{\partial}{\partial X} F(\phi(X, T) g(T)) \tag{A57}\\
& =\frac{\partial}{\partial X} F(\phi(X, T)) \cdot \prime(T) \tag{A58}
\end{align*}
$$

are of no use in solving (A57); despite the fact that these would be the "natural" generalized Burgers' solutions. We note that

$$
\begin{gather*}
F_{\phi}\left(\varphi_{T}-\phi_{X X}-\beta \phi\right) \cdots \phi_{x}^{2}\left\{_{\phi \phi}-F_{\phi}^{2} \cdot \frac{e^{-\beta T}}{2}\right\}^{e^{-\beta T}}, \mu(T) \\
g e^{-\beta T}, \tag{A57}
\end{gather*}
$$

while

$$
\begin{align*}
& F_{\phi}\left(\Phi_{T}-\varphi_{X X}\right)^{-F \beta}=\left(\varphi_{X}\right)^{2}\left|F_{\eta \eta}-\frac{1}{\partial} F_{\eta}^{2}\right|, \mu(T) \tag{A58}\\
& 9 \quad e^{-\beta T}
\end{align*}
$$

which implies that

$$
F=2 \ln \eta,
$$

and this is of no use.
Other direct approaches lead to similar results. Thus, if we take

$$
u=\frac{\partial}{\partial x} F(\phi(x, \rho(t))) ; \quad u \cdot \frac{\partial}{\partial x} F(\phi(x, \rho(t)) \cdot f(t))
$$

then a similar dead end is reached.
Let us try now a change of independent variables. Thus, let

$$
\begin{aligned}
& X=\psi(x, t) \\
& T=t
\end{aligned}
$$

so that

$$
\left.\begin{array}{l}
d V_{X}=V_{X} d x+V_{T} d T \\
V_{t}=V_{X} \Psi_{t}+V_{T} \\
\because=V_{x} \Psi_{x}
\end{array}\right\}
$$

Let

$$
\psi(x, t)=x-a t=x,
$$

which implies

$$
\left\{\begin{array}{l}
v_{t}=v_{T}-a v_{x} \\
v_{x}=v_{x} \\
v_{x x}=v_{x x}
\end{array}\right.
$$

This yields a somewhat simpler form of (A55); but still of no use; it contains a v-term:

$$
v_{T}+\beta v=v_{x x}-v v_{x}
$$

However, an obvious solution here is

$$
\begin{equation*}
V(x, T)=-2 \frac{e^{-\beta T}}{X} \tag{A59}
\end{equation*}
$$

We would, of course, wish to consider something more general than Equation (A59), which was obtained by setting both the right and left hand sides of our equation equal to 0 .

Hence, let

$$
\begin{aligned}
V & =F(f(X) g(T)) \\
& =F(\eta) ; \eta=f(X) g(T)
\end{aligned}
$$

Then we have the following development:

$$
\begin{aligned}
& V_{T}+\beta V=F_{\eta} f(X) g^{\prime}(T)+\beta F \\
& V_{X}=F_{\eta} f^{\prime}(X) g(T) \\
& V_{X X}=F_{\eta} f^{\prime \prime}(X) g(T)+F_{\eta \eta}\left(f^{\prime}(x)\right)^{2}(g(T))^{2} \\
& V V_{X}=F_{\eta} f^{\prime}(x) g(T)
\end{aligned}
$$

$$
\begin{aligned}
& V_{T}+\beta V=F_{\eta} \eta\left(\frac{g^{\prime}(t)}{g(t)}\right)+\beta F \\
& V_{X}=F_{\eta} \eta\left(\frac{f^{\prime}(X)}{f(X)}\right) \\
& V_{X X}=F_{\eta} \eta\left(\frac{f^{\prime \prime}(X)}{f(X)}\right)+F_{\eta \eta} \eta^{2}\left(\frac{f^{\prime}(x)}{f(x)}\right)^{2} \\
& V V_{X}=F F_{\eta} \eta\left(\frac{f^{\prime}(x)}{f(x)}\right)
\end{aligned}
$$

In view of the βF term, it seems unlikely that we may do more than let $F=\eta$. It seems to be clear from here, therefore, that even by use of this similarity transformation approach we cannot obtain anything better than setting $F=\eta$, which of course means a direct return to the original equation.

Several other approaches have been tried also. The one given here is perhaps typical of the kind of situations encountered. From this, the best that we can obtain is the following type of solution:

Taking

$$
\frac{g^{\prime}(t)}{g(t)}=c_{1} \quad \text { and } \quad \frac{f^{\prime}(x)}{f(x)}=c_{2},
$$

we also get (for c_{1}, c_{2}, constants)

$$
\frac{f^{\prime \prime}(x)}{f(x)}=c_{2}^{2}
$$

Thus, our equation becomes

$$
\eta c_{1} F^{\prime}+\beta F+\eta c_{2} F F^{\prime}=\eta c_{2}^{2} F^{\prime}+\eta^{2} c_{2}^{2} F^{\prime \prime}
$$

where

$$
F^{\prime}=\frac{d F}{d \eta}
$$

and where

$$
\eta=e^{c_{1}} c_{2} x
$$

We can satisfy this ordinary nonlinsar differential equation by letting \mathbf{F} be some power of η; so that if

$$
F=K \eta^{k}
$$

where both K and k are constants, then we obtain the following relation (after concelling out common factors):

$$
\beta+\left(c_{1}-c_{2}^{2}\right) k+c_{2} K k-c_{2}^{2} k(k-1)=0
$$

This yields the quadratic in k :

$$
c_{2}^{2} k^{2}-\left(c_{1}+K c_{2}\right) k-\beta=0,
$$

which has the solutions

$$
k=\frac{c_{1}+K c_{2} \pm \sqrt{\left(c_{1}+K c_{2}\right)^{2}+4 \beta c_{2}^{2}}}{2 c_{2}^{2}}
$$

This will always yield two numbers; independently of K, provided only that $\beta>0$ and $c_{2} \neq 0$. Let the two numbers be denoted by k_{1} and k_{2}; thus

$$
k=k_{1}(K), k=k_{2}(K)
$$

are both solutions of the quadratic. Thus, the solution is

$$
F=K\left[\eta^{k_{1}(K)}\right]
$$

or

$$
F=K\left[\eta^{k}(K)\right]
$$

Therefore, finally, the similarity solution here obtained is
or

$$
v(x, t)=K e^{\left(c_{1} 1+c_{2} x\right) k_{1}(K)}
$$

$$
v(x, t)=K e^{\left(c_{1} \dagger+c_{2} x\right) k_{2}(K)}
$$

These are solutions which, for apprepriate choices of $c_{\text {}}$ and c_{2}, can be periodic in either x or in + (or both), but they represent, at best, the stable osciflations and are thus merely limiting cases.

