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FOREWORD

The present report can be regarded as an extension of the previous one by the author (see
Bibliography, (1)), which dealt with the propagation of waves of finite amplitude in thermo-
viscous media, but only in one space dimension. The natural extension of those results,

which contained many fundamentally new facts and relations, is to a physically more realistic,
but mathematically much more difficult, higher dimension. We thus give an outline below,
section by section, underlining those results of ours which seem to be as significant as the

ones cbtained in the one-dimensional case.

1.0

2.0

3.0

4.0

5.0

6.0

This introductory section gives a new derivation of Burgers' equation for a one
dimensional framework of reference; treating, however, the case where fluid
dersity is not constant. Thus, a stream function or potential is introduced,
for the purpose of motivation in the higher dimensional case, and ¢ measure
of the deviation from the exact results is obtained.

Section two contains a concise collection of those known analytical results
which are used in the sequel.

As a by-product of the present investigation, it wes found possible to obtain
an exact analytical chaiacterization of finite amplitude wave propagation in
a periodically driven tube. The result is reduced to a form which shows its
relation to and connection with the well known results for propagdation in a
lossless medium . '

As a first logical step in extending one dimensional results to higher dimensions,
we are considering propagation in pipes of variable cross sections. Thus, here
we derive the necessary extensions of Burgers' equation to the use of propagation
in a pipe the cross-section of which is location-dependent. These equations are
found to be generally "Burgers'-type"; that is, second order, parabolic and
nonlinear, but with non-constant coefficients and also an additional term.

These seemingly slight differences, however, change the nature of the equations
to such an extent, that no analytical treatment seems to be presently possible .
This difficulty is discussed in detail in Appendix II.

In an effort to find an analytical method for handling variable cross sections,
we are discussing here the time dependent case; where the cross sectional area
changes with time. An explicit solution is computed here, in terms of a rather
complicated infinite series. The limiting cases are discussed in particular; it
is shown that the behavior of the model solution is very realistic.

This section is devoted to showing why, despite a statement by one of the original
solvers of Burgers' equation to the contrary, it is unrealistic to treat Burgers'
equation as a model in the three (or even two) dimensional cases.




7.0

8.0

9.0

10.0

Here we are deriving, somewhat analogously to Section 1, the governing
Navier-Stokes type equations for propagation in two dimensions.

Section 8 is devoted to a completely new and physically inspired generali-
zation of Burgers' equation. Solutions are obtained and discussed; and it
is shown that in this case elliptic functions make their appearance.

Ancther entirely new, and this time three-dimensional (although axially
symmetric) pair of equations is given here as a quasi-linear approximation.
The method and the solutions, which are given explicitly, are couched in
terms of a potential function, similar to the one obtained in Section 1.

The main purpose of this section is to give a somewhat simple illustration of
the development in Section 10,

As a culmination of our effort, we are giving here a new way of generalizing
Burgers' equation, for frameworks of reference similar to those in Section 9.

As one of the most important features of this model, it is shown that a stochastic
interpretation is possible; and that one can prescribe the initial and/or boundary
conditions for the acoustical field in terms of random functions. As it happens
so often in the case of a physically correct model, a rather simple, and quite
new method of solution is also derived.




SUMMARY

The present report, an extension of " Propagation of Waves of Finite Amplitude in
Thermo=viscous Media," (NASA CR-643, November 1966) by the author, consists
of the analytical description of three subjects: a) the propagation of piston driven
periodic acoustic waves of finite amplitude in a cylindrical tube, b) the same
waves in a pipe of variable cross section (where the cross sectio: s both time and
location dependent) and ¢) an extension of the analytical method: employed for
the one dimensional case to two spatial dimensions. Several explicit solutions are
given and discussed.
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INTRODUCTION

In our previous report (Reference 1), we have given rational arguments to show why
Burger's equation,

vy t vy, = Ev. o (M

is an appropriate analytical vehicle for the description of the propagation of waves
of finite amplitude in thermo-viscous media. One of the most important reasons
was that Equation (1) is one of the very - very few nonlinear partial differential
equations for which an exact and complete analysis can be given (References 2 and

3).

The essential purpose of this Introduction, at the head of a report which still relies
heavily on Burgers' equation, is to give yet another analysis of how one can estimate
the usefulness of this equation and the magnitude of the errors introduced by using
it, in preference to a more complete equation or set of equations.

Let us start from the pair of equations

2 _
v’+vvx+ w— ag = €v (2)
a +aq v + y -1 av = 0 | (3)
t 4 f X

This pair was used by Riemann (Reference 4) and by Earnshaw (Reference 5), in the
case ¢ = 0, to obtain the description of nonlinear one dimensional propagation in

a lossless medium; and it was arrived at by Lighthill (Reference 6) in his now classical
paper, as the next-to-the-last step in his sequence of approximations to obtain an
approprigte analytical vehicle for the examination of the structure of weak shocks in
thermo-viscous media. Lighthill, in his analysis, reduced the pair (2)-(3) to Equation
(1). This is exactly what we shall do alse; however, in contrast to his physical order
of magnitude arguments, we shall give a more mathematical analysis.

Let us begin with our definitions; for the details, see our previous report (Reference
(1). The meaning of the various symbols in Equations (1)=(3) is the following:

v particle velocity
a local sound speed
X displacement

t time




A
N
I
1
1
1

y ratio of specific heats

e,t  ffusion (thermo=viscous) constants

The subscripts, as usual, denote partial differentiations with respect to the independent
variable involved. '

The substitution
J‘i—'

)

in Equations (2)-(3), replacing the local sound speed functions by a density function
p and in tcrms of the ambient values a, and p,, reduces (2)=(3) to the system

-2
Ve Fvv, F k2 pf P = € Vyx (4)

P, * (P")x = 0 (5)

where the non=-negative quantity k? is given by

Equation (5) gives the impetus to introduce a stream function ¢ , defined essentially
by a desire to satisfy (5):

P= 0
¢: 9 (6)
vV = = ;.

Then, of course, Equation (5) is completely satisfied; we now have to satisfy (4).

With the foreknowledge available in connection with the solution of Equation (1),
we now assume that our stream function ¢ satisfies the linear diffusion equation

®% = S Pux ¢ @)

for some diffusion constant c,




Because of the first part of our definition (), however, the density function p also
satisfies this diffusion equation

’

%y - S ¢

xt 1 XXX
i.e.,
pt - cI pxx

Furthermore, for the particl: velocity function v we now find from this last relation
and from (6) and (7)

¢ ¢ P
V = = J = = ¢ XX = . 1~ X (8)
9, Ve, 1P

This is a most reasonable and encouraging result. For if k? = 0 in Equation (4) -
which is the one that we are seeking to satisfy = then the value of ¢, = 2 ¢ in
(8) sotisfies (4) exactly. This we know from knowing the exact solution of Burger's
equation, On the other hand, if k? # 0, it is reasonable to assume that the com-
bination of p, and p as given in (8), will give an acceptable approximation for
the last term on the right hand side of (4), for some value of ¢, ; particularly since
the most interesting values of y lie between 1and 2 (y = 1.41 for air).

If we use v, as given by (8), in Equation (4), than the following arrangement is
possible:

p’p

- - - 3
prf px pt P prx Pi XXX appxpxx+29x

-C

2 X 2,72 _
+c +kép! Tp =-ec
I | |
p? ¢ X ¢’
P*P, = PP P, - €, (pp P px) — PV p (ppxx PP P, px)

X XX X

1
p’(px,-e pxxx)-ppx (p,+(c,-3e)pxx)+ (c,-2¢) p) - — o7 p =0

2 k? 1
(c,=€)e P, - (2c,-3¢)pp p  + (c, - 2¢) Pi == o7,




The values
n
C = == 3 ? n=°"’2'3'4

lead to special cases, with correspondingly special physical assumptions. Note,
however, that we used assumption (7) only in passing from the next to the last line
in (9) to the last one. It is possible to proceed otherwise; for instance, to ruwrite
the third line of (9) in the form

3 3
(Pt-‘pxx P ] k Y

X =
5 )x'(‘n'z‘)["x"xx' o ™S P’ P,

If we take ¢, = 2 ¢ here, then we see that instead of (7), p now has to satisfy

a nonlinear parabolic equation

_ i y+2
Py = € Pex = 2c' (y+1) P

While this would yield an exact solution, the analysis of the last equation is quite
difficult and therefore we shall abandon this avenue of investigation.

By assumption (7), we have that p satisfies

Pt = € pxxx v 6 > 0

Let us recall that, for increasing values of c,, the solutions of the heat equation
approach bounded values in a manner which is usually of the exponential:; damped
type. Furthermore, derivatives p_ of the solution approach 0 for increasing c,-
With this in mind, let us write (9)tn the form

2¢c,-3¢ c, -2¢ k2
SR NN ek UL
P Pyxx c, - PP, Pyx c.-€ 'x (c,-e)e P™ Py v
| ! | (‘0)

and consider the effect of letting ¢, increase. Clearly, since by the preceding
argument the numerator of the right hand side of (10) is bounded, it becomes very

small for c, large; in fact, it is of the order o (c?) , where a<2. Therefore,
choosing

c,=s>[l;e;k2 MY*'M] , (1)
X
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where

M = max p in some region R

Mx = mox p in the sama region

we reduce (10) to

2 _ 3 _
P Puxx 2 PPy Pyx * Px 0 (12)

This expression can be integrated; using the letter p for the upcoming functions
(of t) of integration, we obtain

- o2 =
PPy ~ P L RUN
or
P, ‘
P (T) = . (13)
X
Letfing now
v
p=e
(13) becomes
_ -u
U “xx ~ P 1) e Ux

which can again be integrated:

L N -u
2 Y% T Rt e+ p
and thus
UX
N 14

Ve, ® -p (e

One more integration, and a transformation from u back to p gives us

P, (t) ) \I- P, (t)

p = ’, 0 s$in 3 (42_‘)( + p3 (t)) (15)




;
|
|

where we must have P, (t) <0 ond P, (<0 .

This function then is the justification for the assumptions made on p a priori, for

an appropriate choice of the arbitrary functions p, (t). In particular, let us note

that p, as given by (15), is a non-negative function; a fact which further corroborates
the appropriateness of our choice of p as a solution of the diffusion equation; for as
we mentioned in our previous report (Reference 1), the value of v in terms of the
logarithmic derivative of p (formula (8)) pre-supposes a non-negative p.

Our conclusion, therefore, is the following: if p satisfies

Py = 8P

X

then Equation (5) is satisfied identically. Furthermore v then satisfies the Burgers’
equation

v. + 2vvy = §v ,
t X X X

while the magnitude of error in using an approximation like this for Equation (4) is

2 2 _
E -—\’2— + Y':] exp [-—Ls-]—-fv dx]+ (8-e)vx+G(t) ,

where G may be freely chosen, (i.e., if the error is smali at any given instant,
it will remain small - for the particular x under consideration - for all time). We

have also shown here that E is negligible for @ § chosen large enough, in some
region of interest R.

With this, we have now the above additional argument for the use of Burgers'

equation, as the analytical vehicle for the description of propagation of waves
of finite amplitude in thermo-viscous media.




2.0

FEA

PREVIOUS RESULTS

It will be convenient to reassemble here, in a rather compact form, the results of
our previous study (Reference 1). We shall do this with a minimum of elaboration,
mentioning only those aspects of that study which will be used in the sequel.

Let us consider a pipe of arbitrarily large radius, one end of which contains a large
piston. The pipe itself extends to infinity in both directions. If one prescribes the
motion of the piston by

x = g (16)
and assumes that it moves with at most sonic velocity, then, if the fluid velocity
function is v = v (x, t), we have a boundary condition of the type

vigM,t) = g (17)

The expansion of v in (17) about x = 0 in a Taylor series yields

& n n
VW) = v+ ghv, 0,1 +22 2 von Bl g
2 ax n. (18)

In[1], we estimated the error incurred by neglecting the summation in the center
of equality (18). In this manner we are led to a boundary condition of the form

vio,H +gMv 0,H)= g () (19)
for our Equation (1).
This development naturally led us to inquire about solutions of (1) satisfying

v, + vv = §v
t X X X

(20)
v(O,) = af(), v, 0,1) = b(t)

The most general solutions then turned out to be




2 K(")() 2n -1 = [a () K (,)](n) 2n
-252 h x +Z x
=/ &' (@n-1: = §" (2n) !
v (x,t) = Al "
pPLUCICuRpE i CLLL Lttt
"  (2n)! 28 §" @2n+1) !
n= n=0
where @
Mpy=96
dt"
t
KM = exp [—21-5- / D () dT] , (22)
with
aft) 28
D(t;8) = D(t) = det . (23)
b(#t) aft)

Now the formula (21) was shown to be applicable, in particular if the condition
(19) was simplified by taking v (0,t) = 0, toa large variety of situations. For
example, if one assumed piston motion described by

o) -1
- k2t
GMH = | 1+2 e ' (24)
k=1
¢
it was possible to derive the classical solution of Fay from our results, as a very
special case. The formula that we used - as a reduction of (21) - was

@®
vix,t) = -28 --a—— jInI:Z (G ®) '/2]('1)-—3(—?-2———]1

(21')

in which G represents the piston displacement.




3.0

PROPAGATION OF PERIODIC PISTON MOTION

The results of Fay which we mentioned previously were quite limited in the following
sense: he sought only the most stable periodic wave forms in the propagation. No
wonder, therefore, that such waveforms arise from as "gentle" a piston motion as that
described by (24). However, it is natural to inquire what the situation is when the
piston motion is periodic; a task to which we are devoting our present section. Since
we are not interested in shocks, we shall take

G@#) = exp [-acoswt] . (24')

Then, aiming at obtaining the form of (21'), we have

@ - ](n) o) ( p[—g— cosut] (n)
Z [G 2(” K20 =Z *P172 ) 2N

- 5" 20 R R— 5" (2n) !

(25)

In order to perform the differentiations in (25), we write exp [—g— cos uf] as @
series of modified Bessel functions, utilizing the formula

@®
exp [z coswt] = I, ) + ZZ lk (z) cos (kwt) . (26)
k=1

We shall also need the integral of this expression with respect to t :

t (e o] lk (z)
[ exp [zioswr)] dT = t1; (2)+ ZZ o sin (kwt), (26')
0 k=1

which is a well defined expression even for w = 0. We rewrite now (25) in terms
of (26), to obtain

i{[ l°(§->+ ZZ i (—:_) cosm](n) s):‘zzzn): } )

n=0




= °"P("2' cosut + 2Z§V (=1) l )[(ku)zn Usinkuwt +
n=1

x2n

l
& 2n) ! |

+ (kw?" cos kut]

Because of the uniform convergence, we may interchange the order of the summations,
and rearrange the series:

sm (kwf); kwx)2"
= expls f+2 2:(1)"(“) }*
exp( cos W Z 20

e ] QQ 2n
+ 2 z ll< (-—)cos (kut): E (-I)n (kwx) }
2 n '
& (2n)
k=1 n=1
Both inner series yield the same cosine function:
®
= exp (—%— cosuf) + 2 E lk (%)[ccs (kqu)-l] [_E_'Lé_':_’_“j_fl_ + cos (kuf)]
k=1 (27)

]

(We are using here the notation: § 2 = A)., Multiplication of the two bracketed
terms in this series allows us to write it as the sum of four series; in particular, the
two arising from the products of (- 1) with [sin (kwt) ]/kw and with cos (kwt),
yields from (26) and (26'),

t

t (%(‘%) +1) - exp[-aé- cosut] -f exp [—gzl- cosw'r]d'r (28)
0

To reduce the trigonometric products, we use the identities:

10




cos (kwdlx) sin (kwt) — | sinkw (t+Ax) + sinkw(t -Ax)

] coskw (t + Ax) + cos kw (t - A x)

cos (kwlAx) cos (kwt)

Thus, we obtain for the sum of the other two series the expression

-1, (‘;") [t+1] + --;—— zexp [—%— cos W (t+Ax):+ exp [—%— cos W (t-Ax)]%-’-

t -
+/ [exp [__za_ cos W (7+Ax)] + exp %-cos W (T-Ax)] ] dr .
0 (29)

Therefore, (27) can be written as the sum of the following: the first term in (27),
together with (28) and (29). Some further simplifications yield in this way an
expression which can be written in the following symmetric form:

to- lo(—;-) +—;—[(F (f+Ax)-F(f)> + (F (t-Ax)-F(f))]

t
+—]2—f [(F (1-+Ax)-F(-r))+(F (T-AX)'F(7))] dr,
0 (30)

where

F(s) = exp [-%— cos us] . @mn

To recapitulate: expression (30) is the transformed form of (25), with G (t) given
by (24). Thus, the solution of (1), with the piston condition (24'), is given,
according to (16), by the product of (- 28) with the logarithmic x-derivative of
(30). This takes the form

%—[[F' (t - Ax)-F (t+Ax)] + F(f-AX)-F(f+AX)]1

v(x,t) = b

M+ [(F (t+Ax)- F(t)) +(F (t-Ax)-F (t))] + t[(F(-r +Ax)- F(T))+(F(T-AX)-F(T))]dT

0
(32)

1




oo 23]

The suggestiveness of (32) is obvious: the two types of waves, so well known
from linear theory, are both present. However, because of the viscous mech-
anism, they contain a "damping" - in fact, it is clear here how increased
viscosity (§ — o =>A — 0) reduces the propagation to zero. Moreover,
the nonlinearity of the mechanism and/or of the medium are represented in a
conceptually rather simple form. Note that shocks depend on the values of

t and a in porticular.

12




4.0

GENERALIZED ONE DIMENSIONAL EQUATIONS

As a first step in generalizing results obtained for the one dimension, we would
like to discuss the question of propagation in a pipe with variable cross section.
We derive the necessary equations here.

Burgers' equation is valid for non=linear waves in constant cross=section pipes:

_ 8
v' + vvx = 3 VXX (33)
where
v = atu-a excess wavelet velocity
X = x= at moving reference system
§ = —5‘; [-g- ot (=) -c-:-] diffusivity

We shall now derive an equation for waves traveling in a pipe whose cross-sectional
area (A) is a function only of its distance from the origin (A (x)). Plane, cylindrical,
spherical, and exponential horn waves, are particular cases of this equation.

For the flow of a perfect gas in a pipe of area A (x) the following equations can be
written:

A P, + (Ap u)x = 0 (34)
Ap(uf+uux) = -Apx +pS(Aux)x (35)
_2_ 2y
p=p e ; p=p (e (36)
o o ! o °

The above equations can be rewritten as follows:

pp v oup, TPy = -puA /A (37)
v, t vy ¥ px/p = 8u t+ Su Ax/A (38)
13




Using Equations (36), Equations (37) and (38) become:

y=1 AL(y-l)

c'+uux+ —— 9v = - 2 Qv (39)
: (0n * 2= 0, )

v, *uy o+ TT 99 - 8 \Ve, T A Yy (40)

Defining f = Ax/A (In A)x , the following particular coses are noticed:

A
A" = f=0 Plane waves (41)
A
A" = f = 1/x  Cylindrical waves (42)
A
Ax = f = 2/x Spherical waves (43)
A
A" = f=p B = constant Exponential horn waves: (44)
A = A EXP[Bx]
Setting:
_ a u - Q .
S N 2

Substituting a, u with r, s in Equations (39) and (40) and then taking s, from
Equation (40) and substituting it inte Equation (39) it is found:

RN TR o (FEEWELI ) B (5 @-

2
(45)
Making the assumption that s s_ if terms of order (v w/a?) (V/a) are neglected
with respect to the terms of order ?v w/a?) or (U/a) as Lighthill suggested, r and
s reduce to:
_ a U
- y=-1 ¥ 2 )

14
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|
,E

poen

P —

a

Hence, T 0 (47)

) y=1 X X

Introducing the excess wavelet velocity (v):

a
(48)
So that:
2v a
)
r oy + v (49)
and finally, substituting Equations (57) and (55) in Equation (53), it is found:
_ & fly-1
v + (o°+v) Ve S o [vxx+fvx] ) [_)-’_:T ve + aov]
(50)

Before rearranging the terms of Equation (50) it is useful to make some considerations
on their origin and their importance. First, we recall that v is the excess particle
velocity (v =u +a=a,) equal to the particle velocity (u) plus the local variation
of the speed of sound (a - a,) originally due to the non-linear terms u Per PY,

vu, and px/p of Equations (37) and (38). Thus v is at most of the order of

2y, i.e., muck smaller than a, hence, vZ will be neglected with respect to
ao v . This is proper and consistent with the other approximations made so far .
It is also evident that the terms multiplied by f are due to the change in cross-
sectional area; f =0 reduces Equation (50) to Equation (33) for the constant cross-
sectional area if X = x - agt is introduced in Equation (50). The effect of o
changing area comes both through the mass conservation equation (37) and the
momentum conservation equation (38). In Equation (50) the term multiplied by

& f comes from the momentum while those multiplied by f only come from the
mass conservation equation. If we think of v as an approximate sine wave we
know that Vex = " (2 1)? v/>\2 where )\ is the wave length. Thus, the effect

of an area increase as introduced through the mass conservation (- f ay v/2) has
the same effect as an increase of diffusivity in a constant area propagation (8v,,/2)
but while the effect of diffusivity decreases as the wave length (\) increases, the
effect of an area change, as introduced through the mass conservation, depends only
on the area change and not on the frequency of sound (- fagyv/2). On the other
hand the effect of the area change as introduced through the momentum conservation
equation (8§ f v_/2) is out of phase with respect to the undistorted wave and con-
tributes directly to its distortion. However, also this effect decays with increasing
wave lengths. Thus, if we conclude that:

15
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’,
»
-
3

5 _ § [2n)2

7 Yxx - ° _'z"(T) v

$ om0 [0 (5

f [ f ]

— Vv zo —a Vv ’

2 o] LZ (o] (5')

then , defining (c.p.s.) the sound frequency in cycles per second, we could neglect
v /2 if:
X X

2w foo
\
o << f = (c.p.s.)<< T

We could neglect va x/2 ond & f vx/2 if:

52 m oi
<< <<
N o, = (eps )< 5T

-

While we could neglect f a_ v/2 if:

§2n — aé
Y >>a (c.p.s.)>> 376

or

. 0/ (/2
YE PP

Concluding, the equation for the propagation of high intensity sound in o pipe of
varying cross-sectional area (A (x)) is:

: 5A 5 A
"f'*(“o"v' 2A)">'<= 7 (52)

2 Yxx © 2A %V
For plane waves using Equation (41)

v+ (o +v) v, = —g—- v (53)

t X X

16




For cylindrical waves,using Equation (42)

( 8) ) a
vt+a°+v-—2-x- vx=—2—v -2x v (54)

For spherical waves,using Equation (43)

( 6 ) 6 a,
Vt + Oo + v - ~ VX = Wi VXX T \4 (55)
For exponential horn waves,using Equation (44)
( B& ) ) Boo
Vi ¥ % tvos 2/ Y T 2 Yxx T T2 VY (56)

The substitution X = x - a_t transforms Equation (53) to Burgers' equation and it
can approximately be used in the solution of Equation (56), but it is not useful in
Equations (54) and (55) because there the independent variable x appears explicitly.
In any case, however, it is clear that the solutions of Equations (54)-(56) are in-
volved in almost insurmountable difficulties; and such is the case,a fortiori, for
Equation (40). Thus, in the next section we shall discuss an approach based on a
different generalization; one which shows more promise of being tractable. How-
ever, in Appendix II, we are giving a brief discussion of why even an apparently
very simple case such as (56) involves great difficulties.
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5.0

THE CASE OF VARIABLE GEOMETRY

In Section 3.0 we have obtained an explicit expression for propagation induced
by a periodic piston. However, all of the preceding solutions were obtained under
the assumption that we have a simple geometry: that is, flow in a one dimensional
lossless pipe. The question arises, however, as to what the situation is when the
pipe has a variable, or indeed a time-dependent geometry. Note that Section
4.0 treated the location dependent situation and, in general, that is simpler than
the time-dependent one, discussed here. For example, suppose that we have a
solid fuel rocket, in which the waves propagate down the "pipe" which is the
central core; however, in the course of this propagation the walls of this "pipe"
get used up, so that the geometry changes continuously. It is because of such
considerations that the present section is included here. The main connection
between what we have here and the other parts of our work is that here too we

are using Burgers' equation; furthermore, in deriving it, we shall follow once
again the guidelines given by Lighthill.

Let us consider one dimensional flow in a vessel of time-varying cross-sectional
area A(t). As our flow quantity, let us choose the flow velocity u, which we
shall assume to depend on the independent variables X = (x =ct) and t, so
that we shall have a moving frame of reference. Thus, at time t = t, and at
the point x = x, , the velocity will be given by

and at that {moving) point X, = (x, = cty) the cross sectional area will be

0

A, = Aflty). In order to make our theory agree with the customary linear theory,

we shall take
c = local soundspeed.

We are interested in waves of finite amplitude, and thus have to take cenvection
into account. This means that '

dX

U = D ———

dt
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will not vanish along individual wavelets; rather,it will be proportional to the
fluid velocity itself. Now the energy density in the system is

Vi + v vy ~ 0, (57)
where v = Ay (57")
and T = dt (58)

\IA(f) |

If we consider dissipation also, the right hand side of (57) has to be replaced by
o quantity proportional to it, i.e.,

Vi + vy = &(T) Vi X (59)

We followed here the derivation given by Lighthill, so that we shall be able to
trace back the significance of the various quantities.

As we have seen, the solution of (59), for 8(T) = &, = constant, is given by
8
v = - 280 'el<" (60)

where 0 is a positive solution of

o = 8§ By (61)

Without any regard to possible boundary and/or initial conditions, let us take
for a solution of (61) the function

19




L2 2
B(X,T) = 1 + 2 Z ('])n e-n loe + 8T cos nX , (02)

n=1

which is Jacobi’ 4th Theta function, with a an arbitrary (non negative) constant.
The advantage in taking this solution is that there is a rather simple expression for
the logarithmic derivative of it; i.e., using (62), (60) becomes

' o
viX,T) = =28 Z {cosh [n (01+8T)]sin nX}, (63)

n=1
with a still arbitrary. (In any specific situation it could be used to satisfy an
initial condition, for instance.)
In order to analyze expression (63), we must relate it to an experimentally

ob:ervable quantity, such as the pressure P. Let us assume therefore an adiabatic
type compression, so that

where p is excess, while P, ambient pressure. Furthermore, if in this one
dimensional system we denote particle displacement by y, then

vy = v (64)

Also, from the principle of conservation of mass we have that
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P
o Yx

Connecting all these relationships, we arrive at
= P | (yy 7 =1 (65)
P 0 )’X

Using now (57'), (64) and (65), we note that

t =Y
e T ]
t

We can perform the integration indicated in (66), for an average value A of
A(t), from (63), and then differentiate the result, to obtain

o -
P = Po{[f()() +Zn£n [tonh %(a+8T)]cosnX] ' -1¥(67)
n=|

with f an arbitrary function of location. Note that the condition of zero excess
pressure can be satisfied by this function; for we can set it equal to the negative
of the summation + 1 at time t =0. Furthermore, the arbitrary constant a can
be used to satisfy yet another condition. However, to see the situation somewhat

; more clearly, let us introduce a normalizing f and take & = 0. We can then
rewrite (67) as an infinite product:

P = P

tanh n8T/2 . 1
1 ° ﬂnT‘; [fa:h nd/2 I (67')
n=

i © ]ncosnX -y

Let us observe the following: As

! A(t) === 0
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) dt
\IA(t)
Tonh T e |

fn [toanh T]=e0

also. We see then, from (67), that because y > 0, P increases without bound;
so that

Cross Sectional area =0
implies
Excess pressure b CO

which is certainly a reasonable conclusion. On the other hand, as

| A(t) o0

| e
\ o
tanh T —0"

An (tanh T) == - o

This, in turn, implies that as
Cross sectional areg == 00

-i Excess pressure - Absolute minimum.

Of course, there are several other conclusions that could be drawn from this model

- however, more research seems to be indicated. In particular, the complicated

nature of the nonlinear mechanism. as exhibited in (67) and in (67') would

indicate the necessity of a parametric study by computer. A first step was indeed |
taken in this direction; some results are given in Appendix | . l
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6.0

THE THREE-DIMENSIONAL CASE: BURGERS' EQUATION

The two basic papers in connection with Burgers' equations are those of E. Hopf
and J. D. Cole, mentioned in the Bibliography. In the latter, the following
statement is made: Since

)

X

e 4

v=e =2§

where

is a solution of Burgers' equation

vt+vvx= vax ' v = V(X,f) '

we can extend this to the three-dimensionalrealm quite simply; however under
certain restrictions. Namely,

- . Ag¢
u = 28 —T , A¢-¢x+¢y+¢z,
where

- 2 y -
o= §4% , Mo=o te, e,

is a solution of the three-dimensional Burgers' equation

Uf+UAU= § A%, u=u(x,y,z,*

’

Unfortunately, it turns out that the restrictions mentioned by Cole are quite severe
indeed so much so, that the three dimensional solution given above has no practical
value. Thus, this section is devoted to illustrate and to prove that point; and, in
doing so, would point out a need for the introduction of a new approach. To
approach this question formally, let us state and prove the following

Theorem:

If ¢ = ¢ (x,y,z,t) isa function such that

+ ¢ + ¢

X X yy zz

¢, = ¢

and v = (x,y,z,t) isa function such that
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v, v + v t v - UuU = Uu = uuv ,
t XX yy z2z X y z

then these two partial differential equations are in general not connected by

9t o, O
®

u= =2 Z

Proof:

We shall use a concise vector notation. Thus, let

€ = (0,110

Au = (ux, uy, uz)

A2 =y o+ o+
u X X yy z7

then we have

o, = A&%g
v, = Azu-u(?-—A-u)
and
2 -
= = — (e A ¢)
) ¢ ¢
Now
2 - 2
“wo= m g lerhe) g (e Aede,
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=T

ond

~N

-%Az(e Re) - B (3 Do) A(T)
- ~ 2 4 - Y Y Z
(€-A40¢) 8% - T(e Ao) Ao ¢
¢
Ro - B(T-Bo)-2-n (T-Bg) +
¢

2 - - - -

+— A ¢ - A (€. Ao)

o’
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- .2 p (T-D¢)+ - 3—(?'-&¢)A2¢ *
¢ o’

R iz.Kq. : Z(?-Kw-fs—(t-’zwx‘» By .
¢ ¢

Summarizing then, (if ¢, = Ach)

o= -2 N (T.Fe)+ 2 (7. T Al
t N ¢2

-u (€. Bu)=+— (T.BDo) - -f‘z-<t-'5¢>(t-3(?-3¢>)

¢

6‘“'“

Ay = -2 aE.Re) +_22__ (.5 ¢) 020
0 0

-__‘1_('@.'54,)'5,1, ‘A ¢ +_4_..K<p .B(T Do)
g | o

Before analyzing these equations we note that if we are dealing with one space
dimension; i.e., E‘ ,

= -2 4+ 2
Y4 Tq’xxx -;T Py Py x
- _ 4 3 4
'U(?'AU)- 'qu-+-—3-(¢x) -—é—wx ¢xx
¢ ¢
2 . _ 2 2
& = Yx x Py x x +'_{ P Pxx
¢
4 3
-? (¢x) +_;2— P Pux
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which, as Hopf has shown, are perfectly consistent. However, for more thon one
space variable, consider those terms which have ¢° in their denominators. We
must have,

- —%— (€ To) =?‘;—(‘6‘-T¢)K* +Bo ;i om0
¢

[

= (. B¢ =B ¢ By =Bl

But, we know that

csaaen DN

2
(®.8¢) = (¢x+¢y+¢z)’

Ao vl el =l el

Thus, Fispf's substitution may not be directly extended into two and three space
variables. In fact, this can be done only if the flow field is assumed to be
completely irrotational .

We thus conclude that the extensions of the solutions of Burgers' equation to a
three dimensional domain is not feasible., Alternatives are discussed in the next
two sections,

]
l
T
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4 pt+upx+vpy+pvx+pvy=0 (68)

5§ b +u ) (69)

+ +
v, + uu)< vuy px/p x X yy

' ¢

v, tuu ot vy, + py/p 8 (vxx + vyy) (70)

s-—-—-‘—-[—g—pw,wy-n c"] 71)

Po

p
The above equations are exact except for the definition of the diffusion coefficient
(8). By introducing &, the energy conservation equation is not considered expli-
citly, The diffusive effect of heat transfer is however taken under consideration
by the tactor: (y=-1) k/c_p,. Lighthill has shown that the above approximation is
equivalent to neglecting tBrms of order \" w/o ) (V/a) with respect to terms of order
v w/a?) or (V/a), where v = u/p, w is the sound frequency, a is the local
speed of sound, and V the sound velocity amplitude. All the following develop~-
ments of Equations (68), (69), and (70) will imply this approximation .

The diffusion coefficient (&) was amply discussed from basic principles in our
previous report. The conclusions are that & can be estimated accurately enough
for engineering purposes, but the accuracy of the estimate is different for different
: media. Its final value, however, needs experimental verification for each medium
and frequency range which ~an be achieved by measuring the absorption coefficient
i or by comparing calculated and distorted plane waves.

j The next approximation is to assume isentropic process in a perfect gas:

| 7.0 TWO-DIMENSIONAL NON-LINEAR WAVE EQUATIONS
We shall start our discussion of problems in a dimension higher than the first by an
appropriate derivation of the equations employed.
Having a flow which, for physical reasons, admits an axis of symmetry, let x be
the distance along thas axis measured from o reference point and y the distance
from this axis. By definition, there will be no flow normal to both x and y and
the mass and momentum conservation equations reduce to the following ones:

; 56 &) .
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The above assumption is in contradiction witha & # 0. However it is a well
established fact that entropy generation is a second or third order phenomenon
from which it follows that Equation (73) holds even for shocks with Mach numbers
up to 1.5t 2.0. Equation (72) establishes o direct correspondence between p,
p, and the locai speed of sound a. This leads to the following relationships:

2_
- -
2 P, a \/
CERCR NS (°o) %
2
2 Py a \'/
» Py = Pq% y-1 a, (ao) %
2ro
2y b, (a )"
= lo] = : (%]
Px Pa % y =1 o, a, X (73)

Similar relationships can also be written for p and Py - Substituting Equation
(73) and similar into Equations (68), (69), cndy(70), itis found:

y-1 [ ]=
a, + o + voy + 5 a Ux+vy | 0 (74)
S S
u + uvu +vu + aa = §|u +u (75)
t X y y-1 X "% x yy
) - .
v + uv +vv + .= aa = §lv +v (76)
t X y y=-1 y | xx yy.

Evidently the above equations constitute a system of three nonlinear partial differ-
ential equations in the variables @ = a(x;y; t); v = v (x;y; 1) ;v=v (xy; 1),
where a is the local speed of sound ...4 u and v are the components of the local
particle velocity.

The above system can be reduced to a system of two nonlinear partial differential
equations in two unknowns (the excess wavelet velocity in the x and y directions)
which, for the one dimensional case reduce to Burgers' equation. Again, the error
introduced can be shown to be of order (v w/a?) (V/a) with respect to orders (v w/a?)
or (V/a); we demonstrated this in a previous report.
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The method is similar to that used to derive the equation for spherical and
cylindrical waves (Section 4.0) but somewhat more complicated. The result is:

5 {(v oo) A ;
itWraU - U, *\7* 7, VY+ y+1 2 UYY =0

) U a uv 5
V+V+a)V -—V +)\=—+=2JUu +—=F-—V (=0
t o 'y yy y+1 X X

2 2 2/ "x 2
(78)
where U = a+u- a  ~ excess wavelet velocity in the x direction
V= a+tv- a, excess wavelet velocity in the y direction

Changing the fixed reference system (x;y) to a system moving with the wave
X= x = agti Y=y -agt) itis found:

8 U ‘(V oo) ( \Y ) & ;
Uf'*‘UU -5 “XX +l—2'+—v + -Oo Uy-—UYY;=0

X 2 2/ 7y \y+l 2
(79)
5 ;(u oo) ( ) 5 1
Vi Wy g Vw7 T 72 9% AT 7% Yt V=0
(80)

It can be noticed that Equations (79) and (80) reduce to Burgers' equation for the
one dimensional case. It should also be noticed that, the excess wavelet velocities
cannot be neglected in comparison with the speed ot sound in ronlinear problems

in general .
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8.0

A DIFFERENT GENERALIZATION

As a method of approach to any of the pairs of equations (75-76), (77-78) or
(79-80), one might try the following.

We have seen in Section 6.0 that no physically meaningful solutions can be
constructed for the equation

v + vy +vv = 8v + 8v
t X y , X X Yy

On the other hand, the above mentioned pairs of equations suggest that one try
to solve, as an interim step, the equation

(81)

v. + vv = 8v + &v
t X X X Yy

We would iike to discuss this problem briefly here.

If the second term on the right hand side of (81) is missing, then we have a Burgers'
equation which we know how to solve. Furthermore, it is precisely this last term
which shows the dependence of v on a second spatial variable y. This suggests
that we try to find solutions for (81) in terms of solutions of Burgers' equation. In
particular, let us assume that

L)

_ X
v = k 5 (82)

where k is constant, while 0 is same as yet unspecified positive function. Then,
after mo~-- transformations, (81) becomes

9 - 56 8 \} ]
("‘f'—é—ﬁ) cweze () - 6 () &)
Yy

X
It is clear from (84) why, in the absence of its right hand side, the assumptions

8 = 656 (84)

t X X
k = -25§ (85)
in (82) solve Burgers' equation.

Suppose, however, that in (83) we keep assumptions (84), but dispense with (85)
and leave the censtant k undetermined for the moment; then denoting
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k+ 26 (86)

k, = 5

Equation (83) becomes
w' = k‘w3 , (87)

where
ex
- (88)

and where the primes denote differentiations with respect to y. Without going
into details of the solution, let us observe that (87) can be solved in the foilowing
way:

w (y) = w° Cn(—']—' JI? woy ) (89)

V2

Here w_ is the value of w at y =0, while C_ is the elliptic cosine function.
From (8‘9), thus, wg isan arbitrary function of X and of t, so that - with 88 -
we have

1

Wy bct) C“[—\T'F Vi, we (x,f)y] (50)

8 x,yit
8.(x, y; t)

wly) =
From (90),

]

8 = F i epr we (€1 cn[—f, g we <c,r>y]dc] , O

where F is an arbitrary function. In order for this analysis to be complete, we
must choose F and Wg SO that (91) wili satisfy its assumed Equation (84).
Note, however, that we need only take k =1 in (82) in order for w =v. Thus,
(90) says that if on the line y = 0 there exists a periodic boundary excitation,
then it will remain periodic. Furthermore, if it is not periodic on y =0, the
elliptic cosine functions will make it nearly so at large distances from the plane
of y=0. Finally, this periodicity, as well as an exponential type - although
quite complicated - damping exists also; the first with respect to x, the second
with respect to t. (This can be seen by noting that 0 is a solution of the heat
Equation (84); and by noting that the logarithmic derivatives of such solutions
behave very much like the Jacobian Zeta functions, which are periodic in x and
damped for t — o). .
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What this qualitative analysis can show, then, is that an investigation of Equation
(81) from a quantitative point of view might be quite rewarding; and that, further-
more, Equation (81) is an acceptable analytical vehicle on a posteriori grounds.
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9.0

FIRST PROPAGATION MODEL EQUATION

In the past several years a great deal of effort, including that presented here, has
been expended on Burgers' equation. It is well, we think, to recall the circum=-
stances why this happened.

Burgers' introduced his mode! in 1942, As a matter of fact, he gave as a model a
pair of equations, involving partial and ordinary derivatives. He then obtained
some approximate results from those, after reducing them to the simple equation
that is named for him today. These results were well received, but not too much
was done with them, because the exact solution of that equation was unknown .

It was only after 1956 and 1957, when Cole and Hopf, respectively, published
their solutions, that so much work began to be based on this equation. There
exists work in a great many fields, which has as its aim the reduction of problems
to Burgers' equation.

This is of course not surprising. After all, the number of physically significant
nonlinear partial differential equations, for which an exact solution is known, is
extremely small - probably less than a dozen.

The success of Burgers' was due to two factors. First, the equations that he
postulated turned out to be excellent analytical vehicles. Secondly, the approxi-
mate solutions he had originally obtained were also very good.

Let us put a stress on the point that he postulated his equations, instead of deriving
them from, say, the Navier-Stokes equations. In the meanwhile, of course, the
justification of a derivation has been completed also. However, since no

equations are exact, it seems to be a very reasonable approach to postulate equations,
note what the consequent solutions are and then on these a posteriori grounds, to lay
a proper formulation under the analytical vehicle used.

It is exactly this which we shall address ourselves to now: namely, the postulations
of equations and a brief examination of their solutions. Thus, in this section, we
will give the brief description of a particular set of equations, intended to serve as
a model for other, more appropriate, sets. It was chosen for illustration because
of its particular simplicity; for more details, see the paper by Kampe' de Feriet.

Let us consider the physical model of sound radiation from a uniformly distributed
source on the ground, with say, radial coordinate x, vertically upwards, in the
direction of increasing y. All motion will be assumed to take place in a plane
parallel to the plane of x y.
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0

In a nondimensional system of units, urder the assumptions of incompressibility and

non-viscousness, an irrotational motion will define a velocity potential ¢ (see
formula (6), for example, which is a quasi-potential) such that the two velocity
components u, v are related to it by

v (xl Y f) = '¢x (xl Y f) . (92)
v (xr Y 1') = "¢y (x, Y t) ’ | (93)

while ¢ itself sotisfies

(Pxx * q,yy = 0, (94)

because of the incompressibility condition.

Furthermore, since we expect the vertical velocity component to be of periodic
type in time, while undergoing exponential damping with increasing altitude, we
also postulate for ¢ the equation

= 0y (95)

which, incidentally, also agrees with the linear approximation.

Let us observe now that the function ¢, which depends on the three variables

X, ¥, t, ¢ = ¢ (x, y, t), is considered as a function of two variables (x and y)
in (94), and of two other variables (y and t) in (95). Thus, as a consequence,
¢ also satisfies

yy

an equation known in connection with the transverse vibrations of a bar.
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It is rather simple to obtain solutions for the pair (94-95). One can start from the
four simplest ones, i.e.,

( e-)\y cos Ax cos \l-)\f

< e")‘y cos Ax sin N At

v e-ky sin Ax sin 4 At
\ e-}‘y sin Ax cos \r;\-t 97)

Linear combinations of these give two superposed waves, well known from linear
acoustical theory, with one going towards x = o, and the other in the opposite
direction. That is, if

¢ = e->\y cos \I_Xt [A (\) cos Ax + B (N\) sin Ax ] +
+ sin ﬁf [C (N) cos Ax + D (N) sin )\x] { , (98)
then
¢ = ¢ + ¢2 ' (99)
where
¢, = A 0\)%’ D () cos (Ax - J-):f) ;8 0\)2- Cw sin Ax - ﬁt)
q,z = A(}‘)Z-DO‘) cos ()xx+\5\t)+ B()‘);CO\) sin ()\x-ﬂf)

(100)

(Compare these, for instance, to the results we obtained for the velocity functions,
with particles excited by a periodic-type piston motion; formula (32) ).

Thus, the general solution of the pair of equations (94-95) can be written as
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?, (<, y,1) =/ [e-)‘y cos Ax cos \ﬁ:t] fF(N dr , (101)
0 .

where the integrand contains in brackets the first function of (97); and also a 0,
Ogr O4r which are identical to (101) except that in the integrand the other

functions of (97) are used. In fact, it is possible to combine all these, so that,
using complex notations, we have

obuyit) = 0 %0, o e =

= /-mexp [iyk -f|)\| - X}\2] f(>\) dA

-

(102)

This is a rather good representation, for it can be shown that every non-negative
solution of (94-95) which is Lebesgue integrable on
~o<X<w

y >0

t >0 (103)
can be expressed in the form (102).
According to this, then, we have from (92), (93), and (102) that the velocity
compenents will be given by integrals of the form

o o]

ulx,y,t) =/ exp [i‘y)\ -fl)\l-x)\z] A2 f'()\) dA (104)
-
®
v (x,y,t) =/ iexp[iy)\-fl%l-x)\z] )\fz(k) dA (105)
-
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Note that, in general, the real component of (104) will be the same as the
imaginary component of (105) and vice versa. This means, of course, that
while one component contains in it motion which is essentially periodic
propagation, the other will contain damping.

With this, we are now ready to pass on to our next modei .
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10.0

SECOND PROPAGATION MODEL EQUATION

We will now consider an axisymmetric flow, dependent on radial and longitudinal
locations as well as on time. We will use for our velocity components v and v:

v= ul,y,t) = longitudinal component (106)

il

v vi,y,t) = radial component

We will further assume that v is completely determined by u but not vice verse.
In particular, on the basis of previous developments, we shall postulate the relation-
ship connecting v ond v:

v, r,y, 1)

v (r, Y t) = =28 ’ (107

v (rl Y f)

which of course is in keeping with our previous results. As a consequence, we
also have, for § = constant,

,
ul,y,t) = Kly,t exp[- -é-]-g- viR, y, t) dR] , (108)

where
Ky, t) = arbitrary, (109)

so that the longitudinal component does not completely depend on the radial one.
The physical meaning of this can be clarified by means of the following diagram:

N
somd Sarce ) )>)>

In the neighborhood of the sound source there is a negligibly small vertical velocity
component, and themotion is essentially one dimensional . However, as we proceed
forward from the source, three dimensional dissipation, with its attendant vertical
velocity component, takes place. The position where this begins to become signi-
ficant is essentially dependent on what the horizontal component was initially; and
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therefore, the vertical one cught to be completely determined by it. On the other
hand, the values of the horizontal component cught not depend on the nature or
values of the porticular three dimensional dissipation that is present, except in so
far as the conservation of the total energy is concerned. These considerations are
well reflected in formulas (107)=(108). Note that when the horizontal component is
very large, u = @, then almost no radial motion exists (formula (107)), unless the
radial component is such that

Ur—b o o) as U —p O

OUn the other hand, from formula (108) we have that, essentially the larger the
total loss of energy from the horizontal component to the radial one is, the smaller
the horizontal component (and, of course, its energy content) becomes. From the
same formula we also see that if the medium is such that no radial component can
be sustained, then the total energy remains and resides in the horizontal one.

We will now further assume, on the basis of our previous work, that the vertical
component satisfies the equation

v + vy = 8v (110)

t r rr

for the same & as in (107) ond (108), and that the horizontal one is propagated
according to the linear approximation,

_ 2
v, tu. (1)

which is the linear wave equation.

We observe that once again, as in the previous model, both u and v are functions
~f the three variables r, y, and t. However, in their defmmg relationships (110)
und (111) this is not apparent; (110) centains differentiations in time and rudlally,

while (111) uses time and the longitudinul directions

Let us differentiate now (107), once with respect to t and twice with respect to
r. Wearrive at

r r
v, = [Kf (y,t) - ‘E]-g- K (y,t)/ v, R,y,t) dR] exp [/v R,y, f)dR]

r
v = ] v (r ,Yt) - ...]_..v (r,y,| R (y,t) exp fv R,y,t)dR| ,
48 28
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so that

v, (r,y,f)-Su”‘(r,y,t) = {

Ko [ p Ky, 4
-28 K(y, 0 + vf(R,y,f)+"§' velr,y,t) -Svr(r,y,t)( Y X

.
x  exp [fv R,y,t) dR] (112)

If we observe that interpation of (110) will yield

,,
[ rh s ey = Gy s Al (10)

with A (y,t) on arbitrary function, and if we identify the first term in the first
bracket of (112) as A (y,t), then we see that the right hand side of (112) has to
vanish. This implies then that

* b
f ut - urr ‘ (13)
' so that the longitudinal velocity component u, in addition to satisfying (111),
also satisfies (113). This part therefore points the way immediately for the com-
putation of u and of v .
Let us ccllect these results and consider them in terms of a potential, inaway similar to
the previous section: We say that there exists a potential ¢ = ¢ (r, y, t), such
that
v, y,t) = o,y t)
( ) ¢I’ (rl Y f)
vir,y,t) = =28
where ¢ satisfies both
i /
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for some viscosity number § and wave number c.
|
L 4
It is rather interesting to compare (115) to (6), where we were considering or..: |
dimensional propagation with velocity component v and with a density function
p. There we had a potential ®, also, satisfying only the second equation of
(115):

(q’x )f = 5 ((Px )xx
and with
plx,t) = o, (/1)
¢ (xl i')
vix,t) = - § =%

q,x (x, 1)

which indeed is a striking similarity.

Let us see now how we could obtain solutions for (115). It seems that we can proceed
as in the previous section, and write for our fundamental solutions

-kt cos k cosh [ k
sl yit) = e sin (V"{s’ r) sinh (T y) ! (116)

where in (116) we mean any of the four variations possible. The general solution
can then be written as

i=4
8,y 1) =Z/e-tr cin ( "sg' r) fﬁf: ("E_ Y) P, €) d€
i=1

(117)

From (117) we obtain the formulas for the velocity components u and v:
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o 6y =Z/e'<' :i‘;-"(‘/ k4 r) ;"’j:(-g— y) P (EYAE  (18)
=1

and

Z_[ VO EE ) o (£ 5)p @0

/'C' o (f <) s (L) poer at

v(r,y,)—-2 8

(119)

To illustrate one of the features of the solution, in the absence of any boundary
conditions, let us return to the solutions which are the simplest ones conceptually,
i.e., 116. If we use one term only - which is extremely crude, because it does
not allow, among other things, any nonlinear interaction - then we have

o (r,y, t) = e-kf cos(‘/—g— r) cosh (—E— y) ,

with k some characteristic number. Then we have

v (r, Y,. t) = e-kf COS("-—:— r) cosh (—l:-_ )’)
v,y t) = 2\’k8 tan(‘/-g- r) (120)

The one important feature which is illustrated here is that along the central axis

of the sound source, normal to the source, there is a zero radial component at all
times. In the general solution this would of course become a funnel, perhaps of
exponential type, such that at the throat it is just a point, but widens out as it
proceeds. Throughout the entire length of this funnel, the propagation is essentially
one dimensional .

To give a somewhat more complets analy:i. of the general solution (118)-(119) is
difficult in the ubsence of bound:v ard/e: initicl restrictions, which are tasks
for the future. However, let us rois 2 the following generalizations which
are possible within this rather simple mathematical framework of reference:
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1) In the first equations of (115), we can take ¢ = ¢ (r), because the
differentiations there are not in the radial directions. This would
mean that we are not assuming the uniform applicability of the wave
equation throughout the entire width of that we are considering;
rather, the type of wave motion would depend on our relative location
in the cross-section .

2) Similarly, in the second equation of (115) we may take the diffusion
constant § as a function of y, for the same reason that we would
allow ¢ to depend on r. Physically, this would allow us to treat
flows where dimensiona! dirfusion takes place selectively; for instance,
there may be very little scattering of the wave at the source, with
significant increases at farther distances.

As a concluding point on possible generalizations let us remember that as early as
1872, Boussinesq - followed later by Reynolds - announced his view that most
flows of the nonlinear nature ought to be handled by statistical methods. The
latter even gave appropriate equations for such frameworks of reference.

Now there are many possibilities in obtaining appropriate probability distributions
for so-called random solutions. Random solutions themselves can arise as conse-
quences of either a probabilistic equation, or probabilistic boundary conditions,
or probabilistic forcing functions; or, indeed, from any combinations of those.

It seems very clear, that while one has to depend to a large extent on deterministic
descriptors, it is nevertheless necessary, in order to understand the nature of physical
phenomena, that at least the boundary conditions for many of these things ought to
be stochastically described. This is because one can, in the strict sense, correlate
experiment and thecry only by means of averages; for it is averages which are
observable. It so happens that if the typical integral in (117),

¢, y, t) =/ e-Ct cos( % r) cosh <—§_ y) P(€) d€ (121)

is replaced by

9 (r,y, 1) = ‘/e_cf cos( —g— r) cosh (—-g- y) dP (L), (122)

where (122) is a Stieltjes -Riemann Integral, then (122) still satisfies our equation.
However, it does so in a greatly generalized sense; for on the one hand it admits
quite discontinuous, indeed even discrete, boundary and/or initial values; and, if
the function P is of bounded variaticn, then (122) can be interpreted as a stochastic
generalized integral and the solutions obtained from it as probabilistic ones.
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It is interest to point out here that besides the new physico-mathematical formulation
given to our problem in this section, another novelty arises also: and this in the
method of the general solutions. To show this, let us consider again the set (115):

o) Oy = < Pyy

& ¢ (115)

rr

b) P,

It is well known that all of the solutions of (115a) can be expressed in the form

o ly,) = Fly+et) + Gly-ct , ©(123)
where F and G are arbitrary functions. This is true when ¢ depends on y and
t alone. Here, however, while r does not appear in (113a) explicitly, it is
nevertheless an independent variable; so that actually (123) should be

o (r;y,t) = Fl;ytct) + G(;y=~-ct) (123")

We separated r by a semicolon here, to show that in this context it appears as a
parameter only.

Let us introduce the change of variables

y + ct

ti
N

y - ¢t =z, _ (124)

in order to rewrite (123') further as

¢ (rjz, zz) = Fliz)+ Gl (125)

1

Now, however, the ¢ of (125) has to satisfy (115b) also; which implies that F
and G have to sotisfy it too. Thus, because of (124),

¢, = °¢z' - C¢22 (126)

and thus (115b) becomes

c (?zl y q>22) = 89 (127)
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In terms of the constituent functions F and G of ¢ (127) can be written as

C(FZ| -,Gzz) -8 (Fff+ Grr) ! (128)

because F does nc. depend on z,, nor does G depend on z,. Let us make

(128) more explicit, while rewriting it:

)
[Fz| (r;z')-—c— Frr(r;z|)] - [Gz

& _
(r; zz) t = Grr(r, zz)] = 0

(129)

2

Evidently, in (129), the first bracket does not depend on z,, nor does the second
bracket depend on z, . Then as far as these two variables are concerned, each
bracket is constant; i.e., they are functions of r alone. In this way we obtain a
separation of variables, which in explicit form says that F and G have to satisfy,
respectively, the heat equation and its adjoint:

& _
Fz‘ B Frr - P(r) (130)
G + 2. G = P (131)
22 c rr (l‘)

A solution of these equations, with appropriate boundary conditions imposed on
them,.is the future task we mentioned above.
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11.0

DIRECTIONS FOR FUTURE RESEARCH

A

The intention of the present report was to extend the results of our previous one ‘
(see Reference 1) from the analytical treatment of the one dimensional nonlinear

acoustical field to that of higher physical dimensions. In the course of this, as

it often happens, several new by products of significance = connected with the |
previous research - arose, and they are included here. This is why we are pro-
posing, as one possible extension of our one dimensional results,

1.  The exact solution (now possible) of the unapproximated piston problem.

As a second avenue in one-dimensional investigation, we would take the results of
Section 5, and analyze them more carefully; both by computers and analytically.
However, to return to the higher dimensional case: ihe task of

2.  The solution of Equation (81), which was shown to be possible (section
8.0) ought to be carried out.

This solu ‘on would give a physically significant generalization of Burgers' equation,
and because of the possibility of an analytical solution, it is expected that important
insights into the effect of higher dimensions could be gained.

Finally, as the third large area of investigation, which seems to be of importance
on account of the results of Section 10.0, is the investigation of the physical
assumptions

3. Investigation of the Physical Assumptions leading to equations such as
107-110-111, and

4, A qualitative analysis of the solutions of the system of Equations (115),
from the viewpoint of acoustical theory.

All four of the above endeavors seem to be important tasks. We would conclude by

saying, however, that the most immediate - and most striking - results would pro-
bably emerge from carrying (2) of the program above. .
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APPENDIX |

As o first attempt ot evaluating the usefulness of formulas (67) for the excess pressure
p in a pipe of variable cross section,

=Y
p = Po;[f()() + 2 n fn tanh %(a*'ST) cos nX] -1

n=|

+ (67)

a limited parametric study by computers was performed for the series in (67). The
reason for this is that it is rather difficult to establish convergence properties of the
series. It may converge, as it probably does, for certain ranges of T and X,
dependingon a andon & . Clearly, the limit of the nth term is zero, but this is
only necessary for convergence and not sufficient; however, none of the well known
tests seem to be applicable to this series. It also ought to be pointed out that divergent
values of the series are acceptable because of the negative exponent; indeed, in

equilibrium, the series must diverge.

We considered the series form (67), with &« = J (probably unrealistic) and & = 10-2
(probably too big). The computer experiment was finite; Table 1 gives the flow chart.
From the results it appears that @ = 0 corresponds to equilibrium conditions and thot

for this value the series tends to diverge. A few sample printour pages are reproduced,
following the flow chart.

Thus, the series used was

S = i nfn [tonh -% (.OIT)] cos n X

n=1

0< X < 2n 0< T< 1

The selected printouts show variation of T and of X on the range above.
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TABLE |

Set:
N=0
S=0

|

Increase N by 1
-={ Computer Nth term F |-
Add F to S

|

Write out sum every 100 terms

|

Is|S| < 10797

Nol

Is

F
g"< 10

)

Nol

Yes

Is N < 1000

lNo
Y

Yes

lYes

Is N>2 ?
Yes
Y

Set N=0

Printout:

1) Sum S

2) Number of terms summed N
3) Nthierm F

52




1.0 =l i
= 32 |||||z.z
—— _—

R&’: 3.6
gl P
[EE
| ME3
lL2s fls pos

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS ~ 1963




TN S e e s R e

FOMm gotv

~e <
.- 3

. ! i | ! ! |
cASE nuﬂkg. ) ﬁ, n.oqqrqqoqqoaqqaq;o-nz xx 0.0 |
N i
T *
|
] ‘ ; ,
SUM OF FIRST o.ooroqooqoqqonnqno 07 NERNS (S ¥o.29?ssa¢asas;avazo s
| |
$JM OF FIRST  0.200003000000D0NND 03 FERMS [ }n.lo’sa;skvtzrtsqln 96
SUM OF FIRST  0,2999999999990994n 03 rrans 1s LG.ZIZIlTS 897567680| 76
SUM OF FIRST 0.39 ooooqqquoqqqo 03 [TERYS 1S F2,.353748A5669115310 06
SUM OF Flﬁst 0. 50[00000000000001D 03 [TFRMS 15 0, 52654445682457791 78
b
1 i
SUM OF FIRST 0.9 9999@9999%@9@0 03 FERYS IS F0.7222585933314330N 36
I )
. ! ) i
SIM OF FIRST o.1oooonooooooPooon 03 [ERMS 1S 0. 94505247 41593700 06
SUM OF FIRST  0.7999999999999994D 03 [TERMS IS F0,119141253397125M)| 07
SUM OF FIRST  0.8999999999999999D 03 [TERMS IS F0.16%99742040021900 97
|
$J4 OF FIRST  0.9999939999999990) 03 NERMS [S [0.17%9571847532398n| 07
Se -0,174957(8675023990 07 Ne o.oqoroqqqqoooo 900 03 sr -0 2995555121117
0'1349.’.'0'1105.7099'3)‘50'.70"1‘50’.90‘”l!"l'o‘11‘3.7.90"]‘5.7.l9¢‘\’1‘5.7.
CASF NUMRER 2 Ts  1.99999999599990930-02 X= 0, 62831853071796790-01
°'|"450’.'0'?3‘5.7..0‘3"5".9 1214567000 23345678V 27464567 0%K 123650670901 2345067187
' ’ N ¢
S=  ~0.10[15889073047780 04 N=  0.7500000000000p00N N? Fl =0,3205
1
CASE NUMFER 3 frs 0.999L999999999P°an-02 X  0.1256%37761435007D 00
SUM OF FIRST.  0.999999979999999MD 07 [TERMS IS }0.6706600[7377186950 02
SUM OF FIRST  0.20000700000000000 03 [TFRMS IS F0.2190109[74835A966D| 03
SUM OF Flhst 0.2999999999908994D 03 TERMS IS F0.16281332396115980] 03
n
SUM OF FIRST  0.39999999999999939D 03 [TFRMS IS§ ro.aovoaaaroeaoqsoqn 03
SUM OF FIRST  0.50000000000000000 03 [TERMS 1 -n.azzvr1qLoozzzoaqn 03
SUM OF FIRST  0.5999999999995999D 03 KFRMS 1S [0.74102482387096910 23
SUM OF FIRST  0.70/0007000000p00ND 03 [TERMS IS +0.RS270185455321720 73
SUM OF FIRST 0. 799999999999999AD 03 JFFRMS IS |0.9585385934899730N 23
SJM OF FIRST  0.8999999999999999n 03 TERMS IS -0.1059130p752662410) 04
SUM OF FIRST  0.9999999999999990D 03 [TFRMS IS +0. 1154967460831 4000 06
Se  -0.115696746083)14070 0% |N= n.nqqoooqoooqobroon 03 Fis -0.799%5651211176ron

0! 314567080

81 916660%559n-172

ﬁeoo 064 '
210 ' 334307 8¢

0) 224

101 23

Tt




| |
CASE NUN&ER o Its 0.999%999999999%93”-02 Xm 0.1306P55592l‘3'%§" 09
] ) 4
! f : . | ! |
| i | | }
t ! i ‘ i |

| i !
Qe OcllROBQISQIQZPQQZD 04 h! O.ZSQOOOOOOOGOODOOO 0? F's D.349725T72724426429ND-12
| i ‘

‘ i ! |
CASF NUMRER 5 [T= 0.990%909#99999L930-02 Xis 0.79!3?741220710

‘ |

30 00

——

i i :
| | |

SUM NF FIRST o.oqhqqaqqqqqqroooo 07 [FRMS 18 Lo.zoaoraab071¢1owno N3
i

»
{

‘
0123656768901 234547090, 234567009[0' 2343678002365 6" P2V S 6780 DY e B0 204526780901 2345078090334

SUM OF Frasy 0.299993999999999490 03 TFRAMNS IS =N,5516ATT779874%0220 N3

|
SUM OF FIRST o.?opon)ononoornono 03 [TERMS IS r0.3096535b7§l¢69060 03
A vio

- - = .
FO®A 851

v
F4041AE” BIRS T 0L 30989 000hbLRAYYY’ BEC NEANS' 14° RS IA00BETBEERA 2848030 0T er e

SUM NF FIRST O.SODGODOGOQOGLOOOD 03 [TERMS IS r0.33585100549692463D| N3
: !

SUM OF FIRST  0.%9999999999909999N 03 TEAMS IS ~0.9677394832719200N 03

SUM OF FIRST  0.7000000C00000000D 03 [TFRMS IS F0.10817195746409020 0
i

SUM OF FIRSTY N. 79[99999999999993D 03 hERMS IS -0.1\@!01&|Rl38537bn 74

SUM OF FIRSTY 0, 8999999999939999N 03 [TFRMS IS F0.1300042[T7515466760 D&

[
SUM Of FILST 0.99B999990099p9900 013 F?RMS IS -0.1500560%63[516060 04

I i !
Ss  -0.14008607431536050 06 N= 0,999 9990qqoqokooo 03 Fm -0.799656%51211176600 06
' 1

CASE NUMFR. & = 0.9999999999999ha3n-02 X  0.31415926835497p1p 00 |
§ !
' | i i
| ! !
1 l
S=  -0.50375377473a10370 02 b: o.aoqrqqoqoqnqqrqan-ol FL =0+ 1448027775 65478013
I

i

54

) o Bosiastriiionss — —

Lo R B




| | ‘ | !
CASE gmn%p. 101 sv- 0.[90199999‘79’99#‘370—0‘ Xs 0,0 ! ‘ ;
| : i ! i ;
i t i \ ' :
' } i
SUM OF FIRSY o.oekoqocqvqoqbooon 07 [ITERMS 1S =0,78755541927439570 0§ ‘
! | | ' !
SUM OF 51&51 o.7okoovoooooopoono 0% ITERMS 1S ~0.4863731874394001D 7S
i | '
i ! : !
SUM OF svrsv 0.74999999999d90990 03 WERMS 1S =0,1908271K911500780 94 !
| ‘» | |
+ |
SUM OF FlrSl 0.39999999939999990 03 [FRMS 1S F0,2991 7452 7R7643687 16 |
| | . |
SUM OF FIRST o.soPoonooonon 0070 03 rrnus 1S F0.437TA877133541 30 16 !
SUM OF FIRSY o.sqquooqqqqq 999 03 [TERMS 1S 0,59734546998324020) 08 l
| |
, SUM OF FIRST o.voooooonooookonnn 03 [TFRMS 16 ro.vvs|49| 778790130 N6 :
| ! | | , | (
SUM OF snﬁsv o.1q9999999999r99ao 03 NERMS IS -0.9695R6419A390: 7700 1 ! |
! ! ' : i
SUM OF FIRST o.aqqqoqqqqqooquqo 07 TFANS TS -n.ntvqaoaPovosn;sud n?
i ‘ i t A
' : | : !
SUM OF FIRST  0.9999999999999990D 0% TFRUS 1S =0,14937757180255500 07
f. | i ? ! L
S=  -0.140327671802555)D 07 r- o.qqiqoqqqoqqoqroon N3 Fls -0,23059106703521/09D 04
r |
CASE NUMBFR 102 |T»  0.19989999999999B977-01 Xr  0.62831853071795720-]
. ; { !
% t |
H S -0.9*6819?893[4285nn 03 N=  0.25000000000000000 07  F -0.2R 7339906111 14610-12
i ! f‘.'
o 1 CABEo NUMBF R: ¢ 40 30 vltuau0.19J99§9999999b970r017tKI":10.[7'653706[03‘9“\704330’lvo-nuovovouu
0"’JCSOIQVO‘114507.90!?1‘50709 V21450700101 234567 809 P24 0K T4 e T BYI0) 2D 4567091073480 8%100 24
SIM OF FIRST  0.99999799999999900 07 [TERMS IS 0,324 14550784823540) 02
SUM OF FIRST  0.200002070000P0000 03 [FFRYS :S F0.14972%52747269586N 03
SUM OF FIRST  0.299999999999899a80 03 '[TFRMS 1S [-0.75R9147[106280794D| 03
SUM OF FIRST  0.1999999999999999D 03 [IFRMS 1S F0,35A3899(7557354a80 03
SUM OF FIRST  0.50/0000000000D0Q0D 03 [TFRYS 1S 10.4497660R906931520 03
SUM OF FIRST  0.5999999999999999D 03 [TFRMS IS 10 .533521292645469420 03
SUM OF FIRST  0.7000070000000000N 03 [TERMS IS 0.6107609549A8908020| 03
SUM OF FIRST  0.79999999999999940 03 [TFRMS 1§ -o.aezzzneLoe:;areod 03
SUM OF FIRST  0,8999999999999999N 03 [TERMS IS [0, 74R50666654613350 13
SUM OF FIRST  0.9999999999999990D 03 |TFRMS IS ~0,A1011350345328980 03
S= -0.68101135034532898D 03 N= o.qqoqqqqqqqqoquon n3 rr -0.?105r106711ﬁ21090 0%
l




CASE NUMBFR 06 (Vs ﬂ.194999099999QF970-0| Xis 0. 18849585921539{74D 09

‘ |
|
S 164256957L3b50 03 N=  0,25000000000000000 02 Fs  0.3134617157576%367-12
CASE NUMBFR 105 [Ts  0.199099999999900970-01 X=  0,7513274127871A33D 00

! :

i ! 1
i

!

!

I | ; ' l :

| | | ; |

SUM OF FIRST 0. 9dqqqqqq9ooqpqoon 07 [TERMS 1S ~0,1694213%5478049290 73
i ' .

l
oqqooqqqq 9930 03 braus 1S ~0,44774018189191240 73

|

SUM OF FIRSY 0.3:E9Q?999099 9990 03 FRMS (S =0,5610271]75226R89070| 03

SIM OF rv%sr 0.2 ooooononoo 000D 03 TFAMS IS =0,31934ATPASTBLT270 03
| SUM OF FIRSY 0.2

t

‘ .
0030100000000 03 FRMS 1S 0.66?7551b099$0#81ﬂ n3

|

t,
oSUNOF: F S':csosw 99399599 99990503| e"ER'ﬁ‘slSnv DeT55380T730166007206891003:. 4 705f01 234507089027

FOIM stV

SUM OF FIRST

YSUM OF ERMS S =0,A3960454R33R%277D
071 .v EEEACAE R AR EEER AL AR R R 14378900 21456709401 22

\

°
SUM OF FIRST 0. 799999999999999aN 03 FERMS s ro 91733477193430630 03
SUM OF FIth 0. 8999999999999999D 03 FERMS IS L0.039l3195069827730 03

Sum OF FIBSY 0.99 999999990#9000 03 ERMS IS +0.1055657h777717600 né

S -0,10/55652327773748D0 04 N= 0.9995999999999990N N3 F -0.23059106733521P9N 04

CASE NWHLFR. 0.199bQQQQ99999 970=-n1 X 0.3141%926535897P91 D 061

| |

t
!
!
|
S= -0.445155775865p3110 07 = 0.49909999999999980 01 Fr  -0.137255474257364490-11
' I I | i

56




CASE NUMAFR 201 ([T= 0.?99h09Q9°9990rﬂ00-n1 Xm 0.0

!

SUM OF FIRSY 0.99079329999999900 0? rfRMS 1S PO.Z!?OBOb 318646864800 NS

T3

SUM 0OF FIRSY 0.2000090000000000N N3 ERMS IS f0.00406143103927130 0%
}

| |
SUM OF Flrﬁf 0.2999999999998994D 03 TFRMS 1S 016252898945 199590] 76 ,

2

i ) :
SUM DF FIRST  0,1999999999999999D 03 %Fk"ﬂ 1S =0,2656830P65679524 20| 76
!

i
i

SUM OF FIRSY 0.50 ﬂO)OOOOOOrOOOD 03 TFRMS |S F0.3ﬂ70677P351966600 06

|
SUM OF FIRST  0.%99/99999999999999D 03 %FR“% 1S =0.526295314835401 70 06

|

SUM NF FIRST 0.7 000000000%0000 03 TFERMS IS PO.bTSQIObk?IOQlDOIO bl

. % !
: i
SUM OF F!LS' 0. 79999999999999930 03 TFRMS IS ~0,AR4009983N84630T74N N6

i

SUM DF FIRST  0.89/9999999999999a9D 03 [TFRWS 1S ro.lotqaaabao71~soso 07

S=  -0.12 137997319r17lo N7 Ns o.qnqpaqooqoqqqkqon 03 Fm -0.1906580857283373D 04
! l

| ) .

CASE NU"*FR 207 lrs 0.799%999999999L930-01 Xe  0.628301883071705[700-01

| | ;
i i I . i I
Ss -0.91L232656912P6810 03 [N+ 0.250/0000000000p00D N2 Fis -o.7ovsL4osvssqsaonn-|z

| A
CASE NUMBER 203 |r= 0.799r99999q999pqan-nt Xe  0.1256/637761635917D 00

i
i

SUM 0F FIRST 0.9999999999990990D 03 |VERMS IS %O.IZOI37°P2079677|H n7 }

|
i

i

TERMS 1S }o.tz\slﬁnrvrnlaza1n 02
|

|

SUM OF FIRSTY 0.99999399999989990n 02

FORM 661V

|

TEARMS 1S F0,1092271/1438001960| 03 . (
{ ! . |
i it

1 01 23425070090 33435672709{0123456789[01 2165870902456 W01 214567090 234636700(0)234%0878¢°[0! 2243568901224 J

SUM OF FIRST o.zopoo:qnooooroooo 03

SUM OF FIRST 0.29999999999999987 N3 TFRAVS IS =0.19R2224709394722D 03

o€

S08 O EIRS T 02 35B99949056059330° 3 IFARS 141 ROIITITSBEHAB0ARANOLAR7 ¢ ¢ 0P 2 e e e as

i SUM OF FIRST 0. 500000 0000000000N 03 [TERMS IS r0,3488572(167985011D N3 f

SUM OF FIRST  0.%999999999999999N 03 [FFRMS IS F0,41761458511001570 03 {
|
SUM OF FIRST 0, 700000000000p000D 03 [FERNS IS  [0.46994608573885170| 03 :

SUM OF FIRST 0. 79999999999989980 03 [FFRMS IS 0,521600620582126A0 03 ‘

SUM OF FIRSTY 0.3ﬂ9990°°9099 999N 03 [TERMS IS [=0,56R1923271113089n[ 02 |

SUM OF FIRST 0.99/99999999999990N 03 [TERMS IS FN.61723130073402430 03 j

Se  -0.61/07313007360026430 03 N= n.qqorqqooqooqorqon 0% Fls -o.naoﬁssoasvanswvwo 0%




R B T T —

LT
SR

¥

FORM as iy

SIM
SUM
SUM
SiIM
SUM
SuM

fSUM

OF

OF

OF

0Ff

414

oF

OF

CASF NUN}FR 20¢ (V=

CASF NUMBER 205 |T:

rthr

FIRSTY

FlFS'
Fl%SY
FILSY
FIRSTY

FIRSTY

' SUM OF FIRST

'SUM OF FIRSY

€1 234507200901 224567R9[0! 234587870 F34356787{0"

SUM OF FIRSY

|°I?.)4907I'0‘21l50'l' V2314656789
¢

"00

S=

{
S=

-0. 44

|
Se o.ouq'osvssvvopzoan A1 Ns 0,280
{

0. 999993 99999989900

o.zoFooaonooooFooon

| i
0.29999999999999914n
| I

|

| q
0. 299999 99999999990

|

0. 50000009000000000

0.54999999999 x‘DQQD

|
00000000000000D

0.7
0. 799999999996R994D
i 0. A999999999999999D

b

0.99999999999499999N

v24

5% 8386533099730 N =

|

257739537A194270 02 L- 0,499
|

[

i

02 rrnns
03 Lenus
i
03 TERMS
|
i
03 [TERMS
|
0% ITFRUS
03 r:nns
03 hraus
013 ERMS
03 £EIMS

IR I I
03 TERMS

surnvt»aatsorcor

Q99999999r900 03 F+ -0.190458942872833

0.999

58

| .
n.:oqboowcoeqqqposn-Ol Xm

|

|

0. 20 oooooqoooronn-oa Xm

| )

1S

| 3

1S

1s

1S

1S

1S

47879

ts

i
0.1A86

0000"N0000P00N NP #

9585921538
%

‘s

r0.169ls?| 159271110

t
F0.2788463)111936288D)

|

=0e 3859945

|

ﬁlﬁl’@ﬂﬁﬂn

760 09

0.25132741278718330D 09

33

03

03

e ;
F0.48009979 122243800 03

F05616934
f

046339884

~0,6935005
i

|
ro.7963366

}0.80R3#16

0 2148’ 8¢

1565 4104 7
|

7681512140
7695512410
qusosnauo

3091 479500

0226354789

03

3

n3

J3

13

231435678y

-0,8%551338/53309978Nn N3

V234080

€1 23450 8901 2745007

!
CASE NUMBER. 206 * 0.799 999999099P980-01 Xr N.3141/592653589781 0 0)

9099999999L980 N1 F =0.1254R3699437 18

O.ZQ?ﬂb!?l?1176JQlﬂ-lZ

0t 214567 8¢F

730 04

130-13

0t2r4584200|0" 33




FO™M ootV

PR,

v
rltaoooroo

SUM OF

SIM UF F!

SUM Or
SUM OF
SUM OF
SUM OF
SUM 0OF
SUM OF
SUM

Ss

Ss=

Fi

'ﬁo‘o

CASE NUM

-0007

tA)es e’ s

SUM:OF FIRSY

FIRSY

sY

SY

FIRST
FIRST
EIRST
FIRST
FIRS Y

OF FIRST

CASE NUMBER

SUM 0F FlkST»

SUM OF FIRST

SUM OF FIRSY
SUM OF FIRSTY

SUM OF FIRST

¢

'
.

58842225017788N 07 N=

BER 302

{

f ! .
oSUMOF-FI S'aos0¢5ﬂ99’90999'9b9990:030o FRMS:1S0-pp0s3270326/849720098000 V5434780

!

v
0.99L999909990P0000

I
0. 2000/ 00NOLOPAAID

0.290999999999H998Nn

|

0. 399999999999999an
0. 500000 090000D 1000
0. $9999999999992990

o.1donooooooonLnonn

1
)

0. 79999399999909940

{
o.oopcvaoqqooiooqqo
|

0.949999949999Poqon

303

|
0.99/999799999999910
!
0. 2000070007000 0ND
0.299999999999999aD
0. 3999999999999999D

0. 36000NNNONONDNOND

60::3010+[Tv1:.002990999099909009

‘llabl'.'?ttlasoloi

02

013

01

03

03

03

03

0?

03

03

6769972010/02%20 03 %. 0.2%0

02

03

01

03

03

brass

|
&enus
|
rraus

\

?rnns
:
TERYS
FRMS
H
rrRMS
TrRus

'TFRM S

TERMS

|
l

)

TERMS
'TERMS

TFRMS

ERMS

ERMS
|

15

£s

1S

ts

1s

1s

s

1S

15

1S

n.oqoboqcooooooLoon N3 Fis

I " '
V= 0.3999999999999599n-01 Xr 0.62813]185%5307179%

T= n.wqoquqqncqookaoo-nl

IS

1S

ts

L)

LI

!
¥

"3!50'.9?*’!.‘0’.9;‘

1362678y
ro.’zzsss7ravnsalooo(ws

t

rn.vsvosoep75|9aboon

L0.1699%19[349327180D
?

04262648 420 672520
t

ro.asltoonrssrsahnan

i ?
F0.4727152/0536 756960
; i

I

-0.60*6051?57614?570

|

=0, 7605215152366 710

+

0 +89994%8085%543589%D

-0.10588672280372960

Xe  0.12568370616359
|

i
1

; I
| '
'0.72l3606P026977700

P0.6052651L95al?87?n
i
i
0e15524865997385460)
~0e220583311712230390

-O.???S?SﬁhOGQIQSSQU

kN

990?0t'c‘;-1tﬁoﬂro~Lv114»ovovL4ruos.o.v

L I B I BN

k]

né

neG

06

ol

26

06

08

07

T700-01

170 09

ni

02

n3

23

N3

|0!134507lv

00 SR, L 0 T000000000009020, 02,  JRANS, 15, . 505 21079900723204440,2)
SIM OF FrRsT 0.799999999999P994D 03 [ ERMS 1§ r0.4687065P696275480 03
SUM OF FIRST  0.899999999999H99sD 03 [TERMS IS [0.4417182[1290686420| 03
SUM OF FIRST  0,99199959999990990D 03 [FFRMS IS [0, 4703481[656218470) 93
Ss  -0.47D348 174642

59

l

lD EE I B O B I

+.0 E I L } L I
]

-0.1622P60'039ﬂ5l790 0.

000N0N00NOPOOD 02 Fi= -0.2560b3l2030176780-12

01234807009

01 234586780

14470 03 N= o.qqqroqqqqqoeqroon n3 Fr -o.xazzrae\saqqanfon B

0 RN

0123

01 7))




[}

f i ' :
CASF NUMBER 306 [T+ o.\oor99oooooqchqn-n| X 0, 1886N564971838]740 09 !
| . |
|

i

Ss 0.0J194|11s?1n 4540 013 h- n.?sokooooooooobnon N2 fs n.777thv96vwoes~3'o~i7
| | ! |

CASE NUMAFR 305 Iva w.wqupnoqqqoooebqqo-ol X 0.251327:122471A330 07 : ;

| f ! : |

| L f ! * y { '

SUM OF EIRST 0,93 09997999499900 02 TFRMS IS =0 ,134T73768768N94%40 N3
H 4 t

i ; i

| , : I
SUM OF FIRSTY 0. 2000070°070000000 03 TERWS (1§ ro.llﬂll!0§1628711$q n3 ‘

!

i

SUM NF EIRST  0.299999 9197999998 03 %Enus 1S zo.\¢3o~annaoqrxoon a} ]

i

SUM DF FIRSY 0.3 QQQQ*Q?Q#‘Q’QD 03 FRMS 1S 0.6227932F810179790 03

SUM OF FIRSY 0. % OOO”OWGWOOPOOOD 01 ramMs (s IO.#QO?O§3L!6!IﬂlSSﬂ 23

SUM OF FIRSY o.soquwq;qoeqLoqon 03 Lrnws 1S =0.54%40998732819200| 3
1 l 1 )

! ! t :
SUM OF FIRSY o.1dooo~nwoooobooon 03 TFRMS 14 [0.59194002814843490 03
\ | 4 i |

! | | |
SUM OF FIRST 0.79L:0¢90909°b9980 0% TERMS (S rO.bQ?QlB’BS?G?O?G‘N ny
| :

SUM NF FIRST o.aoboqnqvqoeq 999D 0% TFRMS [S [0,AR120732657871660 03

|

|
SUM 0OF FIRSY 0.909@90999990 990N 03 [FRMS (S r0.7166891 9564728740 N3

Ss  ~0,.71448939954728760 03 O.QQQﬂQOQQQQQQQPQDD N3 Fi= -0.16?JF‘8|819NQ%790 04
|

FOM 561

CASE NU*ER 306 +39999999999998999=n1 X 0. 31641 qzssuawblo 03
' i {

91 23456789|0: 2345670901 214362009[0)276%0678v[0' 31746547/ 89 214586 0°%)0 )3.50’.00!IJ‘SO’.'I!I)‘!.I.O‘Q!)J"@

:?:’. =04 765577807226“4 N? N= Ne49 99?99999099 DNl F 06667'596068 ﬂ-[
Se70900 12345678001 234847 RN R 0O 114567 850193450 8% 18360,

=
(KX AN EBEEREE R Lu:caouo ! ‘. ]

CASE NU"PER 210 ¥ Ne 39 QQQQOOQQQ!QOD-OI KL 0.5654L667764616 ™ 00 |

| |

‘
Se -0.2017633?0665%0930 03 0e zsnboonooonoobooo "2 Fm -n.||oanoxvqnoastzo-tl

60




CASE Nunkp. N ﬁ. N, 1999991999999999N-01 Y= o.ovusxqqaovnvq«han na

z | ;
f

SUM OF FIRSY o.ojqnvqooqooobqqoo 07 TERYS 1S =0.18101528447454931 Y

i

SIM NF FIRST o.zoknoaooooonboono 0y fraus (& 0, 30783727077388770 13

t t

4
I}
L . { .
SUM OF FIRST o.79%¢9;q~oooa)ooao 03 ﬁrnus 1S =N,608T73152447474980 23
’ :
SUM OF F1
|

!
Sy 0.3999939799999999) M TFRMS 1S -O.hﬁ@!k&ﬂﬂ@!&h@bﬂ%d ns

|

SUM NE FIRST  0.59D0NI0NONONONGID OV TERYS 1S =0,589697 18956487200 1

i
i .

!
Sus 0F SILS‘ OoSWhQQQQQQQOQbOQQD 03 TFRMS (S ~U,527247A%A45911749N 0)

' ‘ l 1]
SUM OF EIRST  0.7000010080000000D 0% TERMS IS =0,AT2779781216784 30 N
} ! ' ‘
| ‘ .
SUM NF FIRST 0.7 9904999@9700900 03 ITFRMS S »o.vnabssqoqvnawn064 03
! |
> SuUm OF 'IPS! 0. 099999 9999999993D 01 TERHS 1S =0, 78923 12hA 79696421 19
% : ‘ t
i ' '
. SUM OF FIRST  0.99 999909990r990n 03 IFRYMS 1S =N ,7978N0598974439610 03
| ' .
.'llll.’l'O"3050'!9[0!13090'.'IO 1‘0-"5930 Tres AR 1 L] | 74 ORI AL SAES BV LR BN B AT I B B BN O BE AN IR 2 U SN NS
Ss =0,792805989N643961 N NV N= 1,9999995009999990N OV F= =N,1527442193983479) 0%
CASE NUMBER 1320 (Ts  0,39999939099999997-01 Xs  0.11938752093641[14D N
‘ ‘ |
: Ss  0.104217908A13064790 O} i~- 0.2%0/00000000000000 N2 Fls  0.6783153%22216300N-11
: ' i ;
< CASF NUMBER 321 (Ts o.sqqrooqqqqoqwroow-on Xm 0.12%8p3776163%3(120 91
0123456727 09[01 2143587 R840 214" 8"BvVvi0 ? 145 8 ﬂVO‘?ll\Q'."fL??‘l‘io’.Vo 7346067890 ARSI B I 2 I B B RO B 2X R[N B B
YSyM OF FIRST ~ 0,9999999999999990D 02 TFAMS IS  =0,19150547377504120 03
0133450789024 078001234308 lo}tﬂl)o»l'lwtﬂa'.sa'lvhliao 'ofo‘7|A‘0' Vi T 1 eSS AR 236 lv:r 704
' ! | | ,
‘ ; |
, SUM OF FIRST  0.20DN0700000NDOOAD 03 heums 1s ro.stv;;rnbs:rcn:tnn 03 '
SUM OF FIRST o.zqrquqwoaoobqono 03 TFRMS 1§ Fo.«xr:qsepa;savooqn ny
i ‘ :
1 SUM OF FIRST  0.39999999999999990 03 hrnws 1S F0.50N4706/8290 736370 03
|
i SUM NF FIRST 0. %00000000000P00OND 03 [TERMS 1§ }o.srtztraP?|4vnxnon ny
i
i
SUM OF FIRSY  0.%999999999998999D 03 [TFRMS 1§ L0.63’l?$4%171bl|710 n3
i
SUM OF FIRST 0, 700007000N00PNOND #3 TFRMS 1$ rn.6849191r912195|10 N3y i
: |
SUM DF FIRST  0.79999999999989930 33 [TFAMS 1§ ro.rsnnaavpoqxxozasn 13 ; ’
H |
‘ i
SIM OF FIRST o.aorqqaqoqqoo%ooqn 03 WERMS IS (0, 77NR135158524221n 03
‘ SUM OF FIRST  0.9999999999909990N 03 [TFRMS 1S -0 .A055A3A34 72204591 03
' {
j Se  -0.805583834722004%90 01 Ns= o.quqqqqqnqocnrooo‘oa Fie -o.tazzﬁaanaquaavoo 04

61 ;




! . [
’ CASE Hwilﬂ 139 ’h Y, “0@‘""99009”9”-01 s 0.,LA27172373908 23780 01
| | : |

S -o.ovr‘oaasasgvsaqxo 07 N+ 0,2500000300000000N 02 Fe -0.11108501576489070- 19 i

! _ i
CASF V+l L} LI L 0.‘IQQPQQQQ’OQQ¢AlQ‘ﬂQQD-OI Aw 0. IHOQ%SQSQZH?O;??“ ot i i

i |
. i s

i

‘ | z
SuM 0F slrsv 0.90r09909909499400 07 TERMS 1S =1.19323293945 81 0460 03 »

! ¢
SUN OF Hhi' 0.?*00000000 N00D 03 8’"!“5 1S »0.3199N1124545048%21MN 1)

SUM OF FIRSY 0. 2999999979999W9940 01 FRMS (S F-ﬂ.bl'!!Q?Q 475678730 NY

{

SUM OF FIRST 0. 3999999999849990 03 RMS 1S 0.5076690587906994M 33
i : ' i
i | : i
§ i /
i SIN OF FIRSY o.sqoomonmonboooo 03 NFRMS | S ~0,8734911D011462159N 0 | |
| | | : | |
‘ ; SumM ¢ rnfsr o.sqhqqaoqqnovkqoqu 0% trRMS 1S po.ons~soopaoazoas:q 09 l
! : ]
SuM NF flhsv o.1JOoowooooooroooo 0y emus 15 Fo.snvaobsbrveonsoon 0%

! ! s
% .SUN OF FIRST Oa'NL‘NDO" 1999099940 03 TFRMS IS PO.?!!Z&!QP‘"’"S”?‘“ 03

' ; .
SUM OF EIRSY O..«QQ?Q‘N‘NT‘N% (1] }'EQNS 1S =0,77320021 79806 1A9D) O3

FOWNE 840V

|
SUM OF FIRSY 0. 999999 99999999900 01 [VRNS 1S =0,8000067D%9273948N 33

|
Lﬂ- ﬁoo.sopwoaQosozﬁoosaq 0% Nr  0,9999992999999R900 73 F -0, 16275681039484790 04
1034307000 32365070 %% 1026508V 2VEYN'HY [EERER RN R IBFENSER) RE RN EERN B ‘tldioltvo'l).tor.OL":li.t.o

- CASF NUMBER 40 [+ N,3999999999999999n-01 A= 0, ?6%’042?69000(}150 ()
! 1

| " ‘
| | |
{ i
s 0.24512101618037030 02 N=  0,2500000000000000D N2 F o.t7¢35¢o43|o~~$310-10

a0

? CASF NMFR 341 V* 0, 19 9999°9Q99P990-0| Xjw 0.2513%27612287)1R290 0Ot
g ! ‘

1 T l : o

OV 334562 09/0 1 324267 4%[8 103830720200 124087000 31a 0T R 214507000 1)0‘0’."0")4‘0'.".'l)l’i"'v."?)’o‘l'c

SUM OF FIRSY €+ 99999999999999a0N N2 TEAMS IS  =G,1937967893917794H N

v
'Slﬁfb"FlPSV'ﬂ'blthpobdbbbhbh 0000° 04 " HERAS 8 TROII{O0NAGP141831A80P0R 1 rr ety

% . SIM OF FIRSYT  0.299999999999p998N0 03 FERMS IS R0.4200775h4 35443010 03

', SUM OF FIRST  0.39999999999959990 03 TFRUS 1S -o.5011197pvoaassnon 03
i SUM OF Flrst 0.5000010000000000N 03 (TFRMS 1S F0.5762766/4R56129580 03
i SUM NF FIRST o.soLoqqoqoqoqpeoqo 03 [TERS IS F0.63%21185%20934300( 03

SUM OF FIRST  0,7000000000000000D 03 [TFRYS 1S  +0.48A072171495571 S0 03
i SUM OF FIPST  0.7997999999999994D 03 (TFAMS 1S  |04734064680341291150| 09
SUM OF FIRST 0. 89999999999993990 03 FFRMS IS 1-047740737937A8231 70) 03

’ SUM OF FIRST 0.9999999999999990D0 03 [TFRMS IS [=0,8048874]2507892910| 03

‘ Ss  -0.80888742517892910 03 rt- O.QOQPOQQQQQQQQFQOD ny Fr -0.!.‘027%68!01‘"08790 O




ome sslv

oM &bty

SuUM

CASF m-rn 380 -

|
Se 0,31 |0710931¢ksosn 00 e

CASF UMBER 1351

|
of FILSI

oF

SuM
Sum FIRSTY

SUM NF FIRSY

NE FIRSY

0F EIRSY
OF FIRSY

SUM
SumM
SUM
SUM OF FIRSY
OF FIRSY

SUM OF FIRST

SUM OF FIRST

Se  -~0.80909178553882690 03

CASFE .NUMBER 401

SJM OF FIRSY

SUM OF FIRSY

01 2345670809

SUM NF FIRST

02345600

!

i

‘

| |
o.o%oooqoqoooorqqon
i
0.2 ooaoannoornooo

0, 299993 92959999980

0. 399999 9999999999D
0. 5000007 0000000000D
i |

0. 9919999 ooooeorom

0. 700002000000P0000

—-

0. 79199959 999999899130

0. 899999 99999999990

3%

%}a.

0.9%99999999999990D

T=

0. 9999999999999 910

o.zopooaqnonooboooo 03 [TERMS 1§

0t214350'80°

0. 19999999999999997 -0 |

02

03

03

03

03

03

03

02

03

0

0.999099999999999900 13

-
N4 4999992999999998n-01

02

0 ' 2145867879

0. 2999999999999993N0 N3

|

.LIlF'-I----r-u----unhqunnliulllI-I-!

63

-

i
i , |
'

; |
! !

1. o.;qqrnoooqoooqbooo-01 Xs  0,31415926535897R60 01
! ) * i

i’ ‘ i !
TERMS PO.I9196i6p7299790|0
i

FEIMS

?

lvemus

1S

1S m0.32)10i5N16358090D
|

1S F0.4272%119698762060

TERMS 1S =0 ,50356027490 770 76N

TERMS 1§ Lo.sv~oltﬁrt¢zslovlo
|

IS

063540337507 542600)

| |

=0,680826764%44368070"

TERMS

¢
YeaRMs IS

i 1 o
TERMS IS =0oT7342456080°. R4S TN

TERMS

i

!
rrn“s 1s

1S =0.7762750bpR67 574130

0440909 17563882400

i

X's

0.0
‘» |

YERMS 1§ Fo.zt:zerubor«;aatao

ro.vozzloazooeaaaxoo
0

‘

01 2345678910 2340068901 2265078°9

TFRYS 1§

~0.1194922704290134N

!;ﬂd‘ﬁr'ﬁl $1::00.% bbébbbbbbbhbbb’bi"W#iﬁS’lS"Fbiﬁz&hbhiFhii’itéﬁb
SUM OF FIRST 0. 8000000N0000NINON 03 F¥FRMS IS  F0.32327531736 197430
i

SUM OF FIRST o.sopqqoqoqwquqoqo 03 ERMS 1§ ko.aa272snsoz|1azsso
SUM OF FIRST  0.70P00000000}0000D 03 [TFRMS [S L0,.551384076 12162940
SUM OF FIRST 0.199999999999[99a0 03 JTFRMS 1S rﬂ.b???ﬂﬁSLﬂﬂ?l?!’?D
SUM 0F FIFST 0. 89999999999999990 03 [TERMS 15 -0.R1N6RATR452 947341
SUM OF FIRSY o.qaﬁooaqqqqqqsoqon 0% [TFRMS IS [0 .949008 1[298R12145D
= -O.94h0031298!l;1450 06 N= o.oqucqqqqooqq

CASF NUMrFR 402 [T=  1.4999999999999998D-01 X  0,62831A43071795
Se  -0.84453487256580860 03 N= o.zsopnononooooroon~oa F

0.107A7400008 1 79p2 D 01 |
{ )

' , | |
0.?50&0000000005000 N2 Fis -0.[°9?B?S7166607090-10

!

03
03
n
k]
03
23
03
3
03

n3

Fle -o.xaz’raatanoaaavqn 0%

28

28

0t 2ia3678 0

06
I I
16
ne
06
06
26

06

boon N3 Fe »o.laosk29113141?k4n 04

I
1

T0N=-01

[ -0.?633#67“19&O92P90-|2

214650

013264564780

3

0 ) T Y4508

0 ' 234346709

Ll




: ! ,
CASE NUAQE. 403 [fs  0,4999997999999998N-01 X=  0.17866370414359170 1)

b
1

| |
. ‘
i
1

SYUM NF FIRST 0. 999999999999899nD 0O? ERMS 1S 0,13157A5316279%536N N7

! i |
SUM OF FIRSTY 0.2 0N0Y000700DNNAND 03 FRYS (S k0.5l9Q°|552l7806590 N2 |
i

| ! ; i
SUM OF F!psv 0,2999999999999994D 03 TERMS 1S =0,17700590775424120 73 !
) ' ' .

1}
i
SUM UF F'kS' 0.39 ooaoweoqoquvn 03 krnns 1S =0.17662052265432400 03
| g 1 |
SYM OF vlksv o.sohoosoooooo 00070 O heaﬂs 1S ~0.2276N8313407 155580 N3 !
; |
SUM OF FIRST  0.%9999) 99999499990 03 brnus 1S =N.26169973976746630 N3

SUM OF FIRST  0.700000000000M0000D 03 [TFRuS 1S 04794644 140691711 70 03

: |
SUn OF FIRST 0.7909997999999999a8D 03 [TERMS (S ~0,3222704/937513130 03
|

SUM.OF FIRST | 0,89999999999999990 03 FRuS 1S FO.165!065F|90“S&’3H 03

O 8815

0133650280 23407 0 3 e 070200 234587 8VI0 2T 450700 2650789022467 090 230700 2343678022438 8

SUM OF FIRST 0,9999999999999990N N3  TFRMS [S  =-0,3A3R102142923N400 OV

v .
0V 234307000 2024507 00 '1res e 0N RN EEEE N U I I BB RN W 1224367000 1340000 ”!l’.'l'ﬁ"ll!.ilvPll)llé"v
[
-

Se ~0,34381021¢79230400 0 0,999 QQQQQQQQQFQOD‘Oi Fp -0.1606 29111767?r6) 04
I

i

‘ | |
CASE NUMBER 404 [Ts 0.690L99999999°99!0-01 w o.tqaa?sss9znsaebao 00 |

¢ ! . |
o ' : |

S= po0#2135l66964£l760 09 ¢ 0.750r000000000h000 0? Fp 0.’699L3766?Q°l9[¢0-|?
| .

CASE NUMBFR 4058 Y= 0.6919999909099bﬂ00-01 lr 0.7913?7b1270110930 00
? :
I

1
| | | |
SUM OF FIRSY 0,9 999994949P9¢on 02 FNFRMS 1S ro.l:to:sqbovnvqsnon 03
, | . | i !
SUM OF FIRST  0.2000000000000000D 03 ﬁaaus Is }o.zrvaazo&o;auqu‘o 2}
] |

SUM OF FIRSY 0.2 99990999QLQQRD 03 hFR"S | 53 LO.3\°6ﬂ76"|§b050’1N (45 ] |

! | |

i !

SUM OF FIRST 0.39/99929999998999D0 03 PERMS IS ~0.37R846050377964290 73 [
! 1

t

SUM OF FIRST 0.50?00)00000000000 03 [FTFRMS IS ;0.6369763761906197D 03

|
SUM OF FIRST 0.59%99?00999 9990 03 (TERMS IS PO.“QZ?Q?)F%?ﬁSSZhZD 03
SUM OF FIRST  0.790003000N000000D 03 %FRNS IS FNS52728321023156R60 03

SUM OF FIRST 0.7?%999999999 998D 03 [TERMS IS 0555775 TTA0009404D 03

SUM OF FIRSY 0.8999999999999999D 03 (TFRMS IS ‘#0.9817991f\32067000 03

SUM OF FI%ST 0.99999799999989990D 03 [TFRMS IS r0-6069’61b816066310 3

-
S= -0.60692410834064310 03 N=  0,999§993999999990D 03 Fr -0.14058291137472840 06
|

CASE NUMBFR 406 [T= N.49999999999999980-01 Xi= 0.3[4\%@265‘589ﬁ910 00

S ~-N,4141320035236458N 07 N= o.aooboqoqoqqqqrqan n r ~0. 1168752426 1474]75D-13

64




APPENDIX 1I

In Section (4.0) we discussed the question of generalizing the one dimensional Burgers' equations,
to include the possibility of propagation in a pipe of variable cross section. In this Appendix we
point out the difficulties involved in attempting a solution for any but the simplest of even the
regular geometries.

In that section we stated that if the area A is given as a function of location, A = A (x), then
Equation (52) replaces Burgers' equation: :

( & (Ax)) 8 8 (Ax)
it StV T YT T Ve T B VR Y (A32)

XX

Also, we have four (4) particular cases of interest. They are:

Ax 2

Case 1 A = ” (Spherical)
A ]

Case 2 Ax = ” (Cylindrical)
Ax

Case 3 A = <, (Exponential)

Case 4 Ax = 0 (Planar)

We will treat cases 4 and 3. The former reduces to Burgers' equation, while the latter,
simple as it is, remains intractable in our present framework of reference.

To simplify (A52), set t—=Kt

V—=+pV
( K§ (Ax)) K& K& (Ax )
+ - ——— = —— -
Vit Gkt KeV - =12 Vi 2 Vxx T2 % \A /Y
Now if K = 2. , then we nbtain

)
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}

or

- )
= - o X - X
V' ¥ va - Vxx ( ) ¥ A )vx c'o( A v

which is a somewhat simpler form of (A52). We will use it as a working equation. In these
terms then the 4 cases become the following:

Case 1: V +VV =YV - (a + -—) \Y/ --—B— \Y (A53)
t X X X X X X
Case2: V. + VV =V -(a+-l-)V -8 v (A54) 1
t X X X X X X ‘
Case 3: V +VV =YV - aV - BV (A55) ‘
t X X X X . .
Case 4: V. + VV =V - aV (A56)
t X X X X

Let X = ¢ (x,1t)
T = t

Then the following relations hold:

dV = deX+VTdT 1
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vy Y % * Vp 1
Vx = Vx N |
- |
vxx_' VX Y x ¥ VXX q’x ‘
Let
Xo= ¢ = x=-at ; ¢ = 1, Yo = 0
$, = -«
Thus,
VT-qu+VVx-Vxx-qu

/ =
Vi * YV ® Vxx

and we succeeded in reducing this case to Burgers' equation <
Next consider

V. +VV =V -aV - BV. (A55)
t X X X X

To simplify, let us try

X = x=-at
T =t ;
so that
Vt = VT - a VX
\/x = Vx ;
Vxx - VXX
and therefore
V. + VV, = V -BV ’ J

T X XX S
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4

Suppose we now let

V = e-BT v,
which implies
_ BT } -BT \
V.r e Uy B e v
-8
VX = e P Uy >
_ BT
Vxx = ¢ Yxx )
e-BT up - Be-pT + e-zﬂT Vuy = e-ﬁ.r Uy x " Be-BT v
and finally
UT + e-pT uux = UXX
a form which still has a variable coefficient.
If we rewrite our last equation as
e = _a__( . BT, “2) (A57)
T axX \Yx 2
then it is not hard to show that the trial transformations
)
v = 3x Flex, M gm) (A57)
= 2 Flex,T)- &
X ((P ’ ) g (T) (A58)

are of no use in solving (A57); despite the fact that these would be the "natural” generalized
Burgers' solutions. We note that
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-p‘['
) | 2, € -BT
Fq; (%""xx' Bo) - ?, qunp-Fq, 2 ‘e ()
g ePT (A57)
while |
Fo(or - oy | -FB - (o 1F - L L m (A58)
To (*1T 7 ®xx) X" | 'anT @ Tn| 1
g e PT

which implies that
F=2Inn ,
and this is of no use.

Other direct approaches lead to similar results. Thus, if we take

v= o Flobup®)) i v 5= F ol p®) - F1))

then a similar dead end is reached.

Let us try now a change of independent variables. Thus, let

X = Y (x, t)
T = ¢
so that
dV = Vx dX + VT dT
Vi T Yk Vg (
Y -
X VX q’x J

69 .




Let
px,t) = x =at = X,

which implies

(
Vt = VT - a Vx
< Vx - VX
\ Vxx - VXX

This yields a somewhat simpler form of (A55); but still of no use; it contains a v -term:

Vit BV = Vo - VVy

However, an obvious solution here is

Pt
X

VX, T)= -2 (A59)

We would, of course, wish to consider something more general than Equation (A59), which
was obtained by setting both the right and left hand sides of our equation equal to 0.

Hence, let

\% F (f(X) g (T)
= F(q) i n=4gM
Then we have the following development:

Vi +BV = F F(X)g (M + BF

Vg = F P XeM
Vax = Fa P ®ReM + F () M)
vV, = FFn f' (x) g (T) 1
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<
X

]

-n

-n
i )

o §
—
ﬁ -
J ey
——

In view of the BF term, it seems unlikely that we may do more than let F = n . It seems
to be clear from here, therefore, that even by use of this similarity transformation approach
we cannot obtain anything better than setting F = n, which of course means a direct return
to the original equation.

Several other approaches have been tried also. The one given here is perhaps typical of the
kind of situations encountered. From this, the best that we can obtain is the following type
of solution:

Taking

g' () _ ffx) _
oy AL L R 2 = MR

we also get (for Sy €y constants)

) B

f(x) 2
Thus, our equation becomes
ne,F' + BF + nc FF' = nec2F + n? 2 p
! 2 2 2 !

where

o
=

and where
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c ¢ X

— 2
We can satisfy this ordinary nonlinear differential equation by letting F be some power of
n; so that if

F= K nk

where both K and k are constants, then we obtain the following relation (after concelling
out common factors):

2 2 -
B+ (e-cl) k+ cKk=clk(k=1)=0
This yields the quadratic in k:
sk’ - (c+Ke)k -p= 0,

which has the solutions

1

2 2
cl+Kc2t (cl+Kc2) *4Bc,

~

2<:2

This will always yield two numbers; independently of K, provided only that B > 0 and
c, # 0. Let the two numbers be denoted by k, and kz; thus

k= k (K), k= kz(K)

are both solutions of the quadratic. Thus, the solution is

F = K[nk“m]

F= K [nkz(K)]

Therefore, finally, the similarity solution here obtained is

or
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(et ¢+ ) k. (K)
v ix,t) = Kec‘ 2

or

(et + ¢ x)k, (K)
vix,t) = Ke ‘ 2"’ "2

These are solutions which, for apprepriate choices of <, aoand c_, con be periodic in either
x or in t (or both), but they reprusent, at best, the stable oscillations and are thus merely

limiting cases.
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