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NON-TECHNICAL SUMMARY

Collective risk theory is concerned with the random fluctuations

of the total assets of an insurance company. The company has an initial

capital u and policyholder: pay a gross risk premium of a per unit

time. At random instants of time claims are made against the company

for random amounts. The principal objectives of the theory are to ob-

tain the distributions of the total assets of the company at time t

and the time to ruin. Calculations of these distributions are usually

-ery involved and use difficult analytical methods. In this paper

explicit approximations are obtained for these distributions.

Approximations of the type obtained here can be developed for other

applied models which involve the sum of a random number of random vari-

ables. In particular, a compound Poisson process is a special case of

the processes considered in this paper.



DIFFUSION APPROXIMATIONS IN COLLECTIVE RISK THEORY-1/

by

Donald L. Iglehart
Stanford University

1. Introduction

Collective risk theory is concerned with the random fluctuations of

the total assets, the risk reserve, of an insurance company. Consieer a

company which only writes ordinary insurance policies such as accident,

disability, fire, health, and whole life. The policyholders pay premiums

regularly and at certain random times make claims to the company. A

policyholder's premium, the Eoss risk premium, is a positive amount com-

posed of two components. The net risk premium is the component calculated

to cover the payments of claims on the average, while the security risk

premium or safety loading, is the component which protects the company

from large deviations of claims from the average and also allows an

accumulation of capital. When a claim occurs the company pays the policy-

holder a positive amount called the positive risk sum.

On the other hand, an insurance company which only writes life

annuity policies represents the mirror image of the situation described

above. In this case the company pays out an annuity regularly to the

policyholder while the death of a policyholder places the corresponding

reserve at the company's disposal. For this case we speak of negative

risk premiums and negative risk sums.

For many insurance companies, of course, one would find both

1/ This work was supportedppo	 by Office of Naval Research contracts

Nonr-225(53) and N00014 -67-A-0112-0031 and TTSF Grant CrP -8790,-
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positive and negative premiums and risk sums present. As a mathematical

model for this situation we shall assume that claims occur at the jumps

of a renewal process, {N(t) : t > 0}, and that the successive risk

sums form a sequence of independent, identically distributed random

variables, [Xi : i = 1,2,...}, with E (Xi ) = µ > 0. Furthermore, we

shall assume that the initial risk reserve of the company is u > 0

and that the policyholders pay a gross risk premium of a > 0 per unit

time. If we let the risk reserve at time t be X(t) and let

SO = 0, Si = X1 + ... + Xi, then we have

(1)	 X(t) = u + at - SN(t) ,	 t > 0 .

Also we define T, the first time the company has a non-positive risk

reserve, by

T = inf {t > 0 : X(t) < 01 .

The principal problems of collective risk theory have been to calculate

the distributions of X(t) and T. usually for the case where
r-

(N(t) : t > 0) is a Poisson process. Many of the re:-taits for these

distributions are complicated expressions which have been obtained by

i
involved analytical methods. For a comprehensive treatment of the theory

up to 1955 the reader should consult Cramer (1955). A more recent

account of portions of the theory is available in Takacs (1967), Chapter
r-

7

Our objective in this paper is to obtain approximations for the
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distributions of X(t), T, and othAr functionals of X(t) by applying

the theory of weak convergence of probability measures on function spaces.

We shall define a sequence of risk reserve process { n(t) : t > 0},

n = 1,2,..., and show that these processes conv•irge weakly to a Brownian

motion process with a drift. For this limit process we shall be able to

explicitly calculate the density of the first passage time corresponding

to the random variable T. The distributions of the random variables

{	 derived from the limit process are then proposed as approximations for

the process Xn(t) for large n.

This paper is organized as follows. In Section 2 a number of con-

cepts and results required from weak convergence theory are introduced.

Section 3 contains a proof of the convergence of a sequence of risk

reserve processes. Finally in Section 4 the distributions of quantities

derived from the limiting Brownian motion process are discussed.

2. Preliminaries on Weak Convergence

In this section we shall assemble those concepts and results from

weak convergence theory which we shall need for our application to

- ^
collective risk theory. For a comprehensive development of weak con-

vergence of probability measures we recommend the excellent book of

Billingsley (1968).

Let S be a metric space and	 the class of Borel sets, be

the a-field generated by the open sets of S. If P  and P are

probability measures on 	 which satisfy

lim 
fS

fdP 1 
=fS

fdP
n -4 so 
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E

_-	 for every bounded, continuous, real-valued function f on S. we shall

say that P  converges weakly to P as n -; co and write P  —> P.

In the case where S = Rk, k-dimensional Euclidean spacer weak con-

vergence is equivalent to ordinary weak convergence of the distribution

functions associated with P  to that associated with P. However

for the function spaces we shall consider weak convergence is a deeper

concept.

For the applications to be discussed in this paper it is convenient
f

to introduce the following terminology used in (1). Let X be a mea-

surable mapping from the probability space (StJ' p) into a metric

space S; measurability of X means that X l c:18. We shall call

X a random element of S. In particular, if S = Rl, we call X a

random variable; if S = Rk, we call X a random vector; and if S
f

is a function space, we call X a random function. The distribution

-1of X is the probability measure P = "/^X	 on (S, g6 ). We shall say

a sequence {Xn} of random elements of S converges in distribution

to the random element X, and write

n > X

if the distribution P  of X  -onverges weakly to the distribution

P of X : P  --> P. While this definition requires that the range S

and topology be the same for the random elements X..X1,X2,•.., the

domains (nj 'S j 'P) may be different.

One of the most useful results in weak convergence theory for

applications is the continuous mapping theorem which is an analog of the



Mann-Wald theorem for the Euclidean case; cf. (1], Section 5. Let h be

a measurable mapping of S into another metric space S' with a-field

of Borel sets. Each probability measure P on (S,4) induces

on (S', X) a unique probability measure Ph -1(A) = P(h-lA) for

As B ' . Let Dh be the set of discontinuities of h. Then we have

Theorem1. If P i => P and P(Dh ) = 0, then nh-1 —> Ph-1.

In applications often we take S' = S1 and thus h is a functional on

the random elements of S.

Now let S be a separable metric space with metric m and n

and Y  be random elements of S with the same domain (n,13, 1P). Then,

since S is separable, m(Xn,Yn ) is a random variable; cf. (1],

Appendix II. We say that m(Xn,Yn ) converges in probability to 0 and

write m(Xn,Yn) + 0 if

{m(Xn,Yn) > c) _+ 0

for each positive C. Then we have the useful result

heorem 2. Ifn -->X and m( n,Yn ) 4 0, then Yn --> X.

^- The metric spaces S of interest in this paper are C[0,11 and

D[0,1). The space C[0,1] (which we shall abbreviate as C) is the

space of all real-valued continuous functions on [0,1] with the uniform

-	 metric, p(xry)	 max	 (x(t) - y(t)j. Let .9 denote the class of
0<t<1

^-	 Sorel sets of C. With This metric C is a complete, separable metric

space. The space D[0,1], abbreviated D, is the space of all
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t

:t

real -valued functions x(t) on [0,1] that are right-continuous and

have left limits:

(i) for 0 < t < 1, x(t+) = lim x(s) exists and x ( t) = x(t+);
s t

(ii) for 0 < t < 1, x ( t-) = lim x ( t) exists.
s t

Skorohod ( 1956) has introduced the f ollowing topology on D. Let A

denote the class of strictly increasing, continuous mappings of [o,lj

onto itself. For keA, X(0) = 0 and X(1) = 1. For XEA let

= sup to 
^t-Xs	

The metric d x	 for x and	 in D^) ^^	 p ^ g t—s i'	 ( oY)^	 Y	 ^
s^t

is defined to be the infimum of those positive € for which there

exists a XGA such that

11XII < E

and

suptlx ( t) - Y(Xt)l < E .

With this metric D is a complete separable metric space.

A useful result connecting weak convergence in C and D was

recently obtained by Liggett and Ros , `:a (1968).

heo m 3• (Liggett and Rosen), Let [Xn) be a sequence of random

functions .a (D;d), [n) a sequence of random functions in (c,p),
and X a random i'unction in (C,p). If d(Xn,Yn ) # 0, then

n =-O- X in (D,d) if and only if

n —> X in (C, p)

J For functions XeA ve shall write At for X(t).
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To prepare for our application we state a special case of a func-

tional central limit theorem of Frohorov (1956), Theorem 3.19 Let

X(n),•••,Xnn) be a triangular array of random variables defined on some

probability space tS^,^ ,'^}: which are independent and identically

distributed for each value of n - 1 , 2, ••• 	Furthermore, assume that

I^,IX{n}l 
s 
0, 

a 
Ix	 ^r2 > JS 0 2 -► a 2 > 0, and that EI(X

(n)}2+cI
i	 i	 n	 n	 i

is bounded in n for some e> 0. Now construct the random functions

Y  in C by setting

S(n} {^}	
X(n)

Yn(t,W) 
_ at	

+ (nt-Int)} nt +1

V u o	 Ira's

for Intln 1 < t < (Intl+l)a_ 1 . Then we have

Theorem 4. (Frohorov) .	
Y 
	 -0 W, whererjL* distribution of	 W	 is

Wiener measure ad	 W(0) a 4.

S (a)	 (W)

Now define	 Xn(t,m)	
nt	 for	 0 < t < 1.	 Since	 d(%'Yn}	 0
In"QNo

^►and	 W	 is in	 (C,p), Theorem 3 implies that 	 Xn	W.

In collective risk theory, however, we are interested in sums of a

random number of random variables. 	 Let	 (Yi )	 be a sequence of inde-

pendent, identically distributed positive random variables Ath

MYi } . A-1 > 0.	 The random variable 	 Y 	 wilt represent the time

between the	 (L-1) 
at	 claim and the ith claim.	 Let	 N(t),	 the number

of claims (renewals) in time 	 t,	 be defined by

k
N(t) a max(k	 I	 Y 	

< t)	 t > 0 .

7
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with N(t) = 0 if Y1 > t. The random function N(nt ), 0 < t < 1, is

therefore an element of D for n = 1,2,... . It follows immediately

from the functional central limit theorem for N(n-), [4 Theorem 18.31,

that N(n-)1n > A, where A is the constant-valued random function

whose value at t is Jet. Now let 2n(tlw) SN(nt / Y Pa. An immediate

application of the method used in [11 Theorem 18.11 yields,

Theorem 5. n > W d A, where W o A(t) = W(Xt).

It should be noted that for this theorem the random elements X and

N(n-)fn need not be independent.

3. Weak Convergence of Risk Reserve Processes

In this section we shall construct a sequence of risk reserve

processes [X (t)) &,11 then use the results of Section 2 to prove that

they converge weakly. For the nth process let u  > 0 be the initial

risk reserve, an > 0 be the gross risk premium per unit time, and

{Xln)) be the sequence of independent identically distributed risk sums

defined on (S2,'^, ID ) with F [ X(n) ] = µn > 0 and v2 [ Xin)  ] = 0-2 >0.

Assume that the claims occur at the jumps of the renewal process [Yi}

described in Section 2 also defined on (R,B ,10)• Finally, the process

X 3 (t) is obtained from (1) by compressing the original time scale by

a factor of n-1 . Thus we have

n(t) = un + an •nt - S(N'()	 0 < t < 1

where 8(n) = 0 and S(n) = X(in) + ... + X(n) . Clearly, Xn is an

8



element of D[0,1]. With this set-up we can proceed to the proof of our

main result.

Theorem , 6 . If un = un' + o (till), an = an l' + o (a ^) , - % = un`-;, _+ a {n-^j,

a22-). a2 > O, and E[ (Xin))2+E] is bound in n for some t > O, than

n-"xn mop,• u+r+aa^w ,

where r is the cma Mt-valued random function whoseval at t is

(a-ua)t.

Proof: Applying Theorem 5, we have that

n h[ SM(n p) - unM(n . }J	 aW Y A

Since n 11un 
(n.) mm ' M, where M(t) = apt with probability 1, an

application of Theorems 1 and 2 implies that

-n N{n. )+ M	 -aW V A= aW e A.

Consequently, we have immediately the fact that

U 
4 

S n '* u+ r+ oW o A, but

since aI1W has the same distribution as W O A the proof of the theorem

is complete.

Theorems5, and 6 have been stated and proved for random elements

of D[O,l]. A similar theory could be developed for random elements

9



of D[O,N] using the metric dN which is defined like d but over the

interval [O,N]. A topology has been developed by Stone (1963) for the

space D[O, co) which essentially requires convergence for each metric

d,;, N > 0. Using the results of [8] together with the necessary and

sufficient condition for weak convergence given by Skorohod (1956) we

have versions of Theorems 5 and 6 which are valid for D[0,-), that is

the stochastic processes are defined for all values of t > 0. From

here on we shall use this version of Theorem 6.

4. The Distribution of Functionals of the Limit Process

The prix.--ipal contribution of functional central limit theorems,

such as Theorem 6, is that they enable one to obtain limit theorems for

a large class of functionals of the process. Collective risk theory

has been mainly concerned with the funetionals ;which represent the total

assets of the ins,irance company at time t, namely n(t), and of the

time to ruin, Tn, which is defined as

T  = inf{t > 0 : Xn(t) < 01

if the set {t > 0 Xn(t) < 0) is not empty and +co otherwise.

Since the projection nt : D(O,m) -3R which is defined by nt(x)

x(t) is measurable and continuous almost everywhere with respect to
i

the measure on D[O,m) corresponding to u + P + a-A gW, an application

of Theorem 1 yields

Theorem 7. Under the hypotheses of Theorem b, the

1.0



1	 1
lim _P(n 2Xn(t) < x} = Pr(u + (a-4%)t + CrX 2W(t) < x}

n --> ae

1	

J x
exp ^- -[u+ a-% tl)2 dy

2̂ t - 00	 20. 2 Xt

[

Similar results could be obtained, of course, for the finite-dimensional
1

distributions of n-2Xn.

Turning now to the time to ruin problem, we define the random

variable

1

T = inf(t > 0 : u + (a-40t + ax 2W(t) < 0)

if the set is non-empty and + w otherwise. Again the mapping

T : D[0,-) -^ R"U +m	 defined by r(x) = inf(t > 0 : x(t) < 0) if the

set is non-empty and +- otherwise is measurable and almost everywhere

continuous with respect to the measure on D(O,m) corresponding to
1

u + r + crX2W. Thus another application of Theorem 1 yields

Theorem 8. Under the conditions of Theorem 6, the

lim -P(Tn < t} = Pr(T < t) ,
n -; =

[
I	

where the density fT of T is given by

-1 -be - 3

f (t) _ e e	 t 2 exp(- l[ c2t-1 + (bc)2t]) ,	 t > 0 ,
T	

2n	
2

z	 with b = (a-Xp)/aX and c = u/a''X2 . Furthermore, the probability

11



ultimate ruin for the limit process is given by

Pr(T <	 exp(-2 be)

The density of T and the probability of ultimate ruin are easily

obtained from the Laplace transform of the distribution of T given by

Darling and Siegert (1953)•

In a similar manner one could develop a limit theorem for the

distribution of the first time X 1 (t) reached a specified level,

conditional on ruin not having occurred. The Laplace transform of the

limiting distribution is given in [3].

Theorems 7 and 8 give explicit expressions for the limiting behavior

of the distributions of greatest concern for collective risk theory.

They immediately suggest the use of the limit distribution as an approxi-

mation for the distributions associated with n( • ) for n large. It

(

	

	 would be interesting to compare these approximations with those given,

for example, in [2]. While there is considerable similarity in the

i

	

	 functional forms of the two sets of approximations, those given in this

paper seem to be more natural:and.are• valid fora larger class:of

underlying distributions.

it
12
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Than is no lie itatien en the length of the abstract. How-
Over, the suggested length is from 150 to 325 words.
14. KEY	 : Ray words an tochaically sesningfut terms
or &bon pbsases that characterise a raper" and aq be used as
lades saw" for cataloging the repeat. 9" words swat be
selected so that sus security classification is required. Idesti-
fiers, such as ogripment model designation, trade wane, olutary
pnoJ*ct cede Rome, geographic location, may be *sod as ley
wards "tat will be followed by an indication of technical een-
tost. The Assignment of links, rotas. sad weights is eptiaW.
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