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NON-TECHNICAL SUMMARY

Collective risk theory is concerned with the random fluctuations
of the total assets of an insurance company. The company has an initial
capital u and policyholder. pay a gross risk premivm of & per unit
time. At random instants of time,claims are made against the company
for random amounts. The principal objectives of the theory are to ob-
tain the distributions of the total assets of the company at time t
and the time to ruin. Calculations of these distributions are usually
very involved and uge difficult analytical methods. In this paper
explicit approximetions are obtained for these distributions.

Approximations of the type obtained here can be developed for other
applied models which involve the sum of a random number of random vari-
ables. In partiéular, a compound Poisson process is & special case of

the processes considered in this paper.
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DIFFUSION APPROXIMATIONS IN COLLECTIVE RISK THEORYE/
by

Donald L. Iglehart
Stanford University

1. Introduction

Collective risk theory is concerned with the random fluctuations of
the total assets, the risk resgerve, of an insurance company. Consider a
company which only writes ordinary insurance policies such as sccident,
disability, fire, health, and whole life. 'The policyholders pay premiums
regularly and at certain random times meke claims to the company. A

policyholder's premium, the gross risk premium, is & positive amount com-

posed of two components. The net risk premium is the component csaslculated

to cover the payments of claims on the average, while the security risk

premium, or safety loading, is the component which protects the company

from large deviations of claims from the average and also allows an
accumulation of capital. When a claim occurs the company pays the policy-

holder a positive amount called the positive risk sum.

On the other hand, an insurance company which only writes life
annuity policies represents the mirror image of the situation described
above. In this case the company pays out an annuity regularly to the
policyholder while the death of a policyholder places the corresponding
reserve at the company's disposal. For this case we speak of negative

risk premiums and negative risk sums.

For many insurance companies, of course, one would find both

y This work was supported by Office of Naval Research contracts
Nonr-225(53) and NOOO1k-67-A-0112-0031 and NSF Grant GP-8790¢
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positive and negative premiums and risk sums present. As a mathematlcal
model for this situation we shall assume that claims occur at the jJumps
of a renewal process, {N(t) : t > 0}, and that the successive risk
sums form a sequence of independent, identically distributed random
variables, {Xi :1i=1,2,...}, with E{Xi} = u > 0. Furthermore, we
shall assume that the initial risk reserve of the company is u>20

and that the policyholders pay & gross risk premium of & > C per unit
time. If we let the risk reserve at time t be X(t) and let

8y = 0, S; = Xl +oeee 4 Xi’ then we have

(1) X(t) =u +at - sN(t) s, t>0

Also we define T, +he first time the company has a non-positive risk

reserve, by
T = inf{t > 0 : X(t) < 0}

The principal problems of collective risk theory have been to calculate
the distributions of X(t) and T, wusually for the case where

{N(t) Pt > 0} 1is a Poisson process. Many of the rerults for these
distributions are complicated expressions which have been obtained by
involved analytical methods. For a comprehensive treatment of the theory
up to 1955 the reader should consult Cramer (1955). A more recent
sccount of portions of the theory is available in Takdcs (1967), Chapter
T.

Qur objective in this paper is to obtain approximations for the




distributions of X(t), T, and oth2r functionals of X(t) by applying
the theory of weak convergence of probability measures on function spaces.
We shall define a sequence of risk reserve process {Xh(t) :t>0),

n=1,2,.,.., and show that these processes convzrge weakly to a Brownian

motion process with s drift. For this limit process we shall be able to
explicitly calculate the density of the first passage time corresponding

to the random variable T. The distributions of the random variables

derived from the limit process are then proposed as approximations for

the process Xs(t) for large n.

This paper is organized ss follows. In Section 2 a number of con-
cepts and results required from weak convergence theory are introduced.

Section 3 contains a proof of the convergence of a sequence ol risk

reserve processes. Finally in Section U4 the distributions of quantities

derived from the limiting Brownian motion process are discussed.

g maiiny
-

2. Preliminaries on Weak Convergence

In this section we shall assemble those concepts and results from

weak convergence theory which we shall need for our application to

collective risk theory. For a comprehensive development of weak con-
vergence of probability measures we recommend the excellent book of

Billingsley (1968).

Let S8 be a metric space and ¢J, the class of Borel sets, be
the o-field generated by the open sets of S. If Pn and P are

probebility measures on o which satisfy

: limffdPn=f fap
12 n—-wvYs 8
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for every bounded, continuous, real-valued function f on S, we shall

say that Pn converges vweakly to P as n - and write Pn => P.
In the case where S = Rk, k-dimensional Euclidean space, weak con-
vergence 1s equivalent to ordinary weak convergence of the distribution
functions associated with Prl to that associated with P. However,
for the function spaces we shall consider weak convergence is a deeper

concept.

For the applications to be discussed in this paper it is convenient

to introduce the following terminology used in [1]. Let X be a mea-

surable mapping from the probability space (0,83, P) into a metric

space S; measurability of X means that x1d < B. ve shail call

X a random element of S. In particular, if § = Rl, ve call X =8

random variable; if S = Rk , wecall X a random vector; and if S

is a function space, we call X a random function. The distribution

of X is the probability measure P = 'Px'l on (S,é). We shall say

] { a sequence {X n} of random elements of S converges in distribution

to the random element X, and write

X, =X,

if the distribution Pn of Xn sonverges weakly to the distribution
P of X: P n => P. While this definition requires that the range S
and topology be the same for the random elements x,xl,xz,. +ey the
domains (0, B, P) may be different.

One of the most useful results in weak convergence theory for

applications is the continuous mapping theorem which is an analog of the
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Mann-Wald theorem for the Euclidean case; cf. [1], Section 5. Let h be
a measurable mapping of § into another metric space S' with o-fileld
J ' of Borel sets. Each probability measure P on (8, 4 ) induces

on (s, J ') a unique probability measure Ph'l(A) = P(h'lA) for

Ae J '. Let Dh be the set of discontinuities of h. Then we have

. _ -1 -1
Theorem 1. If P =>P and P(D,) =0, then Ph ™ ==>Ph .

In applications often we take §' = Rl and thus h 1is a functional on
the random elements of 8.

Now let S be a separable metric space with metric m and Xn
and Y be random elements of S with the same domain (2,8,¥). Then,
since S is separable, m(xn,Yn) is a random variable; cf. [1],

Appendix II. We say that m(xn,Yn) converges in probability to O and

write m(X_,Y ) Eo ir
p{m(xn,yn) >¢€} =0
for each positive €. Then we have the useful result

P
Theorem 2. If X ==> X and m(X,Y ) >0, then Y =>X.

The metric spaces S of interest in this paper are C[0,1] eand
D[0,1]). The space C[0,1] (which we ghall abbreviate as C) is the
space of all real-valued continuous functions on [0O,1] with the uniform
metric, p(x,y) = max  |x(t) - y(t)[. Let & denote the class of
Borel sets of C. OW,%‘I::; %his metric C is a complete, separasble metric

space. The space D{0,1], abbreviated D, 1is the space of all

tritHlisisiviteierzoe s it
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real-valued functions x(t) on [0,1] that are right-continuous and
have left limits:

(1) for 0<t <1, x(t+)= 1lim x(s) exists and x(t) = x(t+);
-

(11) for 0<t <1, x(t-) = lim x(t) exists.
B t

Skorohod (1956) has introduced the following topology on D. Let A
denote the class of strictly increasing, continuous mappings of [0,1]
onto itself. For AeA, AO) =0 and A(1l) = 1. For XeA letg/

M = s;p+ |10g ﬁ%fgil. The metric d(x,y), for x and y in D,
8
is defined to be the infimum of those positive ¢ for which there

exists a AeA such that

M < e
and

sup, |x(t) - y(At)| < e

With this metric D is & complete separable metric space.
A useful result connecting weak convergence in C and D vas

recently obtained by Liggett and Ros®: (1968).

Theorem 3. (Liggett and Rosén). Let {Xh} be a seguence of random

functions ‘a1 (D,d), {¥,} & sequence of random functions in (c,n),

and X & randon function in (C,p). If d(xn,yn)f;o, then

X =>X in (p,d) if end only if

Y =>X in (Cp) .

2/ For functions MeA we shall write At for A(t).




To prepare for our application we state a special case of a func-

(n) (n)
X)Xy

be a triangular array of random variables defined on some
probability space (s,8 ,‘P), which are independent and identically

distributed for each value of n = 1,2,*** . Furthermore, assume that

k:{xf“)] =0, UZEXfI)] = di > 9, o: > 02 > 0, and that E[(x

is bounded in n for some ¢c> 0., Now comnstruct the random functions

l tional central limit theorem of Prohorov (1956), Theorem 3.1, |Let

? Yn in C by setting

(n) () (n)
Y_(t,0) = 05 Ll (nt-[nt)) (Y305

\/ﬁo -\/‘c

-1 <t< ([nt]+1)n‘1. Then we have

for [nt]n

Theorem 4. (Prohorov). - W, where the distribution of W is

Wiener measure and W(0) = 0.
(n) ()

Now define X (t,m) = _E_t.l__. for 0 <t < 1. Since d(x .Y ) £ 0
no

and W 1s in (C,p), Theorem 3 implies that xn - .
In collective risk theory, however, we are interested in sums of a
random number of random variables. Let {Yi} be a sequence of inde-

pendent, identically distributed positive random variables sith

s

E(Yi} = A-l > 0, The random variable Yi will represent the time

between the (i.—-l)s't claim and the 1th claim. Let N(t), the number

% of claims (renewals) in time t, be defined by
‘%
] N(t) = max{k : EY t>0,
% i=]
7




with N(t) =0 if Y, > t. The random function N(nt), 0<t <1, is
therefore an element of D for n =1,2,... . It follows lmmediately
from the functional central limit theorem for N(n-), [1, Theorem 18.3],

that N{n:)/n => A, where A 1s the constant-valued random function

whose value at t is At. Now let Zn(t,w) = S&?it)/\/;c. An immediate

application of the method used in [1, Theorem 18.1] yields,
' Theorem 5. Z =2 W ¢ A, where W° A(t) = W(at).
- It should be noted that for this theorem the random elements Xn and

R(n*)/n need not be independent.

3. Weak Convergence of Risk Reserve Processes

In this section we shall construct a secuence of visk reserve

- processes {Xn(t)} 11 then use the results of Section 2 to prove that
: they converge weakly. For the nth process let u > 0 be the initial
risk reserve, a > 0 be the gross risk premium per unit time, and
{X(in) } be the sequence of independent identically distributed risk sums
defined on (0,8, P) with E{X(in)] =u >0 and oz[xgn)] = cr;?1 > 0.
Assume that the claims occur at the jumps of the reneval process (Y.}
described in Section 2 also defined on (Q,B, P). Finally, the process
Xn(t) is obtained from (1) by compressing the original time scale by

a factor of n~ . Thus we have

X,(6) = u, + 5 mt e g{R) ) <

(n) _ (n) _4(n) . ... 4 y(n)
where 83 =0 and Si -xl + +Xi « Clearly, xn is an

8
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element of D[0,1]. With this set-up we can proceed to the proof of our

main result.
Theorem 6. If u = u:fi + o(nk), a = an-% + o(n-&),w W, ﬁu7%4+ o(n'%),
ci > 02 > 0, and E[(xin))2+€] is bound in n for some ¢ > 0, then

3
n ¥XnF?“ u+T +aa W,

where I is the constant-valued random function whose value at t is

(a=ud)t.
Proof: Applying Theorem 5, we have that

n-li[Slg!(l‘)h) - nnﬂ(n.)] = gW e A

Since n_%unﬁ(nz) => M, where M(t) = Aut with probability 1, an
application of Theorems 1 and 2 implies that

--”S}(“El)l_)+x-'°-aW°A=cN9A.

Consequently, we have immediately the fact that

n';’xn'? u+ T +oWe* A, but
since A%H has the same distribution as W ° A the proof of the theorem
is complete.
Theorems5, and 6 have been stated and proved for random elements

of D{0,1]. A similar theory could be developed for random elements
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of D[O,N] using the metric dN which is defined like d but over the
interval [0,N]. A topology has been developed by Stone (1963) for the
space D[O,w) which essentislly requires convergence for each metric
dy, N> 0. Using the results of [8] together with the necessary and
sufficient condition for weak convergence given by Skorohod {1956) we
have versions of Theorems 5 and 6 which are valid for D[O,®), that is
the stochastic processes are defined for all values of t > 0. From

here on we shall use this version of Theorem 6.

k., The Distribution of Functionals of the Limit Process

The prin ‘ipal contribution of functional central limit theorems,
such as Theorem 6, is that they enable one to obtain limit theorems for
a large class of functionals of the process. Collective risk theory
has been mainly concerned with the functionals which represent the total
assets of the inswrance company at time t, namely Xh(t), and of the

time to ruin, Tn’ which is defined as

T = inf{t > 0 : Xn(t) < 0}
if the set {t > 0: Xﬁ(t) < 0} 1is not empty and +e otherwise.

Since the projection = : D{O,») - R which is defined by nt(x) =
x(t) 1is measurable and continuous almost everywhere with respect to

1
the measure on D[0,») corresponding to u + I' + UXEV, an application

of Theorem 1 ylelds

Theorem 7. Under the hypotheses of Theorem 6, the




lim 'p{n-%xn(t) < x} = Priu + (a-ud)t + crk%w(t) < x}

n e

~

1 ¥ e {- rzlut(aon)e])® by

e [ e

Similar results could be obtained, of course, for the finite-dimensional

-y
distributions of n 2Xn.

Turning now to the time to ruin problem, we define the random

variable

1
T = inf{t > 0 : u + (a-M)t + oA3W(t) < 0}

if the set is non-empty and +« otherwise. Again the mapping

T : D[O,®) » R*U{+w } defined by 7(x) = inf{t > O : x(t) < 0} if the
set is non-empty and +« otherwise is measurable and almost everywhere
continuous with respect to the measure on D[O,w) corresponding to

1
u + ' + oA®W. Thus another application of Theorem 1 yields

Theorem 8. Under the conditions of Theorem 6, the
p—— -3

lim P{T_ <t} = Pr{T <t} ,
n—oo n

where the density f’I‘ of T 1s given by

¢ tePC - % 1, 2.-1 2
fT(t) B S—t exp{- §[c t7 + (be)t1}, t>0,
£ \/ e2n

with b = (a-ku)/cr).% and c¢ = uf/oA%. Furthermore, the probability of

11
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wltimate ruin for the limit process is given by

Pr{T < »} = exp{-2 be} .

The density of T and the probability of ultimate ruin are easily -
obtained from the Laplace transform of the distribution of T given by
Darling and Siegert (1953).

In a similar manner one could develop & limit theorem for the
distribution of the first time Xh(t) reached a specified level,
conditional on ruin not having occurred. The Laplace transform of the
limiting distribution is given in [3].

Theorems 7 and 8 give explicit expressions for the limiting behavior
of the distributions of greatest concern for collective risk theory.

They immediately suggest the use of the limit distribution as an approxi-
mation for the distributions associated with Xh(') for n large. It
would be interesting to compare these approximations with those gilven,
for example, in [2]. While there is considerable similarity in the
functional forms of the two sets of approximations, those given in this
paper seem to be moré natural and are valid for a larger class: of

underlying distributions.

12
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