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SUMMARY 

The main object of the second phase of this work was to  design and 

tes t  sheaths that would enable rhenium sensors  to  measure temperatures 

to 5300 R ,  to a n  accuracy of 50 R ,  in a graphite/hydrogen/nuclear 

environment . 
0 0 

High temperature ultrasonic measurements were  conducted to 

5300 R in a graphite environment using a Ta sheathed R e  sensor.  

found that the system could measure  a temperature of 5100 R in a graphite 

environment for 67 minutes, and this same system could measure tem- 

peratures  greater  than 4800 R for three hours. 

failed after three minutes at 5300 R .  

Re sensor f rom the carbon environment provided the wall thickness of 

the sheath exceeded 0. 01011. 

0 
It was 

0 

0 
However, the sheath 

0 
The tantalum sheath protected the 

Similar ultrasonic tests were performed in a graphite atmosphere 

using either chemically vapor deposited tungsten tubing or  wrought W-2'7'0 

T h o  

tubing failed on several  occasions af ter  being heated for 3-5 minutes at 

a temperature of 5100 R .  

factorily for one hour at 4900 R .  

tubing in place of the tantalum tubing. The chemically vapor deposited 
2 

0 
The wrought W-2% T h o  tubing operated satis-  

2 
0 

It is  recornmended that a tantalum sheath clad with an  outer layer 

of chemically vapor deposited metal be used in Phase I11 to protect the sensor 

f rom the graphite/hydrogen environment. 

1 



INTRODUCTION 

One of the most important measurements r e  

rocket engine technology is the measurement of te 

measurement has proven to be extremely difficult because of the high 

temperature involved ( > 5000 R ) ,  because of compatibility problems 

with some of the mater ia ls  involved (graphite and hydrogen) and be- 

cause of the intense transient and sustained neutron and gamma fluxes. 

Additional difficulties stem from the possibility of temperature over- 

shoot, high pres  sure ,  flow, accessibility and geometrical ,restrictions,  

shock and vibration levels expected in some locations, etc. 

Phase I1 Objective 

0 

The main objective of Phase I1 was to design and tes t  sheaths 

that would enable rhenium sensors  to measure temperatures to 5300 R 0 

in a carbon/hydrogen environment for  one hour. 

goal of 5300 R is  above the rhenium-carbon eutectic (4966 R ) ,  it follows 

that, if rhenium is to be used as the sensor,  a sheath is required. Table 

I l ists  the eutectic temperatures for the mater ia ls  that could be used in 

a complete sheath system. 

satisfactory placement of a sensor in the sheath. Although there  a r e  

no electrical  shorting problems there  a r e  potential acoustic isolation 

problems. 

Since the temperature 
0 0 

The design of the sheath also entails the 

EXPERIMENTAL INVESTIGATIONS 

nic temperature measuring system, temperature 

suring the round t r ip  t ransi t  t ime of the ultrasonic 

signal in a wire  sensor.  Transit  time is determined by measuring the 

cted from the beginning and end of the sensor. 

erature  incr es, t ransi t  t 

2 



The t ransi t  time can be measured to - t 0. 1 p sec  with the Pana- T 

5000, and a t  5000 R the system wi l l  be able to me  

within - t 50°R. 

0 

In the present work the ultrasonic line usually c 

Remendur transducer wire, a tungsten lead-in wire, and the rhenium 

sensor (Fig. 1). Joints were formed satisfactorily by flash butt weld- 

ing. Echoes reflected by the various discontinuities, either welds o r  

changes in diameter, were essentially equal to that predicted by theory. 

Acoustic Isolation 

In designing the sheath system, i t  is necessary to acoustically 

isolate the sensor and the lead-in wire f rom the sheath if  satisfactory 

ultrasonic signals a r e  to  be obtained. 

realized by wrapping a spiral  spacer wire around the sensor and lead-in 

wire. 

if  the diameters of the lead-in and sensor wires a r e  a t  least  ten times 

greater  than that of the spacer wire. 

match very little of the ultrasonic signal wi l l  be coupled out of the line. 

Also, since the wavelength of the ultrasonic signal is about two orders  

of magnitude greater  than the diameter of the spiral  spacer wire, the 

ultrasonic wave does not "see" the individual spiral  spacer wire turns,  

i. e . ,  the sp i ra l  spacer wire does not produce interfering echoes. F o r  

a 0. 040" W lead-in line and a 0. 030" Re sensor,  a 0. 002" W spiral  

spacer wire has been found to be satisfactory f o r  pulse widths l e s s  than 

30 psec (Fig. 2). 

Attenuation 

Acoustic isolation has been 

Investigations have shown that this isolation method is  satisfactory 

F o r  this large impedance mis- 

Besides changes in t ransi t  time, a s  temperature increases,  the 

e s  usually decreases,  due to attenuation. 

e, in  Re, attenuation becomes increasingly more severe as 
0 e increases  above 3000 R. Attenuation depends on the 

frequency and dampening external to the 

3 



wire. 

width of the ultrasonic signal increases  (Fig. 3 ) .  

As reported previously, the attenuation decreases  as the pulse 
1 

To determine if attenuation would be a significant problem at 
0 

temperatures greater  than 4000 R and distributed as would be ex- 

pected in a graphite furnace, measurements were made on a lead-in 

line and a sensor that were heated to 5100 R in  a self-heated Ta tube 
0 

(Fig. 4b). Figure 5 shows that when a 5 in. Re sensor and a 14 in. W 

lead-in line were heated to a temperature of 5100 R in  a carbon-free 

vacuum, the sensor echoes, although attenuated, can be readily identified. 

The pulse width of the ultrasonic signal used was 25 psec. This experi- 

ment demonstrates that ultrasonic echoes can be identified f rom the end 

of a line, 19 inches of which a r e  essentially at a temperature of 5100 R. 

Note that the actual expected temperature distribution i s  probably not as 

severe as that simulated in this test. 

0 

0 

Measurements were also performed to determine the feasibility 

of using a tantalum lead-in line in place of the tungsten lead-in. 

be desirable to  use Ta in  place of W, since Ta is more ductile thm W 

and is more  easily joined to a Ta sheath. 

eutectics below 5300 R.  A 5 in. Re sensor and a 14 in. tantalum lead-in 

line were placed in  a 19 in. Ta tube that was self-heated. 

surrounded the Ta tube in  the region where the Re sensor was located. 

Figure 6 shows that echoes from the sensor,  which was heated to 

-5250 R ,  although attenuated, can be readily identified. 

Tests in Graphite 

It may 

Further,  there a r e  no Ta/C 
0 

Graphite felt 

0 

Sheath Materials 
0 

In order  to measure temperatures up to 5300 R in  a carbon/ 

hydrogen/nuclear environment with a rhenium sensor,  it is necessary 

to u s e  a sheath, since 5300 R i s  above the Re/C eutectic. Fo r  ,this 

environment, the principal sheath materials are Ta and W. One of the 

sheath systems presently used by Los Alamos Scientific Laboratory to 

protect their  thermocouples f rom hydrogen and carbon uses a n  outer 

0 
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sheath of wrought W-2% Tho 

The outer sheath protects the system f rom hydrogen but not f r o m  carbon, 

while the inner sheath protects the temperature sensor f rom carbon. 

Tantalum forms a carbide at high temperatures and this carbide reduces 

the diffusion rate  of carbon through the sheath. If the wal l  of tantalum 

liner is sufficiently thick very little carbon wi l l  diffuse through it (Fig. 7). 

However, Wes tinghouse Astronuclear Laboratory has found that wrought 

W-2% Tho tubing by itself works satisfactorily in a carbon environment 2 
at -4700 R. 

Cincinnati, reported the successful use of a W sheath to  5080°R in a 

carbon/hydrogen atmosphere fo r  one hour (W/Re thermocouple)? GE' s 

work contradicts phase diagrams which show a W-W C eutectic a t  

-4950°R (Table I). A sheath constructed of tungsten would be at t rac-  

tive because it avoids hydriding (tantalum hydrides in the temperature 

range 120OoR-220O0R). Tungsten' s drawbacks, however, include lower 

carbon eutectic than Ta, more brit t le,  offers less  resistance to carbon 

diffusion than Ta does; wrought tungsten tubing is more expensive than 

tantalum tubing. 

tubing and an inner l iner of tantalum. 2 

2 

0 
Also ,  GE' s Nuclear Materials and Propulsion Operation, 

2 

Tantalum Sheath Experiments 

Ultrasonic tes ts  were conducted on a sheathed rhenium sensor 

to determine the maximum temperature a t  which the protected sensor 

could measure temperature f o r  a period of a t  least  one hour. 

ultrasonic tes ts  were performed in a helium atmosphere by self-heating 

a tantalum sheath that was surrounded by graphite felt (Fig. 4a). The 

transit  time was measured automatically with the Pana- Therm 5000, 

f r o m  which temperature was determined. 

t ransi t  time can be measured in a Ta sheathed Re sensor,  heated to 

4850°R for  80 minutes. 

greater  than -4800 R f o r  two hours with no noticeable degradation of 

the ultrasonic signals. 

The 

Figure 8 shows that the 

This sensor was maintained a t  a temperature 
0 
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After the sensor was cooled, it was reheated to a temperature 

Figure 9 presents the echoes f r o m  the be- of 5100°R f o r  67 minutes. 

ginning and end of the sensor a t  5100 R. 

hour a t  5100 R, the system was cooled and then the temperature was 

increased to 5300 R. 

three minutes, until the tantalum tube burned out. 

served that one ultrasonic sensor was used to  measure  temperatures 

greater  than -4800 R f o r  three hours in a graphite environment 

(Fig.  10). Using the present experimental techniques, numerous 

high temperature me asur  eme nts have been made relatively easily 

in  a carbon environment using a tantalum sheathed rhenium sensor. 

0 After running for over one 
0 

0 
At this temperature,  the system survived for 

It should be ob- 

0 

The tantalum tubing used in the experiments had a wall thickness 

of 0. 012 in. 

rhenium sensor at a temperature of 5100 R f o r  one hour. Measurements 

were also made using sheaths with wall thicknesses of 0. 004 in. and 

0. 007 in. ; these sheaths did not protect the sensor from the carbon a t  

a temperature of -5000 R fo r  one hour. 

necessary to protect against carbon diffusion agree in general with those 

of LASL (Fig. 7). 

This thickness seems sufficient to keep carbon from the 
0 

0 The Ta thicknesses thus found 

Tungsten Sheath Experiments 

Similar ultrasonic tes ts  were also performed in  a graphite/helium 

atmosphere using either chemically vapor deposited tungsten tubing o r  

wrought W-2% Tho 

vapor deposited tubing had a wall thickness of 0. 011 5n. and melted on 

several  occasions after being heated f o r  3 - 5  minutes a t  a temperature of 

5100'R. 

rhenium- carbon o r  the tungsten- carbon eutectic. 

tubing in place of the tantalum tube. The chemically 2 

The tube melted due to the formation of either the tungsten- 

The wrought W-2% ThoZ sheath that w a s  surrounded by graphite 

felt w a s  self-heated in a helium atmosphere. The tubing had a wall  

thickness of 0. 011 in. Figure 11 shows that the t ransi t  time can be 
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measured in a W-270 Tho 

60 minutes. The Re sensor was then heated to a temperature of 5300 R 

f o r  -3 minutes. This 

demonstrates that wrought tungsten tubing wi l l  protect a Re sensor sat- 

isfactorily for  one hour a t  4900'R.  

sheathed Re sensor heated to 4900°R for  
0 

2 

After this period the tungsten tubing burned out. 

0 These experiments show that at a temperature of 5100 R a 

tantalum sheathed rhenium sensor operates satisfactorily for one 
0 hour in a carbon environment. 

wrought tungsten (W-Zql, Tho ) may also be used a s  a sheath. 2 
Sheath Design 

F o r  temperatures below -4900 R 

In measuring temperatures ultrasonically one can choose materials 

such that it may be sufficient to  protect only the sensor itself f rom the 

carbon environment. It is not always necessary t o  protect the lead-in 

line f rom the carbon, since the capability of the sensor to  measure 

temperature is  essentially independent of any carbiding of the lead-in 

wire, provided lead-in eutectics or  embrittlement do not create  problems. 

This makes i t  possible to use a short  sheath which protects the sensor 

only. The short  sheath would typically be -8 in. long. 

A short sheath design which protects only the sensor is  shown in 

Fig. 12. 

chemically vapor deposited tungsten. 

8 in. in  length with a wa l l  thickness of 0. 010 to 0. 030 in. Due to the 

short  length of the sheath, it should be far less  f rag i le ,  and l e s s  ex- 

pensive to fabricate than a sheath several  feet long fabricated of wrought 

tungs ten tubing. 

The sheath is a tantalum tube clad with an outer layer of 

The sheath dimensions a r e  about 

In order  to ultrasonically evaluate the short  sheath design inex- 

pensively, stainless s teel  tubing and nickel w i r e s  were used. 

designs were examined. 

tapered, in order to  blend the tube into the ultrasonic line, and then 

silver brazed to the nickel wire. 

Two sheath 

F o r  the first design the tubing w a s  f i r s t  

Various bonds were examined to 

7 



determine the effect of various tapers  and amounts of si lver braze on 

the ultrasonic signal (Fig. 13). 

of the tube caused echoes. 

mitted through the tube w a s  found to be approximately independent of 

the size of the braze (length of braze << wavelength). 

the end of the sensor and the tube can be readily identified, i f  the tube 

is 8 in. long and the sensor is 4 in. long (Fig. 14). 

It w a s  found that the braze and the end 

The amplitude of the signal that w a s  trans- 

The echoes f rom 

Figure 15 shows a second short  sheath design. The tubing and 

the sensor were si lver brazed to the lead-in line as shown in Fig. 15. 

Echoes f rom the end of the tube and the beginning and end of the sensor 

can be readily identified, if the sensor  is 5 in. long and the tube is 8 in. 

long (Fig. 16). 

Another design entails using a sheath that is several  feet  in 

length. 

LASL. 

W-2% Tho tubing and an inner l iner  of tantalum. Alternatively, one 

could use a Ta tube clad with chemically vapor deposited W. 

systems' advantages include (1) the lead-in wi l l  not become embrittled 

by carbon diffusion, and (2) the only sheath weld in the hot zone occurs 

at the far end. 

high cost. 

The sheath would probably be very  similar to the one used by 

The sheath system would consist of an  outer sheath of wrought 

2 
These 

Disadvantages a r e  (1) difficulty of fabrication, and (2) 

CONCLUSIONS AND RECOMMENDATIONS 

The recommended metallic sheath system consists of a Ta tube, 

w a l l  thickness greater  than about 0. 010 in. , f rom about 8 in. long to 

possibly as long as the entire line, clad with an outer layer of chemically 

vapor deposited metal (Fig. 12). The sheath contains a Re sensor  up to 

0. 030 in. dia x up to 5 in. long,* possibly a 0.002 in. W spiral spacer 

w i r e ,  and a W o r  Ta lead-in line or  a combination of these materials o r  

*Either polycrystalline o r  single c rys ta l  tantalum or  tungsten might also 
prove to be suitable for  use as a sensor ,  if hysteresis effects can be 
eliminated. 

8 



other refractory materials,  e .  g. , Mo. 

to those used for thermocouples in  a carbodhydrogen nuclear environment, 

but of geometry appropriate to the ultrasonic requirement. 

Sheath materials a r e  thus similar 
+ 

Due to new 

developments in the field of high temperature materials , subsequent sheath 

systems may be different f rom the one described above. 

It is recommended that Phase 111 be performed. This involves test- 

ing in  a combined hydrogedgraphite environment, up to the maximum tem- 

perature capability of available ovens, with 5300°R as a goal. It appears 

that the required oven is available a t  LASL for  testing the ultrasonic sys-  

tem. 

successful, measurements should be made in  a nuclear environment. 

Subsequently, if the tes ts  in a hydrogedgraphite environment a r e  
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Table I 

Mat e r ial 

Re/WC 

Re/C 

Re/Ta 

Re/Ta/W 

W/W,C 

W2c 

w c  

Ta/Ta2C (Ta-C) 

Re/W 

Ta 

Re 

TaZC 

w 
TaC 

Melting o r  Eutectic Temperatures 

0 
Temperature, R 

4649 

4966 

5333 

5333 

5369 

5387 

5405 

553 1 

5576 

5884 

6226 

6611 

6629 

7223 

Reference 

Have11 

Gonser 

DMIC #152 

DMIC #152 

Hall 

Nadler 

Shaffer 

DMIC #152 

DMIC #152 

Shaffer 

Shaffer 

Campbell 

Shaff e r 

Campbell 
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0. 060" diameter 0. 040" diameter 0. 0 30" diameter 
Remendur wire W lead-in wire Re sensor 

1- t 

1' to 5L&-- - ---1"to 5"- -- -4 
Transducer 
coil 

Figure 1. Ultrasonic line used to measure temperature. The ultrasonic 
echoes reflect from the beginning and end of the rhenium sensor. 
Dimensions shown approximate the typical values for the present 
program. 



Room temperature 

0.1 v i c m  10psec/cm 

t t 

N 900°R 

0.1 v / c m  10psec/cm 

Figure 2. Oscillograms of echoes in  0.030'1 dia x 4" long r h e n i m  wire  
in  a 22" long tantalum sheath. The diameter of the tungsten 
spiral  spacer wire  was 0.002". The lead-in line was 0.040" 
diameter W and the pulse width used was 10psec. 
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Transducer 

P o  

O; 
c 

0- G- 

J 

1 .-i J 

P o w e r  Suppl 

P 
RheniurrJ 
Sensor 

19'' 

\Ta Liner 

Figure 4. Ultrasonic line used to measure temperature in carbon and carbon-free 
environment. The ultrasonic echoes reflect f rom the beginning and end 
of the rhenium sensor. 



Room Temperature 

1 v / cm 20 psec/cm 

Weld Echo End Echo 

5 100°R 

1 v / cm 20 psec /cm 

Weld E'cho End Echo 

Figure 5. Oscillograms of echoes in 0.030'l dia x 4" long rhenium sensor i n  
a 19" long tantalum sheath. 
spacer wire was 0. 002". The lead-in was 0.040" dia tungsten and 
the pulse width w a s  25 psec. 

The diameter of tungsten sp i ra l  



Be ginning 

of Sensor 

End of 

Sensor 

Beginning 

of Sensor 

Figure 6. 

End of 

Sensor 

Room Temperature 

0.5 v /cm . 20 psec/cm 

5250°R 

0.2 v / cm 20 psec/cm 

Oscillograms of echoes in  0.030" diameter x 5" long rhenium 
sensor in  a self-heated 19" Ta sheath. The sheath w a s  
surrounded by graphite felt. The lead-in was 0.040" diameter 
tantalum, 



Figure 7. 
tantalum and tungsten for 0. 110" OD 
cylindrical geometry fo r  heating periods 
of 30 and 60 minutes. (R. J. Fr ies  - LASL, 
private communication). 

The diffusion of carbon into 

Temperature OR 



Beginning 
of Sensor 

End of 
Sensor 

Room Temperature 

0.1 v /cm 4 psec /cm 

4850°R 

0.05 v/cm 4 psec /cm 

of Sensor Sensor 

Figure 8. Oscillograms of echoes in  0.030" diameter x 2" long rhenium 
sensor in a self-heated tantalum sheath. 
surrounded by graphite felt. 

The sheath was 



of Sensor Sensor 

Room Temperature 

2 v /cm 10 psec /cm 

5100°R 

2 v /cm 10 psec/cm 

Beginning End of 
of Sensor Sensor 

Figure 9. Oscillograms of echoes in  0.03011 
sensor in  a self-heated tantalum sheath. 
surrounded by graphite felt and the rhenium was heated to a 
temperature of 5 lOOOR for 67 minutes. 

diameter x 2" long rhenzmn 
The sheath was 
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Beginning End of 
of Sensor Sensor 

Be ginning 

of Sensor 

Figure 11. 

Room Temperature 

0. O5v/cm 5 pseclcm 

49 0 OoR 

O.O5v/cm 5 psec/cm 

End of 

Sensor 

Osillograms of echoes in  0. 030" diameter x 2" long rhenium 
sensor in  a self heated W-270 Tho The sheath w a s  
surrounded by graphite felt  and the lead-in wire  was 0.040" 
diameter W. 

sheath. 2 
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Figure 14. Oscillograms of echoes in 0.056" dia x 4" long nickel sensor 
in a 0.0961 x 8" long stainless steel tube. 
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A BS TRA C T 

Ultrasonic thermometry,  based on the tem- 
perature  dependence of sound velocity in solids, 
has  been demonstrated under ideal laboratory 
conditions beyond 6000R. Integrated fluxes (nvt) of 
2.6 x 1019 f a s t  and 8.7 x the rma l  do not per- 
turb the velocity/temperature relationship. Ta pro- 
tective sheaths prevented carbon contamination f o r  
1 h r  at 5 100R, in  a p rogram simulating temperature  

measurements  i n  the graphite/hydrogen atmoslhere 
of a nuclear rocket engine. 
performed in liquid sodium a t  1200R, and sepa- 
rately, inside a l .  6 mm dia Ta tube heated to 
5 500R, simulating temperatures  inside U02-fueled 
pins of f a s t  breeder  reactors .  

Tests  have also been 

Introduction: 
perature  in nuclear r eac to r s  s t e m  mainly f r o m  
severe environmental conditions including nuclear 
radiation, high’ temperatures  (particularly in the 
fuel elements),  ma te r i a l s  compatibility and geo- 
metr ical  restrictions.  Until recently, most  ap- 
proaches to nuclear thermometry have been based 
upon thermocouples. Thin wire  ultrasonic sys -  
tems, however, utilizing the temperature  depend- 
ence of the speed of sound in solids,  offer an 
alternative to thermocouples. In principle, 
ultrasonic thermometers  obviate a number of the 
limitations inherent in thermocouple approaches. 
So f a r ,  ultrasonic data have been obtained in the 
laboratory beyond 6000R?-6By 1970, i t  is antici- 
pated that ultrasonics will demand the active at-  
tention of those responsible for  temperature  
measurement  and control, to the extent that po- 
tential  advantages such a s  accuracy, stability, 
reliability, small senso r  diameter  and low system 
cost,  can, in fact, be demonstrated. 

Pulse-Echo System. 
pulse-echo system is shown in  Figs.  la and lb. 
The Pana- The rm electronic instrument automat- 
ically measu res  the round t r i p  t ime necessary 
for  the ultrasonic wave to  t r a v e r s e  the sensor.  
The response time of the instrument is 0. 1 sec. 
Time resolution is 0. 1 p s e c ,  corresponding to a 
temperature  precision of 1% a t  5000R, fo r  a 50 
mm (2”) sensor.  F igu re  2 presents  the t ransi t  
time vs temperature  for  various solids. Given 
these calibration curves,  the t r ans i t  time/tem- 
perature  curves  fo r  other materials may  be 
readily established by heating them side-by-side 

The difficulties i n  measuring tem- 

One type of ultrasonic 

*Panametr ics ,  Inc., 221 Crescent  Street ,  
Waltham, Massachusetts 02154 

with standard materials, for example, i n  a tube, 
as shown in Fig. 3. Such sys t ems  are being 
developed to automatically measu re  temperatures  
up to -5500R in  liquid metal f a s t  breeder  r eac to r s  
(LMFBR’ s )  and a l so  to  5300R in  a nuclear rocket 
engine. 

Nuclear Rocket Engine. 
graphite/nuclear rocket engine environment, Re 
senso r s  have received p r imary  a t t e n t i ~ n . ~  Bare  
self-heated Re senso r s  have been tested up to the 
melting point (6216R) in carbon-free vacuum, in- 
cluding the rma l  cycling to 5300R. Rhenium sen- 
sors  have also survived brief tests in a hydrogen/ 
graphite atmosphere up to -4765R. Where neces- 
s a ry ,  protective sheaths,  similar to the types 
developed for  thermocouple applications, can be 
used. F o r  example, Ta sheaths have protected 
Re senso r s  f rom carbon up to 5100R for  one hour 
(Fig. 4). Rhenium wires  irradiated to 8. 7 x 1019 
integrated the rma l  flux and 2. 6 x 1019 integrated 
f a s t  flux showed no significant radiation effects 
in the t rans  i t  time/tempe r a tur  e character  is t ic. 
To minimize e r r o r s  due to gamma heating (> 100 
w/g), one approach has been to use  very thin sen- 
s o r s ,  e. g., dia < 0. 1 mm,  sheath OD < 1 mm. 

F a s t  Breeder Reactor. Another ultrasonic sys -  
tem is being developed to automatically measu re  
coolant, cladding and fuel temperatures  in 
LMFBR’ s a t  temperatures  up to -1700, 1800 and 
-5500R, respectively. The feasibility of employ- 
ing the cladding itself (pat. pending) a s  a tem- 
perature  sensor  has  been demonstrated on an 
empty fuel pin in the laboratory (Fig. 5). Also, 
ultrasonic pulses have been transmitted back and 
forth through 15 m (50 f t )  of W lead-in wire, 6 m 
(20 ft)  of which were a t  -2500R, and through self- 
heated W senso r s  to their  melting point, -6630R. 
Ultrasonic tests on ba re  and sheathed W and SS 
304 lines immersed  up to 6 m (20 f t )  in lZOOR 
sodium showed that the attenuating effects due to 
sodium viscosity and impedance were negligible. 

an ultrasonic l ine is ra ther  obvious. Not imme- 
diately obvious, however, is its immunity to low 
frequency vibrations. F igu re  6 demonstrates 
that when the sheath, or even the line itself, is 
vibrated by a doorbell buzzer,  there  is  apparent- 
ly no S/N degradation. 
pulse frequencies being f a r  above the usual  me- 
chanical noise frqquencies, one may also employ 
ultrasonic tors ional  waves to achieve further 
separation of signal f rom those noise sources  
which excite f lexural  or extensional modes in 
the line. 

F o r  the hydrogen/ 

The relative immunity to e lectr ical  noise of 

Besides the ultrasonic 

P rep r in t  f r o m  IEEE Trans. Nuclear Science (February 1969). 



A complete ultrasonic thermometry  sys tem 
including the Pana- Therm 5010, pressure-tight 
transducer,  a sheathed 6 m SS 304 lead-in con- 
taining two 50 mm radius bends (for radiation 
shielding), and a R e  sensor  50 mm long centered 
in a 150 mm long x 1.6 mm dia Ta tube, was op- 
e ra ted  in our lab with the lead-in a t  1700R, and, 
separately,  with the sensor  a t  5500R. It is 
planned to install  such a sys tem in a high tem- 
perature,  fas t  fLux facility for fur ther  evaluation 
with respec t  to fuel meat  and cladding thermom- 
etry.  

Integrated Flux. 
whether the above systems might be used to mea-  
s u r e  nuclear parameters  other than temperature  - 
namely, integrated flux. The physical bas i s  for  
such a measurement  l ies in the different sens i -  
tivities which different mater ia l s  exhibit for  tem- 
pera ture  and integrated flux. Copper, for  ex- 
ample, exhibits substantial changes in Young's 
modulus due to irradiation, while A1 is relatively 
insensitive for  comparable exposures. Moduli 
for  both metals,  however, respond to tempera-  
t u re  changes. F igure  7 i l lustrates a line con- 
taining concentric sensors .  The Joule-Wiedemann 
t ransducer  simultaneously launches both exten- 
sional and torsional waves. 
me t ry  matches both modes to the lead-in. 
the plane where the concentric s enso r s  join the 
lead-in, dimensions may be chosen so that the 
torsional wave pr imar i ly  interrogates the outer 
Cu tube, while the extensional wave mainly sees  
the axial A1 sensor  (pat. pending). Assuming 
isothermal  conditions, the A1 sensor  would be 
used to measu re  the local temperature ,  and 
the Cu sensor ,  the integrated flux. It may also 
be possible to derive further information on neu- 
tron damage via attenuation measurements .  We 
have not yet, however, demonstrated either of 
these integrated flux o r  neutron damage measure-  
ment  possibilities. 

Advantages. Regarding thermometry in  nuclear 
sys tems,  ultrasonics offers two principal advan- 
tages over thermocouples - a wider choice of 
sensor  mater ia l s  and geometr ies .  F o r  example, 
at low temperatures ,  say, up to -1000R, A1 is 
of in te res t  as an ultrasonic sensor.  TO ZOOOR, 
SS is a candidate, especially SS par t s  of the fuel 
pin itself. Ruthenium and Mo a r e  of in te res t  to 
-4000R, while Re, Ta and W appear useful up to  
the 5000 to 6000R range. As new ref rac tory  
materials become available, they become candi- 
date sensors ,  to overcome those limitations 
which present mater ia l s  may impose. 
choice of sensor  geometr ies ,  such as wire  0. 1 
mm dia, ribbon, tube, etc., and monolithic, one- 
mater ia l ,  weld-free construction, is a l so  attrac- 
tive, 

It is interesting to contemplate 

Transducer  geo- 
At 

The 

This measurement  depends on density and 
elastic properties of the sensor,  not electrical  

properties." Avoiding the need fo r  a high tempera-  
tu re  e lec t r ica l  insulator overcomes another dif- 
ficulty inherent in  thermocouples. 

Disadvantages. Ultrasonic thermometry  is just  
now gaining gradual  acceptance i n  industry. 
Therefore, practical  field experience is limited. 
Lifetime/stability data, and the effects of high 
f l u x  r a t e s  fo r  extended periods, up to nvt, 
are yet to be determined. 
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Fig. la. Ultrasonic thin wire  theymometer. 

"The same  equipment and techniques descr ibed 
above for measuring temperature  can a l so  be ap- 
plied to measuring physical properties.  Young' s 
modulus, shear  modulus and Poisson' s ra t io  can 
be readily determined in thin wire, tube o r  ribbon. 
We have tested metals,  ceramics ,  graphites, 
plastics, paper, wood, g lass ,  etc. i n  this manner. 



Fig. lb. Pana-Therm 5010 automatically measu res  round t r ip  time for pulse to t raverse  sensor ,  f rom 
which temperature  is determined. 
(2)  transducer,  ( 3 )  lead-in wire  and (4) sensor.  
lines to 0.1 psec. 

System consists of ( I )  t ransmi t te r  /receiver and readout instrument, 
Selected echoes a r e  measured between their center- 

TEMPERATURE, 'F 

TEMPERATURE. "R 

Fig. 2. Fo r  extensional waves propagating in  
solid sensors ,  the ultrasonic pulse t rans i t  t ime 
per  unit length is equal to the square root of 
density divided by Young's modulus. Curves 
show that a s  temperature  increases ,  the tran- 
s i t  t ime a l so  increases (analogous to emf output 
of thermocouple). Thus, measurement  of t ran-  
sit t ime in the sensor  yields the temperature .  
F o r  torsional waves, the t rans i t  t ime increases  
by the factor where D = Poisson' s ratio. 
Temperature  sensitivity depends on temperature ,  
sensor  mater ia l  and length, wave type, number 
of reverberations, and t ime resolution. Self- 
heating was used to obtain melting point data. 

Transducer  coil 
R e  sensor  

I r  sensor  

two wires  in multibore ceramic  tube. 
exploded view shows Ir and Re sensors ,  wire-  
wound tube furnace, and Pyrex  pipe vacuum 
chamber. Bottom: oscillogram shows echoes 
f r o m  Ir and Re sensors.  Technique may be used 
t o  calibrate sensors ,  o r  to obtain elastic moduli. 

Top photo: 



Fig. 4. 
at high temperature .  
tr ically beyond 5000 R using cur ren ts  l e s s  than 100 amps.  

Tes t  configuration to determine how well Ta tube protects s enso r  f rom graphite 
Ta tube, -1. 6 mm OD x 0. 3 mm wall x 150 mm long, is heated elec- 

i 
0. 05" tungsten 
lead-in wire 

0. Obt' nickel 
alloy 
magnetostrictive 

. wire 

Fig. 5. Experimental arrangement  illustratiiig 
use  of -10 cm length of SS cladding a s  a sensor .  
Echoes originate near ends of cladding section 
as indicated b y  a r rows .  

F i g .  6. Ultrasonic signal is "loud a n d  clear" 
despite doorbell buzzer ringing against sheath, 
o r  even against the l in If. Signallnoise 

r extensional o r  to r -  

Extensionaf - 
time base 

T3 

U Main 
bang 

Torsional 
time base 

I I 

Fig. 7. Coaxial sensors  for measuring two en- 
vironmental parameters ,  or radial temperature  
distribution. Above sketch- shows Al axial wire  
to sense  temperature ,  and Cu tube to sense inte- 
grated flux. Joule- W i e d ema nn transduce r s im u 1 - 
taneously launches extensional and torsional waves 
in nickel tube. 
chosen to match bojh waves to the lead-in. Wave- 
form sketches show extensional echoes E l  and E2 
pr imar i ly  f rom the A1 wire,  and E3 f rom the end 
of the Cu tube. The two main torsional echoes T1 
and T3 a r e  f rom the Cu tube. 
comes f rom the Al wire. Thus, each mode inter-  
rogates a different sensor.  
signs exploit the different impedances seen by 
different waves in the same  line. 

Materials and dimensions a r e  

The smaller T2 

Such dual-mode de- 


