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ABSTRACT 

A relatively  well-known  property of continuously  thrusting  optimal 

trajectories is that  there  exists a vector  constant of the  motion  which  is  lin- 

e a r  in  the  Lagrange  multipliers.  Since  the  relationship  between  the  corre- 

sponding  Lagrange  multipliers  for  different  sets of state  variables  is  linear, 

the  possibility  exists  that  there is an  ideal  coordinate  system  such  that  three 

of the  associated  Lagrange  multipliers  are  constants of the  motion.  It is 

shown  that  such a situation  is  impossible  for  more  than  one of the  three  con- 

stants of the  motion.  However, a method  due  to  Whittaker  is  applicable  to 

the  problem of generating  sets of state  variables  such  that one of the   cor re-  

sponding  Lagrange  multipliers  is a constant of the  motion.  It  is shown  that 

the  system of variables  generated by cylindrical  coordinates  possesses  this 

property  and,  for a large  c lass  of problems,  the  remaining  constants of the 

motion  are  used  effectively to  reduce  from  twelve  to  nine  the  number of dif- 

ferential  equations which  define  three-dimensional,  optimal  trajectories 
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I .  INTRODUCTION 

Two relatively  well-known  properties of continuously  thrusting  opti- 

mal  trajectories  are  the  following: (1) there  exists a vector  integral'  simi- 

lar to  the  angular  momentum  integral of the  three-body  problem;  and (2) if 

the  planar  problem is formulated  in  polar  coordinates,  then  one of the  La- 

grange  multipliers is an  integral.  Actually (2) is  a consequence of (1) in  the 

plane,   i .   e . ,   the   vector   integral   reduces  to  a scalar  integral  in  the  plane  and 

is equal  to  the  Lagrange  multiplier  conjugate  to  the  polar  range  angle. 

In Reference 2, it is shown  that  the  set of Lagrange  multiplier  trans- 

formations  (associated  with  the  set of nonsingular  state  transformations) 

forms a subgroup of the  classical  group of extended  point-transformations3 . 

Thus  the  relation  between two se ts  of Lagrange  multipliers  for  the  same 

problem  is  linear.  Since  the  vector  integral,  mentioned  above,  is  linear 

with respect  to  the  Lagrange  multipliers,  the  following  question  is  posed: 
1 1  Does there  exist a nonsingular  state  transformation  such  that  three of the 

new Lagrange  multipliers  form  the  components of the  vector  integral?"  This 

is  a valid  question  since  it  is  simply a generalization of the  planar  property 

mentioned  above. 

We shall  show  that  the  answer  is no,  but that  there  exist  many  state 

transformations which  allow  any  one of the  three  integrals to  be  transformed 

into a  new Lagrange  multiplier. A classic  result  of Whittaker  is  shown  to  be 

directly  applicable  to  this  problem. 

Finally, a basic  reduction in the  number of differential  equations  for 

the  optimal  trajectory  problem  is  given.  This  sytem, which takes  advantage 

of the  vector  integral,  involves  the  integration of only  nine  differential  equa- 

tions as opposed  to  the  usual  twelve  for  three-dimensional,  optimal  trajec- 

to r ies .  
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11. BASIC THEORY 

The  basic  theory  and  results  necessary  for  the  forthcoming  analysis 

will  be  presented  here for  the  sake of completeness. 

A .  Problem  Formulation  and  the  Vector  Integral 

Consider  the  problem of minimizing  the  flight  time of a vehicle pow- 

ered by  a continuously  thrusting  engine. We shall   assume  that   the  thrust  

magnitude  and  the  mass-flow  rate  are  constant. In an  inverse-square  gravi- 

tational  force  field,  the  equations of motion in an  inertial,  Cartesian  coordi- 

nate   system  are   (see  Figure 1) : 

. .  k x T  x = -  
F P m  + - cos y COSCY 

.. k y T  y = - 3 + g c o s y  s i n a  

. .  kz T 
z = -  7 + -  s i n y  R m 

where 

m = m o  + m o ( t  - to )  

R = d x z  + yz + zz  

There  exist  numerous  ways of formulating  the  necessary  conditions 

for  an  optimal  control  program.  Since we shall   be  making  use of some  as -  

pects of Hamiltonian  system  theory,  the  Pontryagin  maximum  principle4  is 

the  most  convenient  for  our  purposes. 

To apply  the  maximum  principle, we must  express  Eqs ( 1 )  in a f i r s t -  

o rder   form,   i .   e .  

x = x  i i+3 ( i  = 1 ,  2, 3)  

x4 =-g kxl + - T cos y s i n a  
m 
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Figure 1 .  Control Angle Orientations 

kxz + - cos y sin a T 
R3 m x5 = - -  

* = - %  + -  s i n y ,  T 
x6 R3 m 

where 

x1 x, x2 E y, xg E z ,  x4 =x, x5 y, x6 E z . 
Then,  the  maximum  principle  for a Mayer  problem  requires  the  introduction of a 
scalar  functionH*(the  generalized  Hamiltonian) and a six-vector of Lagrange 
multipliers : 

where  the f .  represent  the  right-hand  sides of E.qs (4). Then,  an  optimal 

trajectory  must  satisfy  the  following  conditions : 
1 

aH* . 
(C 1. ) Hamilton's  equations : x = - 

a Ha% 

i ax i  ' 
x . = - -  - 

1 axi ' 

(C2 .) The  Hamiltonian  must  be  maximized  with  respect  to  the  controls. 
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Assuming  that  the  control  region is an  open  set, (C2) can  be  expressed 

mathematically  as  follows : 

is  negative  semi-definite. 

Condition  (C2)'  implies  the  following  relationships  if  the  extrema1  is  non- 
singular : 1 1 

cos cy = +x,(x: + x; )-" , s in@ = +x5 (X: +kg )-" ( 9 )  

Consider  the  function 

H(x,X,  t) E H"[x,X,CY(X), $ X ) ] .  (11) 

Since - = - = 0, it  follows  that a H  aH 
a 0  a y  

a H::: a H:: aH:k a - aH:: a H  - a a  
a x i  ax  a a  a x i  ay  a x i  ax 
"- + - -  + - -  - - = x  i 

Thus, H(x, X ,  t) is also a Hamiltonian  for  the  problem.  Since H does  not  de- 

pend on the  controls,  it  is  isomorphic  to  the  Hamiltonian  functions of c las-  

sical   mechanics.   Therefore,   the  methods of canonical  system  theory  can  be 

applied  to our problem. 

Consider  the  following  notation  change 

4 



Upon substitution of Eqs (9) and ( 10) into Eq . ( 5), we then  have: 

In  vector  form, Eqs (6) become 

or, in second-order  form: 

Thus,  operating  with  the  vector  product: 

But, 

Therefore, 

is a vector  integral  for  the  optimal  trajectory  problem. 

B.  Extended  Point-Transformations 

The  maximum  principle,  described by Eqs  (5), (6) ,  ( 7 ) ,  and (8) in the 

last  section, is valid for all  coordinate  systems..  Thus,  transformations  be- 

tween  various  formulations of the  same  problem  preserve  Hamiltonian  form. 

Such  transformations  constitute  the group of canonical  transformations. In 

this  section,  certain  basic  definitions  and  properties of these  transformations 

will  be  stated  without  proof. For a more  thorough  development of the  subject, 

see  References  2,3,  5, or  6. 
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DEFINITION 11.1 : Let  {X(x, X ,  t), A(x, X ,  t)) E C2 be a nonsingular  transfor- 

mation. If for  "every"  Hamiltonian  H(x,X,  t)  there  exists a Hamiltonian 

K(X, A, t). then  the  transformation is said  to  be  canonical. 

Note  that  the  word  "every" is emphasized in the  above  definition.  The 

definition  does  not  say  that  each  transformation  which  preserves  Hamiltonian 

form is canonical,  but  only  those  which  preserve  Hamiltonian  form  and  are 

independent of the  Hamiltonian  function.  Also,  Definition (11.1) is not a  good 
II working"  definition, i .   e . ,  one  cannot  check  every  Hamiltonian  function. 

However,  this  definition  leads  to  the  following  sufficient  condition  for a 

canonical  transformation. 

PROPERTY 11.1: If the  Lagrangians  for two Hamiltonian  systems  differ,  at 

most,  by  the  total  time  derivative of an  arbitrary  scalar  function,  then  the 

transformation  between  the two systems  is  canonical.  That is, 

n  n z1.x. - H(x,X, t )  = A.X. - K(X, A, t) + - d S  

i= 1 
1 1  1 1  dt i= 1 

is a sufficient  condition  for  the  transformation  {X(x, X ,  t),  A(x, X ,  t))  to be 

canonical. 

With time  as  the  independent  variable,  Eq. (20) can  be  expressed 

equivalently by the  following two equations: 
n 

i = 1  
6s = ( X  .SX. - AiSXi) 

1 1  ( 2 1) 

K =  - + H .  at 
as 

These  equations  are  useful  for  defining  the  following  class of canonical  trans- 

formations. 

DEFINITION 11.2: A canonical  transformation in which -- = 0 and 6s = 0 i s  

called a homogeneous  canonical  transformation.  Furthermore, a homoge- 

neous  canonical  transformation in which  n  independent  relations  between 

{x1, . . . ,xn) and {Xl,  . . . , Xn) are  specified is called  an  extended  point- 

transformation. 

as 
a t  
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The  importance of extended  point-transformations in the  analysis of 

optimal  control  problems is demonstrated by  the  following  property. 

PROPERTY  11.2:  Let x = +(X) be a nonsingular  transformation  between  the 

coordinates of two Hamiltonian  systems  defined by H = &Xifi ,  K = .C AIFi, 

where x = f(x, X ,  t)  and X = F(X, A, t) are  vector  equations of motion.  Then, 

the  time  independent  Lagrange  multiplier  transformation  between  the two 

systems is defined  by  the  n-equations 

n n 
1=1 

Proof:  With  the  assumed  forms  for H and K, Eq. (20) becomes 

" dS = 0 .  
dt 

Since  the  transformation  is  time-independent,  then 6s = 0 and Eq. (21) gives 

n 
C(Xi6x  - A16Xi) = 0 . 
i=1 i 

But, 6xi = jFl ax , so Eq. (24)  reduces  to  the  desired  result a+i  6x 

j j 

since  the  variations { d X l ,  . . . , 6Xn) a r e  independent 

Property (11. 2) has a number of important  consequences.  First of all, 

it   tells  us how to  determine  very  simply  the  Lagrange  multiplier  transforma- 

tion  between  any two coordinate  formulations of the  same  optimal  trajectory 

problem.  Secondly,  it  tells  us  that  these  transformations  are  linear  with  re- 

spect  to  the  Lagrange  multipliers.  This  fact  will  be  given  more  attention in 

Section 111. 
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C .  Integrals  Linear in the  Momenta 

In  analogy  with  classical  mechanics,  the  Lagrange  multipliers of the 

optimal  trajectory  problem  posess  the  same  properties  as  the  generalized 

momenta of Hamiltonian  system  theory.  Thus, a property of the  momenta 

variables in classical  mechanics  implies a corresponding  property of the 

Lagrange  multipliers in trajectory  analysis.  In  Reference 3 (Section 150), 

Whittaker  presents a method  for  performing a canonical  transformation  which 

transforms a known integral,  linear  in  the  momenta,  into a new  momenta 

variable.  Since Eq. (19) represents  three  integrals  l inear in the  Lagrange 

multipliers,  this  method  has an immediate  application in trajectory  analysis.  

In Reference 3 ,  the  method  is  presented  without  motivation or proof. 

Thus, a more  thorough  treatment of the  method  will  be  given  here. 

Suppose  that we have a Hamiltonian  system 

aH a H  x = -  x = - -  ( i  = 1, . . . , n )  
i i ax i  ’ i ax 

which possesses  an integral  linear  and  homogeneous in the  Lagrange  multi- 

pliers,   say 

gl(x)X, + g,(x)X,+.  -.+gn(x)An 3 constant. (25)  

We recognize  that Eq. (25)  is functionally  similar  to  each of Eqs (23), i. e . ,  

the  multiplier  transformation  defined by an  extended  point  -transformation 

x = +(X) such  that one of the new multipliers  is  Eq. (25) .  We shall  show  that 

this is indeed  the  case. 

Without loss  of generality,  assume  that Eq. (25) is A in  the  new n 
{X, A)-system, which is to  be  defined by an  extended  point-transformation, 

i .  e . ,  

+ gn(x)Xn 

8 



In order  that  these  equations  hold, we must  then  have 

g.(x) = - 
J axn 

J , ( j  = 1,. . ., n) 

where x = +(X) is the  point-transformation which is  to  be  determined. 

Equations  (28)  represent a system of n partial  differential  equations 

which are  to  be  solved  for  the n dependent  functions  +.(X,, . . , Xn) . The  ex- 

istence of these  functions is guaranteed by first noting  that 
J 

and  then  applying  the  following  integrability  theorem  for a system of total  dif- 

ferential  equations  (see  Reference 7 for  the  proof). 

PROPERTY 11. 3 : The  necessary  and  sufficient  condition  for  the  system of 

total  differential  equations 

to  be  completely  integrable  (i. e . ,   t he re   ex i s t  functions  +.(X, , . . . , Xn) for  

each i) is  that 
1 

( i , j , k  = 1 , . . . ,  n) 

where  the 9. are  assumed  to  be  continuously  differentiable. 
lj 

Since Eqs (28)  only  depend upon x l ,  . . . , X,, and  since +. = +, +in, 
Ij 

then  the  integrability  conditims  are  satisfied  trivially.  Thus,  there  exist 

solutions  x1 = C+~(X), . . . , xn = +n(X) to Eqs (28) .  To determine a se t  of solu- 

tions, we construct  the  method of Whittaker. 

Note  that  for  each i = 1, . . . , n:  

9 
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Thus, 

The only real   res t r ic t ion on the  point-transformation x = +(X) is  that 2 
a xn 

= g. for  each i = 1, . . . , n.  Because of this,  there  exist  many  point-transfor- 

mations  which  satisfy  this  criterion. If any one of the g!s can  be  expressed 

a s  a function  g.(x.),  then X is  defined by a quadrature ,   i .   e .  , 

1 

1 

1 1  n 

dx i 
( 3 4 )  

In general,  though,  each  g.(x)  will  depend  upon  each  e'lement of 

{x1, . . . , x ) . Thus,  the  following  procedure  can  be  used in this  case: 
1 

n 

(i)  Find n - 1 integrals of the  system ( 3 3 ) ,  and  denote  these  integrals 

as X . f s  , i = 1, . . . , n  - 1.  Thus, 
1 

+ i ( ~ l ,  . . . , x ) = constant = X.  ( i  = 1, . . . , n - 1) ( 3  5) n 1 

(ii)  Use Eqs (35) to  express n - 1 elements of the  set  {x1, . . . , x ) a s  n 
functions of the X. ' s  and  the  remaining  element of the  set,  say x 

Then, 
1 k '  

i { i i k  (36 )  
x = +i(x19 . * . > > Xk) . i = 1, . . . , n  

(iii)  Use Eqs (36) to  obtain g (x  - X1, . . Xn-l).   Since  the X k k' i 
( i  = 1, . . . , n - 1) are  constants for  the  system ( 3 3 ) ,  then 

10 



(iv)  Then, Eqs (35) and (37)  define  the  desired  transformation. If Eq. 

(37)  is inverted  to  form x = $$X1, . . . , Xn) , then  this  equation k 
along with Eqs ( 3 6 )  define  the  new  multipliers,  i .   e.,  

where, of course,  A is  Eq. ( 2 6 ) .  n 

After  this  method  has  been  applied, a  new  Hamiltonian  system {X, A}, 

with  Hamiltonian 

K(X, A, t) = H[x(X), X(X, A), t] , 

is defined. In this  system, - = -A = 0, s o  X does not appear  in 

K(X, A, t) . Thus, X will  not  appear in  any of the  Hamilton! s equations, so  

one  need  not  even  integrate  the X -equation if the  time-history of X i s  not  a 

necessary  par t  of the  problem. 

axn n  n 

n 

n  n 

111. APPLICATIONS IN TRAJECTORY ANALYSIS 

The  developments of Section I1 now will  be  applied  to  the  optimal  tra- 

jectory  problem.  First,  an  important  negative  result  will  be  presented. 

THEOREM 111. 1 : Let A, + Az j + A 3 E  be  the  vector  integral of Eq. (19 ) .  

There  does  not  exist  an  extended  point-transformation  such  that two of the 

new Lagrange  multipliers  are  independent  linear  combinations of the A s . i 

Proof:  Assume  the  contrary, i. e . ,   there   exis ts  a point-transformation 

x = 4(X) such  that,  without  loss of generality, 

- 

A ,  = a l l  A, + + a13A3 

A, = a2,Al + a2,A2 -t 

where  the  a. .   are  real   numbers,   and  the two expressions  are  linearly  inde- 

pendent.  Since  the  transformation is an extended  point-transformation, we 

must  satisfy 

1J 

11 



where  each  u  depends  upon  only one  x . Thus, Eqs (38)  become i j  k 

A comparison of Eqs  (39)  and  (41)  shows  that 

Equations  (42)  represent a system of twelve  partial  differential 

they  must  satisfy  the  integrability  conditions of Property  (11.3). 

equations, so  

Since  none 

of the X. 's  appear  in  the  right-hand  sides of Eqs  (42),  the  integrability  con- 

ditions of Eqs  (3  1) reduce  to 
1 

f o r  i = 1, 2 , .  . . ,  6 and j , k  =1, 2 

Equations  (43) are  satisfied  tr ivially if k = j, so assume k = 1, j = 2, 

and  substitute Eqs (42)  into  Eqs  (43) 

Let  i = 1.  Then,  the  following  expression is obtained 

(all - a 1 2 a 2 1  I x 2  -k (all  a23 - a13 a21 Ix3 = O. (45) 

But, x2 and  x3 are independent  variables, so  in order   to   sat isfy  Eq.  (45) 

12 



a11  a22 = a12a21 

all  a23 = a13 

Let i = 2.  Then,  from  Eq.  (44) 

This  equation  implies  the  additional  requirement  that 

a12a23 = a13a22 . (48) 

We shall now show  that  the  conditions of Eqs (46), (47),  and  (48)  imply  that 

Eqs  (38)  are  linearly  dependent.  This  will  give u s  the  necessary  contradic- 

tion. 

Firs t ,   assume a,, = 0 .  Then,  a,, = 0 and/or a,, = a23 = 0 .  If a,, # 0, 

then a,, = = 0 .  But this is not  possible  since  it  implies  that A, 3 0 .  

Therefore,   assume all = 0 .  If any  one of the  a.  .Is in  Eq.  (48) is zero,  then 

Eqs  (38)  are  linearly  dependent  since  such  an  assumption  implies  either 

A ,  = a A and A, = a A (no  sum on k) o r  one of Eqs ( 3  8) is  identically 

zero.  Thus,  each  element of Eq.  (48)  must  be  nonzero and a12 = (a13/a,3)a,,. 

But, this  implies A, + ( -a23/a,3)A, = 0 .  Therefore,  the  assumption  that 

a,, = 0 always  leads to linearly  dependent  relationships  between A,  and A , .  

u 

lk k zk k 

Finally,  assume  aZl # 0 .  Then,  from  Eqs (46) and (471, 

a,, = (al,/a,,)az2  and a13 = (a l l /azl)a ,3 .   Clear ly   a , ,  # 0, for  otherwise A, no. 

Thus, A, + ( -a , l /a , l )hl  = 0, which  again  implies  linear  dependence.  Since 

neither a,, = 0 nor a,, # 0 is  possible,  Eqs  (38)  cannot  exist, and the  theorem 

is proved. 

An alternate  proof of this  theorem  can  be  constructed by applying  the 

theory of Poisson! s brackets3 . The  Poisson  brackets  indicate  that  there  does 

not  exist a canonical  transformation in which  two of the new variables  (either 

two  new coordinates, two  new multipliers, o r  one of each)  are  linear  combi- 

nations of the known integrals.  Thus,  to  obtain  three  new  canonic  variables 

which are  also  integrals,  nonlinear  combinations of the known integrals  must 

1 3  



be  used.  Theorem 1 indicates  this  result  indirectly  since  one  can  use a 

simple  canonical  transformation  to  redefine  either A, o r  A2 a s  XI o r  Xz ( o r  

both)  without  affecting  the  proof of the  theorem. 

Since  no  two  linear  combinations of the A!s can  be  new  canonic  vari- 
1 

ables,  then no three  linear  combinations of the A!s ran  be new  canonic vari-  

ables  either. But, a s  shown  in  Section 11. C any  one of the  three A!s can  be a 

new  Lagrange  multiplier, and there  exist  many  extended  point-transformations 

which  include a specified A .  a s  a  new multiplier.  The  procedure of Section 

1I.C now will be  used  to  define a canonical  transformation  which  includes 

1 

1 

1 

a s  a  new multiplier. 

To generate a point-transformation  which  causes Eq.  (49)  to  be a new 

multiplier,  five  integrals of the  system 

where T E { X l ,  . . . , x,), must  be  determined. Two immediate  integrals of 

Eq. (50) a r e  

x, = x3 , x6 = x6 ( 51) 

The  three  remaining  integrals of Eq. (50) must  satisfy  the  following 

system of differential  equations 

Since 

then 

1 4  



x1 = d X 1  2 + x; 

is  an  integral of the  system.  Alternatively, we could  have  defined X1 to be 

x1 + x2 , e(X1 + x2) ,   cos   (x1 + x2),   etc.   Each of these  choices  implies a 

different  set of new multipliers.  However, in each  set,  one of the  new  multi- 

pliers  must  be  defined by Eq. (49 ) .  

2 2 
2 2 

2 2 

Another  integral  can  be  formed by manipulating  the -- dx4 and __ dx5 - 
dT  dT 

equations  in  the  same way that  the - dxl - and - dx2 - equations  were  manipu- 

lated in Eq.  (53) .  The  integral  obtained in this  manner  is  the  magnitude of 

the  velocity in the  xlx2  -plane.  Also,  note  that  since x6 is a constant,  another 

possibility is (x4 + x5 + , i .   e . ,   the   magni tude of the  velocity.  However, 

with  some  foresight, we shall  develop  the  second  integral  as  follows: 

dT d7 

2 2 
1 

so 

Thus,  define: X4 i xlx4 + ~ 2 x 5 .  Since X1 is  a constant  and  has  the  dimen- 

sions of length, X4 can  be  modified  to  form a velocity  variable, i .  e . ,  

N 

N 

In a similar  manner  another  integral  can  be  formed by observing  that 

Again we shall  form a velocity  variable by dividing by X1, i .  e . ,  

x5 E (x1x5 - xzx4) /x1 ( 5 6 )  
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The  only  remaining  point-transformation  variable  to  be  defined  is  Xz, 

so  let T = X2.  Then, 

x2 = tan-' (z ) ( 57)  

The new state  variables  {X,, . . . , x,) are  actually  cylindrical  coordi- 
6 

nates  and  velocities,  and  the new multiplier A, = C X - is  the  integral A3 . 

The  remaining  multipliers  are  defined  by 
j = l  j 8x2 

where  the  inverse  transformation, x = +(X), is  defined by 

x1 = XI  cos  X2 x4 = X4 cos  Xz - X5 sin  Xz 

x2 = XZ  sin  X2 x 5  = X4 sin X2 + X5  cos  X2 

x3 = x3 x6 = x6 . 

(59) 

In the  preceding  development  there  were  innumerable  possibilities  for  defin- 

ing  five of the six X'.s, and in fact,  we  did  not  make  the  most  natural  choice. 

Our  choice  was  strictly  motivated by familiarity  with  the  new  state,  i .   e.,  

cylindrical  coordinates  and  velocities. 

1 

Since  time  is not  involved in the  transformation  {x(X), X(X, A)], the 

variational  Hamiltonian in the {X, A) -system  can  be  obtained by a straight 

substitution  into Eq. (13), i .   e . ,  

2 - 3  x4x5 As - kX3(X: +X3)  2 A 6  + - IJA:+Az5+ Ai T -~ 
X1 m 
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Since X2 is an  ignorable  coordinate, a system of only  ten  differential  equa- 

tions  defines the problem if the time-history of Xz is unimportant. 

The  reason  for  solving for and A3 (instead of two  other  multipliers or 

state  variables) is that  these  equations  are  undefined  only when X, = r, 

X5 3 r 6 a r e  equal  to  zero. If the  coordinate  system  is  chosen  in  such a way 

that  the  motion is in or near  the  x3 z = 0 - plane,  then  XI  and X, should  be 

nonzero for  most   missions.  

Finally,  it  should  be  cautioned  that  Eqs. ( 6  1) cannot  be  used in an 

iteration  scheme  (for  converging  optimal  trajectories)  which  utilizes  approxi- 

mate  differential  equations. For  in such  an  analysis, A ,  and A z  a r e  not con- 

stants of the  motion on the  iterates  leading  to  the  optimum.  Thus,  Eqs. (61)  

are  useful  when  an  indirect  iteration  scheme (as opposed  to a direct  scheme) 

is  being  used. 

IV. CLOSURE 

In  the  previous  sections,  the  relationship  between  the known linear 

integrals of the  optimal  trajectory  problem  and  the  classical  extended  point- 

transformation  was  fully  exploited. It was  shown  that  there  does  not  exist a 

canonical  transformation  which  allows  two o r  m o r e  of the  integrals  to be new 

canonic  variables.  With  regard to a single integral, a method of Whittaker 
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was  utilized  to  generate  an  extended  point-transformation  which  included  one 

of the  integrals as a new  multiplier. We observed  that  there  exist  innumer- 

able  point-transformations  which  allow a given  integral  to  be a new  multiplier, 

and  that  the  point-transformation  generated by cylindrical  coordinates  was 

just  one of many  possibilities.  Also,  the  remaining  constants of the  motion 

were  used  to  reduce  the  number of differential  equations  from  eleven  to  nine. 

Finally,  since  the  value of A, = A, is known for  certain  classes of 

miss ions   ( i .   e . ,   miss ions  in which  the  terminal  boundary  conditions  do  not  in- 

volve X z  possess  the  transversality  condition  A,(t ) = 0) ,  only  five  initial 

multipliers  need  to  be  estimated  for  an  indirect  iteration  scheme.  Similarly, 

if the  numerical  values of A,  and/or A 2  can  be  obtained  from  transversality 

conditions  or  other  means,  the  order of the  iteration  scheme  will  be  reduced 

accordingly. 

f 
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