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Avstract

Congider the problem of determining the roots of an equation of
the form F(x) = O where F maps the Banach space X into itself. Con-
vergence theorems for the iterative solution of F(x) = O are proved for
mgltipoint algorithms of the form x ., =‘xn-¢a(xn), a 2z 1, where ¢a(x) =
j;l(F%)_lF(X'¢j_l(x)) and ¢O(x) = 0, The theorems are applied to the
solution of two point boundary value problems of the form ¥ = f(y,t),
g(y(0))+h(y(1)) = c. A set {A(t),B,C} of matrices is called boundary
compatible if the linear two point boundary value problem ¥ = A(t)y+k(t),
By(0)+Cy(1l) = d has a unique solution for all k(t) and d. Then,
under certain conditions, there are boundary compatible sets such that the

problem ¥ = f(y,t), g(y(0))+h(y(1l)) has the equivalent integral repre-

sentation

y(t) = A(t){c-g(y(0))-h(y(1))+By(0)+Cy(1)}

+ [3T(t,8) (£(3(5),5)-A(s)y(s)}as (1)

where A and T' are Green's matrices for the linear problem § = A(t)y+k(t),
By(0)+Cy(1l) = d. Equation (i) is viewed as an operator equation of the

form F(x) = (I-T)(x) = O and convergence conditions for the iterative
solution of (i) are deduced from the general theorems. Explicit interpre-
tations of the convergence results are given in terms of f,g,h and some

illustrative numerical examples are presented.



1. Introduction

Considersble effort has been devoted to the study of higher order
methods for the iterative solution of equations of the form F(x) = 0
where F maps the Banach space X into itself (see, for example, [3],
(51, [71, 181, [9]). Most of these methods require commensurately high
order derivétives of F and so, are often of limited practical utility.
Here, we consider a class of multipoint methods whose order of convergence
does not explicitly depend upon higher order derivatives. More precisely,
we examine s family of methods of order « which require (a-1) evalua-
tions of F, a single inversion of F', and no explicit evaluations of
higher derivatives of F except in the convergence analysis where a uni-
form bound on F' 1is used.

We deal with the class of multipoint methods given by

(1.1) a1 = FamtolE) = Vlxy)
for integers « & 1 where

a —

(1.2) o (x) = 2 (F) F(x-0, (%))
o . X j-1

J=1
and ¢O(x) = 0. We prove a number of convergence theorems for the entire
class., The first theorem involves the order of convergence of the algori-
thms, In the second theorem, we present conditions under which the itera-
tions (1.1) converge to a unique zero of P. This result is a simple ap-

plication of the contraction mapping theorem. The final theorem consists



of practical convergence conditions analogous to Kantorovich's theorem
on the convergence of Newton!s method ([8]). We then apply the algorithms
(1.1) to the iterative solution of two point boundary value problems of

the form

(1.3) ¥ = £(y,t), e(y(0))+h(y(1)) = ¢

on [0,1]. Convergence conditions are deduced from the general theorems.
We note that Traub considers the class (1.1) in [9] for the
case of nonlinear equations on the real line. Here, we consider the class
in an infinite dimensional setting. We also note that if o = 1, then
the algorithm is simply Newton's method. ]
We observe that fixed point problems are also covered in our

development. More precisely, if T is a map of X dinto itself and if

we let F = I-T, then the equations

(L.4) F(x) =0
and
(1.5) x = T(x)

are equivalent. The formulations (1l.4) and (1.5) will be used interchangeably

throughout the sequel. TFor example, in the case of (1.5), we have



(1.6) v (x) = [(T-m) ") 1%(x)

for a2 1 as is easily proved by induction on «. If we define a map-

ping Q(+,*) of XXX into X by
-1 :
(1.7) (x,y) = [(T-T1) (T-T1) Uy)
then (1.6) may be written in the form
(1.8) v (%) = Qlx, v, (%))
for a2 1 and (1l.1) becomes
(1.9) *ne1 T Wa(xn) = Q(Xn’\’fa-l(xn))
for o 2z 1. Thus, for example, the Newbton's method iteration is given by
(1.10) x g = V(%) = Qlx,x)

and the modified Newton'!s method iteration is given by

(1.11) x = Ax,x)

where Xo is a fixed initial guess. Convergence proofs for the method

based on wl(x) can be found in [5], [6], [7] and [8] and convergence

proofs for the method based on Wg(x) can be found in [3].



2. Convergence Analysis

We now prove a number of convergence theorems. We begin with

DEFINITION 2.1 Let V(+) map X into itself and suppose that the al-

gorithnm X1 = W(xn) converges to a fixed point x* of T. Then

the algorithm converges with order p 2z 1 Aif

V(x )-x*
oo L )

0 e (e, )P

where C 1s a constant,

We then have

THEOREM 2.3 TLet T map X into itself. Suppose that (i) T is twice

continuously differentiasble on the closed sphere § = S(x*,r) where x*

is a fixed point of T; (ii) [I- T'] -1 exists and is uniformly bounded on

(2.4) sup (]| (z-71) ™

x €8

}

A
o
we

(iii) T% is uniformly bounded on § with

A

(2.5) sup_([|T%[)

X €S

K3

and (iv) the constants r,B and K satisfy the inequalities

(2.6) r<1l and BK = 2/3,



Then, for an initial guess x_  in §, the sequence {xlra(xn)} (with v,

given by (1.6)) lies in T and converges to x* with order at least

a+l. Moreover, the rate of convergence is given by

a+l < cn+:L

I ((14-1) n+l
(04

21 e)-el 5 e Jlu (x )= -

where the constants c, are given by

]
1

BK/2

c
o=l _o-
(

1
(2.8) 1
l+—m-r )BKcoz-l

(]
[t}

Proof: The proof is by induction on «. We first consider the case

a =1, Since x_ e S, we have

-1
x*-(I-T; ) (T-T; )xo
o} 0

(2.9) ey ()

(-T2, )7 (T-1) %o (T-T) x - (I-Tt ) (%) ]

and, hence, in view of (i), (ii) and (iii),

(2.10) ORI [y L P L

Since r < 1, Wl(xo) € 5. Now assume that x = Wl(xn_l) € S. By

an identical argument, we deduce that



(2.11) leeex_ | = ey (x )N = eylloxex |12 5 2%/

n+ﬂ

and hence, that x ., = Wl(xn) € 5. It follows that Wl(xn) €S for all

n+l
n z 0. Repeated application of (2.11) shows that |]x*-xn+l|| £ cxi+l|]x*-xol|2 <
n+l
r2 and so, lim Hx*—an = 0. Thus the theorem is true for o = 1,

n —owx
We now suppose that the theorem holds for all m = g and we shall

show that it then holds for o#l. Since x €8 and ¥ (x)) €5, we

have
(2.12) ¥, (x)=x% = (T-T0 )7H(T-Tt )y (x )-x*
o 0
= (173 )7L (T ) (o) o30) (T34 )+ (I-T) (T3 ) (¥ ) -3

and
(2.13) [y, (x)-x4l = BUKlxxox fllv ()] + Silw () -xx] %)

S BKe e |44+ Frelfae || 2O

c

s BKcaHx*-xOHa+2{l + —% r

= ca+l”X ~-X }a+2
Since Sl = l+, X, = wa+l(xo) € S. Now suppose that X yeeesX, are in

"This follows by induction on o for if e

1 S 1, then c_ = (1+l/2)BKca <
(3/2)(2/3)e | S 1.

-1



(2.14) ¥, (x)-2% = (T-T% )” (TX*—T; ) (U (%) =2%) =(T-T) ¥ (% ) +(T-T) %% +
n

NEERICACAEDY

(2.35) [, ()=l = BURore 1 () + Al () -l P
= B[Ke J|whx |9 4 BBl 200D,
s e, lwoex ||*
Thus, X (x ) €S and so, by 1nductlon on n, (x ) € § for

n+l a+l a+l

all n. Repeated application of (2.15) allows us to conclue that {V l(x )}
converges to x* and that the rate of convergence is given by (2.7). Thus,
the theorem holds for «+l. The proof is now complete,

We now turn our attention to a convergence theorem for the al-

. - - . . .
gorithms X1 = wa(xn), a2z 1, We begin with some simple lemmas,

LEMMA 2.16  Suppose that T is differentiable and that (LT;{)’l exists

for all x in the domain, 9P(T), of T. Then x* ¢ P(T) is a fixed point

of T 1f and only 1f x¥ is a fixed point of W for all o =2 1,

Proofs If x¥* = T(x*), then
(2.17) x*-T;*(X*) = (I-T;*)X* = T(x*)-T;*(x*)
and so,

(2.18) = [(T-T,) N1, ) 1) = ¥y (%)



-1
. . H - =
since (I—T&*) exists. If we assume that wa(x ) = x*, then wa+l(x*)
Q(x*,wa(x*)) = Q(x*,x*) = Q(x*,wo(x*)) = Wl(x*) = x¥ be virtue of (1.8)
and the convention wo(x) = Xx. Thus, wa(x*) = x¥ for all o= 1 by in-

duction. Conversely, if Wl(x*) = x¥*, then (I-T;*)x* = (I—T;*)Wl(x*) =

T(x*)-T;*(x*) and so, x* 1is a fixed point of T.

ILEMMA 2.19 Suppose that (i) T ig'twice continuouSly'differentiéble on

the closed sphere § = §(xo,r); (i1) [I-T%]-l exists and is vniformly

bounded on § with

(2.20) sup_([l(z-11) "} = D;
X €8

and, (1ii) Ty is wniformly bounded on S with

(2.21) sup__(“‘l"}'{“} < M.
X €S

Then the mapping Q(x,y) = [(I-T}'{)-l(T—T;()]V has partial derivatives

EEQ
(2.22) Qy(x,5)(+) = (T-my ™ (o) (z-1) "H(T-1)y
(2.23) ap(x,3)(+) = (T-11) 7 HTy-11) (-

for all x,y in 8.



Proofs Let x,y be elements of T and let h,k be increments in x

and y, respectively, with =x+h and y+k in S. Then

(2.2@) Q(x+h:y)'Q<X)Y) = (I‘T;+h)-l(T‘T%+h)y“(I'T;)-l(T'T%)y

[(T-T1)-(T!, -T1) 17 (-1t ) =(TY T Ty

- (z-1) "Nty

However, [(I—T;)-(T;+h-T;)]_l = [I-(I-T;)"l(T&+h-T%)]—l(I-T%)_l = [I-U]_l(I-T%)-l
where
(2.25) U= (L1 TN )

provided that (I—U)_l exists. Now (i), (ii) and (iii) together imply
that ||Ul] = pM|n|] and so, (I-U)'l will exist for all h with |n]| = a/DM
where 8 < 1. Moreover, we then have (I-U)_'—L = I+U+U2+"' . We also note

that

(2.26) U = (2107 (n) + @ (n]®)

1A

as H(I-T;)_ln D. It follows that

(2-27)- Q(X+h;y)-Q(x:Y)

(1-0) "Mz " () (T -1 Ty

~(r-m) " H(rm)y

(1-0) T (T-11) " (-1t ) -U=(1-0) (T-11) " (1) Iy
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(L4040 4+« Y[ UC(T-T) " H(T-11)-T} 1y

(U+U2+- -+)(1-11) 1)y

(z-11) "M () (z-m) "H(T-1)y + OInl®)

and hence, that the partial derivative of Q with respect to x exists

and is given by (2.22). As for the partial derivative with respect to 1y,

we have

(2.28) A%,y +k) =%, ¥) = (I-T) T (y+k) - (y+k) - (y) -Tyy]

and

(2.29) HQ(x,y+k)-Q(x,y)-(I—T;)‘1<T§-T;)kn = H(I—T;)'1[T(y+k)-T(y)-T§k]H

= 2= w)®

It follows that the partial derivative of Q with respect to. y exists

and is given by (2.23).

COROLIARY 2.30 Suppose that conditions (i), (ii) and (iii) of the lemma

are satisfied, If x 1is an element of § such that v, l(-) is differen-

tisble at x and ¥ ,(x) isin §, then ¥ (+) 1is @ifferentiable at x

and

(2.31) V) = 0, (0)() + Qi 1 (¥ g () -

Proofs Simply apply the lemma and the chain rule for Frechet derivatives
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(note that \lfa(x) = Q(x,\ya_l(x))).

that (i) V is continuously differentiable on § = §( xo,r) with

(2.33) Sup__[ll‘V;{H} £8<1
X €5

for some ©; and (ii) there is an 1 >0 such that

(2.34) (G )-x )l =

and (1 /1-8) = r., Then the sequence x, = v(x converges to the

Tl= l)

unique fixed point x¥ of V _J;E S and the rate of convergence is given

by

1A

(2.35) el = 2 g, gl = = ey |

for n = 1,2,...

We now have

THEOREM 2,36 Suppose that (i) T is twice continuously differentiable on

g = §(x0,r); (ii) (I-T;{)'l exists and is uniformly bounded on § with

(2.37) sup_(|l(z-11) )} = B
X €395

(iii) T% is wniformly bounded on § with
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fIA
=
- e

(2.38) sup (T3]} =
x €8

(iv) T-I is uniformly bounded on § with

(2.39) sup_{[[(T-I)x|} = M5
X €8

and, (iv) there is an 7 >0 such that

(2.k0) Iy (x)-x )l =

(2.41) ng = (1-h )r

2
where ha =B KM) <1 for each o 2 1, Then, for each « Z 1, the

multipoint sequence {\I!a( xn)} based on the initial guess X converges

to the unique fixed point x¥ Ef T _J:_}fl T and the rate of convergence

is given by

hn+1

. h :
(2.22) [lexay (x ) = = v () -v(x, I = o llxg=x |l
a [0

for each o =2 1.

Proofs We first show that \Ifa(') is differentiable on T and that

A
g
A
| ol

(2.13) sup_{[lvg, D

X €S

for each o 2 1, Suppose that «

1]

1. Then 1|fl(') is differentiable on
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S (as Illo(x) = Ix) and

1A

(2. sup (g 1) = owp (gl + sup (gt

x €8 s X €8 X €

{IA

sup_([|(T-11) ~He(1-11) TH(T-1)x] )

X €9

2
B KM = hl <1

A

by virtue of corollary 2.30 and the hypotheses of the theorem. Since

Hllfl(x) -XO“ £ Ilwl(x) -V (x )” + Hw (x,)-x :I, it follows from the mean value
theorem that || (x) x xl hir + (1-h ) = r. Thus, Wl(x) €T for all

x in S. Suppose now that \uﬁ(') is differentiable on S, that mlfB(x) €s

for all x in 8, and that (2.43) holds if B = . Then ¢a+l is dif-

ferentiable on S by virtue of corollary 2.30 and

(2.45) sup {Hwa+1 13 = sup_tlla; (x, 4, )Y + sup_tlayCe, v (=), I3

X X €8 X €8

£ sup (| (z- T') 1T" (I- T') (T-I)WG(X)H}

X €9

+ sup_ (| (z-T* ) (X)-T;{)“}ha

Xxeg

s B KM+BK  sup_ {Hlb (x)-x“}h .
x €8

Bt 9,00 = 900 Glleenmelly ()l ama () -ty ()] =

-1
I(z-12) " (1) ¥y _1 (2} s0 that

(2.4) sup (v, )

BEKM+B2KMJh
04
X €S

i

A

= -
hi(l+ah,) € (a+l)hy =h . <1



1k

since h < 1. Thus, k2.45) holds for each & 2 1 by induction. More-
over, wa(x) €¥ for all x in <.

It now follows from lemma 2.32 that the sequence '{wa(xn)}
converges to the unique fixed point xa of wa(°) in 8. However, the
proof of lemma 2.16 shows that x¥ = x* is a fixed point of T and hence,
by lemma 2.16, x* = xg for each « 2 1., The rate of convergence inequality
(2.42) follows from lemma 2.32 and so the theorem is established.

We now state and prove a basic convergence theorem for the multi-
point algorithm (1.1). The results are analogous to Kantorovich's theorem

on the convergence of Newton's method ([8]). We deal with a map F of X

into itself and with the algorithms

(2.47) x =\l!(x)=x-Z(F')JF( PEND

n+1 ar'n n

for a=1,2,... . Moreover, we write X o to indicate that we are con-
2
sidering a particular element of the class of algorithms (2.47), We then

have

THEOREM 2,48  Suppose that (i) F is twice continuously differentiable on

- - s e -l .
5, = S(Xo,a’ra); (ii) (F;{o a) exists and “(F'O . | = 0,0 (iii)
- 2
H(F%O a) lH”F(xO,a)H < do,a; (iv) ¥ is unlfOrmly bounded on Sa with
2
(2.19) sup_ () = &
X € %1

(1v) 0 =71 ynere v(l) end 119 s given vy
Jy is glven by
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0,0 0,0

. j-1 L i .
(2.50) PSRRI (C I )1<kzlvg,g>}

for 2 £ j £ oj and (v) the following relations are satisfied

(2.51) ho,a - Kﬁ?o,a no,a s 1/2
16
(2.52) o T IT Mo,
o
(2.53) vﬁ,& g2

for o = 1,2,... ." Then the multipoint sequence (Waﬂxn,a)} converges to

a zero xa gf F EE §d with order Ei’least o+l and the rate gf con-

vergence is given by

(2.54) lxxx )l = 22 (29) (2,

)(@"'1) n-—l
¢4 n,a $&

Mo,

for o= 1,2,... .

Proof: We give the proof in three steps. We first show that all the in-

verses (F; )-l exist and that all the X, o 8re in §&. Next we prove
n,o - ?
that {x } is a Cauchy sequence in Sa and hence has a limit X;
n,o

in E&. Finally, we show that F(x*) =0 and that (2.54) is valid.

*We note that (2.55) is automatically satisfied for 1 = o £ 10 and that,
for large o, we can choose ho,a smaller than 1/2 to insure the validity
of (2.53). However, it is unlikely that large values of o would be used
practically. We also note that the particular choice 16/11 is not quite

optimum but is adequate for our purposes.
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For each o 2 1, we define B and h__, re-
n,o

n,0,” ‘n,0f 0
cursively, by setting

(2.55) Buya = Bao1,0/ TPaon e
(2.56) dn,o = 20beh?f-l‘,oz -1,
(2.57) "o " % eahg-l,a n-1,0
(2.58) n _ =KB

1
n,a 0 n,a 'n,d

for n 2 1, We now prove by induction that

(2.59) (78 )"l exists and is linear;
n,o

(2.60) uw;{n,arln £ B, o

(2.61) ||<F;{n,a>'llHIF<xn,a)n S d, o

(2.62) 10,0, 07%0,ll % 1,03

(2.63) By o 5 1/2

and

(2.6%) ”Xn+l,oc'xo,a" = Ty
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for n =0,1,2,... . For n =0, (2.59)-(2.61) and (2.63) are simply
hypotheses of the theorem and (2.64) will follow from (2.52) and (2.62).

; v <
Thus, we need only show that ”Xl,afxo,a“ = no,a'

We begin by showing that wj(xo a) is an element of E& for
, ‘

H
AN
Coe
1A

a-1l, This is done by induction on «@. For « = 2, we have

gz, )%, JI=I(E YR, I 2d) = ng F 7y
] ) 0,0 ’ ’ s

so that ¥, (x ) € .. By expanding F(\]fl(xo’a)) about %, o find

that

(2.69) ey, DI 2 2

O 04
and hence, that

“ a fo) a o) a (2)

(2.66) H\Vz(xo’a)-x B ) o,Oé Yo,a = Yo

so that w2(x ) € E&. This argument can be repeated to show that

s
X

) €S for
0,0 a

. ( “ £ (j) £ r_ and hence that wj(x

WA C—-'

1£j s a—l. Moreover, by expanding F(wj(xo a)) in a Taylor series
Ehed

about x s we have
0,0

1Py, (x| AR, DI
(2.67) |P(v.(x_ )| = ol 9,0y (x )-x -1
30,0 B 3100, %o dll * 5' T n2
To,a 0,0

‘for 12 J 2 o-1, It follows that
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| < Wpd~lgi* (1), J)
(2.69) 7o (x, I = KBS0 Lol
o-1 L
. 3 - P - ' -
for 1% J%0-1. Since Xj X o :Eo(Fxo O[) (Wj(xo,a)), we deduce
that JI £ n or, in other words, that (2.62) holds for n = O.
l o o,

We now examine the transition from n =0 to n = 1, Since

x, ., ond X, o O in the convex set '§a, we have “F'o a.F' | =
3 s
Kanxl’ o It follows that HF;{ u-HF;c | = K, Mo o and hence, that
0,0 Lo
%y %o,
(2.69) Ty |2 (- B2 ) oy IR, >
e ¥ ' | ? 0,0
O,
But (2.69) implies that (F;{ )'l exists, is linear, and satisfies
1,a
(2.70) T S T
%1 g Th oo Lo

so that (2.59) snd (2.60) hold for n = 1. To verify (2.61) for n =1,

we expand F(Xl,a) in a Taylor series about Wa-l(xo,oz) to obtain

. X - ' Ly X
(2.71) ¥ Gy ) -F(¥y 1 (2, o)) + Ty a (%, O)(Fxo,a) (U1 (% NI
5 lFCy, l(xoa I
Z e, 1P
o,a
and
a—ldq+l

(2 ‘2) ”F(X )” ‘"'_2?_2_ m ’(J)
° 1, . . 0,
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(@) (@) 2pn ang @) 5 (3)

Since no,a = do,och,oc’ To,a = . ,oz ’a, we have
-1
(2.75) I ) HeGy I s BPo,afoa < ™ <3>) N
3
Lo 225 ) =1
0,a
o-2, O
=2 ho,a T]o‘,o: B diL‘,oc

so that (2.61) holds for n = 1,

Now to verify that (2.62) holds for n = 1, we shall show that

- = - < (a)
(2.7%) ”X2,o¢ Xl,oc” - Iwcx(xl,oa) X1,04H -, ozYl o4
where Y(‘j) is given by
1,0
: . -1
(3) 195 (k)
(2.75) Yi,OL =1+ 2 . Z {( o l Oldl 05) k—l }
(1) (3) < (3)
£ 4 = = = .
for 2 £ j = and rl o 1, We note that Yl o = o,oc 2 for all

j £ a (by a simple recursive calculation). Assuming for the moment that

(2.74) is valid, we have

(2.76) g oyl 28 f2 +§ z By o )T g?;m
05-2 o
lalKoa 0,07 0,04 JAd
=4, [1+ % {( 2 22y d2d3
1,0 2 321 (I-h O,O?
< 1% Oza+l
a-1
sd, [1+ % Yoy s 2a

1,0 -1 l,a



. -2, O ,
Since dl,a =2 ho,a no,a’ we conclude that
5 o0 -
- £ =
(2.77) ”X2,oz Xl,a“ 5 2 ho,oa T]o,oz

or, in other words, that (2.62) holds for n = 1.

We now establish (2.74). We observe that

a

1,0

(2.78)  Wo(xy Y-y o =B ) TTR(xy Jeeet Bl 1 (xp )]

and hence, that (2.74) will hold if

QPJ -1 J+l 3
(2.79) 17y DI = ——1§-°‘—14-9‘— 1))

for 12 j £ a-1. Now (2.79) can be established in exactly the same way

6 g
as (2.68) once we have shown that Wj(xl,a) €5, for

this can be done by induction on . For « = 2, we have ”wl(xl,a)"xo,a” <

1=

j é Ol—l.

But

<

”wl(xl,a) “ * ”Xl a” o a“ = dl,oz+ no,oc =1+ - g a) T]o‘,oz = % no,oz B

so that V¥ (x ) € S.. By expanding F(wl(xl,a)) about Xl,a’ we find

that "F(wl(xl a))“ E_ d and hence, that sz(xl’a)-xo’an =

oy o) =¥y (xy JI + Ml(xl o xoll + 17 g% ol = 2 Bl,adi,a““ 1,0" "
(2) <5 '

4,0",0" No,a 2 % 4,0 Mo,

= (’l ¥ ’.I'.B') T]o‘,oz

The argument can be repeated to show that \llj(xl a) €y for j

3

since (J) £ 5/4 (ef. (2.76)). Thus (2.62) holds for n

As for (2.63), we have

1.

r,. Thus, w2<X15a) € E&.

£ o-1

<

r
a

=
0,0



XB.. .
_ .. go,o (5' oo
(2.80) hl,a - KaBl,ak 7r|l,oz ) (1-n_ ) )2 ho,a o0

5 21
Now, ”XE,a'Xo,a” s ”X2,a'xl,a” + ”Xl,a-xo,a” ES (ig 2 hqa+l)n0,a = ) no,a =

and so, (2.64) holds for n = 1,

If we now assume that (2,59)-(2.64) hold for m £ n-1, then we

can show by exactly the same arguments used in going from n =0 to n =1

that (2.59)-(2.64) are satisfied for mn. Thus, by induction, the relations

(2.59)-(2.64) hold for all n = O.
Now, it follows from (2.57) and (2.63) that 1 < (gs)n 1

00
and hence that the series 2 n is convergent. Since
n=0 Y

m-1

(2.81) | I'=s 2
i=0

n+j,o

we conclude that X, o is a Cauchy sequence in §& and so converges to an

)
element x* of §..
a o

We claim that xa is a zero of F., 1In view of the analog of

(2.72) for arbitrary n, we have

-1 o1 02 (a)

<
(28)  WRxyy I 2 KBS 252
a  ,a-2 (@)
< hn)O?-*'~n5u7h)a
- B
n,o
hg a2a.-.2 1,5 (n
e, =
=3 M0 * B (35 o, 0
0,0 0,0

r
04
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(using the analog of (2.74)). It follows that 1im HF(xn a)” = HF(xé)” =0
n —ow 4
as F 1is continuous.

All that remains is th e establishment of the rate of convergence

o (2.54%) will follow

o0
. . i . *- é )
inequality (2.5%). But, since ”Xa Xn,a” jz; nn+j,

from the estimate

n

< (9 \n (a+1)7-1
(2.8) Tp,o (59720, ) Toyo

and the fact that h = 1/2. But (2.83) is a direct consequence of the
2

relations
9 o%
(2.8%) ha =T (Ehn-l,oa) "h-1,0
(2.85) h. £ 2(2h )(O“Ll)rl
) n,o Z( 0,0

and h .+ Thus, the proof

which follow from the definitions of M. _
2 s

of the theorem is complete.

3. Two Point Boundary Value Problems

+The argument is as follows:

5
T]n‘,Ot = (Tﬁo(ghn-l,oga T]n-l,OL
< (540 o (a+l)n'l+---+(a+l) ¢ __a Pl
< (397 1(2n, ) 1EN T
[ (o#1) (1) Ton
5 \n : a o
s (3)"0(28, )] (25, )%,
<

(géﬂn(2ho’a)(a+l)n_l 3
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(3.1) ¥ = £(y,t) , e(y(0))+h(y(1)) = ¢

where f,g,h are vector valued functions and ¢ is an elezpent of Rp. We
first review some results relating to the development of equivalent integral
equation representations of the TPBVP (3.1) (see, for example, [7]). Since
linear TPBVP's will play an important role in the integral equation repre-
gentations, we begin our discussion with a consideration of linear TPBVE! s.

Consider the linear TPBVP

(3.2) 7 o= A(t)y+k(t) , By(0)+Cy(l) =4

where A(t),B,C are p X p matrices and k(t), 4 are p-vectors. We

recall the following

PROPOSITION 3.3 Suppose that (i) the functions A(t) and k(t) are

integrable on [0,1]; (ii) there is an integrable function m(t) on

A

[0,11 with [JA(E) = m(t), [%(t)| = m(t) =nd fé[m(t)ldt<oo; and,

(ii1) det(B+C8™(1,0)) # 0 where ®'(%,s) is the fundamental matrix of

§ = A(t)y. Then (3.2) has a unigue solution ¥(t) on [0,1] which can

be written in the form

(3.1 VW(t) = A)a + [IT(t,5)k(s)ds

where the Green's matrices A and I' are given by

(3.5) At) = 0(+,0)[B+co(1,0)17"

and



b

§ @A(t,o)[B+C®A( 1,0)]‘]B¢A(o,s) 0ss<t
3. It =
(5:6) (552) -@A(t,o)[B+cq>A( 1,0}]'lcq>A(1,s) t<s=1l

forall t,5 n [0,1l.
Proof: (see [4] or [T1).

DEFINITION 5.7 Let A(t), B,C be p X p matrices. Then (A(t),B,C)

(ii) there is an integrable function m(t) on [0,1] with [|A(t)] =

m(t) and fé'm(t)dt < w; and, (iii) det(B+C<I>A(l,O)) # 0 where @A(t,s) is

PROPOSITION 3.8 Let B and C be p X p matrices. Then there is a

matrix A(t) such that {A(t),B,C} is a boundary compatible set if and

only if the matrix [B,C] has full rank.

Proof: (see [71).

Propositions (3.3) and (3.8) form the basis for the integral

equation representation of (5.2). In particular, we have

THEOREM 3.9 Let D Dbe 2 domein in R~ and let I be an open interval

containing [0,1]. Suppose that (i) f(y,t) 1is measurable in t for each

fixed y and continuous in y for each fixed t on D X I; (ii) there is

a measurable function m(t) with [[f(y,t)]] s m(t) on D x I and

fIm(t)dt <o (iii) g and h map D into itself; and, (iv) {A(t),B,C}

is a boundary compatible set. Then the TPBVE (3.1 ). has the equivalent’ |

*This means that an absolutely continuous function ¥(t) 1is a solution of (3.1)
if and only if it is a solution of the integral equation,



integral representation

(3.10) y(t) = &%) c-g(y(0))-n(y(1)) +By(0)+Cy(1) ]

v [R5, ) (2(3(5) ,5)-A( ) y(s) }as

[éBC<

where t) and PABC(t,s) are the Green's matrices of the linear

problem determined by {A(t),B,C}.

Proof: (see [T1).

We are now ready to apply the multipoint algorithms developed
in section 2 to the solution of (3.1). Assuming that the conditions of
theorem (3.9) are satisfied, we can define a mapping TABC of the Banach

space X = &f([o,l],Rp) into itself by setting

(3.11) By = ABC(4) {e-g((0))-h(x(1))+Bx(0)+Cx(1))

1 ABC
+ fOPA (t,s)(f(x(s),s)-A(s)x(s)}ds
Then, (3.10) is equivalent to the fixed point problem
(3.12) X = TABC(X)

on 55([0,1],Rp) and we can apply the multipoint algorithms to (3.12).
Now, in order to interpret theorem 2.48 explicitly in terms of
f,g and h, we require the Frechet derivatives of the operator TABC.

These derivatives are given by
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(3.13) (22201 (w) = AP0(1) (- SE(x(0)))w(0) + (e SXx(1)))w(1)]

¢ AP, 0 ((SEx('5) ,5) -A(s) Jw( ) as
and

(3.1 (T (u,v) = AP0 (3~ SE(x(0)))),u(0) 1v(0)
b 13- Dex(1)))),u(2) 1v(2))

v FIREC e, ) (1SS (=), £))) yu(5) Tv( ) s

where, for example,

(3.15) [~ S&x(0)))),u(0)] - Z(F< SE(x(0))))1,(0)

and it is assumed that the indicated partial derivatives exist. We now

have

THEOREM 3.16 Let J = {A(t),B,C} be a boundary compatible set and let

X a(t) be an element of % ([O,l],R Y. Suppose that (i) £(x,t),
, 28 an DoTmert oL

2
gé(x(t),t) and -a-—ef;(x(t),t) are defined, continuous in x and es-
ox

sentially bounded in t Tor all elements (x,t) of the graphs of the
- % = e dg
functions x in § = S(Xo,a’ra)’ (i1) g(x), &(x(o) and —T(X(O))

are defined and continuous for all values x(0) of the functlons x in

'S'a; (iij_) h(x), %hi(x( 1)), and -a-—( x( 1)) are defined and continuous for

all values x(1) of the functions x in -S-a; and, (iv) there are posi-

tive real numbers Scx’ Bo,a’ do,a’ Kl,a’ K2,a’ Koc and o, such that




(3.17) sup sup Z q Z Ala(t)( Eé;x

it

Qdg.

€[0,1] k=1 j=1 k

P ah
AR OGN 3;-< LN+ 1l Zﬁ
J=

=06 <1
a

(3.18)

(3.19) sup

X €

(3.20) sup_
X € Sa

(3.21)

(3)
(where To,a

(3.22)

(3.23)

(3.24)

(3.25)

J < _
Iy T (3 I 5 (1-8,)3

%, L0

(tys ><;;-<xb (8),8)-8,,())] as))

;
0,0

82f

sup sup { Z Zfl Z Y (t S)g-—g-(x(s),s)lds} = Kl o

i t € [0,1] k=1 £=1

sup sup {Z Z{\ 27\ (t)

i te[0,1] k=1 =1 j=1 "

=K o
s
. ()
Yo,a0 = Yo, ocdo a

is given by (2.50)) ;

Ko = Kl,oz+K2,oc;
Bo,a = 1/1_§a,
h = K n

P 3%h,
a—r( x(0))] 4| .Zlk‘ijj(t)sﬁ)-{;(X(l))\}}
J=



(3.26) vﬁa) s2

where %gj(t) and ygj(t,s) are the elements of the Green's matrices

A?(t) and FJ(t,s), respectively. Then the multipoint sequence {wg(xn a)}
$

(with ¥)(x ) given by (2.7) where F =¥ = I-T') converges to a solu-
, | here Sohiverges

for a=1,2,... .

EZEEE: We simply verify that the hypotheses of theorem 2,48 are satisfied
by the mapping P = I-1°. In view of (3.13) and (3.14), we see that (i),
(ii) and (iii) imply that 7 is twice continuously differentiable on §&
(see, for example, [8]). Moreover, from (3.13) and (3.17), we deduce that

Jye=1 J -1
(F)rt = ()

0,0 0,0 T -1 7,050

ing thls with (3.18), we find that |(F)! ™" ||[IF (x, a)” 4,

o,a b4 )

(3.14), (3.19), (3.20), and (3.22), we have sup_|[(F")"] sk

. X €8S
In view of our other assumptions, we immediately Zee that the hypotheses

exists and that H(FJ)%_l | = 1/1_§a. Combin-
. From
l,a+K2,a = Ky
of theorem 2.48 hold. Hence, FJ(xé) = (I-TJ)(xé) =0 and so, xé(t) is a
solution of (3.12) (a fortiori, a solution of (3.1)). Thus, the theorem
is established.

The basic strength of theorem 3.16 lies in the possibility of
replacing the sequence of operator iterations Xn+l,a = wa(xn,a) by an
equivalent sequence of linear TPBVP's., To illustrate what is involved,

let us consider the third order method generated by we. Beginning with an

initial guess X and proceeding formally, we have

(3.27) %, = (LI-(19)t 17 r-(17) 13%(x)
n n
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where J = {A(%),B,C} is a boundary compatible set. But (3.27) is equi-

valent to the pair of equations
(3.28a) 2, = (1)1 2, + [7=(17)1 1(x,)
‘ n x 'n x ''n

(5.280) X 1= (TJ)knxn+1 + [T-(TJ);n](zn)

But these equations are both linear and of exactly the same form, Now,
of og oh .

let A (s) = 3§(xn(s),s), B, = 5§(Xn(0)) and C = EE(Xn(l))‘ Then it

can easily be shown using (3.11) and (3.13) that (3.282) and (3.28b) are

eguivalent to the pair of integral equations

(3.298) z,(t) = #(t){c-g(x,(0))-n(x,(1)) B x (0)+C,x (1)
- ann(O)-CnZn(l)+BZn(O)+CZn(l)}

# [oT7 (5,50 (1A ()2 () +£(x_(8),5)-b () _(5)1-A(s)z ()} ds

(3.290) x_ (%) = AJ(t){c-g(zn(o))-h(zn(l))+ann(0)+cnzn(l)
- ann+l(0)-cnxn+l(l)+BXn+l(o)+CXn+l(l)}

+ férJ(t,g){[An(s)xn+l(s)+f(zn(s),s)—An(s)zn(s)]-A(s)xn+l(s)}ds

However, these integral equations are equivalent to the linear TPBVP's
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(5.508) 3= A (s)z, + [£(x (s),8)-A (s)x (s)]

n = ann(o) * ann(l)

(5.500) 5.1 = A ()x_ (s) + [£(z(s),s)-A (s)z (s)]

d, = By¥n,1(0) + Cnxn+l(l)

where c = c-g(xn(o))-h(xn(l))+ann(0)+Cnxn(l) and 4 = c-g(z (0))-
-h(zn(l))+ann(O)+ann(l). Now, assuming that the conditions of theorem

3.16, are satisfied, we deduce that (3.27) has a solution and hence that all the pairs
(3.28)-(3.30) have solutions. Thus, under the assumptions of the theorem,

the multipoint algorithm x .. = wg(xn)
solution of the pairs of linear TPBVP's (3.30). Since the Jacobian An(s)

is equivalent to the successive

is the same in (3.30a) and (3.30b), we are actually only required to solve
the same linear TPBVP at each stage for different forcing functions and so,
only one integration of the homogeneous equation is required at each step.
Thus, the extra computation required to obtain higher order convergence

is small., This represents the major advantage of the multipoint methods.

In the geheral case = wa(xn a)’ the iteration is equivalent to
’

xn+l,a

the solution of « linear TPBVP's with the same homogeneous part.

4, Example 1: Temperature Distribution iﬁ:ﬁ Homogeneous Rod+

‘




51

which describes the steady state temperature distribution 9(-) in a homo-
geneous rod of length ¢ where f(-) is the rate of heat generation. We
shall suppose that f(-) is given by £(6(t)) = exp(6(t)), that the units
are normélized so that 4 = 1, and that 6(0) = 6(1l) = O. Thus, we wish
to solve the TPBVP

il(t) xz(t) 1 o0 x,(0) 0 o0 Xl(l)

(k.2) = ; +
ié(t) B exp(xl(t)) 0 O xg(o) 1 O,' Xg(l)

where x;(t) = 6(t) and 'xg(t) = 6(t). We now have

THEOREM 4.3 Suppose that 0 <B £ .9 and that r = %% N = + 15 where

T
- Be _sbB _ : _ o
N = do(l + . do), do =B 5y an B = 1. Then the multipoint sequence
o(+)

O ———

= Wg(%n) with x = converges to a solution x* of (L.2) in

X
~n+l

T = §(§o,r) and the rate of convergence is given by

16 o1
(h.k) lx*-x || = -ﬂ(%;)n(%o)5 n,
e’ n
where hO = — = ,5,

Proofs We simply verify the hypotheses of theorem 3.16, We first observe

that
s o 0 1 % _ 1 0 n _ 0 0
% B exp(x;) O % lo o] E |1 o

and that

1]

0
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0 0
j=1
(1.6 62T;= 3 bfi‘ i B exp(xl) 0]
FY g 0 0|
j=2
J=1,2 0 [}
2 2
e} o“h
(4.7) =0, —=0.
ox Ox

Thus, the hypotheses (i), (ii) and (iii) of theorem 3,16 hold. Moreover,
. of dg oh
if we let A(t) = F;s(;\gg(fc)), B o> and G = 3 then the set J =
{A(t),B,C} is a boundary compatible set (as is easily checked).

Now let © =0 and K, = O. Then the inequalities (3.17) and
(3.20) hold in our case in view of the definition of J and (4.7). More-

over, the operator TJ is given by

0
(4.8 (%) = B/317(t,5)

exp(xy(5))-x,(s)

where PJ(t,s) is the Green's matrix which corresponds to J. Writing

(4.8) in component form, we have

(4.9) T (x)l(t) (t s)[exp(xl(s))-xl(s)]ds

HORORI 722@ )1 exp(x, (5))-x,(s) Jas

where
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t(s-1) t<s

(1. 10) Yl,(t,8) =
s(t-1) s <t
7 s-1 t <=8

(4.11) Yo, (t,s) =
2zt s s <t

. r
for 05ss1,0%¢ts1. Setting XK, =K = Eg— , we deduce that

2
R T et a8
(k.12) sup_ sup sup { Y Y (%, s x(s))| as

x €5 i=1,2 t€[0,1] k=1 =1 O j=1 3 7 oKX,

1A

sup_ sup  sup  (BJy] ¥,(t,5)exn(x(s))] as)
x € § i=1,2 t€[0,1]

A

r 1y J
e sup { sup folyig(t,s)|ds}
1=1,2 t€[0,1]

But fé]yig(t,s)lds = fg]s(t-l)[ds + f%]t(s-l)]ds = (t-te)/2 and

2

1 J t 1 '
folyég(t’s)‘ds = fosds + ft(l's)ds = t7-t+1/2. It follows that

r 1. J Ber
(4.13) Be  sup { sup folyie(t,s)lds} = = = K

i=1,2 t¢f0,1]
and hence that (%.19) holds in our case. Moreover, in view of the
definition of TJ, we can easily see that (3.18) will hold with 4_ = g.
A1l that remains is to check that (3.21), (3.24) and (3.26) hold.

Now (3.21) holds by the definition of o As regards (3.24),

we have

. r
(L.1k4) hy = K-l = =510, = g5 per
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since r = %g Ny But r = .75 and ll( 9) .75( 75) = 16 as e.75 5.1
2
Thus, (3.24) holds. Moreover, since yb 2 =1+ Kgd =1+ ; %_ &,
72 L QAL oy ey
(4.15) yégg 1+ i;%l_e°75 <p . (BD(2:12) oy 55 g g<e2

so that (3.26) is satisfied. Thus, the theorem is established.
Of course, an analogous theorem could be proved for any of the
multipoint algorithms.

The pair of linear TPBVP's (3.30a) and (3.30b) here take the

form

(L4.163) én,l =%
2n,2 =B eXp(Xn,l(S))Zn,l + B eXp(Xn,l(S))[l'xn,l(S)]
zn,l(o) = zn,l(l) =0

(4.16b) %

n+l,1 = xn+l,2
i1,z = B oexe(xg 1 (8))x, ) -8 exp(x, 1(8))z), 1(s) + B exn(z, ()

0) = x

n+l,l(l) =0

Xn+l,l(
and theorem 4.3 insures the convergence of the sequence §n+l(') to the
solution of (4.2). The equations (L4.18a) and (L4.18b) were integrated
numerically using a modified fourth order Runge-~-Kutta method and the re-
sults of the computations are indicated in Tables I and II. Table I con-

+ .
talns the number of iterations required for 'convergence"”  for various

+Convergence is hers construed to mean that
- - <
Iz, -2, = Ei{m§X1xn+l,i(tk) %, 1(t]) = 10

where the +, are the points in the integration routine.

k
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values of P, while Table II contains the actual solutions. The results
in Table II for P = 1 compare quite favorably with those presented by
Bellman in raj. Wé also observe that, although theorem h.ﬁ guaranteed con-

vergence only for 0 < B = .9, the actual computations converged for values

of B> .9.
TABLE I
B 0.2 0.410.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Tterations
L Required 2 2 \ e 2 2 5 5 5 5 b

5. Example 2: An Oscillation Problem

Consider the nonlinear differential equation
(5.1) $(t) + 6y(t) + By(t) + cos t = 0
which describes an oscillator with a nonlinear restoring force. We wish

to determine periodic solutions of (5.1) with period 27 and 80, we impose

the boundary conditions

(5.2) y(o)-y(2m) =0, F(0)-F(ar) =0

The boundary value problem (5.1), (5.2) can be written in vector form as

- — ~ -

_;'cl(t)_l xe(t) 1 10 A xl(O) -1 0 xl(ZIT) 0
(5-5) = 3 + ' =

%,(t) -6xl(t)-(3xi(t)-cos t 1| | =,(0) 0 -1{[=xy(am)| |o

L 3 R R, L )
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where xl(t) = y(t) and xg(t) = y(t). We now have

THEOREM 5.4 Suppose that 0 <p £ .5 and that r = Eé N, Y¥here 1 =

4,16 pRdo )
-z

do(l + and d = .2. Then ‘the mult1p01nt Sequence x . = wg(xn)

with 50(-) = Q(+) converges to a solution x* of (5.3) in T = §(x ,r)

and the rate of convergence is given by

(5.5) Il 5 2 (3 (en)? T

where h_ = 4.16Bno £ .5,

Proof: We simply verify the hypotheses of theorem 3.16, We first observe

that
3f 0 L dg dh
(5.6) X 6-28x o ' x =1, X = -1
and that
- —
0 0 =1
~2 af -2B8
Pt
(5.7) = [6X be ]] j=1,2 = L- -
Bz B ~
Jg=2
0 0
(5.8) e, Fn_,
—-g ~ 2 TR
Ox ox

Thus, the hypotheses (i), (ii) and (iii) of theorem 3.16 are satisfied.
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Moreover, if we let A(t) = %§(§o(t>)’ B = g% and C = g; , then the

set J = {Q(t),g,g} is a boundary compatible set (as is easily checked).

Now let 8= 0 and K, = O. Then the inequalities (3.17) and
(3.20) hold in our case in view of the definition of J and (5.8). More-
over, the operator TJ is given by

3 or g 0
(5.9) T (x) = fo I (t,s) o ds
-px;(s)-cos s

where PJ(t,s) is the Green's matrix which corresponds to J. Writing

(5.9) in component form, we have

(5.10)  T7(x) (%) = [Ty (%,8)[ - (s)-cos slas

(1)) = o (%, 8)[-pxi(s)-cos slas

where
1
- =cos a(m-s+t) t = s
J
(5.11) To(t,8) =
- %cos a(m-t+s) s<t
3 %sin a(m-s+t) t = s
(5.12) yég(t,s) = -
~=cos a(m-t+s) s<t

for 0 £ss2r, 0 £t 227 and where a =§6 and c =2 )6 sin(ngs.
Using (5.7) and the estimates fgnlyie(t,s)lds = %{h + Eizgzgl 1,

am J < 28, .

fo |7é2(t,s)]ds s E—{5-cos(wa)], we deduce that (%.19) holds in our case

for X = 4,16p. Moreover, in view of the definition of TJ, we can readily
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check that (3.18) will be satisfied with 4 = .2 since TJ(Q)l(t) =

""" J gin t e ey
and T (g)2(t)« = —=z— . As (3.21) holds by the definition of

Nys all that remains is to verify (3.24) and (3.26).

Regarding (3.24), we have

(5.13) h = King = (4.16)p(.2)(1 + 3..1_22(__21 s.feL.

o]

since B £ .5. Moreover, since 7&2% =1+ E%Q , (3.26) is clearly satis-’
2
fied here. Thus, the theorem is established.
Again an analogous theorem could be proved for any of the multi-

point algorithms.

The pair of linear TPBVP's (3.30a) and (3.30b) here take the

form
(5.13a) 2n,l = Zn,2
. : 2
. -(6+26xn,l(t))zn,l + an’l(t)-cos t
Zn,l(o) = Zn,l(ZT)" Zn,z(o) = zn,2(2v)
(5.13b) %

Xn+l,l = Xn+l,2

0

ns2,2 _(6+23Xn,l(t))Xn+l,l+ﬁzn,l<2xn,l(t)°zn,1)-COS’G

xn+1,l(0) = Xn+1,l(2”)’ Xn+1,2(o) = xn+l,2(2W)

and theorem 5.k insures the convergence of the sequence §n+l(') to the
solution of (5.3), The equations (5.13a) and (5.13b) were integrated numeri-

cally using a modified Runge-Kutta method and the results of the computations
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are indicated in Tables III and IV. Table III contains the number of
iterations required for~"convergence"+ for various values of B, while
Table IV contains the actual solutions. We note that the actual compu-

tations again converged for larger values of £ +than .5.

TABIE IIT
— X
B 0.1 .1 0.2 0.3 .1 0.k.10.5.}] 0.6 0.7 ..} 0.8 0.9 1.0
Tterations
Required | 2 .| 2 | 2 |2 {3 | 3 (3 |32 | 3 | K

+Convergence is here construed to mean that
2
-6
a2l - ii{mﬁx %001,1(8) %18} = 10

where the t, are the points in the integration routine,

k




1]

[2]

(3]

[ 4]

[5]

[6]

(7]

[81

[9]

Lo

References

Antosiewicz, H. A.. and Rheinboldt, W. C., "Numerical Analysis and
Functional Analysis," Chapter 14 of Survey of Numerical Analysis,
J. Todd, Ed., McGraw-Hill, New York, 1902,

Bellman, R. E. and Kalaba, R. E., Quasilinearization and Nonlinear
Boundary-Value Problems, American Elsevier Publishing Co Co., Inc.,

New York, 196D.

Bosarge, W. E., Jr. and Falb, P. L., "A Multipoint Method of Third
Order", SIAM J. on Numerical Analysis (to appear).

Coddington, E. A., and Levinson, N., Theory of Ordinary Differential
Equations, MeGraw-Hill, New York, 1960.

Collatz, L., Funktlonalanalysis und Numerische Mathematik., Springer,
Berlin, 196k,

Collatz, L., The Numerical Treatment of Differential Equations, Springer-
Verlag, New York, 1900.

Falb, P. L., and DeJong, J. L., Some Successive Approximation Methods
in Control and Oscillation Theory, Academic Press, New York, (to appear

in T969).

Kantorovich, L. V., and Akllov, G. P., Functional Analysis in Normed

Traub, J., Iterative Methods for the Solution of Equations, Prentice
Hall, New Jersey, l190L,







