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Abstract 

Cmsider t h e  problem of determining the  roots  of an equation of 

t h e  form F(x) = 0 where F maps t h e  Banach space X i n t o  i t s e l f .  Con- 

vergence theorems f o r  t he  i t e r a t i v e  solut ion of F(x) = 0 a re  proved f o r  

multipoint algorithms of t h e  form x ~ + ~  = x - 4  a (xn), 
a c (FV)-%(x-O ( x ) )  and "(x) = 0 ,  The theorems j=1 x j-1 

solut ion of two point boundary value problems of t h e  

g(y(O))+h(y(l))  = c. A s e t  (A(t),B,C) of matrices 

a 2 1, where 

are applied t o  the  

form 4 = f ( y , t ) ,  

i s  cal led boundary 

4,(x) = 

compatible i f  t he  l inear  two point boundary value problem 

By(O)+Cy( 1) = d has a unique solut ion f o r  a l l  k( t) and d. Then, 

under ce r t a in  conditions, there  a re  boundary compatible sets such t h a t  t he  

problem 

sent a t  ion 

$ = A( t) y+k( t) , 

9 = f ( y, t) , g( y( 0) ) +h( y( 1) ) has the  equivalent i n t e g r a l  repre- 

where A and I' a re  Green's matrices f o r  the  l i nea r  problem 9 = A(t)y+k(t) ,  

By(O)+Cy( 1) = d. Equation (i) i s  viewed as an operator equation of t h e  

form F(x) = (I-T)(x) = 0 and convergence conditions f o r  t h e  i t e r a t i v e  

solut ion of (i) are deduced from the  general  theorems. 

t a t ions  of t h e  convergence resul ts  a re  given i n  terms of 

i l l u s t r a t i v e  numerical examples a re  presented. 

Expl ic i t  interpre-  

f,g,h and some 
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1. Introduction 

Considerable e f f o r t  has been devoted t o  the  study of higher order 

F(x) = 0 methods for t he  i t e r a t i v e  solut ion of equations of t h e  form 

w h e r e  F maps t h e  Banach space X i n t o  i tself  (see,  f o r  example, [ 3 ] ,  

[ ? I ,  [7], [ 8 ] ,  [9 ] ) .  Mast of these methods require commensurately high 

order der ivat ives  of F and so, a re  of ten of l i m i t e d  p r a c t i c a l  u t i l i t y .  

Here, we consider a c l a s s  of m u l t i p d n t  methods whose order of convergence 

dDes not e x p l i c i t l y  depend upm higher order derivatives.  More precisely,  

we examine a family of metho3s of order a which require  (a-1) evalua- 

t ions  of F, a s ingle  inversion of F', and no exp l i c i t  evaluations of 

higher der ivat ives  of F except i n  the  cmvergence analysis  where a uni- 

form bound on F" i s  used. 

We dea l  with the  c l a s s  of multipoint methods given by 

X n + l  = x n -0 a (xn> = 

fo r  in tegers  a 5 1 where 

@,(x) = 2 (Fk)-LE"(x-Q j-1 ( x ) )  
j =1 

and @ (x)  = 0. We prove a number of cmvergence theorems for t h e  e n t i r e  

c lass .  

thms, 

t i ons  (1.1) converge t o  a unique zero of T h i s  r e s u l t  i s  a simple ap- 

p l ica t ion  3f t he  contraction mapping theorem. The f i n a l  theorem consis ts  

0 

The f irst  theorem involves the  order of convergence af  t h e  algori-  

I n  t h e  second theorem, we present conditions under which the  i t e r a -  

F. 
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of p rac t i ca l  convergence cmdi t ions  analogous t o  Kantorovich's theorem 

on the  cmvergence of Newtonfs method ([8]).  

(1.1) t o  the  i t e r a t i v e  solut ion of two point boundary value problems of 

the  form 

W e  then apply t h e  algorithms 

on [0,1]. Convergence conditions a re  deduced from the  general  theorems. 

We note t h a t  Traub considers t h e  c l a s s  (1.1) i n  (93 f o r  t h e  

case of nonlinear equations on the  r e a l  l ine.  

i n  an i n f i n i t e  dimensional set t ing.  We a l s o  note t h a t  i f  a = 1, then 

the  algorithm i s  simply Newton's method. 

Here, we consider t h e  c l a s s  

a 

We observe t h a t  fixed point problems are  a l so  covered i n  our 

development. More precisely,  i f  T i s  a map of X i n t o  i t s e l f  and i f  

we l e t  F = I-T, then t h e  equations 

( 1.4) F(x) = 0 

and 

(1.5) x = T(x) 

a r e  equivalent. 

throughout t he  sequel. 

The formulations ( 1.4) and ( 1.5) w i l l  be used interchangeably 

For example, i n  t h e  case of (l.?), we have 
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for a Z 1 as  i s  eas i ly  proved by induction on a. If we define a map- 

ping Q(.,.) of X x X i n t o  X by 

( 1.7) 

then (1.6) may be wri t ten i n  the  form 

f o r  a 2 1 and (1.1) becomes 

for a h 1. Thus, for example, the Newton's method i t e r a t i o n  i s  given by 

and the modified Newton's method i t e r a t i o n  i s  given by 

where x i s  a fixed i n i t i a l  guess, Czmvergence proofs fo r  the method 

based on $,(x) 

proofs f o r  the  method based on 

0 

can be found i n  [ 5 ] ,  [ 6 ] ,  [7] and [ 8 ]  and convergence 

I J ~ ( X )  can be found i n  [ 3 ] .  
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2. Cmvergence Analysis 

We now p rme  a number of convergence theorems. We begin with 

DEFINITION 2.1 Let $( = )  map X i n t o  i t se l f  and suppose t h a t  t he  a l -  - - I_ - --- 
converges t o  a fixed point x* of T. Then 

--_I_- - - gorithm x * + ~  = *bn) 
the  algorithm converges with order p Z 1 
7 

where C i s  a constant. - -- 
We then have 

THEOREM 2.3 Let T map X i n t o  i t s e l f ,  Suppose t h a t  (i) T i s  twice - - - I_ -- - 
emtinuously d i f fe ren t iab le  on the  closed sphere S = ??(x*,r) - where x* -- 
i s  a fixed point of T; (ii) [I-T;]-' e x i s t s  -- and i s  uniformly bounded - on 

S with 

----- - - 

(2.4) 

- 
(iii) Ti i s  uniformly bounded on S with - - - 

and K s a t i s f y  the inequal i t ies  and ( i v )  the  constants r,B __ - - - 

r < 1 and BK 6 213. 
7 
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- 
Then for an i n i t i a l  guess x i n  S, - the sequence {qa(xn)) ( w i t h  - $a -9 7- - 0 -  - 
given by (1.6)) l i e s  i n  S and converges t o  X* with order a t  l eas t  

a+l. 

-- -- - - ---- 
Moreover, the r a t e  of convergence i s  given by --- --_e 

(2.7) 

where the constants c are given by -- a --- 
C ,  = BK/2 
.I- 

C a-1 a-1 ca = ( 1 + r ) B K C , _ ~  

for a 2 2. - 
Proof: The p r x f  i s  by induction on a. We first consider the case 

a = 1. Since x E 8, we have 

- 
0 

(2.9) 

and, hence, i n  view of (i), (ii) and (iii), 

(2.10) 

Since r < 1, ql(x0) E 8, Now assume tha t  xn = $l(xn-l ) f 8. By 

an ident ica l  argument, we deduce tha t  



6 

and hence, t h a t  xn+l = ql(xn) E 3. It follows t h a t  ql(xn) E 3 fo r  a l l  
p+ 1 

n 2 0. Repeated application of (2.11) shows t h a t  \lx*-xn+dl c ~ ~ \ ~ x * - x ~ /  I 

2n+ 1 
and 53, l i m  (1fi-x I[ = 0. Thus t h e  theorem is t r u e  for a = 1. n r 

n + w  

We now suppose t h a t  the  thexem holds fo r  a l l  m 6 a and we s h a l l  

show t h a t  it then h d d s  f o r  a+l. Since xo E 3 and $a(xo) E 3, we 

have 

and 

+ n are  i n  Since c 5 1 , x1 = $ a+l ( x  ) E 3. Nctw suppose tha t  xO, ..., x 

3. Then q (x ) i s  i n  8 and we have 
a+ 1 

a n  
+ T h i s  follows by induction on a f D r  i f  c 6 1, then c I (l+l/2)BKca 5 a- 1 2 - 
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Thus, x ~ + ~  = $ a+l n a+l n 

a l l  n. Repeated application of (2.13) allows us t o  conclue t h a t  { +a+l( xn) 

ccmverges t o  x* and t h a t  the  r a t e  of convergence i s  given by (2.7). Thus, 

(x ) E 3 and so, by induction on n, $ ( x  ) E for 

t he  thecrem holds for a+l. The pro3f i s  now complete. 

We now t u r n  our a t tent ion t o  a convergence theorem for t h e  a l -  

x ~ + ~  = * ( x  ), a B 1. a n  gorithms We begin w i t h  some simple lemmas. 

LEMMA 2.16 Suppose t h a t  T i s  different iable  and t h a t  (I-T;)-' ex is t s  - - -I 

for a l l  x i n  the  domain, g ( T ) ,  of T. Then x* e g ( T )  i s  a fixed point -- -7- - - --r- 

of  T i f  and only i f  x* i s  a fixed point of *a fo r  a l l  a 2 1. - ---. ----- -- 
Prooft If x* = T(x*), then - 

x*,~* (x*) = (I-T* )x* = T(x*)-T' (x*) 
X* X* X* (2.17) 

and so, 

(2.18) X* = [ ( I - T h )  -1 (T-T>)](x*) = $,(x*) 



8 

-1 since (I-T&) ex is t s .  If  we assume t h a t  @ (x*) = x * ~  then  $3+l(x*) = 

Q( x*, $a( x*)) = Q( x*,x*) = Q( x*,Jio( x*)) = $,( x*) = x* be v i r tue  of ( 1.8) 

and the  cmvention 9 (x) = x. Thus, @ (x*) = x* for a l l  a 2 1 by in-  

duction. Conversely, i f  Jil(x*) = x*, then (I-Tk,)x* = (I-Tk*)@l(x*) = 

T(+)-Tk,(x*) and so, x* i s  a fixed point of T. 

a 

0 a 

LEMMA 2.19 

- t he  closed sphere S = S(xo,r); (ii) [I-T;]-' e x i s t s  -- and i s  uniformly 

bounded on 3 with 

Suppose t h a t  (i) T i s  twice continuously d i f f e ren t i ab le  on 
v -- - - -  

- __L 

(2.20) 

.._ 
and, (iii) T l  i s  uniformly bounded on S w i t h  __. - _I - 

(2.21) 

Then the  mapping Q( x, y) = [ ( I - T i )  -I( T-TR) ]y I___ has p a r t i a l  der ivat ives  
_.I_- 

(2.22) 

(2.23) 

- 
fo r  a l l  x,y i n  S. -- - 
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ProDft Let x,y be elements of 5 and l e t  h,k be increments i n  x 

and y, respectively, with x+h and y+k i n  S. Then 

- - 

-1 
However, [ (I-T;) -( T;+h-T;) 1 - l  = [ I- ( I-T;) -l( T;+~-T;) I-’( I-T;) = 1 - u ~  I-T;) 

where 

U = (I-T;) -1 (Tk+h-T;) (2.25) 

provided t h a t  (I-U)-’ exis ts .  Now (i), ( T i )  and (iii) together imply 

t h a t  IIUll 5 DdIhll and so, (I-U)-’ w i l l  ex i s t  for a l l  h w i t h  IIhll S 6/DM 

where 6 < 1. Moreover, we then have ( I - U )  = I+U+U + * * *  . We a l so  note 

t h a t  

-1 2 

(2.26) U = ( I - T t ) - h f f ( h )  X X +&(llh112) 

as II(I-T;)-’\I 5 D. It follows t h a t  
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and hence, t h a t  the  p a r t i a l  der iva t ive  of Q w i t h  respect t o  x e x i s t s  

and i s  given by (2.22). A s  f o r  t he  p a r t i a l  der ivat ive w i t h  respect t o  y, 

we have 

and 

It follows t h a t  the p a r t i a l  der ivat ive of Q with respect t o .  y e x i s t s  

and i s  given by (2.23). 

COROLLARY 2.30 Suppose t h a t  conditions (i), (ii) and (iii) of the  l e m a  - - I-- 

are  sa t i s f ied .  If x i s  an element of 5 such t h a t  $a 1(=) i s  differen-  - - -- - -- - - 

(2.31) 

Frooft Simply apply the  l e m a  and the  chain ru l e  f o r  Frechet der iva t ives  - 
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mM!v&l 2.32 ( c , f .  [SI) Let V be a map of X in%o ' i tself .  Suppose 

t h a t  (i) V i s  continuously d i f f e ren t i ab le  on S = z(xo , r )  w i t h  

- - ---- - - - - - - 

( 2.33) 

f o r  some 6; and (ii) there  i s  an 7 > 0 such t h a t  -- - --- -- 

(2.34) 

and ( 7 /1-6) 5 r. Then the  sequence xn = V(xnml) converges t o  the  

unique fixed point x* of V i n  3 and the  r a t e  o f  convergence i s  given 

- -- I -  

-- - - ---- -- 
- by 

(2.35) 

f o r  n = 1,2, ... . - 
We now have 

THEOREM 2.36 

S = z(xo,r); (ii) (I-T;)-' e x i s t s  and i s  uniformly bounded on S with 

Suppose t h a t  (i) T i s  twice continuously d i f f e ren t i ab le  on 
_I- - - - - 

- - -- 

(2.37) 

- 
(iii) Ti i s  uniformly bounded 03 S with - - - 
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(2.38) 

( i v )  T - I  i s  uniformly bounded _. on 5 - w - t h  
II 

(2.39) 

and ( i v )  there i s  an T a  > 0 such t h a t  -9 --- __.- 

(2.41) va S ( 1-ha) r 

2 
= a(B KM) < 1 for each a S 1. Then fo r  each a 2 1, the -- -3 -- - where - ha 

multipoint sequence [ $  (x ) }  based on the i n i t i a l  guess x converges a n  --- 0 

t o  the unique fixed point x* of T i n  3 and the r a t e  of convergence 

i s  given by 

- _I ---- -- -- 
--- 

for  each a Z 1. -- 
Prooft We f i r s t  show tha t  lii,(*) i s  d i f fe ren t iab le  on 3 and t h a t  - 

(2.43) 

for  each a 2. 1. Suppose t h a t  a = 1. Then I f l (* )  i s  d i f fe ren t iab le  on 



- s (as q0(x) = IX) and 

by v i r tue  of corol lary 2.30 and t h e  hypotheses of t he  theorem. Since 

11 I $ ~ (  x) -xdl 5 11 q1( x) -ill( xo) 11 + 11 q1( xo) -xo/I, it follows from t h e  mean value 

theorem t h a t  

x i n  3. Suppose now t h a t  $ ( * )  i s  d i f f e ren t i ab le  on S, t h a t  $ (x)  E 3 

f o r  a l l  x i n  8, and t h a t  (2.43) holds i f  f3 5 a. Then $a+l i s  d i f -  

ferent iable  on 7 by v i r tue  of czvollary 2.30 and 

(/$l(x)-xo/l 5 h r + (1-h ) r  = r. Thus, $,(x) E 5 for a l l  1 1 - 
B B 
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since ha < I, Thus, (2.43) holds f o r  each a 2 1 by induction. Mxe- 

overJ qa(x) E B f o r  a l l  x i n  8. 

It now f d l o w s  from lemma 2.32 t h a t  t h e  sequence {$*(xn)] - 
converges t o  the unique fixed point x* of $a(o) i n  S. However, t h e  

proof o f  lemma 2.16 shows t h a t  xf = x* i s  a fixed point of T and hence, 

by lemma 2.16, x* = x* The r a t e  of convergence inequal i ty  a 
(2.42) follows from lemma 2.32 and so t h e  theorem i s  established. 

a 

f o r  each a 2 1. 

We now s t a t e  and prove a bas ic  convergence theorem f o r  t he  multi- 

point algorithm (1.1). The r e s u l t s  a re  analogous t o  Kantorovich’ s theorem 

on the  convergence of Newton’s method ( [a]) .  We d e a l  w i t h  a map F of X 

i n t o  i t s e l f  and w i t h  t he  algorithms 

f o r  a = 1,2, ... . M3reover, we wri te  x t o  ind ica te  t h a t  we are con- 

s ider ing a par t icu lar  element of t h e  c l a s s  of algorithms (2.47). 

have 

n,a 
We then 

THEOREM 2.48 Suppose t h a t  (i) F i s  twice continuously d i f f e ren t i ab le  on - -- - 

(2.49) 

( i v )  7 = = 1 a i s  given by 0,a 0-9 



(2.50) 

f o r  2 6 j 6 a; and (v) - the  following r e l a t ions  - a re  s a t i s f i e d  - 7 

(2.51) ho,a = KaBo,a q0,a 6 112 

16 r = -  
(2.52) a 11 q0,a 

(2.53) 

+ - for  a = 1,2,... Then -- t h e  multipoint sequence {$a(xn,a)) converges - t o  
- 

with order a t  l e a s t  a+l and the  r a t e  o f  can- ---_.- a zero x* of F i n  

vergence i s  given by 

-- a -  - sa ---- 
--- 

(2.54) 

f o r  a = 1,2,... . - 
Proof: 

verses (F; 

and hence has a l imi t  x* t ha t  ( x  ] i s  a Cauchy sequence i n  
n, a 

i n  Sa. Finally,  we show t h a t  F(x*) = 0 and t h a t  (2.54) i s  valid.  

We note t h a t  (2.53) i s  automatically sa t i s f i ed  f o r  1 6  a S U) and t h a t ,  

f o r  large a, we can choose h smaller than I/2 t o  insure the  va l id i ty  

of (2.53). H3wever, it i s  unlikely t h a t  large values of a would be used 

prac t ica l ly .  We a lso  note t h a t  t he  par t icu lar  choice 16/11 i s  not qu i te  

optimum but i s  adequate f o r  our purposes. 

We give t h e  proof i n  three  steps.  We f i rs t  show t h a t  a l l  t he  in- - - 
Next we prove sa' )-I ex i s t  and t h a t  a l l  t he  x a re  i n  

n, a - n, a 
sa a - 

a 
+ 

0, a 
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F3r each a 1 1, we define B n,a,' dn,a9 7n,a and h n , y  re- 

cursively, by se t t i ng  

(2.55) 

(2.56) 

d l - h n -  l,a n,a n-1, B '  = B  

p - 2  a 
hn- 1, a qn- 1,a: d =  

n, a 

h = K B  7 (2.58) n,a a n,a n,a 

fo r  n 2 1. We now prove by induction t h a t  

(2.60) 

(F: ex is t s  and i s  l inear;  
n,a 

and 

(2.64) 



for n = 0,1,2,.*. . For n = 0, (2.59)-(2.61) and (2.63) a r e  simply 

hypotheses of t he  theorem and (2.64) w i l l  follow from (2.52) and (2.62). 

e 
Thus, we need only show t h a t  IIx l,a-xo,a/l = qo,ae 

We begin by showing t h a t  $ . (x  ) i s  an element of 3 for J o,a a 
1 5  j 5 a-1. T h i s  i s  done by induction on a. For a = 2, we have 

and hence, t h a t  

can be repeated t o  show t h a t  

and hence t h a t  Q . ( x  ) E za for  
J o,a 

1 I j I a-1, MDreover, by expanding F (+ . (x  ) )  i n  a Taylor s e r i e s  

about x we have 

J o,a 

0,a’ 

‘for 1 S j 5 a-1. It follows t h a t  
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(2.68) 

a- 1 
f o r  1 5  j 5 a-1. Since x -x = -c (F; )-%(qj(x0 a ) ) ,  we deduce 

tha t  IIx -x $1 5 

j=o o,a 9 

or, i n  other words, t h a t  ( ~ 6 2 )  holds for  n = 0. 
70,a l,a 0, 

We now examine the t rans i t ion  from n = 0 t o  n = 1. Since 

are  i n  the convex s e t  3 we have /IF; -F; 11 5 
0,a l,a a' 

11 -]IF; 
X and x 

0 9  a 
-x dl . It follows t ha t  /IF; }I 5 Ka 7 o,a and hence, t ha t  

0, a 1, a 

But (2.69) implies t ha t  (Fk )-l exists,  i s  linear, and s a t i s f i e s  
1, a 

(2.70) 

so t h a t  (2.59) and (2.60) hold for 

we expand 

n = 1. 

F(xlYa) i n  a Taylor se r ies  about $ (x ) t o  obtain 

To  ver i fy  (2.61) for n = 1, 

a-1 0,a 

and 

(2.72) 



= d  7 ( a )  5 2, and 5 4’) we have y0,a o r a  0,aY 0,a 0,a 0,a’ 

so t h a t  (2.61) holds f o r  n = 1. 

Now t o  ve r i fy  t h a t  (2.62) holds for  n = 1, we s h a l l  show t h a t  

(2.74) 

(3 i s  given by 5, a where 

(2.75) 

fo r  2 5 j S a and 

j 5 a 

4” = 1. 

(by a simple recursive calculat ion) .  

We note t h a t  5 y( j j  5 2 fo r  all 1, a l,a 0,a 
Assuming for t he  moment t h a t  

(2.74) i s  valid,  we have 

a-1 a a+l j 
s d  [ l + p  C ( ( 2 h  ) )  

j =1 OY a 1, 



we conclude t h a t  a-2 a Since d 1, a = 2 ho,a 70,aj 

(2.77) 

or, i n  other  words, t h a t  (2.62) holds f o r  n = 1, 

We now es t ab l i sh  (2.74). We observe t h a t  

and hence, t h a t  (2.74) w i l l  hold i f  

f o r  1 5  j 5 a-1. N3w (2.79) can be establ ished i n  exactly t h e  same way 

as (2.68) once we have shown t h a t  $j(xl,a) E Ta f o r  1 5  j 5 a-1. But 

t h i s  can be done by induction on a, For a = 2, we have I]$ 

we f ind  1, a' ) )  about x 

5 

The argument can be repeated t o  shox t h a t  $ . (x  ) e za for  j 5 a-1 

since $'I 5 5/4 (cf. (2.76)). Thus (2.62) holds f o r  n = 1. 
J 1,a 

l,a 
A s  f o r  (2.63), we have 
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NOW, I I ~ ~ , ~ - x ~ , J I  6 / I x ~ , ~ - x ~ , J I  + Itxi a-xo Jl 5 (E 2 hqOl+l)vo,a 6 E ?,,a a 9 9 

and so, (2.64) holds f o r  n = 1. 

If we now assume t h a t  (2.59)-(2.64) hold f o r  m 5 n-1, then we 

can show by exact ly  the  same arguments used i n  going from n = 0 t o  n = 1 

t h a t  (2.59)-(2.64) a re  sa t i s f i ed  f o r  Thus, by induction, t he  r e l a t ions  

(2.59)-(2.64) hold f o r  a l l  n 2 0. 

n. 

Now, it fzdlows from (2.57) and (2.63) t h a t  ?ln,a 5 (z) 5 n  v , , ~  
03 

and hence t h a t  the  se r i e s  Vn,a i s  convergent. Since 
n=O 

(2.81) 

we conclude t h a t  x 

element + of ga. 
n, a 

a 
We claim t h a t  

m- 1 

j =O 
lIxn+m,a -x n,a II c V n + j y a  

- 
and so converges t o  an sa i s  a Cauchy sequence i n  

x* i s  a zero of F. I n  view of %he analog of a 
(2.72) f o r  a rb i t r a ry  n, we have 

(2.82) 
a-1 a+l 2a-2 ( a )  

‘n, a ) I /  S K?B d 11 F( xn+ 1, a a n,a n,a 
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(using the analog of (2.74)). It follows t h a t  l i m  llF(x )I] = IIF(x;)II = 0 

as  F i s  continuous. 
n + C Q  n, a 

All t h a t  remains i s  t h  e establishment of t he  r a t e  of convergence 
CQ 

inequal i ty  (2.54). But, since IIx*-X $1 5 7 9n+j,a, (2.54) w i l l  follow 
a n, j =O 

from the  estimate 

(2.83) 

and the  fact t h a t  h S 1/2. But (2.83) i s  a d i r e c t  consequence of t he  

re l a t  i on s 
0 9  a 

(2.84) 

(2.85) 

+ Thus, t he  proof 
Tn,a and hn,a' 

which follow from t h e  def in i t ions  of 

of t he  themem i s  complete. 

3 .  Two Point Boundary Value Problems 

We consider t he  (normalized) two point boundary value problem 

(TPBVP) 

~~ ~ - + The argument i s  as follows: 



where f ,g ,h  a re  vector valued functions and c i s  an element of R We 

f i r s t  review some r e s u l t s  r e l a t i n g  t o  the  development of equivalent i n t e g r a l  

equation representat ions of t h e  TPljVP (3.1) (see,  f o r  example, [ 71). Since 

l i nea r  T P B V F s  w i l l  play an important r o l e  i n  t h e  i n t e g r a l  equation repre- 

sentations,  we begin our discussion w i t h  a consideration of l i n e a r  TPBVP's. 

P' 

Consider t he  l i n e a r  TPBVP 

where A ( t ) , B , C  a r e  p X p matrices and k ( t ) ,  d a r e  p-vectors. We 

r e c a l l  t he  following 

PROPOSITION 3.3 Suppose t h a t  (i) t h e  functions A ( t )  and k ( t )  are - - - 
integrable  on ( O , l ] ;  (ii) the re  i s  an integrable  function m( t) on 

[0,1] - with I1A(t)ll m ( t ) ,  I k( t ) l  5 m ( t )  and m ( t ) l  d t  < w; and, 
- --- - 

(iii) det(B+CQA( 1,O)) # 0 where aA( t, s) I- i s  t h e  fundamental matrix _. of - 
9 = A(t)y.  Then (3.2) has a unique solut ion $(t) on [0,1] which can 

be wr i t ten  i n  t h e  form 

- -- - -- 
- _I-- 

(3.4) $(t) = n ( t ) d  + S k ( t , S ) k ( s ) d s  

where the  Green's matrices A and I? a r e  given by -- 7 - - I_  

(3.5) at) = @A(t,O)[B+C@A(l,O)]-l  
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QA(t,O)[B+CQA(l,O)]-$QA(O,s) 0 5 s < t 
A -1 A -QA(t,O)[B+CQ ( l , O ) ]  CQ (1,s) t < s 5 1 

(3  4 r(t,s) = 

Proof: ( s ee  [ 41 or  [ 71). - 
DEFINITION 3.7 Let A ( t ) ,  B,C be p x p matrices. Then (A(t),B,C) - - - 
i s  cal led a boundary compatible s e t  i f  (i) A ( t )  i s  measurable on [0,1]; - - 7- - - 
( ii) there  i s  an integrable  function --- 'Oil 

_I 

w i t h  - 
m( t) and lorn( 1 t ) d t  < w; E, ( iii) de%( B+CQA( 1,O)) # 0 where Q A (t, s) i s  - - _. 

t he  fundamental matrix of 9 = A( t ) y .  - - 
PROFOSITION 3.8 Let B and C be p x p matrices. Then there  i s  a 

matrix A ( t )  such t h a t  {A(t),B,C) i s  a boundary compatible set i f  and 

- - - -I-- 

-- -- --- 
only i f  the  matrix --- has - f u l l  rank. -- 
Proof: ( see [7]) .  - 

P r o p s i t i o n s  (3.3) and (3.8) form t h e  bas i s  f o r  t h e  i n t e g r a l  

equation representation of (3.2). I n  par t icular ,  we have 

THEOREM 3.9 D be a domain i n  
0 -  - R 

P 
and - l e t  - I be an -- - open i n t e r v a l  

containing [0,1]. Suppose t h a t  (i) f (y , t )  i s  measurable i n  t f o r  each - - - -- 
fixed y and continuous i n  y f o r  each fixed t on D X I; (ii) the re  i s  - - --- - -- 
a measurable function m ( t )  with IIf(y,t)II 5 m ( t )  on D x I and - - 0 - 
J,m(t)dt < m j  (iii) g - and h - map D - i n t o  i t s e l f ;  and, ( i v )  {A(t),B,C) 

i s  a boundary c3mpatible set. Then the  TPBVF! (3.1 ) has t h e  equivalent' -- - -- -- 
+ 
This means t h a t  an absolutely continuous function 
if and only if it i s  a solut ion of t h e  i n t e g r a l  equation. 

$(t) i s  a solut ion of (3.1) 



i n t e g r a l  representation 

- where AmC(t) - and p C ( t , s )  are the  Green's matrices -- of t h e  l i nea r  

problem determined b~ {A( t) ,B,C] 

Proof: ( see  [TI). - 
We a re  now ready t o  3pply t h e  multipoint algorithms developed 

i n  sect ion 2 t o  the  solut ion of (3.1). Assuming t h a t  t he  conditions of 

theorem (3.9) a re  sa t i s f ied ,  we can define a mapping T 

space X = g ( [ O , 1 ] , R p )  

of t he  Banach 

i n t o  i t s e l f  by s e t t i n g  

(3.11) 

Then, (3.l.O) i s  equivalent t o  the  fixed point problem 

(4 ABC x = T  

on 23 LO, 13 ,Rp) and we can apply the  multipoint algorithms t o  ( 3 . 1 2 ) .  

Now, i n  order t o  in t e rp re t  theorem 2.48 exp l i c i t l y  i n  terms of 

f ,g  and h, we  require t h e  Frechet der ivat ives  of t h e  operator TAB'. 

These der ivat ives  are  given by 



and 

where, f o r  example, 

and it i s  assumed t h a t  the  indicated p a r t i a l  der ivat ives  ex is t .  We now 

have 

THEOREM 3.16 Let J = (A(t),B,C) be a boundary compatible --- s e t  and l e t  - -- 
x ( t)  be an element of %?([0,13,Rp). Suppose - that (i) f ( x , t ) ,  

a; ;(x(t) , t)  and - $ x ( t ) , t )  E defined, continuous i n  x and es- 

s e n t i a l l y  bounded i n  t for  a l l  elements ( x , t )  of t he  graphs of t he  

functions x i n  

a re  defined and continuous fop a l l  values x(0) of t he  functions x i n  

-- - 
a2f 

ax 
o,a 

af - -- 7 

.I -- -7 -- 
- 

- - -- - --x- 
adh 
-$x(l)) are defined and continuous f o r  

a l l  values x(1) of t he  functions x i n  za; aDd ( i v )  t he re  a re  posi- -- -- _. -' -7- 

ah za; (iii) h(x), $ x ( l ) ) ,  and - - ax 

t i v e  r e a l  -- numbers 0,a' 
d K2,a9 and - such t h a t  -- 



where i s  given by (2.50)) ; (- 0,a --- 

(3.22) Ka = Kl,a+K2,a; 

h = K B 11 6 1/2; 0,a a 0,a o,a (3.24) 



(3.26) 

28 

J J where A i j ( t )  - and y. .(t,s) a r e  the 'e'Xemerits -- of %lie Gr'een*'s W'cirices 

AJ( t) 

(with $a(xn,a) given by (2.47) where F = FJ = I-T ) converge's t o  a solu- 

-- 1J - 
J ( Q c X n , a ) l  - and I' (t, s) , respectively. -- Th'en the muXt'i'poin% 'sequekice 

J J - --- 
t i on  - of (3.1) i n  - - and th'e -- r a t e  of convergence i s  given by -- --- 
for a = 1,2, ... . - 
Proof: 

J J by the mapping F = I-T . 
(ii) and (iii) imply t h a t  

(see, for example, [8]). 

We simply ver i fy  tha t  the hypotheses of theorem 2.48 are  sa t i s f ied  

In  view of (3.13) and (3.14), we see t h a t  (i), 

i s  twice continuously d i f fe ren t iab le  on 

Moreover, from (3.13) and (3.17), we deduce tha t  

- 

- 
sa FJ 

11 I: 1 / l - G a .  Combin- J -1 1 - l  ex i s t s  and t h a t  II(F ); J (FJ) ;-1 = [ I - ( T  ): 

ing t h i s  wi th  (3.18), we find t h a t  ll(FJ)k 

(3.14), (3.19), (3.20), and ( 3 0 2 2 ) ~  we have sup- II(F )!I\ 5 Kl,a+K2,a = Ka. 

In  view of our other assumptions, we immediately see t h a t  the  hypotheses 

From 
01 o,a -1 J 

IIIIF ( ~ ~ , ~ ) l l  5 do,a. 
0 9  a J 

X € S  a 

J J of theorem 2.48 hold. Hence, F (x;) = ( I - T  )(x;) = 0 

solution of (3.12) ( a  f o r t i o r i ,  a solution of (3.1)). 

and so, x*(t) 

Thus, the  theorem 

i s  a a 

i s  established, 

The basic strength of theorem 3.16 l i e s  i n  the  poss ib i l i t y  of 

replacing the  sequence of operator i t e r a t ions  x 

equivalent sequence of l inear  TPBVP's. 
n+l,a 

To i l l u s t r a t e  what i s  involved, 

l e t  us consider the  th i rd  order method generated by 

i n i t i a l  guess xo and proceeding formally, we have 

$2. Beginning w i t h  an 

(3.27) 



where J = (A(t),B,C) i s  a boundary compatible se t .  But (3.27) i s  equi- 

valent t o  the  pa i r  of equations 

But these equations a re  both l i nea r  and of e x a c t l y t h e  same form. Now, 

ah l e t  An( S )  = g ( X n (  S),S), Bn = %( xn(0)) and Cn = +xn( 1)). Then it 

can eas i ly  be shown using (3.11) and (3.13) t h a t  (3.28a) and (3.28b) a re  

equivalent t o  the  pa i r  of i n t e g r a l  equations 

H3wever, these i n t e g r a l  equations a r e  equivalent t o  the  l i nea r  TPBVP's 



(3.30a) 

(3.3Ob) 

where c 

-h( zn( 1)) +Bnzn(0) +Cnzn( 1). 

= c-g( xn( 0) ) -h( xn( 1) ) +Bnxn( 0) +Cnxn( 1) and dn = c-g( zn( 0) ) - n 

Now, assuming t h a t  the  conditions of theorem 

3.16, are  sa t i s f ied ,  we deduce t h a t  (3.27) has a solution and hence tha t  a l l  the  pairs '  

(3  28) -( 3 3 0 )  have solutions. 

t he  multipoint algorithm xn+l = lf2(xn) 

solution of the pa i r s  of l inear  TPBVP' s (3.30). Since the Jacobian An( s) 

i s  the  same i n  (3.30a) and (3.30b), we are  actual ly  only required t o  solve 

Thus, under the assumptions of the theorem, 

i s  equivalent t o  the successive 

the  same l inear  TPBVP a t  each stage for di f fe ren t  forcing functions and so, 

only one integration of t he  homogeneous equation i s  required a t  each step. 

Thus, the extra computation required t o  obtain higher order convergence 

i s  small. 

In the  general case x ~ + ~ , ~  = qa(xnYa ), the  i t e r a t ion  i s  equivalent t o  

the solution of a l i nea r  TPBVP's with the  same homogeneous part. 

T h i s  represents the  major advantage of the  multipoint methods. 

+ 4. Example 1: Temperat-e Distr'ibution i n  a Homogerie'ous Rod -- - 
Consider t he  nonlinear TPBVP 

.. 
e ( t )  = @ f ( 0 ( t ) )  , e ( 0 )  = 8 J e(a )  = e 

, , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; . o . . . . . . . . . . . a . . . . . . . . . . . . . . . . . .  ( 4.1) 



which describes the  steady s t a t e  temperature d i s t r ibu t ion  

geneous rod of length where f (  * )  i s  the  rate of heat generation. We 

s h a l l  suppose t h a t  f(*) i s  given by f ( e ( t ) )  = exp(e( t ) ) ,  t h a t  t he  units 

are  normalized so t h a t  R = 1, and t h a t  e ( 0 )  = Q(l) = 0. 

e ( * )  i n  a homo- 

Thus, we wish 

t o  solve t h e  TPBVP 

where xl( t) = e ( t )  and ‘x2(t)  = 6( t) . We now have 

16 N 

11 a = .75 where THEOREM 4.3 Suppose t h a t  0 < @ 6 .9 and t h a t  r = - - - -- 
= d o ( l  + Ber do) ,  d = B ’ and B = 1. ‘Then the  multipoint sequence 

0 -2’ - -. 
= q2(zn) with % = O ( = )  converges t o  a solut ion z* of (4.2) i n  -- - - %n+l ry - -  

S = S(so , r )  ‘and the  r a t e  of convergence i s  given by -- --  --- 

(4.4) 

r 

2 
Be 7, 

.5. where h c 
- 0  

Proof: 

t h a t  

We simply ve r i fy  the  hypotheses of theorem 3.16. We first observe - 

0 

0 
. ,  

and t h a t  



(4.7) 

Thus, the hypotheses (i), (ii) and (iii) of theorem 3.16 hold. Moreover, 

then the set J = . .  
af ag &I if we let &(t) = d&(t)), E = ;5;; and = a;;,  cv rv N 

{&(t),E,g is a boundary compatible set (as is easily checked), 

Now let 6 = 0 and K2 = 0. Then the inequalities (3.17) and 

(3.20) hold i n  our case in view of the definition of J 

over, the operator TJ is given by 

and ( 4.7). More- 

(4.8) 
exp( x& s> ) -q s) 

where TJ(t,s) is the Green’s mtrix which corresponds to 5. Writing 

(4.8) in component form, we have 

where 
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t < s 

s(t-1) s < t 
J 

( 4.10) Y12(t,S) = 

t < s  J 
r22(t,s) = C"a s < t  

(4.11) 

fo r  0 5 s 5 1, 0 S t 5 1, Set t ing  K1 = K = 7 , we deduce t h a t  

1 J  t 1 2 But 

/ 1 y (t ,s)l  d s  = 1 s d s  + /,( 1 - s )ds  = t2-t+1/2. It follows t h a t  

so[ y12(t,s)l d s  = .f,1 s( t - l ) l  d s  + stl t( s-l)l d s  = (t-t ) /2  and 
1 J  t 1 
0 22 0 

( 4.13) 

and hence t h a t  (3.19) holds i n  our case. 

de f in i t i on  of' T , we can e a s i l y  see t h a t  (3.18) w i l l  hold w i t h  

All t h a t  remains i s  t o  check t h a t  (3.21), (3.24) and (3.26) hold. 

Moreover, i n  view o f  t he  

J B 
do = ?. 

Now (3.21) holds by t h e  def in i t ion  of vo. A s  regards (3.24), 

we have 

(4.14) BeX 11 r ho = K - l q o  = 2 qo = - $e r 
32 



34 

N 

since r = 16 7,. But r = .75 and 11( .9)e'75( .75) 

Thus, (3.24) holds. Moreover, since y(2) = 1 + %d 092 2 0  

( 4.15) 

S 16 as  e*75 S 2.12. 

5 1.215 s '4 < 2 

so t h a t  (3.26) i s  sa t i s f i ed .  Thus, t he  theorem i s  established. 

O f  course, an analogous theorem could be proved fo r  any of t h e  

multipoint algorithms. 

The pa i r  of l i nea r  TPBVP' s (3.3Oa) and (3.3Ob) here take the  

form 

zn, $ 0 )  = 2 (1) = 0 n , l  

( * )  t o  the  %+l and theorem 4.3 insures  t h e  convergence of t he  sequence 

solut ion of (4.2). The equations (4.18a) and (4.18b) were integrated 

numerically using a modified fourth order Runge-Kutta method and the  re- 

sults of the  computations a re  indicated i n  Tables I and 11. Table I con- 

+ t a i n s  the  number of i t e r a t i o n s  required f o r  "convergence" f o r  various 

+ Convergence i s  her2 construed t o  mean t h a t  
-6 ll%+l-gJl = i=l cmaxlx k n + l , i  ( tk) -xn,i( tk) 1 1 lo 

where the  tk a r e  the  points  i n  the  in tegra t ion  routine.  



35 

1 

0.6 0.8 1.0 1.2 1.4 1.6 1.8 - ---- 
2 2 2 2 3 3 3 3 I t e r a t ions  

Required 

values D f  

i n  Table I1 f o r  f3 = 1 compare qui te  favorably w i t h  those presented by 

Bellman i n  [ 21, 

vergence only f3r 

f3, while Table I1 contains t h e  ac tua l  solut ions,  The r e s u l t s  

We a lso  observe tha t ,  although theorem 4.3 guaranteed con- 

0 < f3 -5 .9, t he  ac tua l  computations converged f o r  values 

of f3 > .9. 

2.0 -- 
4 

j i ( t )  + 6y( t )  + @y2(t)  + cos t = o (5.1) 

which describes an Dsci l la tor  w i t h  a nonlinear res tor ing  force. We wish 

t o  determine periodic salut ions of (5.1) w i t h  period 

the  boundary conditions 

2Tf and so, we impose 

(5.2) y(O)-y(27J) = 0, ? ( O ) - ? C B )  = 0 

The boundary value problem (5.1), (5.2) can be wr i t ten  i n  vector f o r a  a s  



THFOREM 5.4 Siippos'e - t h a t  where 16 0 < #3 S .5 and %Kat r = - 
7- 11 qo - 

= .2. Then the  multipoint sequence -- - w i t h  zo( 0 )  = $ 0 )  converges -- t o  a solut ion E* - of (5.3) S = z(Eo,r) - 
and t h e  r a t e  of convergence i s  given by 
---e --- 

(5 .5 )  

(5.6) 

and t h a t  

Proof: 

t h a t  

We simply ver i fy  the  hypotheses of theorem 3.16. We f i rs t  observe - 

a h  3 = - z  

Thus, t he  hypotheses (i), (ii) and (iii) of theorem 3.16 a re  sa t i s f i ed .  
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ah then t h e  and g = ag 
?g -0 rv q' Mmeover, i f  we l e t  &(t) = 'af(x (t)), 

s e t  J = (&(t),E,C] 

= 

i s  a boundary compatible s e t  (as i s  eas i ly  checked). 

N3w l e t  6= 0 and K2 = 0. Then the  inequal i t ies  (3.1'0 and 

(3.20) hold i n  3ur case i n  view of t h e  de f in i t i on  of J and (5.8). Mme- 

mer ,  t he  3 p e r a t x  TJ i s  given by 

(5.9) 

where rJ(t,s) i s  t h e  Green's matrix which corresponds t o  J. Writing 

(5.9) i n  component form, we have 

where 

--cos 1 a(T-s+t) t r s  
C 

s < t  1 - --cos a(T-t+s) 
C 

J 
(5.11) r&s) = 

t 6 s  

s < t  
( 5 . W  

f o r  0 6 s 6 2n, 0 6 t 6 2'rr 

Using (5.7) and the  estimates I, I $ 12 ( t  , s ) l d s  6 34 + 2 s i n ( r a  1, 

Io I r22( t , s ) ]ds  6 $5-cos(~a) ] ,  w e  deduce t h a t  (5.19) holds i n  our case 

f o r  K = 4.168. 

and where a =$? and c = 2 s i n ( r 6 .  

C a 
m J  2a 

Mxeover, i n  view of t h e  de f in i t i on  of TJ, we can readi ly  



J check t h a t  (3.18) will be sa t i s f i ed  w i t h  do = .2 since T (O,)l(t) = 

c3s t s in  t 
5 and T J ( o ) 2 ( t )  = a5’ A s  (3.21) holds by the  de f in i t i on  of 

a l l  t h a t  remains i s  t o  ver i fy  (3.24) and (3.26). 11 oJ 

Regarding (3.24), we have 

ho = K l q o  = (4.16)@( .2)( 1 + 4) 4 16$( 2 6 1; 2 ( 5 .  13) 

since f3 S .5. Mweover, since y(2) = 1 + - (3.26) i s  c l ea r ly  s a t i s - ’  

f ied here. 

092 2 ’  

Thus, t he  theorem i s  established. 

Again an analogous theorem could be proved f o r  any of t h e  multi- 

point algorithms. 

The pa i r  of  l inear  TPBVP s (3.30a) and (3.30b) here take the  

form 

i = z  
n , l  n,2 ( 5.134 

and theorem 5.4 insures  the  convergence of t h e  sequence x ( 0 )  t o  t he  

solut ion of  (5.3) The equations (5.13a) and (5.13b) were integrated numeri- 

c a l l y  using a modified Runge-Kutta method and the  r e s u l t s  of t he  computations 

-n+l 
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a re  indicated i n  Tables I11 and IV. Table I11 contains the  number of 

i t e r a t i o n s  required for "convergence"' for various values of 

Table I V  contains the  a c t u a l  solutions.  

f3, while 

We note t h a t  t he  ac tua l  compu- 

t a t i o n s  again converged for  la rger  values of f3 than .5. 

T A B U  111 

+ Convergence i s  here construed t o  mean t h a t  
2 

where the  tk a r e  the  points  i n  the  in tegra t ion  routine.  



rl] Antmiewicz, H. A. and Rheinboldt, W. C., "Numerical Analysis and 
Functional Analysis," Chapter 14 of Sukvey of Niimerical Analy'sis, 
J. T d d ,  Ed., M c G r a w - H i l l ,  New Y o r k , w  - 

[ 2 ]  Bellman, R. E. and Kalaba, R. E., Quasi l inear izat ion - and Nonlinear 
Bxmdary-Value Problems, American Elsevier Publishing Co., Inc., 
New Yxk,  l9b>. 

[ 3 ]  BDsarge, W. E., Jr. and Falb, P. L., "A Multipoint Method of T h i r d  
Order", SIAM J. on Numerical Analysis ( t o  appear). 

[4] Coddingkon, E. A., and Levinson, N., Theory of Ordinary Di f f e ren t i a l  
Equations, M e G r a w - H i l l ,  New Yxk,  l 9 c  .- 

[ 5 ]  Collatz,  L., Funktionalanalysis - und Nmerische Mathematik., Springer, 
Berlin, 1964. 

[ 61 Collatz, L., The Numerical Treatment - of Di f f e ren t i a l  Equations, Springer- 
Verlag, New York, l9b6. 

- 
[7] Falb, P. L., and DeJong, J, L., Some Successive Approximation Methods - 

i n  Control and Osc i l la t ion  Theory, Academic Press, New York, ( t o  appear 
in,--- 

[ 81 Kantorovich, L. V., and Akilov, G .  P., Functional Analysis - i n  Normed 
Spaces, MacMillan, New York, 1964. 

[9]  Traub, J., I t e r a t i v e  Methods for t h e  Solution of Equations, Prentice 
-I__ - 

Hall, New Jersey, 1964. 




