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NON-TECHNICAL SUMMARY

The central limit theorem deals with the asymptotic distribution

of the sum of a large number of scalar-valued random variables. If the

number of summands in the sum is large, the distribution of the sum is

r
	

approximately normal (Gaussian). A functional central limit theorem

considers the asymptotic distribution of certain functionals of, say,

the first n partial sums of random variables. For example, the

maximum or minimum of the first n sums could be considered. Again, if

n is large a good approximation for the distribution of the functional

would be available. Both the central limit theorem and the functional

central limit theorem are available for sequences of independent,

identically distributed random variables as well as certain dependent

sequences. Finally, results of this sort are also available for sums

of a random number of random variables.

This paper extends the functional central limit theorem to the case

of the sums of vector-valued random variables. For example, an

approximation is given for the distribution of the length of the vector

arising from the sum of the first n random vectors. A rich class of

other functionals can also be handled along with the consideration of

sums of a random number of random vectors.
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WEAK CCKVERGENCE OF PROBABILITY MEASURES ON PRODUCT SPACES

WITH APPLICATIONS TO SUMS OF RANDOM VECTORS=' /

By

Donald L. Iglehart
Stanford University

1.	 Introduction

Billingsley [1) has given an excellent treatment of the subject of

weak convergence of probability measures. The principal application he

considers is functional central limit theorems for sums of random vari-

ables. Our objective in this paper is to point out a simple observation

which allows one to obtain functional central limit theorems for sums of

random vectors.

The classical central limit theorem is concerned with the asymptotic

behavior of the distribution of S n = X1 + •.. + X 1 (S0=0), where the

Xi 's are random variables satisfying certain conditions. A functional

central limit theorem, on the other hand, treats the asymptotic behavior

of the distribution of f(Si : 0 < i < n) for a certain class of func-

tionals f. The phrase functional central limit theorem, which we shall

use, has been proposed in (1) to replace the less suggestive terminology

of an invariance principle.

Historically the development of functional central limit theorems

began with Erdos and Kac [5), (6) and was extended and generalized by

J This work was supported by Office of Naval Research Contracts
Nonr-401(55) at Cornell University and Nonr-225(53) at Stanford
University.
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Donsker [4], Billingsley [2], [3], Prohorov [9], and Skorohod [10], [11].

This development has taken place in the context of weak convergence of

probability measures on metric spaces. This part of the theory was

developed primarily by Prohorov [.0 ] and Skorohod [10].

The metric spaces of concern in this paper will be product spaces.

If C[O t l] is the space of continuous functions on [0,1 v ith the
uniform metric, then we let Ck = C[0,l] x	 x C[0,1] be the product

of k copies of C[0,1] with the product topology. If D[0,1] is the

space of right-continuous functions on [0,1] having left limits with

_	 the Skorohod topology (to be defined later), then Dk = D[O,1]x •-- x D[0,1]

is the product of k copies of D[0,1] with the product topology. The

spaces Ck and Dk shall be of special interest since they are the

natural spaces in which to consider probability measures induced by ran-

door vectors.

The principal result of this paper is to obtain necessary and suffi-

cient conditions for a sequence of probability measures on C k or Dk

to converge to a probability measure. These conditions are then applied

to obtain functional central limit theorems for sums of random vectors

in a variety of situations. In particular, we consider sums of indepen-

dent, identically distributed random vectors as well as sums of stationary,

q)-mixing random vectors. These results are then extended to sums of a

random number of random vectors. Application is also mentioned to the

k-dimensional random walk induced by the multi-urn Ehrenfest model.

This paper is organized into the following sections: Section 2

deals with various preliminaries on weak convergence; Section 3 contains

a theorem giving necessary and sufficient conditions for a sequence of

C:
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probability measures on C  to convergence weakly; Section 4 gives the

corresponding conditions for measures on D k ; Section 5 applies these

results to sums of random vectors; and Section o applies the results to

the multi-urn Ehrenfest model.

2. Preliminaries on Weak Convergence

Let S be a metric space and g, the class of Borel sets, be the

a-field generated by the open sets of S. If P  and P are probability

measures on g which satisfy

lim fS fdP = J fdP
n -4 	

n	 S

for every bounded, continuous, real-valued function f on S, we shall

say that P  converges weakly to P as n -+m and write P  > P.

In the case where S = Rk, k-dimensional Euclidean space, weak conver-

gence is equivalent to ordinary weak convergence of the distribution

functions associated with P  to that associated with P. However, for

the function spaces we shall consider weak convergence is a deeper concept.

The notion of tightness introduced by Prohorov [9) plays a key role

in the weak convergence of probability measures. A family H of prob-

ability measures on the metric space S is said to be tight if for

every E > 0 there exists a compact set K  such that P(k s ) > 1 - s

for all P in H. The main result which makes this a useful concept

is a theorem in [9). This theorem requires the notion of II being

relatively compact. A family H is said to be relatively compact if

every sequence of elements of R contains a convergent subsequence

3



(the limit need not belong to II). 1̂ 'ne theorem is as follows.

Theorem 1 (Prohorov [91). (1) If n is tight, then it is relatively

compact. (ii) If S is a complete separable metric space and II is

relatively compact, then it is tight.

It is convenient to list here two other results and a definition

which we shall need. The first is an analog for sequences of measures

of a property of sequences of numbers; cf. [1], Theorem 2.3.

Theorem 2. We have P  > P if and only if each subsequence (Pn,)

contains a further subsequence (Pn „) such that Pn , —> P.

Let h be a measurable mapping of S into another metric space S'

(with a-field g' of Borel sets). Each probability measure P on

(S,g) induces on (S',g') a unique probability measure Ph -1 (A) = P(h-1A)

for Aeg'. Let D  be the set of discontinuities of h. The next

theorem is an analog of the Mann-Wald theorem for the Euclidean case;

cf. [1) Theorem 5.1.

Theorem 3. If P  > P and P(Dh ) = 0, then Pnh
-1
 > Ph-1.

For a metric space S (with Borel sets g) a class of sets u c g is

said to be a determining class if for any two probability measures P

and Q on g, the fact that P(A) = Q(A) for all Aeu implies that

P a Q. Of course, if u c: g is a field and a(u), the a-field generated

by u, equals g, then u is a determining class by virtue of the

Carathgodory extension theorem.

We shall be concerned with separable product spaces S = S1 X 	 x Sk

C>
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C,

(endowed with the i;roduct topology) and product u-field gl x ••• x gk,

where each ui is a separable metric space with an associated class of

Borel sets ui . Let g be the class of Borel sets generated by the

E	 open sets of S. Since S is separable, it is known that

g = gl " ••• gk' cf. (1), p. 468. For a given probability measure P

on g we define the marginal measures Pi (i = 1,...,k) by

Pi(A) = P(S1 X ... x Si-1 x A X Si+1 X ... X Sk ) for Aegi. For a

family R of probability of probability measures on S the notion of

tightness can be stated in terms of the tightness of the families R 

(i = 1,...,k) of marginal measures. This result which is elementary

was stated for k = 2 as problem 5, p. 79 of [1]. For the sake of

completeness we indicate a proof.

Lemma 1. Let H be a family of probability measures on (S,g) and

IIi (i = 1,...,k) be the corresponding_families of marginal measures on

(Si,gi ) (i = 1, ... ,k). Then IT is tight on (S,g) if and only if each

11  is tight on (SVgi).

Proof. (Sufficiency). Let each Hi be tight on ( Si , gi ). Then for

each E > 0 there exists a compact setK

--

i such that Pi(K^) > 1 - e/k

for every Pi E II1 . Let Ks = K1 x ••• x K-. Since KE is the product

of compact sets, it is compact in the product topology by Tychonoff's
k

theorem. Furthermore=/ K
C
	 Ul (S1 x	 x Si-1 X (K£) c X Si+l x ••• X Sk)

i	

i

and hence P(KE) <	 P (K^) < c. Hence P(KC ) > 1 - c for every Pen

The complement of a set A is denoted Ac.
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r;

and thus H is tight.

(Necessity). Suppose TI is tight. Then for each c > 0 there

exists a compact set K  such that P(KE ) > 1 - e for every Pa.

For any point x - (xl,...,xk) e S let n: (x) xi be the projection

function. Since each ni is continuous in the product topology i ni(KE)

which we shall denote Kip is compact. Hence Pi(KE)

P(S1 x ••• x S1-1 x Ki x Si+l x ••• X Sk ) > PIKE ) > 1 - e for each

i = 1, ... ,k and thus each 
II  

is tight.

The next lemma is one that is useful for establishing determining

classes for product spaces. As a result in measure theory it must be

well-known, however, we could not find a reference in which it is stated

in this manner. Before stating the lemma we introduce some notation.

Let (3141 ) and (S2,92 ) be pairs of metric spaces and associated

classes of Borel sets. For families 
Ll c 

gl and *u2 c 82, the family

of sets U1 (E) U, _ (A1 x A2 : Aiegi ) consists of rectangles in

S1 x S2 = S. By (ul(D U2 )* we shall mean the family of sets in S

formed by taking finite bums of sets in Ul Q) u2. With this notation

the product a-field gl x k (equal to g, the Borel sets of S, when

S is separable) can be expressed as B{(gl (E) g2 )*), while (gl x^ g2)*

is a field.

Lemma 2. Let ui c gi (1 = 1,...,k) be fields which generate gi

W ui) = 91). Then if S = S1 x ••• x Sk is separable, the family of

sets (ul (E)••• (9) Uk)* _ U is a field which generates g = g l x ••• x gk.

Proof. The family	 is simply the product field and hence a field;

cf. Loeve ($], p. 61. Since U (gl (x^ ° • • ( gk )* s(u) CS. To show

6
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c.

f	 that g R(U) it will suffice to show that 810 ••• 0x gk C g(Ul (D	 Uk
}

since R{glQ .. , ^ gk ) = g and R { ul(D • - . (D Uk ) - R(U)• Let Aiegi,

then the rectangles Ai S 1 x • •• X si-1 x Ai X Si+l x ••• x S  all

belong to xl Q ••• (Z)k. Since gi = R(U), Ale

R(Sl0 ... 0X Si -1^ Ui0S i+1
G... 

OSk) c (1{Ulp ... 0 Uk ). But

Al x 	 X Ak	 Al € R
(Ul ^c 

... x) Uk ), which shows that

i=1

gl ^.•.^ gk R{Ul ® ...^ Uk) and completes the proof.

In the next two sections we shall apply these results to the product

spaces Ck and Dk.

}t.	 3. Weak Convergence of Probability Measures on Ck
t

Let C be the space of all continuous real-valued functions on the

closed unit interval ( 01 1) with the metric of uniform convergence,

p(x,y) =	 sup	 (x(t)-y(t ) j,	 and C denote the class of b, 	 sets-
0<t<1

Now let Ck be the product of k copies of C, and endow Ck

the product topology. We shall assume that the metric on Ck is	 _.-,d

for x. ZeCk, as pk(x,z) =

	

	 max	 {p(xi,yi} , v%ere x = (x1,...,xk}
1 < i < k

and1	 k_ (y ,...,y
k). Since C is a complete separable metric space so

is Ck. Hence the class of Borel sets e of Ck equals the product

a-field C x ••• x C. Furthermore, by Theorem 1 relative compactness of

a family of probability measures on (Ck,e) is equivalent to tightness

of the family.

For points 0 < t  < ••• < t  < 1 -je 	 It .. .
t be the mapping

1	 .^

that carries xeCk into (x(tl),...,x ( t,))€_RkX ", kXX-dimensional
ti

Fudlidean space. Define, the class of finite -dimensional sets, to
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be all sets of the formx
t.
l..t A for AcaW (the Sorel sets of
1	 I

R^^ under the Euclidean metric), where I > 1 and

0 < ti <	 < t ', < 1. Since It ., t is continuous, ^ c: e- For
B

any probability measure P on ( Ck, a ), the measures Prctl _ . , t on
1	 I

(RW,RkX1 ) are called the finite-dimensional measures of P• The

distributions corresponding to these measures are called the finite-

dimensional distributions of P. For k = 1, it is well-known that

31 is a determining class; cf. [1], p. 36. In the next lemma we show

that 3^ is a determining class by applying Lerya 2.

Lemma 3. The class 3^ is a determining class.

Proof. The proof that 31 is a determining class is accomplished by

showing that 31 is a field and that 8(31 } = C. From Lemma 2 we have

that (31(D •••© 31 } = Zy is a field and that e(3) _	 It is

easy to show that 3 is a field and that 3 C 3k- Therefore

R{3k ) _	 and thus 3' is a determining class by the extension theorem.

The next theorem follows directly from Theorems 1-3 and Lemmas

1 and 3 by the same proof used in the case k = 1; cf. [1], Theorem

ie

8.1.

Theorem 4. Let	 ( n} and	 P	 be probability measures on	 (Ck,Lk).

Then (i) and (ii) are necessary and sufficient conditions for 	 Pn > P:

(i) the finite-dimensional distributions of	 Pn converge weakly

to those of P;

(ii) the families of marginal measures 	 (P1 on (C,C)	 are

tight for	 i = 1, ... ,k.

8



Weak Convergence of Probability Measures on D 

We turn our attention now to the space D, the space of all real-

valued functions x(t) on [0,1] that are right-continuous and have

left limits:

(i) for 0 < t < 1, x(t+) = lim x(s) exists and x(t) = x(t+);
s I t

(ii) for 0 < t < 1, x(t-) = lim x(s) exists.
s t t

This space is natural for studying stochastic processes having jump

discontinuities and is somewhat harder to deal with than the space C.

Skorohod [10] has introduced the following topology on D. Let A

denote the class of strictly increasing, continuous mappings of [0,1]

onto itself. For AEA, A(0) = 0 and X(1) = 1. The metric d(x,y),

for x and y in D, is defined to be the infimum of those positive

F_ for which there exists a XEA such that

supt !At-tj < E

andV

supt Ix(t)-y(kt)I < E .

A sequence of elements {xn) belonging to D converges to x in the

Skorohod topology if and only if there exists functions X  in A such

that lim xn(Xnt) = x(t) and lim Xnt = Xt, both limits being
n -+ w	 n --3 w

uniform in tc[0,1]. With this metric D is separable, but not complete.

J For functions XcA we shall write Xt for X(t).

&i.;
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Fortunately, there is another metric d0 which is equivalent to d, in

the sense that it generates the same Skorohod topology, but under which

D is a complete separable metric space. For XcA let

1.t-Xs
IIX II = sup Ilog t-s

s^t

and define d0(x,y) to be the infimum of those positive E for which

there exists a X in A such that

IIX II < E

and

sup Ix(t)-y(Xt)l < E
t

From here on we shall assume that the metric on D is d0.

Now let Dk the product of k copies of D, with the product

topology. We shall assume that the metric D  is defined as

d^(x,^y) =	 max	 id0(xl,yl)}. Again we have Dk a complete separable
l < i < k

metric space and Ak, the class of Borel sets of Dk, equal to the

product a-field j@ x ••• ig. The mapping Atl.o.t ^ for 0 < t  < ••• < t^ < 1

carries xEDk into (x(tl),...,x(t^)) P<	These mappings are not

everywhere continuous on D  which complicates the analysis of measures

on this	 .s ace However, n	 is measurable and we can define theP	 s tl ... t i,

class 3k of finite-dimensional sets in j&k as was done for (Ckye);

cf. [11, P• 236.

Let TO be a subset of [0,11 and define	 to be the family
0

i.'
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of sets

3T	 { nt1 .. t H : 
HE Rkx ^; 

tl, ... , t 1 0.9 ¢ >_ 1)

0
	
1— ,E

For k 1, 3T Js a determining class provided TO contains 1 and
0

is dense in (0,1); cf. (1], p. 237. Using Lemma 2, we next show that

3k is a determining class. The proof is the same as that for Lemma 3
0

and therefore omitted.

Lemma 4. If TO contains 1 and is dense in [0,1], then 	 is a
0

determining class.

In order to prove a theorem for D  comparable to Theorem 4 for

Ck we define a subset of [0,1], TV for every probability measure

P on (Dk , ,&
k

). A point tETP if and only if P(Jt ) = 0, where

Jt = {x : x(t) # x(t-))

The set J  is the set of x's for which At is discontinuous. Using

Billingsley ' s((11, p. 243) argument one can show that T  contains 0

and 1 and its complement in [0,1] is at most countable. With this

preparation it is easy to prove the analog of Theorem 4; cf. [11,

Theorem 15.1.

Theorem 5. Let (Pn ) and P be probability measures on (Dk,Sk).

Then M and ( ii) are necessary and sufficient conditions for P 	 P:

(i) Pnn^l.. . t => PA	 whenevert whenever tl,...,tjeTP^
1	 @	 1

i.,
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(ii) the families of marginal measures {P n} on (D,,O), for

i = 1,...,k, are tight.

5. Applications to Sums of Random Vectors

Theorems 4 and 5 enable us to extend many of the results in [1] on

functional central limit theorems for sums of random variables to the

f	 case of random vectors. These extensions follow almost immediately as

we shall show in the following examples.

For the applications to be presented here it is convenient to

introduce the following terminology used in [1]. Let X be a measurable

mapping from a probability space (Q,S,P) into a metric space S;

measurability of X means X 1$ S. We shall call X a random element

of S. If S = R1, we call X a random variable; if S = Rk we calls

X a random vector; and if S = Ck	kor D, we call X a random function.

The distribution of X is the probability measure P = PX 1 on (S,g).

We shall say a sequence (n) of random elements of S converges in

distribution to the random element X, and write

X > X

if the distribution P  of n converge weakly to the distribution P

of X : P  > P. While this definition requires that the range S and

topology be the same for the random elements X, X1, X2.,..., the

domains (Q,S,P) may be different. This terminology does not give us

(
t	 anything new, but rather it simplifies the statement of many results.

{	
For convenience later we restate Theorem 3.
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Theorem 3'. If n and h is a measurable mapping of S into S'

satisfying P(XEDh ) = 0, then h(Xn ) > h(X) .

'-

	

	 Let $l, 12,... be a sequence of independent identically distributed

random vectors (dimension k) on some probability space (Q,g,P) with

mean 0 and covariance matrix Z. where E is positive definite.k	 ti	 N

Define the partial sums SO = 0, Sn = ^l +	 + ^n for n > 1. With

this set-up and the help of Theorems 4 and 5 it is easy to prove the
F

vector equivalents of Donsker's [4] theorem in either (C k,e) or

I	 k k
(D ,^ ). To this end let W be a random element with values in Ck and

with k-dimensional Wiener measure as its distribution. Form the random

elements Xn of Ck as follows:

2	 2
.=	 (1)	 X (t,w) _ = S	 (w) + (nt-[nt] ) =n	

^ [
nt]	 ^jn [nt]+l

i

for [nt]n -1 < t < ([nt]+1)n-1, where E-^ is the square root of E-1;
j 1 — 1 ^ 1	 v	 ti

i.e., E-	 E-*^'. Then the functional central limit theorem

becomes

Theorem 6. Let the random vectors g 	 g2,... be independent and

identically distributed with mean 0 and finite, positive definitev

covariance matrix E. Then the random elements defined by (1) satisfy.
ti

X >W^n	 ti

is

(2)

Proof. We shall apply the sufficient conditions of Theorem 4. First

13



we show that the finite-dimensional distributions of X n converge to
ti

those of W. The argument used for this part is essentially that of [1],
ti

p. 130. For a single time point t we muss show that

n(t) > W(t)

i_2
First observe that (Xn(t)	 S[nt]^ < I1^+ I 2 ^[nt]+11' where for

Yn	 Vn
i_2

xeRks 1XI = {( x 1 )2 + ... + (xk )2^. Hence Jxn(s) -^̂--^ S [nt]	 goes

Yn

to 0 in probability and thus by Theorem 4 of [1] it is sufficient

to show

i
-2

T S [nt] _> W(t)

But this follows from the Lindeberg-Levy central limit theorem and the

Cramer-Wold device; [1], P. 93• For two time points s and t with

s < t we must show that

(n(s),n(t)) > (W(s),W(t))

which follows by Theorem 3' if we can show that

( n( s ), n( t )- n( s )) > (W(s),W(t)-W(s))

i"

Again for similar reasons it suffices to show that

14



e.'

Z-*	 Z4	 Z4
{3)	 T+S[nail ^sjr,t]	 +Sjns]	 { W(s)'w(t)"`,r(s))

Since the I i 's are independent, the components on the left are :inde-N

pendent. Hence the above result for one time point and Theorem 3.2

of [1] establishes ( 3). For three or more time points the same method

can be used. This completes the proof of condition ( i ) of Theorem 4.

^ii To demonstrate condition (ii) we note that of the random element

n(t,w) of C has distribution Pn, the marginal measure of P n (the

distribution of}C 11 ). Hence Pi converging weakly is equivalent to

X (t,G)) converging in distribution. But Xn	 W. the Wiener measure

on (C,C), by Donsker ' s theorem. Thus ( 2) follows from Theorem 4.

Consider now the random elements Y of D k defined as
Zn

i

E
ti

n

Let Wk denote Wiener measure on (Ck,e). To extend Wk to ( Dk}J&k)

observe that	 k and that; the relative Skorohod topo-Io&r _,i C 

coincides with the uniform topology, so hence Aek
k
 implies Lliat

A n CkE(^. Therefore we can extend Wk to ( Dk,d) by letting IWA(A)

W e-(A n Ck ) for AE^gk. From now on let W be a random element of Dk

with the e.titerd _ + f^ for distribution. Then the same ncthcd	 in

Theorem 6. , along with Theorem 5, yields

Theorem 7. Let the random vect.nrs tl, I2, ... be inde*^er.a.ent Rid
.^.^.. _

15



identically distributed with mean 0 and finite, positive definite

covariance matrix E. Then the random elements defined by (4) satisfy
ti

{5)	 Y ^> wti .^n 

We now turn our attention to stationary q)-mixing sequences of

random vectors. For this application we follow (1), Section 20, in which

the functional central limit theorem is developed for the case k - 1

(sums of random variables). Let

be a strictly stationary sequence of k-dimensional random vectors defined

on a probability space (ft,g,p). For a < b, define b as the a--field

generated by the random vectors alp " .,1Pb; define m_M as the a-field

generated by ...,E _1, ; and define ^ as the a-field generated by

AV lb+1' " ' - For a non-negative function (P defined on the positive

integers we shall say that the sequence {^ i } is (p-mixin if for eachN

k	 < k < w) and each n (n > 1), Elelhand E2e 0	 implies

that

(7)	 IP(El ^ E2) - P(E1 ^(E2 )1 < ^(n)6^(El)
I=.

We shall be interested in functions (P for which (P(n) -+0 as n ->=

at a particular rate. Thus for large n (7) implies that the future

and the past are essentially independent. We mention two examples of

(p-mixing sequences which are vector generalizations of those given by

Billingsley.
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Example 1. The sequence (6) is said to be m-dependent if the vectors

(li p ... Ilk ) and (jk+n, ... ,13 ) are independent for n > m. An m-

]	 dependent sequence is (P-mixing with cp(n) = 0 for n > m. Such an

t	 example can be obtained by forming the sequence

.n = g0^n + a1^n-1 + ... + amrtn-m

where the a  are constants and the ^i are independent, identically

distributed random vectors.

Example 2. Let (fin ) be a stationary, irreducible, aperiodic, Markov

process with finite state space, S. Let f be a mapping from S into

R - and define In 2: (fin ) . The sequence Q  ) is cp-mixing with

CP(n) = apn (a > 0, 0 < p < 1) by the same argument used by Billingsley.

If S is infinite and [^n] is a Markov process satisfying Doeblin's

condition with one ergodie class and is aperiodic, (i n) is also

(P-mixing.

As before we define SO - 0, Si - 1l +	 + 1i and let Zn be

the random element of D  defined as Zn(t:w) - S[nt](cu)/J. Then the

functional central limit theorem for q)-mixing sequence can be stated as

follows.

Theorem 8. Let [Etn ) be a strictly stationary q)-mixing sequence with

E[0) - 01 E[F lb] finite, and

	

	 cP! < co. 'Then the series
n=1

ao

($)	 E - E[t0 Io ] + 2	 E[Jo I'An

17



converges absolutely. If E is positive definite, then

E4Z >WIV tin	 ti

Proof. The fact that (8) converges absolutely follows immediately from

[1] 0 Lemma 1, P. 319. To prove (9) we apply Theorem 5. First we must
i

show that the finite-dimensional distributions of 
E~2Zn 

converge to

those of W. For a single time point we must show that
nI

(10)	 E 2Zn(t) _> W(t)

For any s £Rk the sequence of random variables 18•9 i : i = 0,±1,...}

is strictly stationary and Cp-mixing. Furthermore, E[s-10 ] = 0 and

the variance of s • ^ is finite. If E is positive definite, then
.V

E[(s • 10 )2 ] + 2 T E[(s•9)(s•1k)] is positive and finite. Hence an
k-1

application of the Cramer-Wold device and Theorem 20.1 of [1] completes

the proof of (10). For two or more time points we use the method of

[1], P. 337-8. We shall illustrate the method by showing that

(Unsvn ) _ (E izn("' E i(Zn(1)-Zn(t)))

—> (W(t),W(1)-W(t)) .

Let {pn} be a sequence of positive integers going to infinity slowly

enough that n-1pn -+0, and let

(9)

18



Vn E 2izn ( 1)-Zn(t+
n-lpn))

By stationarity vn - Vnh has the same distribution as E-iS /J,
ph

which in turn converges in probability to 0 by an application of the
ti

Cramer-Wold device, Chebyshev's inequality, and Lemma 3, p. 323 of [1].

Therefore by Theorem 4.1 of [1] we only need to show that

(11)	 (un,Vri) ^> ( w(t),W(1)-w(t)) .

Since the 1
i 
's are (p-mixing, for H1. H2eRk

f plUnEHl,VneHO - PlUnEHl ) P{VnEH2 < cp(pn) _+ 0 .

The random vectors W(t) and W(1) - W(t) are independent and henceN	 N	 y

a simple application of Theorem 3.1 (see also equation (4.15)) of [1]

completes the proof of (11). The higher dimensional distributions can

be handled in the same manner.

To show condition ( ii) of Theorem 5 we must demonstrate that
i

(E Zn ) i converges weakly. If we let ^k = E-2 k, then it is easy to
00

check that E[n rW'] + 2 	 E[no,^] = I, the k x k identity matrix.

Furthermore, the sequence (nk) is strictly stationary, cp-mixing, and
ti

E%) = 0. Therefore, by the functional central limit theorem for

9)-mixing sequences of random variables ( cf., [1], Theorem 20.2)
1

hi +	 + 
n[nt])1n2 

converges to the one-dimensional Wiener process.

But this sam is simply ( iZn)i, and hence the proof of the theorem is

complete.
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As a final application of Theorem 5 to sums of random vectors, we

shall mention functional central limit theorems for sums of a random

number of random vectors. Again we let Sn = l + •-- + to and define

the random element X  in D  by

i
E-z

Xn(t:w) _.,r, S[nt](W)
n

where E is an appropriate positive definite matrix. Let vn(w) be
ti

a positive integer-valued random variable defined on the same probability

space as the In is. Define

2

n(t,w)	 vn(w) S[vn(w)t I(w )

Then Theorem 18.1 of [1] can be easily generalized to obtain

Theorem 9. If vnfan ^ 8, where 9 is a positive constant and the

an are constants going to infinity, then

X => W^n	 —

implies

Y
n => W .^	 ti

This result yields functional central limit theorems for random

sums of independent, identically distributed random vectors (Theorem 7)

and for random sums of (P-mixing sequences of random vectors (Theorem 8).

Finally, Theorem 3' results in limit theorems for appropriate functionals

C.
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of random sums.

While we have not attempted to carry out the details, it seems

very likely that one could obtain vector versions of the functional

central limit theorem in the case where the summands are in the domain

of attraction of a stable law. For k = 1 these results have been

obtained by Skorohod [11].

6. Application to the Multi-urn Ehrenfest Model

In the multi-urn Ehrenfest model N balls are distributed among

k + 1 (k > 2) urns. If we label the urns 0, 1, ... ,k, then the

system is said to be in state i = (il,..•,ik) when there are i j balls
ti

in urn j (j = 1,...,k) and N - 1 • i balls in urn 0. At discrete

epochs a ball is chosen at random from one of the k + 1 urns; each of

the N balls has probability 1IN of being selected. The ball chosen

is removed from its urn and placed in urn i (i = O,l,...,k) with

probability pl, where the pit s are elements of a given vector
k

(p0,p),= satisfying p  > 0 and k pl = 1. We shall letE
O

XN(l)

denote the state of the system after the 
nth 

such rearrangement of

balls. Define

1

YN([nt]) = (XN([nt])-NE)/N2

and let	 (0) _ [N?y] 1 + Npl ] with probability one, where

_ 1	 k	 ^k
0 - (y0''..,y0) is an arbitrary element of Rk. Our purpose here is

to apply Theorem 5 to show that Y  => Y, where Y is a k-dimensional

analog of the Ornstein-Uhlenbeck process.
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We showed in [7] that a continuous version of YN converges weakly.N

Theorem 2 of that paper shows that the finite-dimensional distributions

of YN converge to those of Y. To complete the proof we must show

that the marginals of YN converge weakly to a probability measure. ItN

is easy to see that the process YN(1) is a one-dimensional random walk.

Using Stone [12] it is a simple matter to show that YN([Nt]) converges

weakly to an Ornstein-Uhlenbeck process. This campletes the proof that

YN > Y and considerably shortens the original proof given in C71.

Unfortunately, for more general random walks in k dimensions one

is not likely to have the marginal processes be random walks, so that

their weak convergence will present a more difficult problem.
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