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ABSTRACT

Cold flow studies on doublet and triplet impinging jets were conducted

to define the major variables affecting the mixing and distribution

of injected propellants. The well known criteria for optimum mixing

of the doublt impinging jets is confirmed by an analytical model of

the mixing process.

Investigations on the triplet impinging jets show a similar relation

for optimum mixing. But in this case the data indicate a clear effect

of the included impingement angle.
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1. Formulation of the problem

The characteristic operating properties such as the degree of energy

conversion, wall loads, combustion stability of rocket combustion

chambers, are shaped by the injection head and the individual injection

elements forming it. At the present time knowledge of the influential

vales is still so incomplete that the construction [design] of an

injection system generally requires a long term and expensive experi-

mental program.

Fundamentally, the injection elements, over whose spray field cross

section the values are constant for the mass flow rate and the mixture

ratio, permit us to obtain the best specific impulses and the volume-

optimum combustion chambers. In the most practical cases, however,

due to the limited thermal, chemical, and dynamic load capacity of the

walls, profilings of the mixture and mass distribution must be pre-

sented. The natural non-uniformity [heterogeneity] of the distribution

profiles of individual elements meets this requirement insofar as the

elements are arranged in a practical manner.

Therefore, the problem exists of investigating the mathematical inter-

-	 relationships [variables] in the formation of mixture-ratio and mass-

flow-rate distribution of the remaining injection elements and of

optimizing them first with rebpect to the degree combustion efficiency.

This report describes the results of-hydrodynamic laboratory investi-

gations on doublet and triplet impinging-stream elements.

Further investigations concerning the actual behavior of the injection

elements in running propulsion units under various conditions and with

different propellants have, for the most part, already been performed

and are published in two further reports.
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2. NomencZature

Cross sectional area of a collecting tube

Cross sectional area of the orifices [nozzles]

Cross sectional area of a measuring tube

Nozzle diameter

Mixing efficiency of the components

Height of liquid level in a graduated measuring glass

Momentum [amount of motion] of the emerging jets

Momentum with respect to the mixing process

Captured [collected] mass at position x

Mass throughput per second

Total collected mass

Number of samples

Number of samples with i2 X < S2o

Number of samples with ax > ao

Mass flow rate at position x

AP1;4P2 [P/mm ] Pressure gradient in the nozzles

t	 [s]	 Duration of a test

W 1 ; W2 [mm/s] Stream [jet] velocity

a	 Angle between nozzle axis and the vertical

P	 [ 9 ] Density
nun

P X	 [g/mm ] Density at position x

d	 Mean deviation of mass distribution

2	 Mixture ratio of the components

S2 0	Mean mixture ratio

AQM	 Mean mixture ratio deviation

Subscripts

1, 2	 Designation of the components: in a triplet 1 stands for
the outer nozzle and 2 stands for the inner one

X	 Any [arbitrary] point of the working plane

leeilly Jranelalione - 19711 GALWAY AVENUE - GARDENA, CALIFORNIA 90247 - Telephone: (213)121-=l
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e.

Test equipment and measuring device

TL

	

	 It may be mentioned at the beginning that one component of the propellants

in order to simplify the tests is replaced by water and the other by a

colored [dyed] aqueous solution. Any influences due to viscosity,

density, or surface tension are therefore eliminated.

The test apparatus consists of the storage tanks for the simulated pro-

pellants, the necessary measuring and control devices, and the clamps

[supports] for the interchangeable nozzles. Figure 1.

Figures 2 and 3 show injection heads with doublet and triplet impinging

jets as they arrived for investigation, respectively.

The sprayed liquid is collected 110 mm from the point of impingement in

tubes with a 4 mm internal width and then fed further into the measuring

tubes.

The mass-flow-rate distribution results from the volume determination

of the liquid in the graduated measuring glasses and in the measurement

of the test period.

The mixture ratio is determined by means of a photometer.

4. EvaZuation procedure

Mass-flow-rate and mixture-ratio distributions in the cone of spray are

shown as profile cross sections or as spray projection above the working

plane.

The mass flow rate often used below is defined as the mass flowing at

position x per second through a collecting tube with the cross-sectional

area As.

P (X) = t	 -
The quantity passed through the collecting cross section corresponds to

the volume of liquid measured in the test glass with cross-sectional

area AM.

Hence the
a 

reeC sult for the local mass flow rate is:

Kiil^y ./ranibion! - 19711 GALWAY AVENUE - GARDENA, CALIFORNIA 90247 - rekphaw: (213) 321-Ml
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P(x) = Aa • t • Hx
	 (1)

where P X is the density of the collected liquid and HX the height of
the liquid level in the graduated measuring glass at position x.

The ratio of measurement to collection cross section as well as the

density are constant (both components are water). Thus, in order to

determine the local mass flow rate, only the height of the liquid level

in the graduated measuring glass and the test length (duration) need

to be measured.

In order to judge the degree of uniformity (homogeneity) of the mass

distribution of the propellant, the mean deviation of the local masses

from the arithmetical mean of all individual quantities is obtained.

The equation used for the calculation is:

a ^
rn
 

L ^ m t^t	 IT)z^ 

1/2

The definition of the mixture ratio that is to find general use in the

hydrodynamic tests is:

St2 fifi--- 	 (3)

The subscript 2 here always refers to the colored component.

The attainable degree of mixing of an individual element can be given

as the mean percentage deviation of the gross or mean mixture ratios.

A corresponding relationship that supplies well utilizable results and

that is already generally used in the respective literature comes from

J. H. Rupe (ref. #41:
i	 n ►r

M X (ilo —nx) 	 EmX (Qo —Qx)0	 iEm = 10011 -- (
	 o ' m tot +	 o' ' m tot J	

(4)

Complete mixing of the components means Em = 100%, no mixing at all

Em - 0%.

In order to make possible comparisons with other authors, this equation

will also t/bcce^^ used here. In the future, however, the mean deviation of
$0 ICiil(y Jransl

t/
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C.

the gross mixture ratio corresponding to the simple equation

am — n mX1AgX1
i mtot

should be better obtained since the results are clearer and sources of

error are excluded in extreme mixture ratios.

5. Investigations on doublet impingement elements

A large number of tests have been performed with doublet impinging jets

of the most diverse configurations where first the explanation of the

effects of the pressure level, nozzle diameter, and the included impinge-

ment angle had to be made.

Fundametally in doing this, the observation can be made that the jets

penetrate appreciably into one another. This generally known phenomenon

is always present no matter what spray conditions are set up. Other

details concerning the shape of the spray profiles and projections under

various injection conditions are to be taken from figures 4-7.

In order to illustrate the mass-flow-rate distribution setup, figure 8

contains the local mass flow rate for an asymmetric element in perspective.

An asymmetric impinging doublet is to be understood here as an element

with different jet diameters or different jet impulses.

5.1 Influences of hydrodynamic values on the mixing efficiency of
symmetric doublets

Hydrodynamic values, such as pressure gradient, nozzle diameter, and

the included impingement angle, have an effect on the resultant mixture

in addition to the shape of the spray field.

Here the following statements can be made:

a) If the pressure gradient of both jets varies in impinging jets of

equal diameter and equal density, then a slight decrease in the

mixing efficiency is set up as the pressure gradient increases.

Figure 9.

b) If with symmetric impinging jets there is a variation in the diameter

$4 /eiilly -%,j4lims — 19711 GALWAY AVENUE — GARDM& CALIFORNIA 90247 — T.kpk~: (213) 321-0x1
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of the jet, then the degree of mixing decreases as the diameter of

the jet increases. Figure 10.

c) Especially interesting is the effect of a variation of the impingement

angle. The degree of mixing exhibits a very pronounced minimum at

an angle of 2a = 90°, while it reaches higher values rapidly at

angles deviating from this. Figure 11.

Of practical significance here is only the influence of the impingement

angle since a variation can cause an appreciable improvement in the

degree of mixing.
g

5.2 Optimization of spray conditions of individuaZ elements

The densities of the components different in most propellant combinations
and the only slightly variable mean mixture ratios do not frequently

permit the use of symmetric impinging jets.

An exhaustive investigation of the degree of mixing in asymmetric jets
is therefore absolute necessary. These types of investigations hat

already been performed by Rupe [ref. #41, Elverum and Morey [ref. #

and others. A systematic variation of all effects [limiting quanti	 a

finally led to the result that the degree of mixing always reaches

maximum if the relationship

2
P1•W1•Di	 1
P2 •w 2 • 2

is obtained.

Our own investigations confirm this result. Figure 12.

Relationship (5), however, can also be found in an analytic manner; i.e.,
if the jet impulse that become effective [active] in the time unit is

introduced into equation ( 5), then the result is:

1 1	D1
T2 T

This means the momenta [amounts of motion] of the jets must behave like

the jet diameters if the degree of mixing is to reach a maximum value.

, le;r#y JLxslali mj - 19711 GALWAY AVD= - GARDBNA. CALIFORNIA 90247 - relmhow. . 1217) 921.01xl
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It can therefore be assumed that the momenta alone are decisive for

the mixing of both components.

In visual observation of the "impinging point," an impinging area can
be clearly perceived. _L

.11 inclination to the angle bisector between
the jets essentially appears to be determined by the jet diameters.

It is now to be assumed that the exchange [replacement) of both com-

ponents takes place perpendicular to this impinging area. The resultant
mixture will be the greatest if the actually effective impulse compo-

nents that must be directed perpendicular to the resulting direction

of spray are the greatest. This is the case if the major axis of the

impinging area and the resultant jet direction coincide. Figure 13.

If this model is correct, then equation (5) must be confirmed by means

of the impulse equation and simple geometric relationships.

The inclination of the impinging area that is formed in the impingement

of two jets is established with respect to the angle bisector between

the jet d-rections by the two jet diameters D 1 and D2.

According to figure 13 the following is true:

sin (a — S) — 
2

(7)

sin (a + 6) =

By combining both equations and solving  for the ratio of the jet diameters,
we obtain:

DZ = 1 — t S 1/t a	 (8)
D 1	 1 + tgs 1/tga

for the angle S the result from this is:

tg S = 1 — ( D2/Di ) . tg a	 (9)
+	 2	 1

Therefore, the inclination of the impinging area is defined with respect
to the angle bisector of the impingement angle.

$4 l eilly 5"nilafione - 19711 GALWAY AVENUE - GARDENA, CALIFORNIA 90247 - Telephone: (213) 321-0881
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The resulting direction of spray is obtained by means of the jet impulse.

It is:

tg 1P — 1 - (Ii/IJ . tg a	 (10)
+ 12/1-1

If the amount of motion [momentum] existing for the mixing process is

designated by J, then the portion of J becoming .active on mixing is,

according to figure 13:

J act = J - cos (0 — 9) 	 (11)

The mixing vector is the greatest for the case cos	 0, thus

for s = 9.

Therefore, equations (9) and (10) can be set equal [to one another] and

we obtain:

IZD

	

s 2	 (6)
I i	D1

thus, the result found by Rupe in an experimental manner.

It is interetting here that in the optimization of the degree of mixing

with doublet jets, the angle between the two jets is without significance.

5.3 Mean deviation of the mass distribution

The mean deviation of the mass distribution in the impinging doublets

has been obtained only within the framework of a limited investigation.

In doing so it was shown that the symmetric elements exhibit the smallest

deviations.

The asymmetric doublet jets show the smallest deviations if Rupe's

mixing criterion is just fulfilled.

The mean deviation of the optimized jets with respect to mixing efficiency

having a spray angle of 2a = 90° amounted generally to 6 = 0.09-0.13.

leeitty JraniLone - 19711 GALWAY AVENUE - GARDENA. CALIFORNIA 90247 - rdephone: (213) 321-0881
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6. Triplet impinging jets

6.1 Spray profile and spray projection

The spray projection of impinging triplets is similar to an ellipse

whose major axis is perpendicular to the plane that is covered by the

nozzle axis. It is generally true that the spray ellipse is quite

elongated and the sprayed mass is concentrated along the major axis.

Typical spray projections of the triplet jets are shown in figure 14

(here it is observed that the two axes have different scales). Spray

field shape and size as well as the mass-flow-rate and mixture-ratio

distributions are considerably more strongly affected by variations in

the pressure or diameter ratios than with the doublets.

The comparison of two spray projections in the already mentioned figure

14 shows the influence of the pressure ratio Op t /©p 2 on the shape of

the spray field. In general, the following can be inferred from the

figure:

The middle jet is split into two partial flows with large pressure ratios

where both partial flows move to the outside along the major axis of

the spray ellipse and are therefore responsible for the elongated shape.

The angle between the two partial flows is a function of the pressure

ratio. It becomes smaller as the pressure ratio decreases.

The division of the middle jet is explained-by the perspective repre-

sentation of the mass-flow-rate distribution in figure 15.

6.2 Mass distribution of triplet elements

The mean deviation of mass distribution has been obtained for impinging

triplets under various spray conditions.

The results are plotted in figure 16 and show the mean deviation of the

mass distribution as a function of the diameter ratio and of the impulse

ratio.

The curves show pronounced maxima whose location with respect to the

diameter ratio is determined by the impulse ratio. At diameter ratios

$4	 silly Jranstafiow - 19711 GALWAY AVENUE - GARDENA, CALIFORNIA 90247 - Telephone: (213) 321-Mll
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that are greater than 1.5, the mean deviations practically correspond

to those of the doublets and they are then almost independent of the

impulse ratio. At diameter ratios below 1, the effect of the impulse

ratio on the other hand becomes very strong.

The broken line drawn in the diagram connects points of optimum mixing

efficiency. It makes clear the fact that the triplets cannot be

optimized with small diameter ration of p2 C 1. An arrangement (inter-

pretation) that would be optimum with respect to the mixing efficiency

causes large mean deviations in the mass distribution while the selection

of large jet impulse ratios and hence smaller deviations of mass distri-

butions lead to a poor mixing efficiency.

6.3 Optimization of spray conditionF

It can first be assumed that for the optimization of the spray process

with respect to the mixing for the impinging triplets, similar conditions

are true as for the doublets.

The results published by Morey and Elverum [ref. #51 support this

suspicion.

Both authors .€ound that the relationship

P1 •wi	
o.2s

P2'w2 (2Aj

	k'

2
	 (12)

corresponded to their test results. The constant k' is still a function

of the spray angle a, i.e., when 2a = 90 0 , k' = 0.42, while when 2a = 60°,

the constant k' will be equal to 0.66. The tests were performed in

the range of diameter ratios from ^ x 0.71 to D- = 1.29. However,

it is restrictively stated that the equation should be used if possible

only in the vicinity of diameter ratios of D- = 1.22.

Our own tests showed that the triplets are extraordinarily sensitive

to differences in the mean mixture ratio as well as the slightest errors

in the finishing and alignment of the nozzles.

This sensitivity makes it necessary for example to base the evaluation

on the measured mean mixture ratio, since the evaluation on the pressure
vv

'
 l/ C^
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gradient also leads to considerable errors in only slight different flow

coefficients of the nozzles.

The equation to be expected then is:

Al — krP2(rh12^q
A2	 P , 12) 

The tests were performed in the range of nozzle surface ratios of A =
2

0.25 to - = 2.75 and with spray angles of 2a = 60°, 90°, and 120°.

The results are plotted in figure 17. The tests show that for each

injection element an optimal mean mixture ratio exists with respect to

the degree of mixing, the value of which is a function of the diameter

ratio D i and of the area ratio 
X- 

of the elements respectively.

The optimum values of the mean mixture ratio for the area ratio with

respect to the degree of mixing were plotted on double log paper.

Figure 18 shows that the lines result here whose inclination is only

a function of the spray angle a.

The constant in equation (13) can be taken from the diagram in figure

18 and one then obtains the following relationships:

(13)

^= 0.81 P2( 12
0 52:

A l	 P2 fil	 0-451

= 0.83FT
-11

when 2a = 60° and 1200

when 2a = 900.

and

An essential difference in the behavior of the impinging doublets and

triplets is the clear effect of the spray angle in the latter. Further-

more, it is striking that the exponent at the 60 0 and 120° 31ements

differ from that of the 90° elements by a factor of sin 600* If the

exponent for the 90° elements is assumed to be exactly q = 0.453, then

the following general relationship can finally be inserted for the

exponent:

q = 0.453

sin 2a

;4 Pil[y Jranalation! - 19711 GALWAY AVENUE - GARDENA, CALIFORNIA 90247 - Telephone: (213) 321-Ml
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If the obtained values are compared with those of Elverum and Morey

[ref. #51, then considerable differences are partially established.

The two authors found the value 0.571 for the exponent q, i.e., this

value is independent of the spray angle. For the constant K, the values

K = 0.634 for 60 0 and K = 0.821 for 90 0 are named.

Whether these differences are possibly to be attributed to the effect of

the density could not be previously explained (Elverum and Morey used

water in kerosene as simulated propellents). Investigations are being

performed concerning this.

7. Summary

The hydrodynamic variables in propellant injection by means of impinging

doublets and triplets are being thoroughly analyzed.

A model that confirms the relationship for optimizing the degree of

mixing found by Rupe [ref. #41 in an experimental manner is given and

described for the mixing process for the doublet elements.

From the test results for the triplet elements, an analogous relation-

ship can be derived, but where the included impingement angle represents

an additional effect in contrast to the doublet elements.

8. Conclusion

The systematic investigation of the hydrodynamic variables of injection

elements was begun in 1960 at the Trauen Field Office by Mr. Buschulte.

It was first report on at the Third European Space Flight Congress at

Munich in 1963 [ref. #11.

In this literature the relationship between the effects resulting from

the injection system and the propulsion unit performance under various

internal and external conditions is analyzed in a theoretical consideration

and simultaneously the path is shown for the many investigations to be done.

The preliminary work led to the formulation of a research contract of

BMwF on "Investigations on Orbital and Control Propulsion units" in the

framework of which investigations of the mixing heterogeneity of various

injection elements were first performed by Mr. Schadow [ref. #21.

_Jranilation 1 - 19711 GALWAY AVENUE — GARDENA, CALIFORNIA 90247 — Telephone: (213) 321.0881
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Fig. 1: Test equipment for hydrodynamic
investigations
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Fig. 2: Doublet impinging-stream
injection head

Fig. 3: Triplet impinging-stream
injection head
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Formation of the impinging area with doublet impinging elements
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Perspective representation of the mass-flow-rate distribution of triplet
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Fig. 16: Mean deviation of the mass distribution against
the diameter ratio
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