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Lambert's 'problem and Crnss Steering

Introduction

The construction of a free-fall conic trajectory requiring a given
transit time between two fixed position vectors is called Lambert's
Problem. In reference 1, S. Pines presented a solution for this pro-
blem which has several attractive features, including uniform repre-
sentation for all types of conic orbits, reasonable speed, and the
ability to handle cases where multiple revolutions around the central
body are required. Whet, this method is incorporated into a scheme of
guidance logic, three facts become apparent. First, the possibility
of multiple orbit solutions may be discarded, with a resulting simpli-
fication of -the formulas. Second, the guidance logic needs the time-
rate-of-change of the solution velocity vector for obtaining the direc-
tion of the thrust vector. This logic (cross-product steering) is
described in many places. See, for example, reference 2. Third, the
situation with respect to first guesses is much improved since the
guidance logic involves repeated solution of Lambert's P.-oblem with
only slowly varying initial position and time.

This note consists of two parts. One gives the formulas for solving
Lambert's Problem in the case of only single orbits; the other gives
formulas for the derivatives of several parameters when the initial posi-
tions change in accordance with a given velocity vector and a fixed ter-
minal position and time.

Simplified Equations _for Single Orbits

Let the motion take place in a three dimensional cartesian coordinate
system with a point (= body) having P for a gravitational constant at
the origin. Lot R (t) be the vector representing the position of the
second body at time t 	 We state Lambert's Problem, then, as follows.:
Let the moving body be at position R(to) = Ro at time t o , and at posi-
tion R(tl) = R1 at time t 1 = to + At, At being the transit time. The
solution is that trajectory along which the body will travel from Ro to
Rl in elapsed time At. It can be described by the position and velocity
vectors at time to,, Thus, the solution is found when the in*tial velocity
vector VR = VR (to) is obtained. Let:

ro = (Ro . Ro)

and rl = (Rl . Rl)

Then the angle 6 between the position vectors satisfies the relations

cos 6 = (Ro • Rl)	
(2)
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Unfortunately, equation (2) is not sufficient to define b; in the
plane determined by Ro and R , the motion may be through either of
two angles, one less than, t a other more than, 180. The case where
Ro and El are parallel, and do not determine a plane, is not considered
Pere. Suppose, temporarily, that the motion takes place through the
smaller of the two possible angles. Let Rlbe the unit vector parallel
to the angular momentum vector if the motion were to take place in the
smaller of the two angles:

H1=RoxR1

R0 
x R11

The current unit angular vector Ho = R o x Ro , where Ro R (to) is the

I R0 x i 0
current velocity vector. Remembering that the guidance logic determines
a thrust vector so as to change the motion from that described by H o to
that described by Hl , we pick the value of 6 to get the smaller change
in unit angular momentum vector. The angle 0 is defined by;

Cos	 ® H1 = ( Ro x Ro )	 (Ro x Rl)	
(3)

IRO x Rol	 IRO x R11

0 will have its smallest value when cos I is closest to +1. In our case,
there are only two possibilities for cos 4, one positive and the other nega-
tive. Thus, if equation (3) should produce a negative value, the unit angu-
lar momentum vector H should be reversed; that is, the direction of motion
should. be reversed, or 6 should be greater than 180 0 . Since only the sign
in (3) is important, for computational purposes, the positive denominators
on the right hand sides may be discarded and the numerator replaced by;

e
	

sgn [r02 ( R0 - R1 ) - do (Ro . 111 ) 3	 (4)

where do = Ro 0 Ro

Equation(l1b) of [la makes use of the function Fo (62 ). For single revo-
17

lutions, it is possible to avoid an F - computation at this point, since

Fo ( 62 ) _ cos 6 = e	 cos	 ,
4	 2	 2
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where a is gust the value defined in (4). Thus,

17 ^ 2ro rl % (61) w arorlpr=+

e 
V	

+ 
rO- R1	 o rl 	 (5)

The solution consists of an iteration procedure, using 02 _ -62 as an
independent variable, when a is the diffe ence in eccentric a omal es
of the two positions. For any value of a, define F

i
 W) =	 e i

jno ( i+2 j )1

( i	 0, 1, ... 5 )	 (6)

Note that a2 as here defined is the negative of the 02 implicitly
defined by equation (4b) of t1]. In equation (11e) of [ 1 1 0 Fo occurs
again, this time as Po (d2), which can be replaced by:AN-

4

kFFO+1 where

k = +1 when a2 > -TT2

-1 when 4? < -n2

The iteration process is as follows: Guess the initial value a 2 of a2.
Compute Pi (an ). For fixed n, the Pi have only the one argument Just
shown, so we drop it for simplicity.

W ro+rl -kv Fo +1	 (7)

G = W312 F3 
+ 17
	 (8)

F23/2

d ( F3 F2- 3/2) . = F2-5/2 [ 3/4 ( F5 +. F32 ) - ^ F4 -	 F2 F4 1

d a,2

dG = 3j8 w	 F3 + 1/8 n 2 F2	
+ W3/2 46	 ( 10)

F2 Wt

4;'

(9)
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(11)
dG

d a2

Teat to see if a n + 1 is sufficiently close to a n^ or if 0 is sufficiently
close to 0 Q t. If either is true, we are through; if not, compute Fi
(azh + 1 ) and return to (7) .

Finally, after the iteration process has converged, the required velocity
vector VR is given by%

VR • i (Rl + f Ro )	 (12)
g

When	 W r

	

; 7,,0
	and f w rl - k »V-1-777"i  	 (13)o 

ro

unless R1 and Ro are separated by 180 0 . (Note nevertheless, that the
iteration process in equations , (7)-(11) will converge even in this excep-
tional case).

Time derivatives

Next, we apply this solution in a guidance schems;. The standard procedure
is (1) to sense the current position and velocity R and ho ; (2) to solve
Lambert's Problem, using these vectors and a given ?arget position R l at
time tl; (3) to use the resulting velocity vector V R = VR (t) to determine
a desired thrust vector; (4) to apply the needed thrust, or to simulate it
in the integrator ; and (5) to return to (1) after some time under the in-
fluence of the acceleration due to thrust and other accelerations, repeating
the whole procedure until the actual and desired velocity vectors agree.

The cross-product steering law for determining the thrust in (3) requires
the time derivative of VR. To compute this requires knowing d n , d W ,

d  d 

and d act . The variables involved--I, W, a , and VR itself--are all

dt

functions of the current position only (the target position and time are
constant in time during thrusting changes), so the derivatives will be
functions of the current position and velocity vectors only.

1 Formula (,10) is obtained from the derivative formulas d Pi 	
(i F	 -

Fi+^) and the recursion formulas-- Pi = ^ + a2 'Pi + 2
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d ro W P 0
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mom"
(70"	

ro	 ro

I

we have that:

d  %: e	 R 1 + do r,	 (r,Rl + r 
I 

RO 	0mow-maga"
r	 r 

0

2

(14)

The derivation of dw and d 2
Tt"	 .17

equation (7) we have dw m do
0

r
0

+ F 
0 
0 (r 

0 R 
I + 

r 
I HO	

+

2 q r 
0

must be carried out simultaneounly. From

kq F 
I	 do 

2

I + F 
0	

dt

At the end of the iteration, we iiave:

( t i.	 t 0) W G 0 
W3/2 F	 + f?

P2
 VP.

Differentiating thin equation ) remembering that 0 in equation (10) is
dG , 	 we get so

dici- + W + (3/2 	 w I	 I" F3 	 + )	 dw
Olt d t T

P2 
3/2	 2  W'-'

dt
(16)

Combining (15) and (16), we have;

312	 V-aw	 4 o w	 (I + F	 do	 (1 + VO )"' do. ) - V F, (A +	 Al )

	

0	 OWMW	 dt	 dt
r 
0

3/2	 2 + 17

	

I + Fo )	 (3/2 w^- F3 + I
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and

dW	 r - w `.	 - (3/2 wi F~3 +	 ) dw
dt	 dt	 ,	

J312 V 
(18)

Finally, noting that (see equation 13):

dt	 8 dt	 dt	 2w r

	 (19)

d„ VR	 I - dig R  + f c	 - l wd0	
d R » 'R (20)dt	 g	 dt	 dt	 ro,'	 dt	 o 0

For step-by-step integration methods, equation (18) may be used to predict
a first guess for cr at the next time step Indeed, if Qt is the integra-
Lion step, and if 012 (t) is the value of 	 at the current time,

(t + At) ^ a^ (t) + d02 !fit.

dt
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