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ABSTRACT

o Eafrfav,"quasi-heutra'l' plasma cbriSi.stihgf:;éf:‘, cold ions" -
embedded in ho£ electrons, the tu:buleni:' motion of ti'xe'ionl
can be described by a system of dynamical-equafiohs détcx‘-’- :
mining the velocity and the electric potential. The system

is submitted to a cascade approx:.matlon and ylelds two

integral equatlons determining the two spectral functionu. i .

Three transport functlons are involved: a transfer ‘
function across the velocity spectrum, a transfer functi’on‘
across the potentiel spectrum, and a production funat:.on
representlng the productlon of potentlal energy from _
kinetic energy and causing an exchange between the two
spectra. Solutions are found for the following cases:,
(a) for a collisionless plasma, /:'vv/é,_x ‘ (inertial sub;.
range), Cy- ~ k—S (dissipative .subrange}, (’b)‘ foi‘ a L
colli“sional‘plasma, F k’z’ (inertial subrange), G{"'ﬂ‘slz" i
(inertial subrange), G- /9,4"5 (dissipative subrange), " ‘
(c) for a dilute suspens1on of charged particles, F~ /3—5_/3
(Kolmogoroff law of inertial subrange), G~ /t‘ls/j(dlss:Lpatlve
subrange). Here F = velocity spectrum, G = potentlal
spectrum, and k - waveenumbe;'. From the spe.-ctral‘re"sul‘t's,' :
the anomalous "diffusi.on")\' is investigated: (a) for a o
weak turbulence, ) a-\g/%z, (COllisional plasma) ' )\A= a’z/wc
(collisionless plasma), (b) for a strong 'turbulenc'e, the
above values of diffusion have to be multlplled Dby a factor
(wc, W, ) R_t _ where t;_ = ué =l (.colllslonal plasma),
and ‘l: =_60° (collis‘iol'nlesls plasma) . Here C\L cyclo- )
“tron frequency, a,"’_{ AZ/M o (7: =‘,, e;l.ectron tempelxature, N



M = ion mass), € = rate of collisional dissipatien of tur-
bulent energy, R = velocity vorticity function = square

of rate of strain, J = potential vorticity funétian.ﬁ{*(?ﬁ‘)j;
The presence of a strong turbulence is to weaken the Qé.
dependenée. The Bohm diffusion is found to be valid for a

weak turbulence in a collisionless plasma.



1. MECHANISM OF ENERGY EXCHANGES IN HYDRODYNAMIC TURBULENCE
AND PLASMA TURBULENCE.

It has long been recognized since Boussinesql that the
statistical effect of the fluctuations upon a mean.,or back-
ground motion, is to produce an eddy viscosity, according to
a mixing-length concept, that, in analogy with the molecular -
motions, will introduce an energy dissipation. The latter
is found proportional to the product of the eddy viscoéity
with the vorticity function, which is defined as the
square of the rate of strain. For a homogeneous and iso-
tropic turbulence in the absence of a mean motion, we may
draw a spectrum of eddies, and categorize the eddies into
two groups: The big eddies of wave number smaller than k
and the smaller eddies of wave number greater than k, k
being a variable. Then by analogy with the Boussinesq's
mixing—length concept, the big eddies may assume the‘rolevof

Ca background motion creating a vorticity function

k
R (k) = 2 [ dk' &'*F(k') (1)

where F is the velocity spectrum,  and the smaller eddies
produce an eddy viscosity %',so'that the rate of turbu-
lent dissipation, due to the nonlinear mode coupling,
or energy transfer across the spectrum, is given by

% K,

‘the transfer function, while the rate of colliéional dissi-

pation, due to the kinematicvviscosity_y , 1s

VR,

"J.J. Boussinesqg, Théorie de 1'écoulement tourbillonant
et tumultleux des liguides, Gautier-Villars (1897).



Hence the total rate of dissipation & vyields the equation
(v+ %) R, = € o (2
called the equation of energy balance in the €ramework of
~hydrodynamic turbulence. -
On a dimensional basis Heisenberg2 proposed a formula

for JL
00 " ,
[ ok (F/83)* )
" .

and subsequently was able to solve (2).

A spectrum is divided into a non-universal rahge
and a universal range. The former range often depends on
pérticular experimental conditions covering very low
wave-numbers. The universal range is subdivided into an
inertial subrange and a dissipative suhrange. The. inertial
subrange is- governed by the nonllnear transfer alone. The
dlSSlpatlve subrange. is characterlzed by a ‘sudden drop of

the spectrum. Helsenberg2 found the spectrum _
2 _5/ .
F = Ca'rrAt— é /3 k 3 (4)

- in the inertial subrange, in agreement with Kolmogoroff's

3
similitude theory .

¥

2. Heisenberg, Z. f£-Phys. 124, 628 (1948).
A '3A.>N:“Kolmoqqrqff;_cl R. Acad. Sci. URSS, 30, 301(1941).
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We would like to extend the above picture of the mech-:
anism of energy exchanges to a plasma,turbulehce. Here a
simpie'physical argument can be presented first. 'Since‘the
random velocity dissipates and couples with other modes,
both the~collisional-dissipation function YR, and the
transfer function Vk Eo should subsist in the plasma
turbulence. But the plasmé has the added_feature of correla-
ting the velocity with the electric potential, so that a new
tfanS?ort function §2 1 callea-,production function, will
appear, producing the potential energy from the kinetic
energy. Hence, the equation of energy balance (2) Should,be> 
" generalized to |

(V+Y )R, + §, = ¢ (5)
for a plasma. The potential of the self-consistent electric
field, as originatéd from density fluctuations, also-cbuples
to other modes in its turn, due to its nonlinearity, -and ;
therefore yields a new transfer function ,MbJ; : the

latter is proportional to the product of a new eddy viscosity

by the vorticity function
k. ,

Lk | '
T() = 2 ) sk &* k)

relating to the spectrum G of the potential. There is a
- balance between the transfer function and the production

function expressed by

A, - fk.= ° ™



As will be shown later, the production function is
also a transport function, to be expressed again as a product
of a certain diffusion by the vorticity function (6j. The
system'of equations (5) and (7) will be called'equations of
energy balance for a plasma.

~Obvibu51y the arguments given above to the equations
of energy balance (5) and (7) are oversimplified, and
should be given a more dynamical foundation. But this poses
a.very difficult task of solving a system of nonlinear
dynamical equations. The dimensional method of Heisenberg
and Kolmogoroff are too arbitrary in the present program
of having to deal with many functions of similar dimensions.
The newer methods, e.g. stochastic me‘thods4 and diagram
techniqnesS, which are already laborious in the derivation
of the simplest Kolmogoroff law, will prove even more diffi-
cult for plasma turbulence. We feel that at the preSent
time it is first necessary and important to determine the =
dominant physical features. Therefore, we resort to ah
approximate'methOd_called "cascade approximation®. It is
based on the categorization into groups of eddies as men-—

tioned earlier, and studies the coupling between the groups.

4 R. H. Kraichnan, J. Fluid Mech. 5, 497 (1959) .

Oal v Shut'ko, Dokl. Akad. Nank USSR 158, 1058 (1964)

[?nglish transl: Soviet Phys., Doklady 9, 857 (196513.



Following the derivation of the energy balance, the
transport functions Yh,,Xk and ﬁi, will be determined.
The solutions will be sought for a collisional and collision-
less plasma, as well as for a dilute suspension of charged
particles. The anamalous diffusionS, including the Bohm
diffusion and the turbulent diffusion, will be calculated

from the spectral functions..



2. DYNAMICAL EQUATIONS OF AN ION PLASMA

‘Consider a quasi-neutral plasma consisting of cold
ions and hot electrons. The hot electrons are in eqguili-
brium with their density M, equal to the ion density

M following the distribution

n= N, = N, L“f7(¢7ab)

where M, is the average density, y’ is the electric
potential and 4 is the phase velocity with electron

temperature IR

, and ion mass M :

| a* = kT /M
The low ion temperature‘z;‘, as originated from the effect
of pressure,-offers a negligible modification to the phase
velocity. Let W = eB,/M be the cyclotron frequency
‘from an external and constant magnetic field B, in the
'X3-¥vairection; assumed larger than:any freguency scale
entering'in the problem. Further, U. are the velocity
components of the ions in the directions perpehdicular'to

the magnetic field. The dynamical equations of the plasma

‘are .
TGy o = - ATy
dy = - & Vu (8Db)
it ~
d _ 2 w.
A& =gt Eay S
Here € is an antisymmetric unit tensor, and )C=¢gczl,-

The system (8) forms the dynamical equations upon which
we shall apply the cascade approximation and investigate
the turbulent spectra.

We shall introduce. some general assumptions:

(i) ‘We consider a homogeneous and isotropic turbulence

in the directions perpendicular'to~the magnetic
field. |



(ii)

The compressibility effects-may manifest it-
self in the following instances: (a) The
compressibility of the fluid,by inducing
density changes, may excite fluctuations of "
the electric potential, as represented by
the right hand sides of (8); (b) the
compressibility may influence the pressure;

{c) the compressibility may enter in some

" convective process as in d/dt, We shall

assume that the effect (a) is much

larger than the effects (b) and (c) in

view of the high electron temperature. This
assumption i1s analogous to the Boussinesqg
assumption in gravity»waves, where the com=-
pressibility effect is neglected everywhere

except in the buoyency force.



3. CASCADE APPROXIMATION

In the SPectral analysis we seldom need the full in=-

formation about each individual Fourier component.

There—

fore we divide the components into two groups, e.g. for

the velocity we have

where U,
e

40y =

)+ 10

represents the group of big eddies with wave-

numbers up to the value é,, and Lt'represents the group
“ g9

of smaller eddies with wave-numbers greater than é".

k being a variable. U, is quasi-stationary, while %’
LA "]

is a rapidly varying variable.

is applied to V.

an average

<.,,.>k/

A similar decomposition

The two groups can be screened by

over a length scale A;” , SO that the dynamical equations

for «, ,

such a procedure,
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We apply the cascade system (9) to the analysis of the
spectra in an isotropic and homogeneous plasma turbulencé in
the direction perpendicular to the magnetic field.
The system of cascade equations (9} include a coupling
between the big and smaller eddies, involving two transport
coefficients, which are'calculated from (10). To this end,
we make two assumptions applied especially to smaller eddies:
{a) As the smaller eddies contain tittle energy,
the equations (10} are linearized.

{p) The smaller eddies are responsible for the
transport properties, created by stretching the
big eddies. During this process there is a
secondary loss of energy by compressibility
which is negligible.

After solving (lO); the coupling terms in (9) become
nonlinear. Besides, there are the nonlinear convective
'terms on the left hand sides of {8) and (9). The ones in (8)
will generate correlation functions of ever increasing
higher orders, but we disregard (8) and use (9) instead.

The nonlinear convective terms in (9} are not serious as

fhey will drop out upon forming energy equations and using the
assumption (i) and ({(ii) about homogeneity and compressibility.
The energy equations based upon (9} have the advantage of
describing the development of the spectra directly. .

We may stipulate the fundamental difference between the
more familiar quésilinear method and the cascade method for

the solution of a nonlinear differential egquation. The



w] Qe

quasilinear method is a perturbation methocd based upen an
expansion of a function of small magnitude into a series of
decreasing order of magnitudes. The method is therefore 6n1y-
“applicable to a weak turbulence. In the cascade method, the
function is not restricted to a small magnitude, but when it
is decomposed into a cascade of two groups of eddies, that
group representing smaller eddies is assumed of small magni-
tude, while the group of big eddies remains of finite.
amplitude. Therefore the method is adaptable to a strong

turbulence.



4, COLLISIONAL AND COLLISIONLESS DISSIPATIONS

©

o

Upon multiplying (8% by K, and %L and taking an average
over an infinitely iarqé integval, denoted byv<‘“)', we obtain

the eqguations of enerxgy balance

L S BN .
s} = ~(v+ IR — &, (1)
y D0
wen e T o — o3 2
2 <:‘pf: > ) = /i\,éw ;2 + %v (12)
In the energy =guation {11} we have included a kinematic

viscosity Yo

in the following we shall consider an’equiiibrium\Sta“e
of turbulence and apply the gereral assumptions {i)} and {ii}
introduced eariier so that the time and space derivatives of
any mean value will wvanish. Further, there must exist
.external energy sources or sinks maintaining the conserva-
tion of energy fiux at all X , so that {11} and {12) may
reduce to {5) and (7} respectivelv.

The calculetrons

of the stresses from (10} gives -
G
) e b Sl (o) )

V= /ﬂf?;‘ () u,(e«i) Cos W, T
A «% ; YA A ‘ 7 .
o e

2
U D A e T
My o= L W0 e el
- #ho Lok ’ ;
¢ .




§
et
N2

/ . . . . , .
where E is the self-consistent clectric field related to

gy

}
}”by

We shall omit the detailed calculations of the functions
%L and V), , but write their resulcs in the following

simple approximate expressions:

ol ;wA/f o T L 2 5 )
% o (5’2‘% f;:(’%} . Lfy,“,)g’ ,;-‘1—“/ j}, /f /u/ J

[5)

r ANV AN
\J}k’ o <d[/£/ > o ,{», ’«;/’t

2y
where the time scale is simply

ﬁ'{ﬁé,} = o (13)

in the case of a strong magnetic fieid, As the magnetic
field is not effective in ,&& , "he time scale is found

to have a more complicated iform there:

f&(‘ . -
Cr o e T il
/J:é = die’ Fli g‘?:" ~, ”ﬁz (142)
4
with
e
N K Fo o w5 {14)
B ? . H f} e \? @
and consequently
o
\ -
’“\é - {(1l4c)
Fwr

&P
jol}
{3

v viscosity (3) .

asis.
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The production function jzé and the eddy viscosity %%
can also be written in terms of the spectral functions F and

@ for the velocity and the potential respectively,
%- AlT-7), T = T lkes) (15)

) = at’; éo{ﬁf{k,) (16)

. We note that in the expression for ,E% a coeffi-

cient |
A= afuw, w7y

comes out that has the structure of the Bohm diffusion.

It is obvious that the production function ﬁ% R
written above as the product of the Bohm diffusion‘Awwith the
Vorticity functions:‘fwig , may play the role of a negative

" dissipation as in (7). This is made more explicit if we re-
write (7} in the form

@+ M)T, = 5 (18)

analogous to the energy balance (2) in the framework of ahydro-
dynamic - turbulence.. In this form, the transfer, or mode
ceupiing )ka; 2 is drained by a dissipation A 7;

which is most effective at large é, - This dissipation is

not Qf the molecular origin as was in (2}, but comes from the
fiuctuations giving rise to a Bohm diffusion A . The
dissipations )\f}; and /\:f____-:‘? are called collisionless

" dissipations.
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The equations (5) and (7), with their transpert expressioens

(14), (15) and (16), form the fundamental system of energy b&l‘ance-
and coupling between the two spectral functions. In conclusion, o
the mechanism of energy balance takes the following picture:

The energy in the F~spectrum is transferred across the spectrum
by the amount )/]‘{ R~ to be drained ultimately by molecular,

or collisional dissipations \).RO and QR.:' £ at large k..
Simultaneously there is an exchange" of energy, or a coupling
between the two spectra F and G, forming a new drain. The energy
in the G-spectrumm is also transferred across its spectrum by

the amount /,k JO , to be drained by collisionless dissipations
/\JO and )\Js 7 at large k . Now we distinguish a cellisien-
less plasma with A»V , and a collisional plasma with A<V,

In the former case, the nonlinear transfer across the spectrum

is drained mainly by the coupling SP , rather than by collisional
dissipations, as IVR,« ék , and in the lattercas_e, the drain

is controlled by the collisional dissipations with a negligible

coupling, as fk < \)Ro .
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5. SPECTRAL FUNCTIONS IN A COLLISIONLESS PLASMA

Consider the case of a F-spectrum, which is likely to
prevail in the inertial subrange in view of the négligible -
collision, and under such a regime, a G—spectrum'will'develop'
in the dissipative subrange on account of the early drop of
‘the-spectrum by the dominant Bohm diffusion.

. Tt is simpler to consider the differential form of (5)
and (18): ' ‘
A - R =0
/X]' + 4& ]-

obtained by neglecting collisions and by making the approx1ma-

(19)

tions

on account of the mixed inertial and Jissipative subranges.

A substraction between the two equatlons (19) glves
/! /
Vk‘Ro - A
. a"o.rl!..,' s - .
2 '
WK, - .
, o _ J o = ws_ (20)
/\I‘ . (v}
R .

with a left hand side depending on the F-spectrum alone, sug-

gesting that the time scale &) is the sole parameter
entering into the functional structure of the F—spectruﬁ.

Since the spectrum has the.dimension
2
F~u' ’e S

with the variables u' and f as the velocity and the diameter
of the smallest eddy, we need two independent parameters to

determine the furictional structure of F;‘for which we choose
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W, and X ; whence .
T

W~ (AT (21a)

)~ O/wo)-‘s (21b) -
Fe A (/\/wo)t[é“/%)t]—m

where the term within the brackets is a dimensionless

Consequently

quantity whose exponent m should be so chosen as to make
F independent of ), as required by the condition (20). To
this end, we find n = 3 ,- giving

F = const ng 3 (22)

and it entails from (19) and (22)

G = const (J’aé/A ) k_5 (23)

The constants have a numerical value close to unity.

The k power law of the spectrum (23) has been

6
measured at Harwell in the frequency range of 5-15 Mc/sec,

and at Princeton'’" in the freqﬁency range of 10-100 kc/sec

(see Fig. 1 and 2).

6D. J. H. Wort and M. A. Heald, Plasma Phys. (J. Nuclear

Energy Pt. C) 7, 79-81 (1965).
7F.‘F. Chen, Phys. Rev. Letters 15, 381 (1965).
8N. D'Angelo and L. Enrigues, Phys. Fluids 9, 2290 (1966).
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i,
From the dimensional considerations, vpaobeys the
dimension ;
!
(1}
4 t
re~t &
a* \t
so that the 5th power law follows immediately:

G ~(at?) 2 k7 (24)

or

If the time scale (20) is chosen, (24) confirms the

formula €23). However, if we had chosen a time scale

ch—l , (24) would become
Y ,
W -5
G~ = % (25)
a

a formula suggested sometimes for experimental usage7;
'Unfortunately the formula (25) does not account for any
‘dependence on,the'strepgtﬁ_éf;turbulence, a condition
surely unacceptable.fof’étroﬁg'turbulence.'We can resolve
éﬁalytically the system (19}, yielding'the same results
(22i‘and (23). '

In conclusion, in a collisionless plasma, the
F-spectrum has its'nonlinear transfer y&RO drained by a
conversion into a potential energy, bypassing the molecular
dissipation. The potential perpetuatesAits own transfer
’Akjo in the G-spectrum. The speptra obtained follow the

inertial law F ~%"> and the dissipative law G~k °.
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6. SPECTRAL FUNCTIONS IN A COLLISIONAL PLASMA

In a collisional plasma, the evolution of the inertial

spectrum of veiocity‘is goverﬁed by (2), reduced to
R = € - (26)

It is noted that the coupling is_negligible as compared to
"the drain by collision £ . The two equations of énergy

- balance (18) and (26) are then decoupled and may be solved
fseparately. On account of (16), equation (26) can be

rewritten as

,(27)

”1nd1cat1ng that 0( is t‘he sole parameter c‘haracterlz:.ng the
inertial subrange.

As the spectrum has the dimension
F = u‘z/ﬁ (28)

involving two scales u' and 4/';‘we need another parameter,
e. ‘g.' ‘.)c" for the dimensional determlnatlon of the
spectrum. We assume that the velocity and the: diameter of the
smallest eddy can be characterized by the rate of colllslonal
dlSSlpatlon € and the life time &%:1. For this purpose

‘we write u' and {:Ln terms of « and 6, as follows:
o - : ’ 2 . o
w'nA i’ S, bn o) (29)
.and thﬁé'reduce (28) to

. - : -2 - m
Fa x3w, 4"(/@-« e, )

The condition (27) requires that F depends only on & and
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not on &J, , yielding m = 2 and eonsequently
-2
F = coma®t x R (30)
This procedure is similar to thaﬁjof-KolomogorOff who uses &
and Y ‘as parameters. The reason to choose the parameters £
and &, instead is to relate formﬁla‘(29) to a diffusion . |
: -2 . ‘ :
ul ~ € , as origihated from the smallest eddies,
instead of the molecular viscosity V.
The G-spectrum follows
o
_ A+ Ak.
on account of»(S),'yielding, upon substituting F from (30) :

o d

(i) for the inertial subrange (k¢kg) -~ !
=z =3

(ii) for the dissipation subrange (k>kp

G - comet pxTATHTIZ (1p)

with the'Critical wave number kgas .a criterion of the spectral

| %
by = (x/4%) 7

Thé numeriéalvconStants in (30) and (31) are of the order of

drop -

unity. | s 45
The power laws ’é and ﬁ of the dissipative sub-

- faﬁ§es (25);ahd (315) for the collisionless and collisional
Wplasmas reépeétively are very ciose,,and are difficult to be

distinguished experimentally. :Howeﬁer, in a plasma’with,a

séxéné collisional dissipatidﬁ”ana'a‘strong magnetic field,

the wave number of the spectrai~drdp]£s pushed to a'very

high value, then the inertial subfange is unequivocally de-

%—3/1

veloped, and the law of G-spectrum can be ascertained.

Some measurements at Saclay seem to indicate such a subrange.
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7. DILUTE SUSPENSION OF CHARGED PARTICLES IN A NEUTRAL PLUID -

The spectral study made in Sections 5 and 6 refers to

the aiffusion of particles as a Bohm diffusion,. to the exclu—m
sion of molecular diffusion. This is true with a fully ionized
gas. However, in many applications in ionosphere the charged
partlcles may be a dilute suspension ‘and diffuse by molecular
motlons in an ambient neutral atmosphere. Since the production
function is so weak as not to influence the motion of the at—
mosphere, the inertial subrange of the F—spectra is determlned
by the equation

MR = £ with £= VR

/

and the G spectrum is determined by

(D+)\/e)~7(;=‘7/ with 7=D7

where D is the molecular diffusion. The system can be integrated,
g1v1ng the solutions /, y
2/3 5 —=5/3
F=comol £ 4

in the inertial subrange, in agreement with the Kolmogoroff -

law (4), and

Gr= comst Vi s’l/” /e"%[m (/z//e;,,)l'L/‘BJ_z (32)
with

W
é"D = (2/1)3) |
icharacterizing the drop of G-spectral due a dissipation by
molecular diffusion. .
When V/D« !, kpbecomes a small guantity, reducing
(32) to

G = Const D° 7€ YL (33a)

~

in the dissipative range (k&kp).
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When %)}/ , or k/k ¢ 1 the charged particles become
frozen to the fluid and the G-spectrum follows the inertial sub-

range of the F-spectrum to assume the formula

G = ¢ 1(7 2'73 ,é~5/3 (33b)
=4

The power law k—. agrees with the Kolmogoroff law of" turbulence.
The discrepancy between the two spectral laws (33a) and
(33b)ﬂisrintére3tiﬁg, as it points to a paradox in the theory
of radar scattering from ionosphere. Accbrding’to that theory,
the spectrum of the scattered power is proportional to the densi-
ty spectrum of the electrons suspended in the ionosphere, invok—'
ing tacitly the Kolmogoroff law for the latter specfrum. Tt is
known that the théory of scattering conside;s a randomly strati-
fied medium without motions, and the Kolmogoroff theory excludes
a random density. Hence it is paradoxal to invoke a density
épectrum folloWing the Kolmogoroff law. ‘The:present considera-
tion shows that the paradéx can be lifted under the circﬁmétance
V/D»/ , ‘and that the theory fails in the case %«/ When
we deal with a dilute suspension of electrons with their mass
much smdller than the mass of the neutral atoms, as in the
’actual 1onosphere the latter case prevalls and the den51ty

.spectrum should not . follow the Kolmogoroff law (33b)
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8. DIFFUSION IN A TURBULENT PLASMA

'We begin with a weakly turbulent plasma,-whe:e'the m@ﬂe}:‘
coupling is weak, so that the duration of correlation can be’
taken as the life time of the smallest eddies tc(éjc,épk)
introduced in the spectral scales (21) and (29). Under such
a circumstance we can writé the diffuéion {14a) in thelform

. 2 ‘ .
( Ak)weaﬁﬂl P tc( Qéf Cg)

If'wé use such scales (21) and (29), we obtain easily

2

()k) =£e (34a)

weak

.and

(Ak)weak = ’X (34b)

for a collisional and collisionless plasma respectively.

We remark that the dissipation € is defined as
\ 2
¢ =V (bu‘,/hx.
NCUNAE NI

o |
~ ) .2
L REDY
. e . s o2y
where T is the collision frequency, and % <ﬁ',% is the
kinetic energy of the smallest eddy. If we replace the turbulent
b , ‘ ,
energy’%he thermal  energy in the dissipation
sxg ! a2
c

transforming (34a) to

] -1 :
)laminar— 'tc, c

(A

we degenerate to a well known formula of classical diffusion.



-23--

The diffusion by strong turbulence can be calculated from

the spectra (22) and (30), using (l4a) rewritten in the’form'

2
(A.) = u tc(k,F)

k’ strong

It turns out that the resultyjof the calculations are simply "’

(ik strong tc(k’F)

Ay t (W _, o)

kweak c c" o

A( wcr wo) ’

If we take (14Db) for~tc(k,F) for a strong turbulence, and

- -1 PO |
t ) =0 7, @)=W T

for a weak. turbulence in a collisional and collisionless

plasma respectively, we find correspondingly

- » -3 -
A(W ) =W R , A{¢&) =W R
C C. (@] O (@] (@]

These ratios are ‘larger than unity and weakens the dependence

of the diffusion with @, More exp11c1tly we have
A) - " collisional pl I (35a)
) strong- % » collisional plasma . -~ a
R" a o

c
a’ o

QAk) = 5 .. ' \

strong We R® , collisionless plasma (35b)

'Thus the diffusion by strong turbulence varles proportlonately A
to &) -1 d Q)-2/3 respectively, as compared to the:

-2 -
dlffu51on by weak turbulence proportional to CU and QJC

Unlike the Bohm diffusion (17) and (34b),.thehturbu1ent,<
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di ffusions (35) depend on the amplitude of turbulence. Un-
fortenately very few experiments coordinate the anomolous
diffusion to the state_ef turbulence, e.g. spectrum,eeq'fhat'ﬁ
it is difficult to find experimental verification of the
theoretlcal results. However, ‘there are indications that the
”dlfoSlOn should depénd on the strength of turbulence, p01nt—
 1ng to the inadequacy of the Bohm formula. In the past years
it has always‘heen_recognlzed that wherever,tufbulence is
founa,'ﬁhe Bohm formula of diffusion should be applied. The
presenf calculations indicate that the Bohm formula (34b) is
not. Valld for a strong turbulence. It is valid for a weak
tufbulence in a colllslonless plasma, but not in a collision-
al plasma, for whlch the formula (34a) should apply. In-
: thls connectlon we may note that it is not surprising that
_~several experlments in weakly turbulent plasmas (e.g. by
Buchelnikova et al.lo) found a diffusion varying with Q%_L
and depending'on the turbulent energy) in contradiction to
~the Bohm formula. For a strong turbulence in collisional
‘and c011131on1ess plasmas, the formulas (35a) and (35b)
eshOuld apply, they aga1n~d1ffer significantly from the

"Bohm formula.

1QN.S.TBuchel'nikove, R.A. Salimov and Yu. I. Eidel'man,

Soviet Phys. JETP 25, 548-556 (1967).
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Fig. 1. Spectrum of‘thevElect‘ri‘c potential, Ref.6.
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