@ https://ntrs.nasa.gov/search.jsp?R=19690004922 2020-03- :54:42+00:00Z

N "HVL Au\@i’l/u{/:m l

It

L

NASA CONTRACTOR
REPORT |

LOAN COPY: RETURN TO
AFWL (WLIL-2)
KIRTLAND AFB, N MEX

NASA (R-1217

STRUCTURAL SYNTHESIS
OF A STIFFENED CYLINDER

by William M. Morrow Il and Lucien A. Schmit, Jr.

Prepared by
CASE WESTERN RESERVE UNIVERSITY

Cleveland, Ohio
for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ~ WASHINGTON, D. C. ~ DECEMBER 1968



TECH LIBRARY KAFB, NM

0060317
NASA CR-1217

STRUCTURAL SYNTHESIS OF A STIFFENED CYLINDER

By William M. Morrow II and Lucien A. Schmit, Jr.

Distribution of this report is provided in the interest of
information exchange. Responsibility for the contents
resides in the author or organization that prepared it.

Prepared under Grant No. NsG 110-61 at
CASE WESTERN RESERVE UNIVERSITY
Cleveland, Ohio

for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information

Springfield, Virginia 22151 — CFSTI price $3.00






TABLE OF CONTENTS

Table of Contents

List of Figures

List of Tables

Summary

Introduction

Symbols

Analysis

Synthesis Scheme

Conversion of the Design Problem to an Unconstrained
Minimization Problem

Minimization of the Unconstrained Function

Numerical Results

Conclusions
References
Appendix A

A.

> > = > =2 > >
W 0O N O AW

Development of the Analysis of the Stiffened Cylinder
Introduction

Stress-Strain Relations

Strain-Displacement Relations

Force Resultants

Prebuckle Forces and Stresses

Buckling of Cylinder and Skin

Longitudinal Stiffener Buckling

Circumferential Stiffener Buckling

Solution of the Circumferential Stiffener
Critical Buckling Strain

A.10 Yield Failure



Appendix

Appendix

Appendix
Appendix

B

c

m

00 N OO O s w N

C
C
C
C
C.
c
C
C
D

ow™N

TABLE OF CONTENTS (Continued)
Verification of Circumferential Stiffener
Buckling Solution
Development of Synthesis Scheme
Introduction
Weight of the Stiffened Cylinder
Approximate Analysis
Altering the H Matrix
Gradient
One-dimensional Minimization
Convergence Criteria
Computational Experience
Summary of Results
Computer Program
Introduction
Description of Input
Description of Qutput

Computer Listings

iv

56

58
58

58
59

60
61
64
66
67
70
100
100
100
103
106

i M“;‘Q

e



Figure

2w

A.2
A.3

LIST OF FIGURES
Title
An Integrally Stiffened Cylinder
An Element of a Stiffened Cylinder
Synthesis Scheme

Weight Increase with Load Increase

Displacements and Rotations of a Shell Element
Force Resultants

Circumferential Stiffener

Page
20
21
22
23

53
54
55



A.2

LIST OF TABLES

Title
Summary of Numerical Results - Problem 4
Summary of Numerical Results - Problems 6 and 7

Selection of Circumferential Stiffener Buckling

Mode (e¢)cr - Contraction
Selection of Circumferential Stiffener Buckling
Mode (e,).. - Expansion
o’cr
vi

Page
18
19

51

52



STRUCTURAL SYNTHESIS OF A STIFFENED CYLINDER

by William M. Morrow and Lucien A. Schmit, Jr.

SUMMARY

The problem of structural synthesis of a cylindrical shell stiffened
in the longitudinal and circumferential directions with rectangular cross-
section stiffeners is treated. The design variables are the dimensions
and spacings of the stiffeners and the thickness of the skin, seven in all.
The synthesis method uses the penalty function method of Fiacco and McCormick
to transform the basic inequality constrained minimization problem into a
sequence of unconstrained minimization problems. The stability analysis
of the cylinder is a linear analysis including the effects of stiffener
eccentricity. Numerical results are presented which illustrate the
effectiveness of the penalty function approach, the ‘importance of multiple
load conditions, the influence of internal versus external stiffening, the
effect of minimum gage limitations on the optimum design, and the advantage
that stiffening in both directions exhibits compared with stiffening in only
one direction.

INTRODUCTION

Stiffened cylinders have proven to be more efficient than monocoque
cylinders for carrying compressive loads. However, it is not obvious how
the cylinder should be stiffened in order to carry a given set of loads with
the lightest possible cylinder. Many different methods of stiffening a
cylinder are available. In order to determine the relative merits of the
different configurations, the dimensions must be determined which define the
lightest possible design for each configuration for the given system of
loads. Once the bgst possible design for each configuration is known a
comparison can be made to determine the best configuration and design.

The minimum weight design of stiffened cylinders subject to a
single Toad condition of axial compression has been treated by several
authors, for example, Gerard and Pipirno], Burnsz, and Hedgepeth and Hall?



Kicher4 has treated the design of stiffened cylindrical shells subject to
multiple load conditions.

In the work presented here one configuration is selected and a means
of synthesizing the minimum weight design is developed. In this configura-
tion the stiffeners are rectangular in cross section and integral with the
skin of the cylinder. There are two sets, one in the longitudinal direc-
tion and one in the circumferential direction (see Figures 1 and 2).

Either set may be inside or outside the cylinder, but the same set may not
be both inside and outside. The skin is a solid orthotropic material with
the principal material axes in the longitudinal and circumferential direc-
tions. The cylinder is required to support several different combinations
of axial compression or tension and external or internal lateral pressure;
that is, it is subjected to multiple load conditions. It is also possible
to have different material properties in the skin and stiffeners and for
these to be different in each Toad condition. The synthesis scheme deter-
mines the skin thickness, the dimensions of the stiffeners and the spacing
of the stiffeners.

In order to conduct the synthesis the design requirements must be

well defined. This means that ways of defining all modes of failure, both
overall and local, as well as a means of handling constraints on the design
variables, such as minimum gage, must be determined before the design process
begins. The most important failure modes in the problem are the instabil-
ity modes, both for the entire cylinder and for the elemental parts of the
cylinder, the skin and stiffeners. Material yield failure is also guarded
against in the skin and stiffeners.

The cylinder design problem is treated here as a nonlinear mathemati-
cal programming problem. The constrained minimization problem is converted
to a sequence of unconstrained minimization problems using the penalty

function method of Fiacco and McCormick?‘6 The unconstrained minimization

problems are solved using the method of Fletcher and Powe]]? The un-
constrained minimization technique generates a sequence of noncritical
designs with decreasing weight and permits the use of approximate analysis

during a major portion of the synthesis.



Scalars

C.B.L.
C.B.U.

c.Y.C.
C.Y.T.

D1,D2,Dv

d
E

EX,E¢

Exs’E¢s
ex,e¢

F(V,r)

cr

GX,G¢

G.B.

g; (v)
Hs]’HSZ’H
HX,H¢

JX,J¢

AY)

SYMBOLS

Circumferential stiffener buckling for a contraction of

the cylinder, €¢p/e¢cr'

Circumferential stiffener buckling for an expansion of
sp’ Spcr:
Circumferential stiffener yield in compression, °¢sp/°¢0C'

the cylinder, ¢

Circumferential stiffener yield in tension, °¢sp/°¢0T'
Bending stiffnesses of skin.

Stiffener depth.

Modulus of elasticity, ]bs/inchz.

Moduli of elasticity of skin.

Moduli of elasticity of stiffeners.

Eccentricity of stiffeners (+ inside, - outside).
Unconstrained function.

Actual value of behavior variable.

Critical value of behavior variable.

Shear modulus of stiffeners.

Shear modulus of skin.

Gross buckling, N/Ncr‘

Constraint functions.

Extensional stiffnesses of skin.

Extensional stiffnesses of stiffeners.

Torsional constants of stiffeners.

Torsional stiffness of skin.

Length of Cylinder, inches.

Lower bound on design variables.



L.B. Lower bound.

L.C. Load condition.

L.S.B. Longitudinal stiffener buckling, °xsp/°cr‘

L.Y.C. Longitudinal stiffener yield compression, °xsp/°x0C'
L.Y.T. Longitudinal stiffener yield compression, °xsp/°x0T'
z¢u,zxu,z¢2,zx2 Bounds on z¢ and Lye

Mx’M¢’Mx¢’M¢x Moment resultants.

Nx’N¢’Nx Force resultants.

m,n Wave numbers.

n¢,nx‘ Number of stiffeners in each direction.

N Applied axial force per unit length of circumference.
p Radial pressure.

P.B. Panel buckiing, N/Ncr'

R Radius of cylinder.

r Penalty function multiplier.

o Initial value of the multiplier, r.

S Shear stiffness of skin.

S.B. Skin buckling, °xp/°xcr'

S.Y. Skin yield, OD/GOD'

Tx,T¢ Torsional stiffnesses of stiffeners.

Tmin Minimum move distance.

t Stiffener thickness.

T Equivalent thickness of monocoque cylinder of equal weight.
ts,tx,t¢,dx,d¢,zx,z¢ Design variables (see Figure 2).

U, Upper bounds on design variabiles.

U.B. Upper bound.




YS ’Y¢ "Yx

6x¢’6xw’5¢w
€x2€ 42 xy

€ocr

xp*“¢p
Asn
ux,u¢
v

px ,p¢

%

7xp* % op
Txsp*T¢sp
cx,c¢,rx¢
O%s°%ps

(¢

Yy

Finite difference increments in each design variable.
Weight of cylinder.

Bending eccentricity term for circumferential stiffeners.
Weight density, 1bs/in.>

Weight densities of the skin, circumferential stiffeners
and longitudinal stiffeners.

Stiffener combination indicators in the weight function.
Strains.

Buckling strain of circumferential stiffener.

Prebuckle strains.

Wave parameters.

Poisson's ratijos of skin.

Poisson's ratio.

Radii of gyration of stiffeners about the skin midsurface.
Critical buckling stress in longitudinal stiffeners.
Prebuckle stresses in skin.

Prebuckle stresses in stiffeners.

Stresses 1in skin.

Stresses in stiffeners.

Yield stress, 1bs/1n?

°0D’°x0T’°XOC’°¢0T’°¢0C Yield stresses in skin.

°xSOC’°xSOT’°¢SOC’°¢ SOT Yield stresses in stiffeners.

ex,e

z

¢

Rotations of shell per unit length.

Ratio of stiffener depth to the radius of its unsupported
edge.



Vectors

Move direction.

-de

v Design variables.

y% Change in successive gradients.
E} Vector to minimum along E}.
Matrices

H, Metric Matrix.

1

ANALYSIS

The analysis of the cylinder, as presented in Appendix A, is performed
by assuming that the loaded cylinder can fail independently in any one or
several of eleven different failure modes. For a cylinder of given design
and material properties, a critical failure value of a load, stress, or strain is
determined for each failure mode and load condition. The actual value of
the corresponding load, stress and strain is determined for each load condi-
tion, and checked against the failure values to determine whether or not the
cylinder can sustain the applied loads.

Three of the failure modes involve determining buckling failure Tload
values of the cylindrical shell. These are buckling of the entire cylinder
(gross buckling),buckling of the cylinder between the circumferential
stiffeners (panel buckling), and buckling of the cylindrical skin (skin
buckling). In the gross buckling and panel buckling analyses the effects
of the stiffeners are averaged over the stiffener spacing. Besides the
bending stiffnesses of the stiffeners the torsional stiffnesses and the
effects of eccentricity are also taken into account. The cylinder buckling
analysis is a linear classical small dispiacement analysis, assuming simply
supported boundaries, and a uniform prebuckled membrane force and displace-
ment distribution. The same analysis is used to determine the critical
loads for gross, panel, and skin buckling, by substituting the appropriate
stiffness properties and displacement patterns.



Using an expression for the buckling load in terms of the mode shape (Eqn.
A20 or A22) the critical buckling load is found by determining the buckling
loads for a large number of mode shapes and selecting the lowest of these
loads as the critical value.

The stresses and strains in the skin and stiffeners prior to buckling
are determined from the membrane force distribution (Eqs. A12, A13 and Al4).
The skin is assumed to be in a biaxial stress state and the stiffeners are
assumed to be in a uniaxial stress state. The strains in the stiffeners
where they join the skin are assumed to be the same as the corresponding
strains in the skin.

There are three failure modes for the stiffeners. The longitudinal
stiffeners can buckle only when they are under axial compression; a critical
buckling stress is calculated for this (Eq. A23). Outside circumferential
stiffeners can buckle either when the cylinder expands or contracts under
Toad, but inside circumferential stiffeners can buckle only when the
cylinder contracts. Two critical circumferential strains are calculated
when the circumferential stiffeners are on the outside and one when they are
on the inside (see Appendix A Sec. A.8). The expression for the circumfer-
ential stiffener critical strain (Eq. A24) derived in Appendix A Sec. A.9 is
verified for two 1imiting cases in Appendix B. In the stiffener buckling
analysis simply supported boundaries are assumed at all edges where the
stiffener connects with the shell or the other stiffeners. In addition to
the buckling failure modes there are five yield failure modes (Eqs. A27 and
A29). A distortion energy type criterion is used in the skin for the biaxial
state of stress. In the stiffeners the uniaxial state of stress must have a
value between the compression yield value and the tension yield value.

SYNTHESIS SCHEME

Conversion of the Design Problem to an Unconstrained
Minimization Problem

The cylinder is synthesized in such a way that the weight is minimized,
at least locally, and all constraints on behavior variables and design vari-
ables are satisfied. (The details of the synthesis scheme are described in
Appendix C.) The actual dimensions of the cylinder (See Figures 1 and 2)
are considered as the independent design variables. These variables are the
skin thickness, ts’ the longitudinal stiffener thickness, tx, the
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circumferential stiffener thickness, t¢, the Tongitudinal stiffener depth, dx’
the circumferential stiffener depth, d¢, the circumferential stiffener spacing,
ys and the Tongitudinal stiffener spacing, 2¢. Any of these variables

may be held fixed during the synthesis and the two stiffener depths may be
forced to be equal.

Upper and Tower bounds are imposed on all the design variables as well
as compatibility bounds to prevent the stiffener thicknesses from becoming
greater than their spacings. The behavior variables are the loads, stresses,
and strains in the structure. Bounds are imposed on these to prevent the
structure from buckling or yielding, as described in the analysis.

The weight minimization is realized by minimizing a composite function
formed by adding a penalty function to the weight. This penalty function g
includes all of the design requirements. This function is formed as follows?

F(vir) = W(V) + r } 1/g,(V))
i

In this expression, v represents the vector of design variables; W(V) is the
weight (see Appendix C); r is a constant multiplier; and the gi(V) are the
constraint functions which express the design requirements. These require-
ments include the constraints on the design variables as well as the behavior
requirements for all load conditions. The gi(V) are formed so that the
constraints appear in the form:

g;(v) » 0

The constraints are of two types, the behavior constraints and the
constraints on the design variables. In order to put the behavior con-
straints in the required form they are written as

HONESRE (-}Z—C:)i

where f is the actual value of the behavior variable (load, stress or strain)
and fcr is the critical value of this same variable.



v

The constraints on design variables are of three different types,
upper bounds, lower bounds, and compatibility bounds. The upper bound
constraints have the form:

where U is the upper bound, and Li is the lower bound. The Tower bound
constraints have the form:

@ - g
gtV = U -,
LAY U, Li

1

The compatibility constraints keep the stiffener thicknesses from becoming
larger than the corresponding stiffener spacing. Thus, these are

2 -t
9 (V) = L-—,Q. = EX
c ou 62

and
-t
_ % ¢
g,(vV) = —

2" e xu " *xp

where z¢u and zxu, and g
2¢ and 2x'

" and Ly, are the upper and lower bounds on

By examining the expressions for the constraints, gi(V), it can be
seen that as a 1imiting value of a behavior variable or design variable is
approached the gi(v) approach zero from the positive side. Thus, the
corresponding contribution to the penalty term (llgi(V)) approaches positive
infinity. For example, the closer the critical buckling load for the
cylinder is to the applied load the larger the penalty term. If, however, a
design is obtained which yields a buckling load slightly lower than the
applied load and the penalty term is calculated, it will be a large negative
number. Thus, in passing from a noncritical design, through a critical
design, the value of F would approach positive infinity for nearly critical



acceptable designs and then change to negative infinity for unacceptable
designs. Because of this F is not calculated for unacceptable designs and
the minimum of F is sought only for acceptable designs.

Since the penalty function goes to infinity as the design becomes
critical in some way,the design which yields a minimum of the composite
function F is a noncritical design. If, however, the true minimum
weight design is a critical design this design can be approached as closely
as desired by reducing the value of the multiplier r. The procedure for
weight minimization is as follows (see block diagram Figure 3), start with
some relatively large value of r (see Appendix C Sec C.8) and an initial
design which satisfies all the requirements on the design variables and is
capable of sustaining all loads (this must be a noncritical design with no
design variables or behavior variables equal to their critical values);
find a design which yields a minimum of F for this value of r; reduce the
value of r; starting with this new value of r and the design which gave a
minimum of F for the previous value of r, again find a design which gives
a minimum F; continue this process until a convergence criterion is
satisfied (see Appendix C Sec. C.7). It should be noted that since the
penalty term includes the requirements for all load conditions the minimum
weight design obtained in this manner does not presuppose a critical load
condition or even that there is a critical load condition.

Because of the fact that the design which yields a minimum of F is a
noncritical design it is possible to use an approximate cylinder buckling
analysis during much of the minimization. This reduces the computationatl
effort substantially. The approximate analysis uses only a selected set of
mode shapes in the determination of the critical buckling loads for gross,
panel, and skin buckling. (see Appendix C, Sec. C.3). An analysis using
the large number of possible modes is done for the design yielding the
minimum of F for each value of the multiplier r.

Minimization of the Unconstrained Function

Since the design which gives a minimum to the composite function F is
unconstrained, noncritical, a method of unconstrained minimization can be
used to find this design. The method used here is a variable metric method
(see Appendix C, Sec. C.4). A design is altered by moving along a line in

10



the space defined by the design variables. The direction of move at a

point i in the design space is given by9

where H, is square matrix and (vvF)i is the gradient vector of F with
respect to the independent variables v at the point i. The minimum of
the function, F, is found along the direction s (see Appendix C Sec. C.6).
Once the minimum is known the new design is

. = V. + 5.
Vit i 9y

where 3} is ayS; and o is the distance along E} to the minimum. At

this point V}+] the gradient is calculated and the H matrix is altered
(see Appendix C Sec. C.5). Using the new gradient and the new H matrix a
new direction §}+1

gence criterion is satisfied (see Appendix C Sec. C.7).

is generated and the process is repeated until a conver-

The minimum along a line is found by first finding two acceptable
designs which Tie on opposite sides of the minimum and then using the func-
tion value and its slope at these two points to do a cubic interpolation to
the minimum. The two acceptable designs bracketing the minimum are found
using an incrementation scheme (see Appendix C Sec. C.6).

NUMERICAL RESULTS

Results for over thirty design cases have been obtained (see Appendix
D). These results demonstrate the following:

1. the capability of the synthesis method,
2. the influence of inside versus outside stiffening,

3. the sensitivity of the optimum design with respect to change in
the magnitude of the load conditions,

4. the influence of manufacturing bounds on the optimum design,
5. the importance of including multiple load conditions,

6. relative minima in the design space,

11



7. the advantage of stiffening in both directions.

These results were obtained with a computer program, which is given in
Appendix E.

A set of twelve design problems was developed based on one basid
design problem (see Appendix D, Cases 1-I through 3-1,0). This is an
aluminum cylinder with a radius of 60 in. and a length of 165 in. This
was first to be subjected to the following three load conditions: 1) axial
compression of 700 1b/in. and no radial pressure, 2) axial compression of
940 1b/in. and internal radial pressure of 2 1b/in2, 3) axial compression of
212 1b/in. and external radial pressure of 0.4 1b/1n2. Four design problems
were developed for this load condition. Three of these had no manufacturing
bounds, that is no minimum gages. These three problems were distinguished
by the location of the stiffeners. One had all the stiffeners inside,
another had all outside, and the third had longitudinal stiffeners outside
and circumferential stiffeners inside. The fourth problem had all the
stiffeners on the inside but the following minimum gage limits were imposed:
0.019 in. on the cylinder skin, and 0.05 in. on the stiffeners (Case 1-I').
The other eight cases were obtained by first doubling the loads and using
the same four stiffening combinations and then tripling the loads, of the
first four, and again running the same stiffening combinations.

The minimum weights obtained for nine of the twelve problems are
exhibited in Figure 4. The lowest weight designs are those for all inside
stiffening; the next lowest (not shown in the figure) are for longitudinal
stiffening outside and circumferential stiffening inside; the highest weight
designs, for zero lower bounds on the thicknesses, are the ones with all
outside stiffening. The effect of including lower bounds on the thicknesses
also can be seen in Figure 4. For the cylinder with the lightest Toad the
weight penalty for the minimum gage is substantial and much more than the
penalty which results from selecting an off optimum stiffener combination.
In the more heavily loaded structure the penalty for manufacturing bounds
is less but still more than the penalty for choosing an off optimum stiffen-
er combination.

It should be noted that while these are three load condition cases
they are single load condition dominant (load condition two dominates).
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However the other gross buckling constraints are approached closely in the
outside stiffened cases. Even assuming that the dominant load condition
can be identified in advance it should be fecognized that an optimum design
obtained considering a single load condition may not be acceptable in the
other two load conditions.

Also note that this dominant load condition is one which contains
internal pressure. This should be contrasted with the results of problem
6 where the load is only axial compression. In problem 6 the inside out-
side case is the lighter weight design (see Cases 6-1', 6-0', and 6-1,0').

Two other cases (see Appendix D) of data are presented which are
based on this same basic design problem (Case 1-I). One is simply a
second starting point for this case. The final designs do differ somewhat
but the weights are nearly the same. The other is Case 1-It and is the
same as Case 1-I' but has a 25% degradation of the modulus in the first
load condition. This causes a shift in the dominant load condition from the
second to the first but the second is still active and there is only a
slight increase in weight.

Another set of problems was developed using an aluminum cylinder of
200 in. radius and a length of 500 in. subjected to the following loads:
1) axial compression 2100 1b/in. with an external radial pressure of 1.0
1b/in2, 2) an axial compression of 8000 1b/in. and an internal radial
pressure of 20 1b/in2, 3) an axial compressionof 5000 1b/in.and no radial
pressure. The yield 1imit of the aluminum was taken as 50,000 psi (Cases
4-1 through 4-0').

This problem was run with all inside stiffening and all outside stiff-
ening. The all inside stiffened case was run with the design variables
effectively unbounded (see Table 1, Case 4-I). The final design in this
case is limited by five behavior constraints, three in load condition two
and two in load condition three. One of them in load condition two is skin
yield. Note here the importance of considering the multiple load conditions.

In running the outside stiffening case difficulty was encountered when
the design variables were permitted to be unbounded (this is done in the
computer program by using large bounds). Two different starting designs
were attempted in which very heavy final designs were obtained where no
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further optimization was possible (see Table 1, Cases 4-0). Note that for
the first starting point the final design is of a larger weight than the
starting weight. This is due to the nature of the penalty function. A
weight increase can occur for the first minimization of the penalty func-
tion. Note also that the stiffeners are thick and shallow.

The difficulty encountered in this case was resolved by putting an
upper bound on one inch on the stiffener thicknesses. This forces a deep
stiffener thin skin design. The stiffener thicknesses are not, however,
bounded by these constraints (see Table 1, Case 4-0').

These results indicate the possibility of relative minima in the
design space. One with a thick stiffener design and the other with a thin
stiffener design.

For this problem the outside thin stiffener design and the inside
stiffener design are almost the same weight and the values of the final
design variables are not greatly different. Note, however, that no
constraints of load condition three are limiting in the outside stiffened
case as they are in the inside stiffened case but the gross buckling con-
straint of load condition one has become active. This again points out
the importance of considering multiple load conditions and the difficulty
in picking a critical load condition.

In Case 5-1 (see Appendix D) the circumferential stiffener depth is
fixed at 10 inches. The results of this case are not single load condition
dominant. Both load conditions 2 and 3 have constraints which are active.

A number of cases were run where the only load on the cylinder was
axial compression. The first series of these was for an aluminum cylinder
of length 38.0 in., radius 9.55 in., subject to an axial compression of 800
1b/in. The first result obtained for this problem was for a starting design
with all inside stiffening and 1iberal bounds on the design variables. The
result of this was a completely unstiffened design (see Table 2, Case 6-I).
This case was then rerun putting lower bounds of .05 in. on the stiffener
depths. The result of this was a stiffened design with a lower weight than
the previously obtained unstiffened design. This was done in three different
cases to obtain results with all inside stiffening (Case 6-1'), all outside
stiffening (Case 6-0'), and with lTongitudinal stiffeners outside and circum-
ferential stiffeners inside {Case 6-I1,0'). The lowest weight obtained for

14



these three (Cases 6-I1', 6-0', and 6-1,0') was for the inside outside case
(Case 6-1,0'). This is about a 12% advantage over the all outside case
(Case 6-0').

This is another situation where relative minima in the design space
is the most 1ikely explanation. The results for the cases where lower
bounds are imposed, the stiffened cases, are in the acceptable region of
the design space for the case with less stringent side constraints where
the unstiffened design was obtained.

Other single axial load cases were run which can be used to compare
stiffening in one direction with stiffening in both directions (see Table 2,
Cases 6-0S, 7-1, 7-1', 7-I"). When cases were run with overall dimensions
and load the same as the above single load condition cases (Cases 6-0S and
6-IS minimum longitudinal stiffener depth 0.05 in.) but with axial stiffen-
ing only the results were designs of slightly higher weight than the un-
stiffened design (Case 6-I). A second series of single load condition
problems was run for a cylinder of length 291 in. and radius 95.5 in. subject
to an axial compression of 800 1b/in. Using liberal side constraints and
starting with inside stiffening the result for Case 7-I is unstiffened. This
case was then rerun putting a Tower bound of 0.5 in. on the longitudinal
stiffener depth and the resulting design (Case 7-1')is stiffened in both
directions. When another case was run with circumferential stiffening
only (Case 7-I", lower bound circumferential stiffener depth 0.5), a result
was obtained which was higher in weight than the unstiffened design (Case 7-1).
The unstiffened design is of greater weight than the design for stiffening
in both directions (Case 7-1').

These results indicate that a design with stiffening in both directions
is the better design. They also indicate that a monocoque design is superior
to stiffening in one direction. However, because of imperfection sensitivity
it may not be advisable to use a monocoque cylinder. Using an analysis
similar to the one used here but without including eccentricity effects,
T1'moshenko]0 has shown that in designing against gross buckling there is no
weight advantage to be gained over the monocoque design by putting the stiff-
eners in only one direction.
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Case 8-1,0 (see Appendix D) is again an axial compression case.
This case is thought to be representative of future launch vehicles.

CONCLUSIONS

An efficient method of synthesis has been developed for a stiffened
cylinder. This efficiency is due to a combination of several factors.

The use of the penalty function of Fiacco and McCormick causes the
successive designs obtained during the synthesis process to stay away from
the constraints. This alleviates one of the difficulties encountered with
methods such as the gradient projection method and the alternate step
technique. In the later methods the designs become bounded by constraints
early in the synthesis and it is then difficult to move away from the
constraints.

Another advantage of staying away from the constraints is that an
approximate analysis can be used during the synthesis with some confidence
that the designs obtained remain in the acceptable region of the design
space. The approximate analysis is the largest factor in speeding the
synthesis.

Still another advantage to using the penalty function is that the
problem is converted to a sequence of unconstrained minimizations and the
quite efficient method of Fletcher and Powell can be used to perform this
minimization.

The experience reported herein supports the contention that the
generation of efficient structural synthesis capabilities, for design
problems involving relatively complex analyses, requires that the struc-
tural analysis and synthesis procedure be tailored together exploiting
available insight and understanding for the characteristics of the problem
at hand.
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Using the computer program a number of numerical results have
been generated, and some general conclusions can be drawn from these.
There is evidence of relative minima both for single and multiple load
condition problems, and there is a means of forcing the designs into
these relative minima pockets (see Numerical Results). There does
not appear to be any advantage to stiffening a cylinder in only one
direction. Manufacturing bounds have a strong influence on the
optimum design. In some situations there is a moderate weight advantage
to be gained in the placing of the stiffeners, inside or outside, and this
depends on the load conditions. The largest weight saving due to change
of stiffener location obtained in this work is 12% (see problem 6,
Appendix D).
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Table 1

Summary of Numerical Results - Problem 4

81

Case 4-1 (Inside) Case 4-0 (Outside 1) Case 4-0 (Outside 2) Case 4-0' (Qutside 2)
Start Finish Start Finish Start Finish Start Finish
ts .15 .162 .15 .216 5 .283 .5 .163
tx .201 . 188 .200 .315 ) .972 .5 .184
t 271 .192 .489 1.98 .5 3.07 .5 .200
di 1.85 1.78 -1.84 -1.38 -1.5 -1.03 -1.5 -1.74
d 2.87 2.54 -1.89 -0.865 -1.5 - .652 -1.5 -2.13
zi 36.6 31.6 35, 23.7 35, 26.3 35, 27.0
) 4,55 6.30 4,58 8.57 4, 14.6 4, 6.08
Hgight 1bs)| 15,900. 14,600. 16,200. 21,300. 44 .900. 26,900, 44,900, 14,700.
t .251 .230 .255 .336 .707 423 .707 .231
* 5 | GB2 = .980 GB1 = .999 GB1 = .999 GB1 = ,923
= | LSB2 = .963 PB2 = .,962 PB2 = .948 GB2 = .957
| 5= SY2 = .994 SB2 = .989 PB2 = .926
| e=5_ GB3 = .980 SB3 = .982 LSB2 = .954
E’% gg PB3 = .912 SY2 = .990
L8 gor SB3 = .964
| L = 500 R = 200 E = 10 x 106 Oy = 50,000
\

- S En B D S e A R M R e S T SR AR SR S R S e A e e S S OB S T S A v G P A e e e B SR G S et e S D e A S e D D e N T D G G S G G5 SR SR AR WP D R R SR A G AR e e

* The numbers in the failure mode abbreviations refer to the load condition (i.e., GB2 is Gross

Buckling in load condition 2).




Table 2

Summary of Numerical Results - Problems 6 and 7

-

6T

L=38.0 R=9.55 N=800 L=201 R=0955 N =800
Case 6-1 6-1"' 6-0' 6-1,0' 6-0S | 7-1 7-1" 7-1"
| tg 0363 | .0107 .00932 | .00832 0357 | 11 0202 | .114
ty -249 0132 | .0150 | .0139 0125 | .725 0441 | 3.56
ty 1263 100991 10203 | .00145 .05 -940 10943 | .400
ds 0. 121 -142  |-.126 -1.56 o, s | o.
3 0. 291 -1.83 512 0. 0. 810 | 1.64
N 1.96 1.49 275 |2.28 38.0  |8.57 18.2 42.0
2 1.41 283 260 | .228 1.45  |3.84 .42 |11.6
Weight(1bs) | 8.35 4.20 4.30  |3.76 8.5 |1960. 979. 2240,
t 0363 | .0182 0187 | .0163 0371 | 0555 | .127
o5 GB = .968| 6B = .990 | GB = .871| 6B = .992 | B = .976| 6B = .982 |GB = .941 B = .884
8.2 PB = .725 | PB = .938| PB = .967 | PB = .976| PR = .9§7 |PB = .920 |PB = .925
ey SB = .921 | SB = .994 | SB = .972 SB = .983 |SB = .993
92 £° LSB= .966 | LSB = .984 | LSB= .986 LSB= .984
ZERT SY = .958 | SY = .907!SY = .993
888F LYC= .065 | LYC = .912 | LYC= .995
E = 10.5x10° v = .33 50,000

Q
<
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Figure 1 An Integrally Stiffened Cylinder
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Figure 2 An Element of a Stiffened Cylinder
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APPENDIX A
Development of the Analysis of the Stiffened Cylinder

A.1 Introduction

In this appendix all the equations needed to analyze the stiffened
cylinder are presented. These include the overall buckling analysis of
the cylinder as well as the buckling, stress and yield analyses of the skin
and stiffeners.

It is well known that there is a large discrepancy between the buck-
ling failure loads for monocoque cylinders which are predicted by classical
buckling theory and the failure loads obtained in tests. However, it has
been found recently that this is not necessarily the case for stiffened
N Linear theory is used here but it has been found that this may

cylinders.
not apply in some cases]2 The importance of including the effect of

eccentricity of the stiffeners has been pointed out both exper'imenta]]y]3
and ana]ytica]]y!4’]5’16 Earlier investigators have also treated this
effect ana]ytica]]y!7’18 In the analysis used here eccentricity effects

are included. This analysis follows closely that of F1ﬁgge]9

A.2 Stress-Strain Relations

The skin of the cylinder is assumed to be in a biaxial state of stress.
The axes of elastic symmetry are in the Tlongitudinal and circumferential
directions. The x axis is in the longitudinal direction and the ¢ axis is
in the circumferential direction. With these assumptions the stress-strain
relations in the sheet are

Ex

o, = '|-uxu¢ (ex + Mo E¢) (A1)
: ( )

o = - u, €, * e

) 1 HyHg X X ¢

Txp T 8 Txg
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The stiffeners are assumed to be in a unijaxial state of stress so
that the stress-strain relations are

Oys = ExS €y (A2)

o] = E €

¢S s ¢

in the Tongitudinal and circumferential stiffeners respectively.

A.3 Strain-Displacement Relations

The reference surface of the shell is taken as the midsurface of the
skin.  With the z axis taken positive inward from the reference surface
and u, v, and w being the displacementsof the reference surface respectively
in the positive x, ¢, and z coordinate directions, the strain displacement
relations are taken to be

~

X aX 5x
=-]_3\L_ W _ Z azw (A3)
s R 3¢ R-z R(R=-2) a¢2
= 1 2u, (Rzyov 22w (2 + 2
Yxé R-z 3¢ R/ 3x 3x3¢ ‘R R-z
where Exr 40 and yx¢ are the strains at a point in the shell. €y and

€ are assumed to be continuous in the skin and x and ¢ stiffeners
respectively. These relations may be derived in a geometric manner as done
by Flijgge20 or by reducing the linear three dimensional strain displacement
relations in cylindrical coordinates?] The later is done by assuming the
displacements vary linearly with the depth of the sheH22 and by setting

the transverse shear strains and the extensional strain in the z direction

to zero.

The displacements of a point in the cylinder corresponding to these
strain midsurface displacements are
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~_ —aw
u = u-zse
v = Rz - Z oW '
v = gV R ¢ (A4)

14

(see Figure Al).

The rotations of the normal used in the above displacements are

= ¥ 1 aw

“ " R * R %
Lo
¢ X

The relative rotations per unit length are then

w 2
o = 325 - %'(%% * gxg¢ )
(A5)
o = 1 2 1 p%
¢ R 3¢ R 3x3¢

A.4 Force Resultants

The force and moment resultants per unit length are obtained by
performing the appropriate integrations of the stresses over the thickness
of the skin and then adding to these the corresponding force and moment
resultants per unit length in the stiffeners. The force and moment
resultants per unit length in the stiffeners are obtained by dividing the
resultant forces and moments by the stiffener spacings.

The extensional forces and bending moments in the stiffeners are
obtained by performing the appropriate integrations of the extensional
stresses in the stiffeners over the areas of the stiffeners. The stiffeners
are assumed to carry no shear load; so they have no contribution to the shear
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force resultants, but they are assumed to have a twisting moment resultant.
The angle of twist is assumed to be the same as that of the normal to the
skin. The torsional stiffnesses of the stiffeners are obtained from an
approximate curve for data given by Crandal and Dah]23 for torsion of bars
of rectangular cross section. Thus, the force resultants are obtained by
substituting the strain displacement relations (A3) into the stress strain
relations (A1) and (A2), then substituting the resulting stress displacement

relations into the following formulas, and performing the integrations:

+t /2 . d +t /2
N, = B2y o, dz + 2 o s 2

-t /2 ? t /2

+ts/2 . d¢+t /2
N, = o, dz + Eiﬁ 045 42

—ts/2 ts/2

+ts/2
Nx¢ = L (Bil) dz

-tS/Z

(A6)

+ts/2
N¢x = Txo dz

-tS/2
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/2 . . d tt./2
= il X
Mx = Oy ( R ) z dz + 7, oy Z 42
_ts/z ts/2
+ts/2 ¢ d¢+tS/2
= sl
M¢ o, z dz + Z, %4s z dz
~t /2 t /2
+ts/2 .
- R-z X X
Mx¢ B Txd (F™) z dz - 2, Ox
-ts/2
+t /2
S G, J
= - % ¢
M¢X Tx¢ z dz Rx 8¢
-ts/2

The above expressions apply for stiffeners on the inside of the cylinder.
For stiffeners on the outside of the cylinder the Timits of integration on
the stiffener integrals, the second terms, must be changed to go from

- (dx + ts/2) to - ts/2 and - (d¢ + tS/Z) to - ts/2 (see Figures 2 and A2).
Oy and e¢ are the angles of twist of the normal to the skin, given in
section A.3. Jx and J¢ are the section constants for a rectangular cross-
section in torsion. These correspond to a polar moment of inertia and are
approximate by the expression,

c ab3

J =
where ¢ is given by
¢ = - 0.285 ¢ 0:49(a/b) 4 g 316
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and a and b are the cross sectional dimensions of the stiffener, tx and dx’
and t, and d,; b is taken as the dimension of smaller magnitude. After
making the substitutions described above, performing the integrations, and
neglecting terms of the order of the thickness of the skin divided by the
radius and square of the depth of the stiffeners divided by the square of
the radius with respect to 1, the force and moment resultants can be written:

D 2
= U lav _ oW _ -y aw
Nx - (Hsl + Hx) 3x T H,, R 3¢ Hv R (Hx € R ) ;;?
3u 1 a5v fg W
Ny = H,oox ¥ (Hgp + H¢) R3¢ (Hgp + H¢ (1 + R)) R
D 2 2
-2 PoTyy 1 2w
(R + H¢ (e¢ + )) Eﬁ- ;—?
¢
2
.S au av o, K aw
Mg = Ro3e ¥ St PYARTEr (A7)
N =§3!+53_V_K_32W
$X R 3¢ ax RZ 9X3¢
D D
= _y ou v oav
M = (Hy ey R % E?' 3
2 D 2
2y oW v 3w
- (D +H, p,7) — - —5
1 x Px X2 Eﬁ' 3¢2
e D p2
= oV | (2 9y ¥
My Hy ® 36 O
2 3 2
oW 2 o 1 3w
- D 5 -(D,+H (o~ + )) .
voxd 2 e e RZ a2



T 2
S, Ixy oy, 2%
M -7 (R R ) (ax + axa¢)

T
ou 5. av, - gﬁ.+ _QQ
R ax R R

where the constants in the above expressions are given in terms of the
material properties and the dimensions of the stiffened cylinder by

H - Ex ts
sl ]—uxu¢
’ _ Exs Tx |dxl
X 2,
E t3
D _ XS
1 |2(|-uxu¢5
E, v ts3 E, by t
Dv - ]2(]-uxu¢; 12(1-uxu )
N = Ex vy Es - E¢ uy b
v MM Sk
S = Gts
T - Gy Jy
X 7,
2 2
2 _ 4d,” + 6 |dX| to + 3t
Px T2
2 2
2 _ 4d¢ +6 |d9| t + 3t
Pe T2
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d + t
- X S ..
e, = % 5 + 1inside
~ outside
d + t
S
= +
e¢ +
3 2 2 3
3 2 |d¢| + 4tS d¢ + 3tS |d¢' t ot
a¢ = i_ 3

The effects of the eccentricity of the stiffeners are seen in the
terms €ys e¢, and « 3, which have a positive sign when the stiffeners

¢
are on the inside and a negative sign when the stiffeners are on the outside.

A.5 ©Prebuckle Forces and Stresses

It is assumed that when the cylinder is loaded there is a uniform
change in length and a uniform change in radius. This implies that u, v,
and w are independent of ¢; w and v are independent of x; and that u is
a linear function of x. Applying these assumptions to the force displace-
ment relations (A.7), the forces in the cylinder are

- 3u W

Ny = (Hsl + Hx) I Hv R
du Eg_ W
N¢ = Hv X " (H52 + H¢ 1+ R)) 7 (A9)
D

= 1 u

My = (Hx & R ) aX
D 5.2

= 2 NN )
M¢ = - (R + H¢ (e¢ + 5 )) R
Nx¢ = N¢X = Mx¢ = M¢x = 0
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By substituting these into the equilibrium equation524 the internal

forces may be obtained in terms of the applied loads. The result is

N, =-N
(A10)
N¢ = - pR
where N is the applied axial compressior load per unit Tength of circum-

ference, and p is the applied external pressure per unit surface area.

With the assumptions about the prebuckled deformation, the midsurface
prebuckle strains are obtained from the strain displacement relations as

— ou =
£ = = € = -

Xp ax °* op (A1)

o=

By equating the expressions for the force resultants in terms of the dis-
placements with the values of the force resultants in terms of the external
forces and identifying the strains, the following expressions for the mid-
surface strains are obtained, after neglecting terms of the order of the
depth of the stiffener divided by the radius with respect to one:

Hv pR - (HSZ +AE9) N
Xp 7
(Hs1 * Hx)(HSZ * H¢) Hv (A12)

HON - (H + H) pR

E -
¢p T4
(Hs1 * Hx)(Hsz + H¢) Hv

Substituting these into the stress-strain relations (A.1) for the skin,
the expressions for the stresses in the skin are obtained:

H H
[0+ %) - uu IN+u, 72 pR
HSZ X" ¢ X Hs]
(A13)

1
o‘ = = e—
Xp t H H

SO+ O+ -

U, U
sl lLZ X "¢
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H : H
N« [ = (1 4+ 5297 pR
y Ly n, =~ (1
¢ B, LHy Mg He P

H H
X
(] + HS]) (] + Hsz ) - ux ud)

0 =—]—-—
P ts

The expressions for the stresses in the ribs neglecting terms involving
the depth of the stiffener divided by the radius with respect to one are
obtained by multiplying the stiffener modulus by the corresponding value
of the midsurface prebuckle strain. These are

xsp Exs €xp

' (A14)

%sp - Cos S¢p

A.6 Buckling of the Cylinder and Skin

An expression for the critical buckling load of the cylinder is
obtained in terms of two integer parameters representing the buckling mode
shape. The lowest buckling load is then obtained by searching the buckling
loads obtained from a large number of possible mode shapes.

The expression for the buckling load is obtained from the determinant
of a set of homogeneous equations. These are obtained by substituting into
the buckling equilibrium equations, in terms of displacements, an assumed
solution which satisfies these equations and simple support boundary condi-~
tions. The displacement functions contain the two integer parameters
representing the mode shape and arbitrary constants.

The buckling equilibrium equations are obtained in terms of displace-
ments, by substituting the force resultants, in terms of the displacements,
into the buckling equilibrium equations in terms of forces. The buckling
equilibrium equations used are those given by F]ijgge25 but contain only the
buckling force terms recommended by Hedgepeth and HaH?6 With the changes
required because of the different coordinate system used here these equa-
tions are
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%%t+ ::—XL‘EZ-;;# - %z—:"i-n—:% = 0 (A15)

R L R L Y

2¢ axX
-NRZ%-pR(%+w)-o

where N is the applied axial compressive force per unit length and p is the
applied external radial pressure per unit area.

After substituting the force displacement relations (A7) into these
equations, the buckling equilibrium equations in terms of displacement are
obtained. These can be written in the form:

R(Hsl + Hy ) 22y + 3 1 32u + (Hv + ) o2y
Hsz H52 ax Hsz R 3¢2‘ HS2 Hs2 X3¢
_ B_ aw R(Hx e D] ) a3w _ K 1 a3w = 0
HsZ X HsZ X HsZR ax3 Hsz EE ax8¢2
H 2 e 2
Sy3u b IR T
(T + =) + (1 + -5
H52 H52 AXd¢ HsZ R R a¢2
(A16)
T 2 2 H
SR Xy 9V NR  37v by 1 w
+ + ) - - (1 + ) = ==
Fl;; HSZR ax? HsZ a—xz- HsZ R 93¢
H e D T 3
1 W 3K v X 1 W
- (2% + ( + + ) = = 0
”sz RZ a¢3 HsZ HsZ “sz R axzaq;
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H 3
v au X X 3y K a3 u
T ax * ( - ) R + »
s2 @ “sz HszR ax3 HsZR axa@z
H D 3 3
1 av 3K ) X 1 37v b ¢ 1 Vv
(T+2) = & v e ) o + 2y
oo R 30 Nl H™ Ry, 2 R o
2
D 2
2 ° ] 5w
-2 + (e, + —-)) —
H oR Heo ) R E? a¢2
..E_D_Y.+4L+.TL_+;.9L_)1 34‘”
HsZ HsZ HsZ s2 R X3¢
3 2
D H 2 a 4 D H, o
2 1 3w 1 X "X a W
-(—-+%(p + =) 7 - + ) R
s2 s2 ¢ R EZ' 3¢ HsZ Héz ax4
H e 2 2
NR 3w p 3 W
v s Ny - - (5 +w) =0
HsZ RTTR HsZ ax2 Hsz a¢2

The assumed displacements which satisfy the above equations and the simple
support boundary conditions are

u = A sinn¢ C€OS AX
v = B cos nd sin ax
w = Csinn¢g sin ax

where for the complete cylinder

n =n n = 0,1,2, ...

and L is the length of the cylinder.
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For a cylindrical plate (the skin between stiffeners)

M

—_— m =1, 2,

2')(

Q'FR n = ], 2, .
¢

After the displacements are substituted into the displacement buckling
equilibrium equations, these equations can be written in the form:

_
C11 G2
Gz Ca
Cay  C
31 Co3
|~

where the C!'

‘1
Cr2
C13
C31
Ca2

) ] 3N N\
Cis (A (0
4
NRx -
Mo <B}—<O? (A18)
C +-'B£+ JL(nz-1) \CJ \OJ
33 H52 HSZ
are given by
R (ES_.I_{.&_) )\2 - S___ ﬁ
HsZ HsZ Hsz R
H
S
- (—+ ™) n A
HsZ Hsz
H e D 2
v X X 1 3 K AN
- g— A+ R( - ) AT+ g—
Hs2 Hs2 HgoR He  R2
H H e D 2
S R e R (A19)
s2 s2 s2 s2 R
H e T
2 SR X 2
-0+ =0 -Pn - G + B
HsZ R (3 H;éR
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H H e 3 D T 2
3K v Xy A
Con = =01+ 3 + (29 - (s + 2 An
23 Hop" R s2 = R Ry Ho THLTR
2 2
D H
2 P
C 2 ( + —9—-(e + —i—o) n
33 AR A, % R o2
T
- (2 D\) + 4K + X + T¢ ) >‘2 12
Hp  Hgp  Hep o He R
3 4 2
D H D H
2 2 ¢ n 1 x Px 4
'(—"HL(D +—%—)) - + ) R A
Heo s2 ¢ 2 Hgp  Hgo
H e
1 o "¢
R (1 + . (1 + R))

Since the values of the applied Toads are known, a ratio between the
axial load and pressure can be calculated. Letting

p = oN

and setting to zero the determinant of the coefficients of A, B, and C in
the last set of equations the expression for the critical axial load is
obtained. This is

N
() = = (A20)
H52 cr 4.}
where
A ¢ RAY+22 (2 -1) o) R
B = [(Cys Cop = CynZ) # {Cax Con = Cyq Car)] R A2
1 Y22 - Y12 11 Y33~ Y13 b

+

(Cqq Cop - c122) o (n2 - 1) (A21)
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C = €y Cyp 33 *+ CpCp3 €37 + Cq3 Cyp Co3

2
12 C33 - O3

33 12

2

- C 23

c -C c

31 C22 11

For each combination of the parameters m and n there are two possible values
of (N/HSZ)cr' The one which has to be used as critical is the one with
smallest magnitude and having the same sign as the applied load N. The
critical buckling load is obtained by finding (N/Hsz)cr for a large number
of values of both m and n and then selecting the lowest magnitude value
out of all of these.

For the special case when N = 0 the critical pressure must be found.
This is given by
= = - (A22)

The above analysis is used for gross buckling, panel buckling, and
sheet buckling. For gross buckling all the constants are calculate as
given in the C's and the full length of the cylinder is used. For panel
buckling, the terms which contain the properties of the circumferential
stiffeners are set to zero and the length of the cylinder is taken as the
circumferential ring spacing. For skin buckling, all terms containing
stiffener properties are set to zero, n 1is changed to apply tc a cylin-
drical plate with a width of the longitudinal stiffener spacing and the
length of the cylinder is again taken as the length between circumferential
stiffeners.

A.7 Longitudinal Stiffener Buckling

The critical buckling stress for the longitudinal stiffeners is
obtained by applying a solution for the critical buckling stress of a flat
rectangular plate to several different possible assumed modes of buckling
of the stiffener. In all the possible assumed modes the longitudinal
stiffener is assumed to be simply supported on three edges and free on the
fourth. The critical buckling stress for such a flat plate is given by
BIeich27 as
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2 L 2
o, = ‘;‘2—(5%— (%)2 [(%) + 0.425] (A23)
-V
The notation has been changed here; t is the thickness of tne plate (i.e.
the width of the stiffener), d the width of the plate (i.e. the depth of
portion of the stiffener under consideration), and & the length of
stiffener under consideration.

The first failure mode to which this expression is applied is in the
situation where the circumferential stiffeners are either on the opposite
side of the cylinder from the longitudinal ones or where they are non-
existent. In this case d is taken as dx’ the full depth of the stiffener,
and ¢ 1is taken as L, the full length of the cylinder.

The second mode is where the circumferential stiffeners are on the
same side of the cylinder as the longitudinal ones and are the deepest.
In this case the critical buckiing stress of the longitudinals is taken as
that of a plate with depth dx, the full depth of the Tongitudinal stiffen-
ers, and a length Ly the length between circumferential stiffeners.

The third mode is where the circumferential stiffeners are on the
same side as the longitudinal ones but are not as deep. In this case one
would expect the stiffener to buckle in a manner coupling the material
between the circumferential stiffeners with the material above the circum-
ferential stiffeners. To obtain an estimation of the critical buckling
stress two cases are considered. One assumes that the portion of the
material between the circumferential stiffeners does not buckle but the
outstanding portion does. 1In this case the formula is applied to a plate
of the dimensions of the depth of the outstanding portion and the length of
the entire cylinder (dx - d¢ by L). The other case assumes that the
material between the circumferential stiffeners does buckle with the out-
standing portion of the longitudinal stiffener but that the circumferential
stiffeners force nodes in the buckling of the longitudinal and these notes
occur at the Tlocation of the circumferential stiffeners. The buckling
stress in this case is taken as that for a plate and d equal to the full
depth, dx’ of the stiffener and ¢ equal to Lys the circumferential
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ﬁtiffener spacing. This is the same as the case where the circumferential
stiffeners are deeper than the longitudinals.

A.8 Circumferential Stiffener Buckling

Similar situations are encountered with the buckling of the circum-
ferential stiffeners as with the buckling of the longitudinal stiffeners.
Here, however, an additional mode of buckling is encountered (see TablesAl
and A2). The external stiffeners not only can buckle when they are
compressed, but due to their curvature can also buckle when they are
expanded. An expression for the critical circumferential strain in the
skin of the cylinder, or at the edge of the stiffener, is obtained (in
Section A.9) by doing an assumed mode solution of the buckling problem.
This expression is

t 2 2
e = - (= 1 2 +2(0-v) (g + 57/2)
pcr @ on Sea o2 )X
(A24)
2 2 2 2 2 3
(1 + 2n°(1-v)) ¢ + (2n%(2-v)-1) %* (n“- 1) °/3+ ...

2 2
1+ (ED) e 3R P

+
where d is the depth of the stiffener portion in question; and ¢ is the
ratio of the stiffener depth, d, to the radius of the unsupported edge of
the stiffener; ¢ is a positive number if the stiffener is inside and nega-
tive if the stiffener is outside; and n is the number of full waves in the
circumferential direction.

With the circumferential stiffeners on the inside of the cylinder, ¢
positive, the value of € pcr is negative for all values of n and increases
in magnitude as n increases. This means that inside circumferential

stiffeners can buckle only when the cylinder contracts under load.

With the circumferential stiffeners inside the cylinder and the
longitudinals outside or non-existent the critical buckling value for ¢

_ écr
is obtained with n = 0.
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With both the circumferential and the longitudinal stiffeners inside
the cylinder and with the longitudinal stiffeners deeper than the circum-
ferential ones, the circumferential stiffeners are physically restrained
from buckling into a smaller number of half waves than the number of spaces
between longitudinal stiffeners. Since €scr increases in magnitude as n
increases, the critical buckling value for this situation is obtained by

using for n the number of spaces in half the circumference of the cylinder.

In the situation with the circumferential stiffeners deeper than the
longitudinal ones two values of €ocr 2Te obtained. One is for the un-
supported portion of the circumferential with d = d¢ - dx and n = 0. The
other is obtained as above, for the supported stiffeners, for the full depth
of the stiffener assuming that nodes are forced at the locations of the
Tongitudinal stiffeners. This is similar to the case of the longitudinal

stiffeners.

With the circumferential stiffeners outside, ¢ negative, € ocr is

positive for small values of n and increases in magnitude as n increases.

When n becomes large enough € scr becomes negative and then as n increases
the magnitude of €ser decreases while the value remains negative. The
magnitude of ¢ decreases until for some value of n a minimum is obtained.

scr
Thus the circumferential stiffener can buckle for small values of n when the

cylinder expands, positive, or can buckle for large values of n when

€ocr
the cylinder contracts, €ser negative.

For the case of external circumferential stiffeners with the longi-
tudinal stiffeners inside or non-existent, the critical positive value of
€¢cr is obtained with n = 0, and the critical negative value is found by

searching for the Towest magnitude negative value of €pcr

With the Tongitudinal stiffeners also on the outside and deeper than
the circumferential the circumferential stiffeners are again physically
restrained from buckling into a smaller number of half waves than the
number of spaces between the longitudinal stiffeners. A value of € scr is
calculated for n equal to the number of spaces in half the circumference
n = wR/£¢- If this value is positive then this is the critical value for
an expansion of the cylinder. 1If it is negative there is no critical value

for an expansion of the cylinder. Several possibilities exist for the
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negative buckling value. If the above value of € ser is positive then the
negative value is the one given by the minimum magnitude value found for the
unsupported stiffener, since this value has a larger number of circumfer-
ential waves than spaces between stiffeners. If the value for n = -nR/zdJ

is negative then there is a choice between this value and the value

minimum I5¢cr|‘ The one which has the larger value of n is used. The
reasons for this are as follows: if n = aR/2 is the largest then a
smaller n is physically impossible; if the n for minimum l€¢cr‘ is larger
then this gives smallest |€¢cr| for €scr negative and is physically
possible. For the case of all external stiffeners with the circumferential
ones having the greater depth the problem is again split into two parts, one
an unsupported circumferential stiffener with depth d¢ - dx and the other
a stiffener with the full depth d¢ » assuming nodes at the location of the
longitudinal stiffeners. Values are then obtained for each case in a
manner similar to that described above for external stiffeners. Two

results are then obtained and compared to find the critical value.

In this treatment n is considered as a continuous variable instead
of integer as it actually is and no arguments about the compatibility of the
mode shapes are made. Introducing these restrictions would increase the
buckling values so that the treatment used is conservative.

This buckling solution does not apply where the circumferential
stiffener is thick compared with its depth. This is because the assumed
simply supported boundary condition does not apply. In situations where
the outstanding portion of the stiffener has a depth to thickness ratio of
less than ten the yield 1imit is substituted for the buckling Timit.

A.9 Solution of the Circumferential Stiffener Critical Buckling

Strain

An approximate solution is obtained for the buckling of a circular
plate with a large hole in it. The plate is assumed to be simply supported
at one edge and free at the other (see Figure A3). The simply supported
edge is the edge which attaches to the cylinder and thus must have the same
displacements as the cylinder. The critical buckling parameter is taken as
the tangential strain on the simply supported edge. The solution is
obtained using an assumed mode variational method.
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The variational formulation of the problem of elastic stability is
given by Novozhﬂov‘?8 as

of al2) 1l = s Réz)

In the cases in which the initial stress state can be determined using
classical theory, this is such a case, A(z) is given in cylindrical
coordinates as

2
A2 - b i (b,")" - 2b,'} 1 dr do dz
12 12 [ ' )
+ -12- {o‘r’_ (u)e+wZ )+ 0; (wr2+ m22)+ o; (wr2+ wéz)
[e] [ I | [+] 11 (=] [ I}
- 2[Tre wrwe+rr2 wrmz+'rezwewz] } rdr de dz
where
1 - ] ] 1
byt = et Feg' te,
[ ] ' 1 1 1 l_l V2 12 12
by ep € T Ep e, toege, - 7 (Ere *ep,t t g, )
and
EI = i-l— 1 = l&l + i. = _a_;,i
r or ° 6 T 90 r €z oz
re r°r "rae ° Sfrz %z ar °* fez T r e 3z
co 1w avt Bt oW roavt vt 1
2 = FRe T a3z Wy S5 T ar A TS5ty T vhe
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The primes dénote the buckle state and zero the initial state. By the same
type of procedure as used for the derivation of the strain displacement
relations in the cylinder the above strain displacement relations can be
reduced to strain midsurface displacement relations. Thus, by assuming

the displacements vary linearly with depth, the transverse shear strains are
zero, and the normal strain is zero, the strain displacement relations reduce
to

et o= dub 22w

r ar ar

ev o= Loavt out oz 1 swlo oy

6 r o9 r r r 36 ar

coo.oavi vl 1w 2z tw 1 awy
re or r r 296 r ar 96 30

0 ! 1oaw oo _aw o o _avt v 1 au!
r r 8 "o ar * "z ar r r 29

Note that the displacements in these expressions are the midsurface displace-
ments and not the displacements of a point as in the previous expressions,
also u, v, and w' are the displacements in the r, 6, and z directions and
are not the same as the u, v, and w for the cylinder.

The stresses in the plate prior to buckling are given by Timoshenko29

in terms of a radially inward pressure at the outer edge as

2 2 2
) b (Y‘ - a
r -pby dr-2)

o’ =
r- (b° - a%)
A S ()
0 2 (b2 - ad)
Trg, = Tpz = Tgz T 97 = 0
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P is the radial pressure. These may be transformed to be in terms of the
tangential strain at the edge r = b, Eg » by using the stress strain
relations to solve for P in terms of €y and substituting the result

into the above expressions for the stresses

2
2 — a
b €q (1 - ;2) E¢s : )
g ° = A25
r a + b° + v(a2 - bz)
2
2 — a
b Ee (]"‘;—2-) E¢S
°% T Tz

a2 + b% + u(a® - b%)

The following set of buckling displacements satisfy the displacement
boundary conditions:

u' = v' =0

A (b-r) sin ne

E-
1]

These displacements are then substituted into the strain-displacement rela-
tions and the resulting expressions along with the prebuckle stresses are
then substituted into the expression for A(z). When the integration is
carried out and 6[A(2)] is set to zero (s Réz) is zero for the problem
since the forces are constant on one edge and the displacements are
constant on the other)30 the following expression is obtained for the

critical Eé:

- £2 [a2 + b2 + u(a® - b%)
9 T T J ) ]
12(1-v") b
2 2 2
(P12 1n B+ 2n? (1-n?) D22 4 g2 (002 200)) (b7 - o7

[ 5 2 1 (A26)
I-zn_ (b2 - a%) + (b2n? + a2 (n2-1)) n 2
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Now ( ) is set equal to z and the expression is expanded in terms of
this quant1ty. The result of doing this and setting the critical &
to the critical strain in the cylinder is the expression:

6 equal

2
- : (2 + 2(1-v) (5 + 3-))
(———- 2
12(1-v%) (1 + 2¢ + £9)

St
4

2 3
[(1+2n2('|-\>))c + (2n%(2-v)- 1) %+ (n2—1)2 (% -5

2
-|+(2n -])C + ‘B_TQL' §2+.--

Specialization of this solution in two 1imiting cases, for which solutions
are available in the literature, is given in Appendix B.

A.10 Yield Failure

The principal stresses in the skin are given by Oxp and %op (A13).

It is assumed that the yield criterion for the cylindrical shell skin
material is of the following form31

O’
fp = (—P“) - e —&) < (A27)

%00 “a %00 | 408 ¢08

where

9%0a = x0T the longitudinal tensior yield stress in the skin if Oyp > 0

%%0a - °x0OC the longitudinal compression yield stress in the skin if
pr <0

%408 = % 40T the circumferential tension yield stress in the skin if
%p 7 0

o508 = %40C the circumferential compression yield stress in the skin
if G¢p <0

Keg = ST constant defining yield envelope in first quadrant xp 0
and %40 >0
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Ko — KCT constant defining yield envelope in second quadrant Oxp < 0
and 0¢p > 0

Keg = ScC constant defining yield envelope in third quadrant Oxp < 0
and Op < 0

Keg = TG constant defining yield envelope in fourth quadrant xp >0

and %4p <0
For the case of an isotropic material that behaves identically in tension
and compression with yield stress %D Egs. A27 when specialized by the
following substitutions:

x0T o%0c " 90T - %g0c ~ 9D

K = 1

aB

reduce to the distortion energy yield criterion

2 2 2
Oxp " oxp0¢p+ %4p < 9D (A28)

The stiffeners are in a uniaxial state of stress so the stresses (A14)
must satisfy the yield conditions:

9%%sS0C = %%sp = 9xSOT
(A29)

9%S0C = %psp = 94SOT

where the subscript x refers to the longitudinal stiffener; ¢ refers to
the circumferential stiffener; 0 refers to yield; C refers to compression;
and T refers to tension.

50



16

Table A1

Selection of Circumferential Stiffener Buckling Mode

(€¢)cr - Contraction
d, gggg- |d, |<ldy | d n (e)cp
Sides
Inside + | Yes N/A ds n=0 (€¢)cr B (€¢)cr|n=0
Outside - | Yes N/A d¢ n = n* (E¢)cr = (€¢)cr|n=n*
Inside + | No Yes d¢ n= %%- (€¢)cr = (€¢)cr|n=ﬂR/2¢
Outside - ; No Yes d¢ n = %R if (€¢)cr|n=wR/z¢ > 0 then use (€¢)cr|n=n*
d, n= ni otherwise use (€¢)cr|n=max(n,n*)
Inside + | No No d,-d n=0 (e¢)£l) ifl(e¢)él)| 3_|(a¢)£$)| then
d, n = gf. ()2 (e,)cy = (,)(2) otherwise (e,) = (c,) 1)
OQutside - | No No [d, 1-1d, | n = n* (g¢)£l)
% " % i (e )or nenpygy 2 O then (€¢)§12”)|n=-n*
d; n=n* | otherwise (€¢)cr|n=maxin,n*)
(e ) 3 (eS0T 2 1) B then (e,) o = (e, )ch
(e,)2) [ otherwise (c ), = (e, ) ()

d, > 0 inside

¢

d. < 0 outside

¢

n* positive integer such that (e 0

¢)cr <

and is a minimum.

| (e)er| [n=nx
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Table A 2
Selection of Circumferential Stiffener Buckling Mode

(€¢)cr - Expansion
d 0 it d d d
" 5?5251 e || ¢|§J i n (E¢)cr
Outside - | Yes N/A d 0 (ey)ep = (€¢)cr|n=0
. 7R -
Outside - No Yes d¢ E;' (€¢)cr = (e¢)cr|n= R (E¢)cr = > 0
¢ %
otherwise no buckling in this case
—— (n . (2) - (1)
Outside No No ]d¢]-|dxl 0 (a¢)cr if (£¢)cr < 0 then (E¢)cr = (e¢)Cr
R (2)) . (2)
d¢ % (€¢)CY‘ if (e¢)cr > 0 then
o (1) (2)
(ey)ep = min ((e)en’s (edep)

o

e



Figure A 1

Displacements and Rotations
of a Shell Element
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Figure A 3  Circumferential Stiffener
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APPENDIX B

Verification of the Circumferential Stiffener
Buckling Solution

Two limiting cases for €hcr are obtained. One is for the washer
mode of buckling with no circumferential waves. The other case is for a

large number of waves. These cases are checked with existing solutions.

With n = 0 and neglecting terms involving the depth of the stiffener
divided by the radius, z, with respect to one, the expression for the washer

mode is
ST — () (81)
scr d 12(1 -4 %)

With n large and again neglecting ¢ with respect to one the express-

ion for E¢cr is

2 2
coer = - (5) - 5= +300 - W) (82)

12 (1 - v9)

Substituting the expression for the critical strain in the washer
mode (B1) into the expression for the stress in the radial direction (A25)
and obtaining the value at the supported boundary, r = b, the following
expression is obtained:

“E

S p— -
rcr

(’°)2 (2¢)
2 (1.3 @ 5

Writing ¢ as d/R and making the definition D = E¢St2/12(1 - V%) this
expression is

The negative sign signifies that the stress is compressive. The above value
agrees closely with the exact solution for the axisymmetric case done by
Meissnevs"2 who obtain a value for the coefficient 1.86 instead of 2.
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By substituting the value of €ocr

for n large (B2) into the expres-

sion for the tangential stress, o, (A25) at the supported edge, r = b, the

following expression is obtained:

-E 2 2 2
op = —2 o () (301 -+ 1R (2)

12(1 - V%)

n is expressed in terms of the half wavelength, ¢, as «R/2 .

for ¢ and n the following expression is obtained:

2
-E T 2 2
- t d 6(1-v
o A

If the value v = .3 is used this becomes

- “2 t 2 d 2
%cr 12(;"j“:§)(39 (() + 0.425)

Substituting

which is the same as the expression for the critical buckling stress for a

rectangular plate (see Section A.7).
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APPENDIX C

Development of Synthesis Scheme

C.1 Introduction

In the section entitled synthesis scheme it is explained how the
design problem is converted to an unconstrained minimization problem.
Fiacco and McCormick33 have shown that when this method is applied to a
convex programming problem that as the multiplier, r, approaches zero the
optimal solution to the unconstrained problem approaches the optimal solu-
tion to the constrained problem.

In this appendix the equations necessary to implement the scheme
are given as well as more detailed discussion of how the scheme operates.
A discussion of the computational experience is also given.

€.2 MWeight of the Stiffened Cylinder

The expression for the weight of the cylinder in terms of the design
variables and over all dimensions of the cylinder is

2 n +

w=21TRLtsys+|2Rd-d o Yo Mo

R AN

L }dx| teovg Ny - min (ldxl, ]d¢|) 6x¢ tx t¢ (yx Syw T Yy 6¢w) n¢ n,
where Yoo Ty 0 Yy are the weight densities respectively of the skin, circum-
ferential stiffener, and longitudinal stiffener; n¢ and n, are respectively
the number of circumferential stiffeners and the number of longitudinal
stiffeners. The last term in the expression accounts for the fact that

the stiffeners may cross when they are on the same side of the cylinder

and the weight of the material at this intersection must not be counted
twice. The quantities 6x¢, S yw? and § w are introduced to account for

the possible combinations. These are defined as follows:
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0 stiffener sets on the opposite sides of the skin

1 stiffener sets on the same side of the skin

0 longitudinal. stiffeners continuous

XW
1 circumferential stiffeners continuous

-
~
<{: 0 circumferential stiffeners continuous

oW
1 Tlongitudinal stiffeners continuous

The quantity min (ldxl, |d¢|) takes the value of the magnitude of stiffener
depth which is the smallest in magnitude.

While n¢ and n, are in fact integers they are not taken as such here
because this would cause the gradient to the weight to be discontinuous. Thus,
their values are taken as

L
n = — - 1.0
¢ Ly
27R
n = v——
X R,q)

C.3 Approximate Analysis

The approximate analysis is approximate in the sense that in the
cylinder buckling analysis only a small number of possible buckling mode
shapes are checked in the search for the minimum buckling load. These mode
shapes are determined by doing a search of a large number of possible modes,
at the start of each minimization cycle, and sorting out a predetermined
number of modes to be kept for the partial analysis. These modes are
selected by ordering them according to the value of the buckling load which
they give. The ones which give the lowest buckling loads are kept. An
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approximate analysis then consists of calculating buckling Toads for each
proposed design just as in the complete analysis but using only the
selected set of mode shape numbers. The rest of the analysis remains the
same.

This is an unconservative method and the reasons that this can be
used are as follows: at the outset of the minimization, when the value of
the multiplier is large, the designs are far away from the constraints and
an error in calculating the buckling load does not result in leaving the
acceptable region of the design space; near the optimum only small changes
are made in the design so the buckling modes do not change much, if at all,
and the approximate analysis is very close to being as accurate as the
complete analysis.

C.4 Altering the H Matrix

The H matrix for the direction §}+] is calculated using the informa-

tion at the minimum along the direction E} in the following manner:

i+1 i i 1
where
Al
R T
Ay = =T
% Yy
- =T
s o MiYi¥i W
i -7 —
Y; H1 i
and
y. = (v F -
i = (R - (R

The first value of H is taken as the identity matrix. Fletcher and Powe1134
have shown that for a quadratic function the method will converge by using
only the same number of directions as there are independent variables.
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There are situations which arise where the minimum along a 1ine
cannot be found within the prescribed tolerance (see one-dimensional
minimization). In such a case the H matrix is not updated but a new
direction is generated using the new gradient at the new point, the. one
which estimates the minimum along the 1ine, and the same H matrix.

The H matrix is reinitialized after the number of directions in
which attempts are made to find a minimum exceeds the number of independent
variables (see block diagram, Figure 3).

C.5 Gradient

The gradient to the function, F, is calculated partially explicitly
and partially by finite difference. The gradient to the weight and the
gradient to the part of penalty function which contains the side constraints
are obtained explicitly. The gradient to the part of the penalty function
which contains the behavior constraints is obtained by finite difference.

The unconstrained function, F, is rewritten as follows in order to
calculate the separate parts of the components to the gradient:

F = W + r(zu + 22 + ZC + ZB)

where Zu is the sum of the 1/91(77 for all the upper bound design
variable constraints; 22 is the sum for the lower bound design variable
constraints; ). 1is the sum for the compatibility constraints; and }p

is the sum for all the behavior constraints.

The gradient to F is then
vvF(v,r) = v M+ r(v, Zu + 9, 22 + 9, Zc + v, ZB)

The components to the gradient to the weight are given by the
following expressions:

n

- = 27 RLys—ﬂd¢t¢y¢ b
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-1 d¢ <0
(
1oldl < 14,
ﬁ 0 d > |d
(
0 I, 2 4]

vy (Us- vy)

The Tower bound components are

Sby _ o i i
vy (v; - LT.)2

The compatibility bound components are

) L -8,

C _ _ o2~ “gu
3ty (z¢ - t)
EEE. - fxu ~ *xg
* (2, - t¢)2
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X (zx - t¢)

The gradient to the behavior constraints part of the penalty function
is calculated using a forward difference method. Thus these components are

)

Vi

RS
3V Av B

- Jg

AV
V_l V,l

In calculating the sums involved here an analysis is performed by
using the critical mode shapes of the design point v. This eliminates
the complete modal search.

C.6 One-Dimensional Minimization

In finding the minimum of F along a move direction, it is assumed
that the function is unimodal in this direction. Using the last calculated
value of the weight as an estimate for the minimum of F a linear interpola-
tion is made along the line to the estimated minimum design. This gives an
initial guess at an increment size. Then using an incrementation scheme
and the slope along the line as a test two points are found which Tie on
opposite sides of the minimum. A cubic interpolation is then made to an
estimated minimum design. The value of the function, F, and its gradient
are calculated at the interpolated minimum. The inner product of the unit
vector in the gradient direction is taken with the unit vector in the move
direction. If this is less than a prescribed value, .005, the point is
accepted as the minimum. If not the point is substituted for one of the
points bracketing the minimum and another interpolation is made.
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The following cubic interpolation formula is used:.f’5

(vva)T E} + W=z

& =71 -
A

' T = T—
(vva) s; - (vvFa) s; + 2w

where a and b are the points which bracket the minimum, o 1is the distance
to the minimum from a; and A is the distance froma to b; o and A are
positive from a to b.

/2

=
u

T 1
(2% - ((v,F,)T 53 (v Fp) 5:)))

3 T T
by (Fa - Fb) * (VvFa) sy (vva)

N
1l

S

Fa and Fb are the values of the function at points a and b.

If the convergence criterion is not satisfied after a prescribed
number of interpolation attempts, five is used, the direction is abandoned
and a new one generated without updating the H matrix. The last design
point estimated as the minimum is used as a starting point for the new
direction. Also if the distance between points a and b gets to be Tess
than a minimum value the direction is -~Landoned and a new one generated,
again without updating the H matrix. In this case the point a is used as
the starting point for the new direction. Note here that while the H matrix
is not changed the gradient is, because the design point is changed.

The minimum move distance is selected as follows: the component of
s, the move direction, which has the largest magnitude is selected; the
minimum distance is then calculated as the finite difference increment in
the variable corresponding to the selected component of s divided by the
magnitude of this component of s . The minimum distance is

VV_i

Tm1'n = [Sil

max
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C.7 Convergence Criteria

Three alternative tests of convergence are used to determine conver-
gence of one of the unconstrained minimization problems. Convergence is
assumed when any one of these is satisfied. One convergence test is con-
tained in the computer program for convergence of the overall problem. The
program may also be stoped after a predetermined number of cycles, uncon-
strained minimizations.

The first of the three convergence criteria for terminating a cycle
is that the magnitude of the gradient be less than a prescribed value, a test
for convergence using this criterion is made for every design.

The second is that the estimated value by which the value of F exceeds
its minimum is less than prescribed percentage of the value of F. The amount
by which F exceeds its minimum is given by

7 v F @’ AT v FELr)

if F is quadratic. A is the Hessian matrix of F evaluated at the design
point v. Since the H matrix in the direction finding method tends to A'] as
v approaches the minimum,H is used in this method to get an estimate of the
amount by which F exceeds its minimum. Since H will only approximate A'1
after minimizations have been achieved along a number of directions equal to
the number of independent variables, this convergence test is only applied

after this number of directions is searched.

A third test is used to prevent an attempt to make moves which are
within the finite difference star. This test proceeds as follows: after
the above test fails a move is made in the gradient direction which is twice
the minimum move distance (see one dimensional minimization); if the sign of
the slope of the function at the new point along the old gradient direction
is opposite from the sign of the slope at the old point or if the new point
is in violation then’ convergence is assumed.

The final convergence criterion is based on the primal-dual nature of
the method. Once a minimum is obtained for one value of the multiplier, r,
bounds can be placed on the value of the minimum weight. The minimum weight
value is bounded below by the value of the dual objective and above by the

current value of the weight. This leads to the following convergence criter10n§7

66



W-G6

G = ¢

where e s some small percentage and G is the value of the dual objective.
G is given by

It is convenient for computational purposes to write the convergence criter-
ion in terms of F and W. This is

F -W
wW-F = °
The convergence criterion applies only when G = 2W - F > 0.

C.8 Computational Experience

Even though a finite difference method is used to get the components
of the gradient to behavior portion of the penalty function this causes
only a small increase in computational effort, since the mode shape numbers
are used from the analysis at the design point and no modal search is
involved in performing the analyses at the points of the finite star.

Only a forward difference is used but it works well and probably Tittle
advantage would be gained in using a more accurate method.

Convergence for three load condition cases on CWRU's Univac 1107
computer using the Fortran IV language takes fifteen to twenty minutes of
computer time. The one load condition cases take from five to eight
minutes. Approximately twelve cycles (minimization for a value of r) are
required for convergence. A complete analysis for a three load condition
case including sorting the most critical mode shapes takes about thirty-five
seconds and a partial analysis takes about one half second.

For the cycle convergence criterion on the magnitude of the gradient
the value used is 10% of the weight. This seems quite large but the fact
is that it is difficult to satisfy.
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The second criterion, the estimation of the percentage by which the
function exceeds its minimum, works well. A value of 2% is used here.
Using this criterion convergence is achieved the majority of the time after
minimizing along the same number of directions as there are independent
variables.

The third convergence criterion, the move size criterion becomes
active once the function value, F, becomes close to the value of the weight.
In this situation the move distances become small and it is difficult to
satisfy the convergence criterion along a line so the H matrix is not updated
on every move. The H matrix does not then approximate A"l and in some cases
remains the identity matrix. Thus, the second convergence criterion is not

satisfied.

Fiacco and McCormicEBhave found that the computational effort
involved in achjeving the over all minimum is relatively insensitive to the
rate at which the multiplier, r, is reduced. This is because a greater
reduction in r requires a greater effort to find the minimum of the uncon-
strained problem.

In the work presented here there is a factor involved in selecting
the rate of reduction of r which does not occur in their problems. This is
the fact that the individual minimizations are being performed on an approxi-
mation to the function, F. The approximate analysis is used for the
individual optimization. Too large a reduction in r will result in large
changes in the design variables and the approximations will then be poor.
This can and does result quite frequently in optima for the unconstrained
probiem which when analyzed completely are found not to 1ie in the acceptable
region of the design space. The synthesis cannot be continued from such a
point.

The reduction of r and the number of modes used in the partial
analysis are thus intimately tied together. Their connection is a diffi-
cult one to establish since this is an optimization problem in itself. It
was found, however, that once a value of the reduction of r was established
which kept the designs in the acceptable region for most problems, using a
relatively small number of saved modes, that the convergence time could be
improved by increasing the number of saved modes. This occurred even
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though the individual analysis times go up when the number of modes saved
is increased, both for the complete analysis and the approximate analysis.
The function, F, seems to become better behaved when more modes are saved
and less effort is involved, in terms of number of designs checked, in
finding the minimum of F.  Thus, even though the individual analyses

take longer the convergence is faster because less analyses are performed.

The values which work well are as follows: reduction of r, factor
of 1/2; number of modes saved in gross buckling, 40 (except when there is
an external pressure load and then 10 can be used); number of modes saved in
panel buckling, 20; number of modes saved in skin buckling, 10.

The problem of choosing the initial value of r is an important one
here, because too small a choice leads to the same difficulty as reducing r
too rapidly, and too large a value leads to longer convergence times. No
automatic method is incorporated in the computer program. The values used
here have been found by trial. Good starting values for the aluminum
cylinders vary from 1/10 to 1/30 of the weight of the initial design. These
values cause the value of the penalty term 1in F to be of the same order of
magnitude as the weight.
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APPENDIX D
Summary of Results

In this section summary charts are presented of each case. In these
cases the designation I means that all the stiffening is inside; the design
0 means that all the stiffening is outside; and the designation 1,0 means
that the circumferential stiffeners are inside and the longitudinal stiffeners
outside. The prime indicates a change in the design parameter bounds from
the case with the same number-letter designation. The t in case 1-It
designates a temperature degradation effect. The cases with the same
number designation are all the same problem; that is, the load conditions,
the material, and the size of the cylinders are all the same.

Problems one through four are the same as those presented by Kicher:.”9
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Casel -1
Design Variables
t t ¢ d [} .
8 X d) dx é x 4 w 3
Final .0221 .0298 .00917 . 347 1.93 6.65 849 231. .0368
Initial 099 .06 .06 .5 .5 6. 3. 715. 114
U.B. .5 .5 .5 2. 2. 10. 10.
L.B. .0 .0 .0 -2. -2, Q. 0.
5
1Av X 10 .1 1, 10, 10, 100, 100,
f/f
L.C. ! 2 3 Aluminum = ,101
G.B. 769 | .997 | .240 6
E =10X10 v = ,333 = 50,000,

P.B. .793 1 .932 | .345
S.B. | .840 ] .9341 .309 = 10.
L.SlBC_ 0690 .963 0202
1C.B.UJ =mom | =mee | =--- Wave Numbers
C-BnL- o ceea e L'C Grlosss Panel S;nn

m 1
S.Y. . 402 .582 1] .128 1 l.oads

n 9 33 1 L.C N
LY., T === | cwv=]| ===- m 15 1 9 s P
L.Y.CJ .404 | .564| .118 2 n 9 25 1 1 {700, |O.
C.Y. T4 122 .2571 .182 14 1 6 2 1940, 2.
C.Y.CJ| mmme | ammm |ammm 3 . 9 101 1 3 212, |.4




ZL

Case 1 - I Starting Point 2
Design Variables

d

s x ) % s "x s v i
Final .0200 .0312 . 00907 . 365 1.92 1 7.15 . 792 230, . 0367
Initial .04 .03 .03 .5 .5 .25 .25 1000. .160
U.B. .5 .5 .5 2, 2. 10. 10.
L-Bo o' 00 00 -2- "2. 0. 0-

5
[Av X 10 .1 1. 1. 10, 10. 100, 100,
f/f

/Cl‘ I, = 165. R = 60.

L.C. 1 2
3 Aluminum y = .101
G- Bo '768 3989 -241 6
E = 10X10 = ,333 = 50,000,
P.B. |.765 |.899 |.373
S.B. {.899 1.971 |.338 = 60,
L.S.B.|.698 {,974 [.204
C.B.UJ==cc acea | o=-2 Wave Numbers
C.B.Lfamee foece | anam L.C. |Gross Panel | Skin
m 13 1 9
S.Y. .402 |.582 |[.128 1 - Loads
n 9 30 1 L.C N

L.Y.T)me== {omeae | =mm- m | 14 1 10 i P
L.Y.C.J.404 |.563 [.118 2 n 8 23 1 1 | 700. 0.
C.Y.T.J.121 }.265 |.162 m 13 1 7 2 |} 940. | -2.
C.Y¥.Cuommmn |omme | ==m- 3 n 9 116 1 3 (212, | .4
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Casel - T
Design Variables
t t d
ts x s d, s L L, w T
Final . 0229 .0513 .0523 .351 . 906 8.13 . 986 293, . 0467
Initial .099 .06 .06 .5 .5 6. 3. 715.. .114
U.B. .5 .5 .5 2. 2. 10, 10.
L.B. .019 .05 .05 -2. -2. .05 .05
5
(Av X 10 .1 10, 10, 100, 100,
flfcr L, = 1l65. R = 60.
L.C. : 2 3 Aluminum ¥y = ,101
G.B. 797 1 .999 | .259 6
E =10X10 v = .333 ¢ = 50,000,

P.B. .855 { .,975| .381
S.B. .915 | .999 | .342 ro = 10,
L.S.B.} .198 | .276 | .058
C.B.UJ] === | =mac] w-a- Wave Numbers
C.B.L. === | ecac]| ane- L.C. |Gross | Panel| Skin

m 12 1 8
S.Y. .332 | 477 .968 1 Loads

n 10 29 1 L.GC N
LY. T ==== we=- s=== m 12 1 9 * e p
L.Y.C. 336 | .466| .098 2 N 10 22 ) 1 |700. |oO
c.y.t) 912 | .202{ .011 m 1 1 6 2 |940. -2,
C.Y.Cf moom | mmae] ---- 3 4l s 91 1 3 |212. |.4
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Case l - 0
Design Variables

d —

ts tx td) dx é Q,x QL w t
Final .0217 .0312 . 0492 -. 372 -.470 7.25 . 862 240, .0382
Initial 099 .06 .06 -.5 -.5 6. 3. 715.. ~.114
U.B. .5 .5 .5 2. 2. 10, 10.
L.B. 0. 0. 0. -2. -2. 0. 0.

5

Av X 10 .1 1. 1. 10. 10. 100, 100,

f/fCr L = 165. R = 60.
L. C. L 2 > Aluminum vy = ,101
G.B. |.850 1.989 |.969 6

E = 10X10 = .333 o = 50,000,
P.B. ({.655 |.879 {.342 b
S.B. .892 |.979 |.328 r, ° 10,
L.S.B.|.705 |.984 1,207
C.B.UJ.116 |.249 |.166 Wave Numbers
C.B.Llrcen |amee | aua- L.C. |Gross | Panel| Skin
m 5 1 8
S.Y. .392 |[.566 }.113 Loads
n 11 0 1 L.C N

L.Y.T=m== |==e= | =eu- ) : 15 .C. p
L.Y.C/-395 |.550 [.115 I 0 1 {700. {o.
c.y.T).116 |.249 |.116 m 1 1 7 2 {940, |-2.
C.Y.Cf==== | =m=n | ===- n 6 111 1 3 {212, |.4
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Case 1-1, 0
Design Variables

t, t, t d dé L Ly w T
Final .0212 .0339 .00514 -, 409 1.15 8.02 . 894 235, . 0374
Initial +099 .06 .06 -.5 .5 6. 3. 715, .114
U.B. 5 .5 .5 2. 2. 10. 10.
L.Bn 0! Ol 0. "2' -Zu 0. 0.

5
[Av X 10 .1 1. 1. 10, 10, 100, 100,
f/fcr I = 165. R = 60.
.C. 1
L.C 2 3 Aluminum = ,101
G.B. . 822 .993 .686 6
E =10X10 v = .333 = 50,000,
P.B. .594 |} ,798 | .350
S.B. . 925 . 985 . 353 r = 10,
L.SCB. .704 .986 .205
C.B.U, =~===| =sce| ==a= Wave Numbers
C.B.Lj==== | =eme | ~m-- L.C. {Gross Panel | Skin
m 10 1 9
S.Y. «391 |.592 | .119 1 Loads
n 12 5 1

LoY-T. mee- moe- —--- m 13 1 11 Lo C. N p
L.Y.C/.380 |.532 | .11l 2 . 1 0 ! 1 {700, joO
C-Ya T. .123 0269 0164 m 1 1 7 Z 940. -2.
C.Y.C| ==~~ mmen | ema— 3 n 6 114 1 3 | 212, .4
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Casel - It

Design Variables

t t t¢ d, d¢ ' !.L w T

Final . 0246 . 0506 .0510 . 341 . 931 7.45 977 303, . 0483
Initial . 099 .06 .06 .5 .5 . 3. 715. .114
U.B. - .5 .5 2. 2, 10, 10,
L.B. .019 .05 .05 -2, -2, .05 .05
Av X 105 .1 1. 1. 10, 10, 100, 100,

Per L = 165. R = 60. Note: E = 7.5 x 10°
e C 2 2 Aluminum vy = .101 inL.C. 1
G.B. [.996 |.953 |.242 = = 10x 10° - 333 o= 50,00,
P.B. }.992 |[.867 | .296
S.B. .999 |.832 | .279 ry T 10,
..S.B.].250 |.260 | .055
C.B.Ulemme |maee | acem Wave Numbers
C.B.Lleeoe oman | cuaa L.C. |Gross Panel | Skin
s.Y. |.323 |.463 | .094 nm 12 3(1) : Loads
L.Y.T)==== [==== | ==== m 12 1 P L.C. N p
L.Y.CJ.326 |.453 . 096 n 10 23 i 1 700, }|O.
c.Y.T..884 |.193 | .012 m 12 1 6 2 1940, |2,
C.Y.Cf===n |ovcowm | nea~ n 10 83 1 3 1212, |.4
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Case 2 -1
Design Variables

ts 'cx t¢ dx qu zx lé w T
Final .0344 | . 0450 .00684 |.460 2.94 7.65 1.19 340. . 0542
Initial .037 . 0443 .00977 {.495 2.17 8.29 1.22 370, . 0590
U.B. .5 .5 .5 3. 3. 10. 10.
L.B. 0. 0. -3. -3. 0. 0.
Avx105 .1 1. 10, 10, 100, 100,

f/fcr 1, = 165, R = 60,
L.C. 1 2 3 Aluminum vy = .101
G.B. [.770 {.996 |.241 E = 10x10° - 333 s = 50,000.
P.B. |.803 [.943 |.323
S.B. [.897 {.993 |.329 T, =07
L.S.B.[.709 [.990 [.207
C.B.U e o . Wave Numbers
CoBLdcee e . L.C Gross Panel Skin

m 1 1 7 Loads

S.Y. .53 [.777 | .154 1 o 9 27 . C ol N
LY Tieuue Jumee |=-e- m 12 1 8 — P
L.Y.CJ.538 [.751 |.157 2 4 9 20 1 1 | 1400.10.
C.Y.Tid:168 |.350 |.258 m| 10 1 5 2 |1880. |-4.
C.Y.Clacua U A 3 n 9 68 1 3 |424. ].8
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Case 2 - I!
Design Variables
d 2 2 T
ts tx td’ dx 5 < Y w T
Final .0328 . 0503 . 0511 .525 1.30 9.76 1.16 389. .0619
Initial . 037 . 0513 . 0525 .519 1.29 9.68 1.16 418. . 0664
U.B. .5 .5 .5 2. 2. 10. 10.
L.B. .019 .05 .05 -2. -2. .05 .05
5
lAv X 10 .1 1. 11 10, 10, 100, 100,
f/f
/cr L = 165. = 60.
L.C. 1 2 3
Aluminum vy = .101
G.B. [.806 |.998 }.263 6
E = 10X10 v = ,333 g = 50,000,
P.B. |[.847 |.964 |.384 Yy
S.B. [.909 {.996 |.336 r, = .07
L.S.B.}.685 [.953 |.201
C.B.U)mmmn I Wave Numbers
C.B.Lemee famen | aoa- L.C. |Gross Panel Skin
m 10 1 8
S.Y. .493 |.710 }.143 1 . Loads
n 9 24 1
LY. Tj=="~ mee= [ === m 10 1 9 L.C.] N p
L.Y.ClJl.497 L.692 . 145 2 n 9 19 ) 1 {1400. |oO.
C.Y.T.,.-498 [.305 {,019 m 9 1 6 2 1880, | -4.
C.Y.Cl-=== [f==== | ===~ 3 n 9 75 1 3 (424. .8
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Case 2 - 0
Design Variables

t L 3
Final 0288 . 0487 . 0436 -.506 -.593 5.60 1.01 363. . 0577
Initial .1 .1 .1 -.5 -.5 3. 3. 836. .133
U.B. .5 .5 .5 3. 3. 10. 10,
L.B. 0. -3. -3, 0. 0.

5

Av X 10 .1 10, 10. 100, 100,

f/f
L. C. L 2 3 Aluminum vy = .101
GoBo 0926 -991 -947: 6

E = 10X10 v = .333 s = 50,000,
P.B. (.302 |.406 | .141 |
S.B. |.915 |.975 | .349 | r = 30.
L.S8.B.}.702 .979 .206
C.B.UJ.152 |.341 ] .186 Wave Numbers
C.B.Ldonce |cmae | caun L.C. |Gross Palnel Sk1;1
m 1
S.Y. . 520 . 1783 . 051 . 1 Loads
n 5
' L.C. N

LOY.T. _—-—— - ---- m 11 l 6 P
L.Y.CJ).522 |.727 | .153 n 10 0 1 1 | 1400, |0.
C.Y.TJ.152 . 341 . 186 m 1 1 4 2 1880, | -4.
C.Y.Conen | ecce | —- n 6 150 1 3 | 424. |.8
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Case2 -1, 0
Design Variables

t d L L
Final .0314 .0518 .00772 -, 543 1.34 7.57 1.15 358. ,0571
Initial . 099 .06 .06 -.5 .5 3. 3. 746. .119
U.B. 5 .5 .5 3. 3. 10, 10.
L.B. 0. 0. -3. -3. 0. 0.

5

AvX10° | .1 1. 10. 10, 100, 100,

f/f

/cr I, = 165, R = 60,
L.C. 1 2

< 3 Aluminum ¥y = .101
G.B. |.827 |.991 |.622 6
E = 10x10 v = ,333 G = 50,000,
P.B. . 443 . 595 213
S.B. .916 |.976 | .354 r = 15,
L.S.B.|.696 .973 .203
C.B.Ul-moe {ecee | cmmu Wave Numbers
C.B.L-== Jacae | can- L.C. {Gross Panel Skin
m 9 1 7
S.Y. . 499 . 731 . 143 1 Loads
n 11 0 1
———— I, —ew L.C. N

L.Y.T. m 11 1 3 p
L.Y.C.J.500 |.699 |.145 2 n 10 0 1 1 | 1400, |o.
C.Y.T..160 |.355 | .206 m 1 1 5 2 | 1880, |-4.
C.Y.C~=~ -———- - ——— 3 n 5 113 1 3 424, .8
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Cage 3 -1
Design Variables
t t t d d L 1
Final . 0411 L0611 .0115 .560 2.81 9.55 1.33 445, .0707
Initial .1 .1 .1 .5 .5 3. 3. 835. .133
U.B. .5 .5 .5 3. 3. 10, 10.
L.B. 0. 0. 0. -3. -3. 0. 0.
5
Av X 10 .1 1. 1. 10. 10. 100, 100,
£f/f
/ cr L, = 165. R = 60.
L.C. 1 Z [ 3 -
. Aluminum vy = ,101
G.B. . 781 .993 .250 6
‘ E = 10X10 v = ,333 g = 50,000,
P.B. . 830 .961 . 349
s.B. |.903 |.980 | .337 | r = 30,
L.S.B.|.702 |.980 | .205 ]
C.B.Ul=---- - e m- Wave Numbers
C.B.L==== | ==== | ===- L.C. [Gross Panel | Skin
s.y. |.620 |.905 | .177 my 10 1 7 Loads
n 8 24 . 1
L-YuTo s=== === sm=- m 10 1 8 LvC- N P
L.Y.CJ.617 |.861 | .180 a 7 18 ) 1 |2100. |o.
Cc.Y.TJ.191 412 . 027 m 10 1 6 2 |2820, | -6.
C.Y.Cf=~=-- ——— ———- n 8 67 1 3 1636. 1.2
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Case 3 - I
Design Variables

t d

s t. t¢ d 5 . lL w T
Final . 0455 . 0606 . 0520 . 590 1.63 9.72 1.47 490, .0780
Initial .1 1 .1 .5 .5 3. 835, .133
U.B. .5 .5 ) 3. 3. 10, 10.
L.B. .019 .05 .05 -2, -2. .05 . 05

5
LAY X 10 .1 1. 1 10, 10, 100, 100,
flfcr L = 165. R = 60.
L.C. 1 2
c 3 Aluminum vy = ,101
GOB' 0790 0996 u254 6
E =10X10 = ,333 ¢ = 50,000,
P.B. {.850 |.974 |.343 Y
S.B. . 893 .999 . 324 ro = 15,
L.S.B.}. 710 .988 .208
C.B.UJ==== l=mee | ===a Wave Numbers
C.B.LJ--== |==== | ==ax L.C. Gr;);s Panlel sk16n
s.y. |.592 |.846 |.170 . ™ Loads
) n 8 24 1

LlYt To me——- e m=e- m 10 1 7 Lo Co N p
L.Y.C.-594 |.826 |.174 2 n g 18 ) 1 {2100, | 0
C.Y.T.)-169 |.355 | .255 m 9 1 5 2 |2820. | -6.
C.Y.Cl==me |acaa | eaaua 3 n 8 55 1 3 | 636. 1.2
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Case 3

Design Variables

-0

. t th 4 dd) N 24 w T

Final L0396 | .0625 0597 -.589 -.708 | 7.04 1.26 | 468. . 0745
Initial .1 .1 .1 -.5 -.5 3. 3. 836. .133
U.B. .5 .5 .5 3, 3., 10. 10.
L.B. 0. 0. 0. -3, -3. 0. 0.
avx10°] 1 1. 1. 10. 10, 100, 100,

f/fcr L = 165. R = 60,
L. C. : 2 3 Aluminum v = ,101
G.B. [.902 |.969 |.819 = = 10x 10° V=333 o = 50,000,
P.B. {.410 |[.550 |.173
S.B. [.878 |.951 |.330 r, = 30.
L.S.B.[.673 [.937 |.197
C.B.UJ.178 |.390 |.235 Wave Numbers
CoB.Ldocae Jocae |acun L.C. {Gross Panel Skin
S.Y. {.598 |(.849 |.174 1 ;n ; (1) ':’ L°af13
LY. TJ==== |==== | === = 10 1 6 L.C.| N )
L.Y.CJ.605 |.843 |.177 2 9 0 . 1 |2100. |0,
C.Y.TJ.178 {.390 |.235 m 1 1 4 2 |2820. | -6.
C.Y.Cle=mm |ooae | ---- >, 5 107 1 3 {636. | 1.2
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Case 3-1, 0
Design Variables
t t t d d L L
8 x ¢ b3 ¢ x ' w 13
Final . 0409 . 0663 00737 -.642 1.51 8.81 1.39 457, . 0727
Initial .1 .1 .1 -.5 .5 3. 3. ] 835. .133
U.B. .5 .5 .5 2, 2., 10, 10.
L.B. 0. 0. 0. -2. -2, 0. 0.
5
lAv X 10 .1 1. 1. 10, 10, 100, 100,
f
L.C. 1
2 > Aluminum y = .,101
G.B. .878 1.992 | .765 6
E = 10X10 v = .333 ¢ = 50,00C,

P.B. .486 | .653 | .225 Ty
S.B. .920 | .976 | .353 r, 15,
L.S.B.}.699 | .977 | .203
C.B.UJ==== | === ]| ===~ Wave Numbers
C.B.Ll==-= | -=ca | «=u- L.C. |Gross Par;el Skzn
s.y. |.585 |.858 | .167 L, 0 6 Loads

n 10 0 1 L.C N
LOYI T- ==== .=== e m 9 1 8 e * p
L.Y.C..586 | .819 | .17l e 9 0 ) 1 |{2100.} 0.
C.Y.TJ).190 | .417 { .025 m 1 1 5 2 }2820,} 1.2
C.Y.Cf==== | =m== | ==== 3 n 6 90 1 3 | 636. -6.
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Casge 4 - 1
: Design Variables
t t t d d ) ) r
8 x qS X ¢ X b w T
Final .162 .188 .192 1.78 2.54 31.6 6.30 14600, .230
Initial .15 .201 271 1.85 2.87 36.6 4.55 15900. | .251
U.B. 1. 20. 40, 4. 4, 40, 20.
L.B. 0. 0. 0. -4. -4, 0. 0.
AVXIOS .1 1, 1. 10, 10. 100, 100.
fff
cr L = 500. R = 200.
{L.C. 1 2 3
Aluminum = .101
G.B. |.705 |.980 | .980 6
E = 10 X10 = .333 s = 50,000.

P.B. {.467 1.897 | .912 4
S.B. |.463 |.882 | .964 r = 50.
L.S.B.[.213 |.963 | .522
C-BoU. ———— . —— Wa-ve Nu-mbers
CB.Lidooee oo | aeee L.C. {Gross Panel Skin

m 1 1 4
S.Y. |.185 |.994 | .458 1 Loads

n 6 36 1
L-YoT. - - - - - m 12 1 8 L-Co N p
L.Y.CJ.188 |.850 | .461 2 .1 10 13 ! 1 [2100. |1.
C.Y.T}.375 |.665 | .141 m 8 1 5 2 |8000. | -20,
JoTh 27 PR U 3 o0 12 26 1 3 [5000. {o.
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Case 4 - 0 Starting Point 1

: Design Variables
t t t d 2
8 x é dx [ X j‘b w T
Final 216 . 315 1.98 -1.38 -0. 865 23.7 8.57 21300, .336
Initial .15 .200 .489 -1.84 -1.89 35, 4,58 16200, .255
U.B. 1. 20, 40, 4, 4. 40, 20,
L.B. 0. 0. 0. -4, -4, 0. 0.
5
Av X 10 .1 1, 1. 10, 10, 100, 100.
f/f
cr L = 500. = 200,
L.C. 1 2
3 Aluminum = .101
G.B. .999 | .878 }.780 6
E = 10X10 = ,333 o = 50,000,

P.B. .285 ]1.962 |.622
S.B. | .400].876 |.839 r = 600,
L.S.B.| .0364] .160 | .0887
C.B.UY ceee | wecc] acas Wave Numbers
C.B LA wmmm | mmee|aaa- L.C. }Gross Panel Skin

m 1 1 2
S.Y. .148 | . 727 | .362 1 Loads

n 6 33 1
L.Y.T{ === | ===-} ==~ o |19 ] 2 L.C.| N p
L‘Y'CT .150 | .662 | .367 2 . 0 0 1 1 {2100, | 1.
C.Y. T, .0258 .424 | .094 m 1 1 3 2 18000, | -20,.
C.Y.ClJ mamm | mcmn | —mm- 3 4 6 19 1 3 |5000. | o.
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Case 4 - 0 Starting Point 2

Design Variables
s t t¢ d_ d¢ ' 2¢ w T
Final .283 .972 3.07 -1.03 | -.652 26.3 14.6 26,900, .423
Initial .5 .5 -1.5 -1.5 35, 4, 44900, .707
U.B. 1. 20. 40, 4, 4, 40. 20.
L.B. 0. 0. 0. -4, -4, 0. 0.
5
|Av X 10 . 1, 1. 10, 10, 100, 100,
f/f
cr L = 500, = 200,
L.C. 1. 2 2 Aluminum = ,101
G.B. .999 | .829 | .742 6
E = 10x10 = .333 = 50,000,

P.B. .311 | .948 | .682
S.B. .455 | .989 | ,982 = 1500,
L.S.B.|.002 .007 . 004
C.B.UJ=-=- —m-- ———e Wave Numbers
C.B.LJ~---- ———e _———— L.C. Gross Panel Skin

m | 1 |
S.Y. L112 [ .563 | .276 1 . Loads

n 7 2 1
LoY.T. mme= === w———— m 21 1 3 L'C' N p
L.Y.CJ.114 | .506 | .279 e . 0 4 1 1 {2100. | 1.
c.y.TJl.021 { .339 1| .751 m 1 1 2 2 18000, | -20,
C.YaC. --= - -- - 3 n 6 20 1 3 5000. 0.
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Case 4 - 0' Starting Point 2
Design Variables

t t t d ) )
8 x ¢ dx é x ¢ w T
Final .163 .184 .200 -1.74 -2.13 27.0 6.08 14,700. | .231
Initial .5 .5 .5 -1.5 -1.5 35, 4, 44,900. | .707
U.B. 1. 1. 1. 4, 4, 40, 20.
L.B. 0. 0. 0. -4, -4, 0. 0.
5
|Av X 10 .1 1. 1, 10. 10. 100. 100.
f/£
cr L = 500. R = 200.
L.C. 1
2 3 Aluminum ¥y = .101
G.B. .9231.957 |{.769 6
E = 10X 10 v = .333 o = 50,000.
P.B. .305}.926 |.595 y
S.B. | .425{.815 |.883 r, = 375

L.S.B.| .211}.954 |.516

C.B.UJ .037].661 |.141 Wave Numbers

C.B.L! -cenlecca Jacaa L.C. |Gross Panel Skin

m 1 1 4
S.Y. .1841.990 {.457 1 Loads

n 6 51 1 L.C
L-YaT- mm e | - - - - m 16 1 7 . . N p
L.Y.CJ| .187].848 |.460 2 n 0 0 i 1 |2100. { 1.
C.Y.TJ .037].661 {.140 m 4 1 4 2 18000, | -20.
C.Y.CyJ -cewjmmna |-mm- 3 n 10 19 1 3 |5000. { 0.
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Case 5 -1
Design Variables
t t t d
s x 4 d 6 L "i w T
Final .112 .190 L0224 1.71 10. 31.5 4,14 50,000.{ .197
Initial .25 .25 .3 2. 10, 2.5 4, 1124, 000. .490
U.B. .5 20. 5. 10.1 100. 10,
L.B. .1 .02 .01 -5. -10.1 1. 1.
5
|Av X 10 .1 1, 10. 10. 100. 100,
f/f
cr I, = 2000, = 200,
'LoCc 1 2
3 Aluminum = ,101
1G.B. |.527 | .997 | .742 6 '
E = 10X10 = .333 ¢ = 12,000,

|p.B. .480 | .920 | .867 Yy
|s.B. |[.499 | .736 | .984 ro = 1000,
L.S.B.|.218 | .992 | .535
C.B.UJ «w=a N ———— Wave Numbers
C.B.Ld ccoe | cmee | aaee L.C. ]Gross Panel Skin

m 1 1 6
S.Y. .145 | .847 | .362 1 i 1 Loads

n 2
LY. T) mccc | coea | «au- ™ 15 1 13 L.C.| N P
L.Y.CJ.148 | .673 | .363 : 7 12 ] 1 jz2100. 1.
C.Y.T.) .025 | .629 | .115 m 39 1 7 2 |{8000. | -20.
C.Y.CJ e | cmec ] aua- 3 n 8 25 i 3 |5000, { 0.
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Case 6 -

1

Design Variables

t E t T h » o W T
Final |.0363 |.249 263 0. 0. 1.96 1.41 8.35 |.0363
Initial |.04 .04 .04 .25 .25 1.0 1.0 13.7 |.0596
U.B. |1. 1. 2. 2, 5. 2.
L.B. |o. 0. -2. -2. 0. 0.
Av x 10°].1 1. 10. 10, 100, 100,
f/fcr Wave Numbers
G.B. - 968 Gross | Panel | Skin N = 800.
P.B. .908 m 1 1 1
5.B. 657 n 5 15 1 p =0
L.S.B.| =n--
cnul o L = 38.0 R = 9.55
le.s.nd --o- Aluminum ‘ ¥y = .101
sy, st E = 10.5X 10 v = .33 o = 50,000.
LY. T.| ---- r = .5
L.Y.C.| .441
C.Y.T.| .146
C.Y.C| =---

|
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Case 6 - T!
Design Variables

t t
. < ) dx d¢ 2. g,¢ w T
Final .0107 .0132 | .00991 J121 .291 1.49 .283 4,20 .0182
Initial .028 .05 .05 .1 .1 1.5 .25 11.78 |.0512
U.B. 1. 1. 2. 2. 5. 2.
L.B. 0. 0. 0. .05 .05 0. 0.
v><105 1. 10. 10, 100, 100,
f-/fcr Wave Numbers
G.B. - 990 Gross | Panel | Skin N = 800,
PoB. -725 m 1 5
= 0.
S.B. .921 n 21 1 P
LaSoBo '966
L = 38.0 R = 9.55
C.B.U.|] ----
Aluminum y = .101
C.B.L.| =-=-- 6 50. 000
E = 10.5%X10 = .33 = 000.
3. Y. .958 v Oy ’
LIYOT' me=- r = '5
o]
L.Y.C. '965
c.Y.T.| .274
C.Y.C.| ==--
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Case 6 - 0!
Design Variables

t t d
ts X o] X d¢ x . ¢ w v
Final .00932 . 0150 .0203 -. 142 ~-.183 2.75 .264 4,30 .0187
Initial .028 .05 .05 -.1 -1 1.5 .25 11.8 .0512
U.B. 1.0 1.0 1.0 -.05 -.05 5. 2.
L..B. G. 0. 0. -2, -2. 0. 0.
Av X 107 |.1 1. 1. 10. 10, 100, 100,
f/fcr Wave Numbers
G.B. 871 Gross | Panel | Skin N = 800.
P.B. .938 m 1 10
0'
S.B. . 994 n 18 1 p
L.S.B. .984
L = 38,0 R = .55
C.B.U.| .267 ?
Aluminum ¥y = .101
CCBOL. —-—- 6
E = 10,5X10 = .33 = 50,000,
So Yc .907 v o 3
Lo Yo T' badiadiading r = ‘3
o
L.Y.C.} .912
C.Y.T.| .267
c.Y.C.j ----



Case 6 -1, OF
Design Variables

€6

C.Y.C.

ts tx t¢ dx d¢ 2 g¢ w T
. 00832 .0139 | .00145 -.126 | .512 | 2.28 .228 3.76 | .0163
Initial | .028 .05 .05 -1 .1 1.5 .25 11.8 | .0512
1. 1. 1. -. 05 2. 5. 2.
0. 0. 0. -2. .05 0. 0.
Avx10°] 1 1. 1. 10. 10. 100, 100,
£/f Wave Numbers
G.B. -992 Gross | Panel | Skin N = 800,
P.B. .967 m 12 1 10
S.B. .972 n 7 14 1 P
L.S.B.| .986
5.0l - L = .38.0 R = 9.55
C.B.L. . Aluminum . ¥y = .101
. v, 993 E = 10.5X 10 v = .33 o, = 50,000.
L.Y.T.| ---- r .3
o
L.Y.C.| .995
C.Y.T.| .317
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Case 6 - OS
Design Variables

t t tqs d_ d¢ 'y vy W T
Final 0357 .0125 |.05 -.156 0. 38,0 1.45 8.54 .0371
Initial 035 .05 .05 -.1 0. 38.0 .25 12.7 . 0550
U.B. 1. 1. -.05 2. 5. 2.
L.B. 0. 0. -2. -2. 0. 0.
vx10°1.1 1, 10, 10. 100, 100,
f/fcr Wave Numbers
G.B. | .976 Gross | Panel | Skin N = 800.
P.B. .976 m 1 1 20
s.B. | .698 n 5 5 1 p =0
L.S.B.| .812
C.B.U aeee L = 38, R = 9,55
C.B L.l eee Aluminum . ¥y = ,101
S.Y. 431 E = 10.5%X10 v = .33 o = 50,000,
L.Y.T.| ~--- r = .3
L.Y.C.| .431
C.Y.T.| .142
C.Y.C.] ----
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Case 6 - IS
Design Variables

t t d d
ts x $ b ¢ 'x 9‘¢ w v
Final . 0358 0132 .05 111 0. 38.0 1.95 8. 40 . 0365
Initial . 035 .05 . 05 ol 0. 38.0 .25 12.7 , 0550
U.B. 1. 1. 2. 2. 5.0 2.0
L.B. 0. 0. .05 -2. 0. 0,
v X 105 .1 1. 10. 10, 100, 100,
f/fcr Wave Numbers
G.B. | .993 Gross | Panel | Skin N = 800,
P.B. .993 m 1 1 19
S.B. .810 n 5 5 1 P =
L..S.B.} .913
I = 38.0 R = 9,55
C-BuUc ———-
Aluminum = ,101
CQBOL. —-——— 6
E = 10,5X%X10 v = .33 o = 50,000.
S.Y. .438 y
L.Y.T.| =---- r = .3
L.Y.C.| .438
C.Y.T.| .144
C.Y.Ci| ==--
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Case 7 -1
Design Variables

t t t d
] x [ X dd) fx 2‘¢ w v
Final .111 . 725 . 940 0. 0. 8.57 3.84 1,960. |.111
Initial .05 .1 .05 l. 2. 8. 3. 1,680, }|.0934
U.B. 10. 10. 10, 20, 20. 50. 20.
L.B. 0. 0. 0. -20. =-20. 0. 0.
Av X 105 1. 10, 10. 100. 100. 1000, 1000,
f/fcr Wave Numbers
G.B. | .9%2 Gross | Panel | Skin N = 800.
P.B. 961 m 1 1 2
p = O.
S.B. .215 n 7 25 1
L.S.B. 0.
L, = 291, R = 95.5
C.B.U.| ===-
Aluminum vy = .101
C.B.L.| =-=-- 6
E = 10,5X10 = .33 o = 50,000.
S.Y. .139 Yy
LoYoTa - r = 40-
o
L.Y.C. . 144
C.Y.T. . 0474
C.Y.C.}] ==--
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Case 7 - T!
Design Variables

t t t
5 X [o] dx d¢ 'x 9‘¢ w v
Final . 0292 . 0441 . 0943 .718 . 810 18.2 1.42 979. . 0555
Initial .05 .1 .05 1. 2. 8. 3. 1,680, |.0954
U.B. 10. 10. 10, 20. 20, 50, 20.
L.B. 0. 0. 0. 0.5 0. 0. 0.
Av X 105 1. 10. 10, 100, 100, 1000. 1000,
f/fcr Wave Numbers
G.B. | .94 Gross | Panel | Skin N = 800.
P.B. .920 m 8 1 12
P - 0.
S.B. .983 n 12 25 1
L.S.B. .984
I, = 291. R = 95,5
C.B.U,| «===
Aluminum y = .101
C.B.L.{ ---- 6
E = 10,5 %10 vy = .33 ¢ = 50,000,
S.Y. .314 y
LoYoTv ———- r = 5-
o
L.Y.C.| .307
C.Y. T.| .090
C.Y.C.| ===-
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Case 7 -1
Design Variables

t t t d d
s X ) X ¢ *x 2‘¢ w v
Final .114 3.56 . 400 0. 1.64 42.0 11.6 2240. 127
Initial .05 .1 .05 1. 2. 8. 3. 1680. . 0934
U.B. 10. 10. 10, 20. 20. 50, 20,
L.B. 0. 0. 0. -20. .5 0. 0.
v X 105 I. 10. 10. 100, 100, 1000, 1000,
f/fcr Wave Numbers
G.B. - 884 Gross | Panel | Skin N = 800,
P.B. .925 m 1 2
p = 0.
S.B. .993 n 18 1
1..S.B. 0.
L = 291. R = 95.5
C.B.U.,| «==-
Aluminum y = .101

COB.L. —-- - 6

] E = 10.5X 10 v = .33 o = 50,000,

1S. Y. .138 y

IL.Y.T.| ---- r = 40,

I ] o

..Y.C.}| .139

C.Y.T.] .0407

C.Y.C, ———-
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Case8-1, 0
Design Variables

t t t
s x ¢ dx d¢ 'x y‘d; w v
Final .226 .320 .206 -3.57 8.72 71.8 7.59 39,400. | .397
Initial .231 .340 .268 -3.92 3.86 17.7 7.17 46,800, | .472
U.B. 1. 10, 10. -.5 10. 80. 20.
L.B. .019 .05 .05 -10, .5 .05 .05
Av'><105 10, 10, 10, 100, 100, 1000, 1000,
f/f
cr Wave Numbers
G.B. : -993 Gross | Panel | Skin N = 12,150,
P.B. | .913 m 1 9
. p = O.
S.B. L .973 n 18 1
L.S.B.| .978
I. = 361. R = 433.
C.B.U,| =----
Aluminum vy = .101
C.B.L. --m - 6
E = 10.4X10 = ,33 o = 73,000,
S.Y. . 435 Y
L.Y.T.| ===~ r = 157.
L.Y.C.| .437
C.Y.T.| .132
C.Y.C| ===~




APPENDIX E
COMPUTER PROGRAM
E.1l Introduction

The program is written in the Fortran IV language and consists of
eleven separately compiled subroutines. It starts by reading the data and
then runs automatically until it is terminated either by satisfying the
convergence criterion or by exceeding the cycle limit.

The program is capable of handling a maximum of ten separate load
conditions. The material of the skin and each set of stiffeners may be
different and temperature degradation effects in material properties are
allowed; therefore the material constants for the skin and each set of stiff-
eners must be read for each load condition. This 1s not necessarily ten,
since the number of load conditions is also an input. Although the program
is written to include the case of an orthotropic skin material the program

has not been tested in other than an isotroplc case.

E.2 Description of Input

The required input data is described below in the order it is read.
The Fortran symbolic representation is given on the left and an explanation
on the right, where order refers to reading from left to right on the data
cards. Load conditions are always in increasing order. Except where noted
a new data card is started for each Fortran symbolic given below.

Identifier Explanation
I Number of load conditions. 10 maximum. Integer.
NSM(,) Number of modes saved for the approximate analysis. The

values for the first load condition are read in the order
gross, panel, skin, and then this is repeated for load
condition two etc. Integers (I x 3). A separate card is
required for each load condition.

Dv( ) Initial values of design variables, the order is t ., t,, t¢,
dx’ d¢, fys z¢ (inches).
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E()

NUX( )
E2()
NUY( )
GSM( )
EY ()

NU 1( )

EX( )
NU 2( )

P 1()
P2()

GAM( )

DLT(2)

DLT(3)

ML(,)

&

Longitudinal modulus of skin for each load condition,
E, (1bs/in?).

Poisson's ratio of skin for each load condition, My

Circumferential modulus of skin for each load condition, E¢.

Poisson's ratio of skin for each load condition, M
Shear modulus of skin for each load condition, G.

Modulus of circumferential stiffener for each load condition,

E¢s'

Poisson's ratio for the circumferential stiffeners for each
Toad condition.

Longitudinal stiffener modulus for each load condition, Exs'

Poisson's ratio for the longitudinal stiffeners for each
load condition.

Applied axial compressive loads for each Toad condition,
N (1bs/inch).

Applied external radial pressure for each load condition,
p (1bs/1nch2).

Densities of the skin, circumferential stiffeners, and
longitudinal stiffeners respectively (1bs/1nch3).

Length of cylinder (inches).

Radius of cylinder (inches)
Note, L and R must be placed on the same data card.

Indicator, zero when the longitudinal stiffeners are continu-

e i .
ous, one otherwise, 6xw

Indicator, zero when circumferential stiffeners are continu-
ous, one otherwise, §
Note, DLT(2) and DLT(3) must be on the same data card.

Limit on the number of half wave numbers searched in the
longitudinal direction for each load condition for each
cylinder failure mode. The order is load condition then
failure modes. Integer. (3 x I).
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NL(,)

LRCU( )

LRCL( )

CRCU( )

CRCL( )

DVL(,)

BDV( )

RD

RDC
INCF( )
TLIM
KAPA(,)

Limits on the number of full wave numbers searched. Same
order as above. Integer. (3 X I).

Tensile yield stress for the longitudinal stiffeners for
each load condition, oxSOT(lbs/fnz).

Compressive yield stress for longitudinal stiffeners for
each load condition, oxsoc(]bs/inz).

Tensile yield stress for circumferential stiffeners for
o . 2
each load condition, G¢SOT(]bS/1n ).

Compressive yield stress for circumferential stiffeners for
each Toad condition, o¢soc(1bs/1n2).

Upper and lower bounds on the design parameters. The order
is upper ts, tx, t¢, dx’ d¢, lx’ 2¢, and then lower. After
the data for the upper bounds a new data card is started for

the lower bounds.

Logical variables determining active design variables-one
for each variable plus one to tell when the two depth
variables are to be kept equal. There are seven quantities
in the same order as the design variables plus the additional
eighth quantity. The letters T for true and F for false
are placed in the even columns 2 through 16 on the data card.
T means a variable is active F means it is not. To make the
two depth variablesequal the last entry is made T and the
entry corresponding to d¢ is made F.

Initial value of muitiplier, r.

Factor by which r is divided at each cycle.

Finite difference increments for each design variable (inches).
Maximum number of cycles.

Constants defining yield envelope, « KTT is read first

aB’
for each load condition then starting a new data card KeT for

each load condition. Similarly ee and krc are read.
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so(,) Skin yield stresses. First S ;. is read for each load
condition and then starting a new data card SXOC is read
for each load condition. Simi]ar]y S¢0T and S¢OC are
read.

A1l the above variables are real except where designated, integer or
logical. The format for preparing the data cards for the Togical variables
is explained above. " The data card for the integer variables are prepared
as follows: the integers are punched on the data cards with the rightmost
digit in column 5, 10, 15, etc. to column 50, with the exception of NSM(,)
which only goes to column 15. The real variables are punched on the data
cards in the following manner: Up to five variables are placed on each data
card. Fifteen columns are available for each variable. The first variable
in an array is placed in columns 1 through 15, the second in 16 through 30,
etc. For varjable Tists (arrays) containing more than five variables the
list is continued on the next card starting in the columns 1 through 15. 1In
the 15 columns available for a variable the values are punched as decimal
numbers with or without an exponent. For example the value 126.2 may be
placed anywhere in the fifteen columns available in any of the following
forms: 126.2, 1.262 E02, or 1262.E-01 where E is the power of ten, that is
EO2 is equivalent to X102 and E-01 is equivalent to x1071.

Note that even when a design variable is not active its values must be
read, in DV, and bounds must be placed on it, in DVL. Also no variable may
be exactly equal to a bound or exactly equal to zero.

E.3 Description of Qutput
The data is written in the same order in which it is read and with the

identifiers used in the program. In the output of the number of modes saved,
successive load conditions are written on successive lines. For all other
data the load conditions are in successive columns. The upper bounds on the
m and n search ML and NL are in the order gross, panel, skin, on successive
lines. The upper and lower bounds on the design parameters are designated
DVLU and DVLL respectively and have the same order as the design variables.
BDV and INCF also are written in the same order as the design variables.

The variables KIT® KCT® “CC and KTe (in the array KAPA(,)) are designated
KTT, KCT, KCC, and KTC respectively in the output. The variables SxOT’ SxOC’

103



540
in the output.

|
|
|

T° and S40C (in the array SO(,)) are designated SXOT, SXOC, SYOT, AND SYOC

For each complete analysis the following output is obtained:

CLT

SMS

SNS
CRITICAL LOADS

MODE SHAPES
LRS
CRS
DES

EBU

EBL

LRCB

BEU

BEL
BLR
EPA

These are the critical buckling load values divided by H52
for the modes saved for the skin for the last load condition.

The values of m saved, starting with all the values for gross
buckling for all load conditions, followed by panel buckling
for all load conditions, followed by skin buckling for all
Toad conditions.

Same as SMS but for the values of n, which are saved.

Each line contains the critical buckling load for gross,
panel, and skin buckling for one load condition, successive
load conditions are on successive lines.

Same order as above giving the values of m and n.
Stress in the longitudinal rib for each load condition.
Stress in the circumferential rib for each load condition.

Actual value of distortion energy stress squared for each
load condition.

Critical strain value, circumferential rib, for an expansion
of the cylinder, for each load condition.

Critical strain value, circumferential rib for a contraction
of the cylinder.

Critical buckling stress for the longitudinal rib, for each
load condition.

Logical variables signifying the existence of a critical
strain EBU, T for true, F for false.

Same as above for EBL.
Same as above for LRCB.

Actual value of circumferential strain for each load condi-
tion.
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TS,TX,TY,DX,DY,LX,LY These correspond to tg, t

AX,AY

G.B.
P.B.
S.B.
LRB

CRBU

CRBL

S.Y.
LRYU
LRYL
CRYU
CRYL
WT

B

WT
VDP
S1G

t,d,d, 2X, L.

$° X’ ¢ ¢
Areas of the longitudinal and circumferential stiffeners

x’

respectively.

The following eleven lines of output are the ratios of the actual values
of the behavior variables to the critical values, in columns for each Toad
condition.

After each

Gross Buckling.

Panel Buckling.

Skin Buckling.

Longitudinal Stiffener Buckling.

Circumferential stiffener buckling for an expansion of the
cylinder.

Circumferential stiffener buckling for a contraction of the
cylinder.

Skin yield.

Longitudinal stiffener yield in tension.
Longitudinal stiffener yield in compression.
Circumferential stiffener yield in tension.
Circumferential stiffener yield in compression.
Weight of the cylinder in pounds.

Equivalent thickness of an unstiffened cylinder made of the
skin material.

partial analysis the following are written:

Weight.

Vector of variables being changed.

The Z —_ for the behavior variables for each point of

1 91(77
the finite difference star. In the same order as the design

variables with the first element of the vector being the
value for the central point.
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GS Elements of gradient to F.

The following variables are printed at other times during the synthesis:

FEM Value of F at the estimated minimum along a line.
TS Magnitude of gradient to F.
TEST Inner-product of unit vector in gradient direction with

vector 1n move direction.
D Negative of the move direction vector.

CONVERGENCE TEST  The number following this is the amount by which F is
estimated to exceed the minimum.

H The metric matrix.
TT Twice the minimum move distance.
TP Vector of design variables a distance TT along the negative

gradient direction.
S Gradient direction.

When a minimum for one value of RD has been obtained this value of RD
is printed along with the value of FEM and WT, and the final design point is
printed out as XEM. The above is followed by the output for a partial
analysis and then by the output for the complete analysis. In some instances
the value of WT which is printed on the 1line with RD and the value which is
printed with the complete analysis will differ; the one printed with the
complete analysis is the correct one.

Messages of various types will be printed out while the program is
running. These are either self explanatory or are explained in the Opera-
tional Hints part of the program listing.

E,4 Computer Listings

Following is a 1ist of the computer program, a sample set of output,
and a sample set of data.
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PROGRAM CONTROL (INPUTsOUTPUTs TAPES=INPUT TAPES=0QUTPUT)
CONTROL SEGMENT

C THIS IS THE MAIN PROGRAM., THE DATA IS READ AND PRINTEDe. SOME VARIABLES

. C

26
27
450
451
1

2
3
402
403
404
4
5
6

ARE INITIALIZED. THE SYNTHESIS SCHEME (SUBROUTINE SYN) IS CALLED.

REAL LXsLYsLaNUZ29NULsNUsLRCUSLRCL 9 INCFsLRCB9NUXsNUY
REAL KAPA

REAL INCF1

LOGICAL BDvV

COMMON/RIBPZ2/GX(10)+6GY(10)
COMMON/DIMEN/TSsTXsTY9UXoDYoLXsLY
1/RIBPROZEX(10) sEY(10) ¢NU2(10) sNUL(10)

2/NLC/ 1
4/CP1/P1
S/SHEPRO/EL(10) sE2(10) ¢NUX(10) sNUY(10) 9GSM(10)
©6/LO0ADS/P1(10),P2(10)
T/YIELD/LRCU(10) s LRCL(10)sCRCU(10)+CRCL(10) 9KAPA(4910)9S0(4910)
8/MODLIM/ML(3910) sNL{3910)9LM(3910)siLN(3910)
9/DEN/GAM(3) 4 DLT(3)

COMMON/SYNCON/DVIL(297) o INCF (T7)

1/DESVAR/DV(T)

2/CRTRIB/EBU(L10) +EBL(10)sLRCB(10)

3/800Dv/BDV (8)
4/CLR/LsR

S/CNSM/NSM(10+3)

6/CRD/RD»RDC

COMMON/CTIM/TLIM

2/CINCF1/INCF1(T)

DIMENSION VDP(T7)

FORMAT (5E15.8)

FORMAT (8L.2)

FORMAT (315)

FORMAT(1015)

FORMAT (4HOTS=E12¢594H TX=El2.594H TY=E12.594H DX=E12.5¢4H DY=E12.,5
lo4H LX=E124594H LY=E1R.,5)

FORMAT (SHO E1=8E15.5»3X)

FORMAT (6H NUX=8E15.8)

FORMAT(6H NUY=8E15.8)

FORMAT (6H E2=8E15.8)

FORMAT (6H GSM=BE15.8)

FORMAT(5H EY=8E15.593X)

FORMAT (6H NU1=8E15.542X)

FORMAT (5H EX=8E154553X)



28

10
11
12

14
15
16
18
19
20
21
22
29
30
34
400
401
405
407
408
409
410
411
412
413
4la
2468

FORMAT (6H NUZ=8BE1S5.59+2X)

FORMAT(5H Pl1=8E15.593X)

FORMAT (5H P2=8E15.5+3X)

FORMAT(6H GAM=BE15¢5+3X)
FORMAT(3HOL=E12+593H R=E12.598H DLT(2)=E12.598H DLT(3)=E12.,5)
FORMAT(3H MLs10I5)

FORMAT (3H NL,101I5S)

FORMAT(7THO LRCU=8E15.5+1X)

FORMAT(7H LRCL=8BE15,5+1X)

FORMAT(7H CRCU=8E15.591K%)

FORMAT(7H CRCL=8E15.5+1X)

FORMAT(7H DVLU=T7E15.5)

FORMAT(7TH DVLL=7E15.5)

FORMAT (5H0BDV=8L5)

FORMAT (4H RD=E15.895H RDC=E15,.8)

FORMAT (6H INCF=7E15.5)

FORMAT (1H197X9s16HNO. LOAD CONDe =41395X)
FORMAT (1HO s 7X939HNO. MODES SAVED GROSS PANEL SHEET)
FORMAT(1HO 927X 91395X91395X913)

FORMAT (1HO 99X 9 3HFM=9E15.8)
FORMAT (1HO0 94X 93HG= 97E15.8)

FORMAT (6H TLIM=E15.8//)

FORMAT (# KTT #48E£15.95)
FORMAT (# KCT #98E£15.5)
FORMAT (# KCC #48E15.5)

FORMAT (% KTC #48E15.5)
FORMAT (# SXOT #98E£15.5)
FORMAT (# SX0C #48E15.5)
FORMAT (% SYOT ¥98E£15.5)
FORMAT (# SYOC #48E£15.5)
FORMAT (1H )

READ(5+450) 1

READ (59450) ((NSM(JsM) sM=193)9J=191)
READ(54+26)DV
READ(5426) (E1(J) sJ=14s1)
READ (5+26) (NUX(J) 9 J=1s1)
READ(5426) (E2(J) 9 U=1s1)
READ (5926) (NUY (J) 9 J=1s1)
READ (5426) (GSM(J) 9 J=1s1)
READ(5926) (EY(J) 9 J=191)
READ (5+26) (NUL(J) 9J=1s1)
READ(5926) (EX(J) 9J=1s1)
READ (5926) (NU2(J) s J=1s1)
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READ(5926) (P1(J) su=191)
READ (54926) (P2(J) 9J=191)
READ (5426) GAM

READ (5+26) LR

READ (5¢26)DLT(2) ¢DLT (3)
READ(5¢451) (ML(1l9J)oJ=1s1)
READ (59451) (ML(29J) 9J=191)
READ (59451) (ML(39J) 9J=191)
READ (59451) (NL(19J) eJ=1s1)
READ (5+451) (NL(29J) sJ=191)
READ (59451) (NL(39J) 9J=191)
READ (5926) (LRCU(J) 9J=191)
READ (5926) (LRCL(J) 9J=1+1)

READ (5926) (CRCU(J) 9J=191)

READ (5926) (CRCL(J) sJ=191)

READ(5¢26) (DVL(19J) 9J=197)

READ(5926) (DVL(29J) 9J=197)

READ (5427)8BDV

READ (5426)RDsRDC

READ (5926) (INCF (J) 9J=197)

READ (54926) TLIM

READ (5926) (KAPA(1l9J)eJd=1y1)

READ(54926) (KAPA(29J)9sJd=191)

READ (5926) (KAPA(39J)9J=1s1)

READ (54926) (KAPA(49J)eJ=1s1)

READ (5926) (SO(19J) 9J=191)

READ (5926) (S0(29J) 9J=191)

READ (5426) (S0(39J) sJ=191)

READ (5926) (S0(49J) 9J=1+1)

WRITE(6+29)1

WRITE(64+2468)

WRITE(6530)

DO S50 J=lsl

WRITE(6+2468)

WRITE(6934) (NSM(JsM) sM=1+3)

WRITE (6+2468)

WRITE(6+1)DV

WRITE(6+2468)

WRITE(6+2) (EL1(J)esJ=1s1)

WRITE(693) (NUX(J) 9J=191)

WRITE(6+403) (E2(J) 9J=191)

WRITE(6+402) (NUY(J) eJ=191)

WRITE(69404) (GSM(J) 9J=191)
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C
C

INITIALIZATION OF LOWER LIMIT ARRAYS FOR M AND N SEARCH FOR CYLINDER AND

32

WRITE(694) (EY(J)9sJ=1s1)
WRITE(6+5) (NU1(J) 9J=1s1)
WRITE(696) (EX(J) sJ=1s1)

WRITE (6+28) (NU2(J) sJ=191)
WRITE(6+7) (PL(J)9eJ=1ys1)
WRITE(6+8) (P2(J)sJ=1s1)

WRITE (6+9) GAM

WRITE (6+2468)
WRITE(6910)LsReDLT(2) ¢DLT(3)
WRITE(6911) (ML(LloJ)eJd=19e1l)
WRITE(6911) (ML(29J)9J=1s1)
WRITE(6911) (ML(3sJ)eJd=1ls1)
WRITE(6912) (NL(19J)oJ=1s1)
WRITE(6912) (NL(29J)sJ=1s1)
WRITE(6912) (NL(39J)eJ=1s1)
WRITE(6+2468)

WRITE(6913) (LRCU(J) o J=191)
WRITE(6914) (LRCL(J) 9J=191)
WRITE(6915) (CRCU(J) 9J=191)
WRITE(6916) (CRCL(J) sJ=191)
WRITE(6918) (DVL(LeJ) 9J=1s7)
WRITE(6919) (DVL(29J) 9J=197)
WRITE(64+2468)

WRITE(64+20)80DV
WRITE(6921)RDsRDC
WRITE(6+22) INCF

WRITE (6+4405) TLIM

WRITE(6+407) (KAPA(lsJ)esu=1lsI)
WRITE(69408) (KAPA(Z29J)eJ=1s1)
WRITE(64409) (KAPA(39J)9J=1s1)
WRITE(6+410) (KAPA(49J)9Jd=1l9e1)
WRITE(69411) (SO(leJd)eJd=191)
WRITE(69412) (S0(29J)9J=191)
WRITE(69413) (S0(39J)eJ=1ls1)
WRITE(69414) (SO(49J)9J=1s1)
PI=3.141592653589793

SKIN BUCKLING FAILURE MOLES
DO 32 N=1.2
DO 32 M=1,1
LM(NsM) =1
LN(NsM)=0
DO 33 M=1»l
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33

DESIGN VARIABLE ANUD DESIGN VARIABLE INCREMENT SHIFT FOR ACTIVE VARIABLES

31

35

LM(3sM) =1
LN(3sM)=]

N=0

D0 31 M=1,7

IF (.NOT.BOV(M)) GO TO 31
N=N+1

VDP (N) =DV (M)

INCF 1 (N)=INCF (M)

CONT INUE

DO 35 J=1,1

GX () ZEX(J) /(2e0%(1e0+NUC(J)))
GY(J)=EY (J)/(2e0% (1e0+NUL(J)))
CALL SYN (NsVDP)

END
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401
402
403
404
405
406
407
408
409

SUBROUTINE ANAL(DVeMLsNLsLMsLNsSPA)
IS SUBROUTINE ANALYZES THE CYLINDER AND CALCULATES THE RATIOS OF
ACTUAL VALUES OF THt StEHAVIOR VARIABLES TO THE CRITICAL VALUES.
THE CYLINDER BUCKLING LOADS FOR GROSSs PANELs AND SKIN BUCKLING
ARE OBTAINEDL BY CALLING THE SUBROUTINE CYBL. THE CRITICAL
VALUES FOR THE STIFFENERS ARE UOBTAINED BY CALLING THE
SUBROUTINE RIBBA, DV IS THE VECTOR OF DESIGN VARIABLES (COMPLETE).
ML AND NL ARE THE ARRAYS OF LOWER LIMITS ON THE M AND N SEARCH.
LM AND LN ARE THE UPPER SOUNDS ON THE M AND N SEARCH.
LOGICAL BPA+BEUsBEL +BLReBDV
LOGICAL BML
REAL LXsLYINUINULINUZsLRCBILRCUSLRCL 9L oK1 9K29LRSsINKL s INK2eNUXINUY
REAL KAPsKAPA
COMMON/DIMEN/TSeTXsTYsOXsDYoLXoLY
1/RIBPRO/ZEX(L10) sEY(10) ¢NU2(10) sNUL1(10)
2/CRTRIB/EBU(L10) +EBL(10) o LRCB(10)
3/CBVA/BEUC(L0) +BEL(10) 4BLR(10)
4/NLC/ 1
S5/¢cPisrl
6/SHEPRO/ZEL(10) +E2(10) oNUX(L0) sNUY(10) oG5M(10)
7/71L.0ADS/PL(10)4pP2(10)
8/7YIELOD/ZLRCU(L0) oL RCL(10) s CRCUCLO) sCRCL(L0) ¢KAPA(44910)9S0(4910)
9/DESVAR/ZDV(T)
COMMON/BOODV/BDV (1)
1/CLR/LsR/CBF/BF (11+10)
2 /CJA/SR19SR2sSR39SK49SRS9SRO9SR79SREBeSRIIRGLIRG29RG3I9RG49RGSIRO6Y
3RGT
3HS19HS2esH29H3eK1 o K2
4/CNSM/NSM(10+3)
S/CMSNS/MS(3¢10) eNS(3e10)
DIMENSION SP1(10)+SP2(10)sLLRS(10) 9CKS(10) sES(10)sEPA(LIO0)CL1(10)

1CL2(10)+CL3(10) ML(3910)9LM(3910)sNL(3510)
2LN(3,10)
FORMAT (1HO9X s 14HCRITICAL LOADS95X95HGROSSy 10X s SHPANEL 910X ¢ SHSHEET)

FORMAT (1H023X+3E15.8)

FORMAT (1HO9X 9 11HMODE SHAPESs8X9SHM NelO0X9eSHM No10Xe5HM N)
FORMAT (1HO+18X93(111ls]I4))

FORMAT(BH0 (RS +8E15.8)

FORMAT (8 CRS #8E15.8)

FORMAT (8H DES +8E£15.8)

FORMAT (8H EsU  +8E15.8)

FORMAT (8H EBL +8E15.8)
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411
412
413
414
415
416

2468

20

34

39

40

FORMAT (8H

LRCB +8E15.8)
FORMAT (8H BEU »10L3)
FORMAT (8H BEL  s10L3)
FORMAT (8 BLR +10L3)
FORMAT (8H EPA +8E15.8)
FORMAT (10H ENTER ANA)

FORMAT (# WARNINGS
1IT#)

FORMAT (1H )
BML=.FALSE.
TS=DV (1)
TX=DV (2)
TY=DV (3)
DX=DV (4)
DY=DV(5)
LX=DV (6)
LY=DV(7)

IF (8DV(8)) DLY=DX

A MODE SHAPE NUMBER

IS APPROACHING ITS UPPER LIM

RG1=((DX#DX) /3.0) +(ABS(DX)#TS/2.0)+((TSH#TS)/4%0)
RG2=((DY#DY) /3.0) + (ABS(VY) #TS/2.0) + ((TS#TS) /4.0)

RG3=(ABS(DX) +TS) /2.0

IF (UXeLTe0e0) RG3==RG3
RG4=(ABS (DY) +T7S) /2.0

IF (DYelLTe0e0) RO4==-RG4

IF ( ABS(DX) LT« TX) GO TO 38
DRI=TX#TX

LDR2=ABS (DX)

DR3=DR2/TX

G0 To 39

OR1=DX#DX

DRZ2=TX

DR3=TX/ABS(DX)

UR3=0.49%DR3

OR4=1000.0

IF ( DR3 oLTe 15.0) DR4=EXP(DR3)
DR5=0,316-(0.285/DR4)
RGS5=DR1#DRS
IF ( ABS (DY)
DR1=TY®TY
DR2=ABS (DY)
DR3=DR2/TY
GO TO &l
DR1=DY#DY

oLTe TY) GO TO 40
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DRZ2=TY
DR3=TY/ABS (DY)
DR3=0,49#DR3
DR4=1000.0
IF ( DR3 oLTe 15¢0) DR4=EXP(DR3)
RG6=DR1#DRS
RGT=((2.0%DY#DY*ABS (DY) ) + (4o O¥TSHDYHDY) + (3,0%TSHTSHABS(DY))
1+ (TS*TS#TS) ) /8.0
IF (DYelLTe0e0) RG7==RG7
K1=PI/L
K2=1.0
SRI=(TS*#TS)/12.0
D0 23 JU=1»Hl
SRT=NUX (J) #*NUY (J)
SR9=1.0~-SR7
HS1=(El (J)*TS) /SRY
HS2=(E2 () #TS) /SRY
H2=(EX(J) #ABS(DX) #TX) /LY
H3=(EY (U) #ABS (DY) *TY) /7L X
SR2=H2/HS1
SR3=H3/HS2
SR4=1.,0+5SR2
SR5=1.,0+SR3
SR6=SR5#SR4
SR8=SR6-SR7

SKIN LOADS

SPL{J)=(((SR5=SR7)#P1 (J)) +(NUX(J)#SR2#R#P2(J))) /SR8
SP2{J)=(((SRa=-SRTI®P2(J) ) + (NUY(J)#SRI#(PL(J)/R))) /SR8

STIFFENER STRESSES

LRS(J)==((EX(J)/AS1) # ((SRS5#P1 (J) ) ~(NUX(J)#P2(J)#R))) /SR8
CRS{U) =+ ((EY(J)/HS2) # ((NUY (J) #P1 (J) ) = (SR4#P2(J)*#R))}) /SR8

SKIN STRESS X

JINK1==SP1(J) /TS

SKIN STRESS PHI

JINKZ2==SP2(J} #R/TS
IF(UNK1LTe0.0) GO TO 42
SXA=S50(1+J)
IF(UNKZ2eLTe0e0) GO TO 43
SFB=5S0(3+J)

KAP=KAPA (1+J)

GO TO 44

43 SFB=50(44+4)
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KAP=KAPA (45 J)
GO TO 44
42 SXA=S0(2+J)
IF(UNK2.LTe0e0) GO TO 45
SFB=50(3+J)
KAP=KAPA(2+J)
GO TO 44
45 SFB=S0(4+4)
KAP=KAPA (3+J)
DISTORTION ENERGY CRITERION
44 DES(J)=JUNKL1##2/SXA%#2=INK]1#INKZ2/ (SXA#SFB) + INK2##2/SFB##2
CIRCUMFERENTIAL RIB STRAIN
EPA(J)=CRS(J)/EY (V)
CRITICAL LOAD FOR OROSS BUCKLINGs CL1(J)
CALL CYBL(PL(JU)9P2(J) oRobLoCLI(I) oMS(LloJ)eNS{1loJ)eML(LlsJ)eNL(L1sd)o
ILM(19J) oLN{(leJ) sBPAy1,4J)
23 CLL1(J)=CL1(J)*HS2
K1=PI/LX
H3=0,0
RG2=0.0
RG4=0.0
RG6=0.0
RG7=0.0
SR3=0.0
SR5=1,.0
00 9 J=1l,1
IF (LXeNE.L) GO TO 24
CL2(Jy)=CL1(y)
GO T0 9
24 SR7=NUX () #NUY (J)
SR9=1.0-SR7
HS1=(E1 () #TS) /SR9
HS2=(E2(J)*#TS) /SRS
H2=(EX(J) #ABS(DX) #TX) /LY
SR2=H2/HS1
SR4=1.0+SR2
CRITICAL LOAD FOR PANEL BUCKLINGs CLZ2(U)
CALL CYBL(PL(J)9sP2(J) sReLXICL2(J)I IMS(29J)sNS(2eJ)eML(29J)
INL(2eJ) sLM(29J) oLN(29J) sBPA92sJ)
CL2(J)=CL2(J)#HS2
9 CONTINUE
K1=PI/LX
K2=PI#R/LY
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H2=0.0

DO 25 JU=1»l
SR7=NUX (J) #NUY (J)
SR9=1,.,0~5R7
HS1=(E1{(J)#TS) /SR9
HS2=(E2(J)#TS) /SRY

CRITICAL LOAD FOR SKIN BUCKLINGs CL3(J)

25

CALL CYBL(SP1(J)sSP2(J) sReLXeCLI(J) 9sMS(39J) sNS(39J)sML(39J)

INL(39Jd) oL M(39J)oLN(3sJ) sBPAS39J)

CL3(J)=CL3 (V) #HS2

STIFFENER BUCKLING ANALYSIS

CALL RIBBA

PRINTOUT FOR END OF CYCLE

100

102

101

IF ((oNOTeBPA)«ORe (ML (201)eEQsLM(201))) GO TO 37
WRITE(6+2468)

WRITE(6+401)

D0 100 J=1»sl

WRITE (642468)
WRITE(6+402)CL1(J) +CL2(J) 4CL3(J)
WRITE(6+2468)

WRITE(6+403)

DO 101 J=lel

D0 102 M=1,3

IF((MS(MeJ) eGTe (ML(MeJ) =) ) aORe (NS(MsJ) eGTo(NL(M9yJ)=5)))BML=sTRUE:
CONTINUE

WRITE (692468)

WRITE(6+404) ( MS(MeJ) sNS(MeJ) 9sM=193)
IF(BML) WRITE(6+416)

WRITE(6+42468)

WRITE (6+405) (LRS(J)eJ=1s1)
WRITE(6+406) (CRS(J) sJ=191)
WRITE(69407) (DES(J)esJ=191)
WRITE(6+408) (EBU(J) 2 J=191)
WRITE(6+409) (EBL(J)sJ=le 1)
WRITE(6+410) (LRCB(J) 9J=1s1)
WRITE(6+411) (BEU(J) 9J=1e1)
WRITE(649412) (BEL(J) oJ=191)
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CALCULATION OF RATIOS OF ACTUAL VALUES OF BEHAVIOR VARIABLES TO CRITICAL

37

27

28

29

30

31
32

33
34

35
36

26

WRITE(69413) (BLR(J)sJ=191)
WRITE(69414) (EPA(J) 9U=1y1)

VALUES
DO 26 J=lsI
IF (PL(J)eNE40.0) GO TO 27
BF (19J)=P2(J) /CLLI (D)
IF(CL1(J) «EQe04) BF (15J)=04
BF (29J) =P2 (J) /CL2(J)
IF(CL2(J) «EQe0s)  BF (29J) =0,
G0 TO 28
BF (19 ))=P1(J) /CLL(D)
IF(CLL(J) eEQeOe) BF (19J)=04
BF (29 D) =P1(J) /CL2(J)
IF(CL2(J) «EQe04) BF (29J)=04
IF (SP1(J)<EQ.0.0) GO TO 29
BF (39J)=SP1(J) /CL3(J)
IF(CL3(J) «EQe0s) BF(39J)=0,
60 TO 30
BF (394)=SP2(J) /CL3 (J)
IF(CL3(J) eEQa0a)  BF (39J) =0,
IF (BLR(J)) GO TO 31
BF (49J)=0.0
60 To 32
BF (49J) =LRS (J) /LRCB (J)
IF (BEU(J)) GO TO 33
BF (5+J)=040
GO TO 34
BF (S+J) =EPA (J) /EBU (J)
IF (BEL(J)) GO TO 35
BF (65J)=0.0
GO TO 36
BF (65 J) =EPA (J) /EBL (J)
BF (75 J)=SQRT (DES (J))
BF (8+J) =LRS (J) /LRCU (J)
BF (99J) =LRS (J) ZLRCL {J)
BF (104 J)=CRS (J) /CRCU(J)
BF (119J) =CRS (J) /CRCL ()
RETURN
END
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SUBROUTINE CYBL(LD19LD2sReL9CLLIIMSINSIMLToNLT9LMToLNT9BPASFMIoJ)

IS SUBROUTINE CALCULATES THE NON-DIMENSIONAL BUCKLING LOAD FOR THE
STIFFENED CYLINDER AND STORES A SELECTED SET OF MODE NUMBERS
TO BE USED IN THE APPROXIMATE ANALYSIS.

PUT
LD1 AXIAL COMPRESSION LOAD
Lbe2 EXTERNAL LATERAL PRESSURE
R RADIUS
L LENGTH
MLTeNLT UPPER LIMITS ON M AND N SEARCH
LMToLNT LOWER LIMITS ON M AND N SEARCH
BPA IF TRUEs COMPLETE ANALYSIS. IF FALSEs APPROXIMATE ANALYSIS
FMI FAILURE MOUE INDEX
I = GROSSs 2 - PANELs 3 -~ SKIN
J LOAD CONDITION INDEX
TPUT
cLl NONDIMENSIONAL CRITICAL LOAD

MSsNS VALUES OF M AND N FOR THE CRITICAL LOAD

LOGICAL BPA

REAL LD1oLD2eL oLMDeINKL 9 INK29 INK3 9 INKG e INKS oKL oK2oL XL Y NUsSNUL 9NU2
REAL LMDS 9 UNKA 9 UNKB 9 INKC o UNKD 9 UNKE o INKF 9 INKG o INKH o JNKI o NUX 9 NUY
INTEGER FMIsSMSsSNSesCTSeRI e TNSM
COMMON/DIMEN/TSsTXeTYsDXoDYoLXsLY
1/CJUA/SR1 ySR29SRIsSRG49SRS9SROsSRTeSRBySRIYRGLeRG2eRO3IIRG4eRGS RGO
2RGT
2HS1 9HSZ29H2sH3sK1sK2
3/SHEPRO/EL(10) sE2(10) oNUX(L10) sNUY(10) oGSM(10)
4/CNSM/NSM(10,43)
S/NLC/I
6/RIBPRO/ZEX(L0) sEY(10) 4NU2(10)sNUL(10)

COMMON/RIBPZ2/GX(10) +GY(10)

DIMENSION SMS(10093910)9SNS(10093+10)sCLT(100)

FORMAT (#]1#45X#CLT%)
FORMAT (8H SMS)

FORMAT (8H SNS)

FORMAT (8H +8E15.5)
FORMAT (3H 2515)

FORMAT(8H JNK1 5E£15.5)

FORMAT (8H C= 7E15.9)
FORMAT(LIH ENTER CYBL)

FORMAT (1H +4Xs9HAB BB CB +3E15.8)
FORMAT(1H s4Xs4HM Ne2l4)



410 FORMAT(1H 92X910E12.5)

ML=MLT
NL=NLT
LM=LMT
LN=LNT
NST=NSM(JsFMI)
DO 30 M=14NST

30 CLTMM)=0,0

TEST FOR ALL TENSILE LOADS
IF ((LD1.GTe0e0)eORe (LD2GT«040)) GO TO 1
CiLLl=0.0
GO T0 31

TEST FOR AXIAL LOAD

1 IfF (LD1.NE.0.0) GO TO 17

ALF=1.0
OP=0.0
G0 TO 18

17 ALF=LD2/LD1
OpP=1,0

18 R1=0

CALCULATION OF TERMS INDEPENDENT OF LAMBDA AND ETA
F1=(GSM(J) #SRI)/E1 (J)
F2=(GSM(J)#SRI) 7E2(J)
SR10=SR2#RG3
SR11=SR3#RG4
F3=H2/HS2
SR12=F3#R0G1
Fa=F3%RG3
SR13=5SR3#RG2
SRIG=(GX (J) #TX#ABS (DX) #R65) / (LY#HS2)
SR1S5=(GY (J)#TY#ABS (DY) #RG6) / (LX#HS2)
CllB=F1l/R
Cl1Al=R# (HS1+H2) /HS2
C1l2A=NUY (J) +F 1
Cl3A==NUX (J)
Cl3B1l=H2#RG3I#R/HS2
C13B8=C1381-E1 () #SR1/E2())
C318=C13B1-SR1
RSQ=R#*R
Cl13C=F2#SR1/RSQ
€C22B=(SR5-(SR11/R)) /R
C23A=SR5/R
C23B=SR11/RSQ
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JINKA=(F2%R) ¢+ (SR14/R)
INKC=((F2#SR1#3.0) + (NUX(J)#SR1) +SR14) /R
C33A=C23A+(SR11/RS5Q)
C33B=2.0# ((SR1/R)+SR11+(S5R13/R))/RSQ
JINKF=((NUX(J) #2. 0#SR]1) + (F2%#SR1%#4,0) +SR14+5R15) /R
C33D=(SR1+SR13+ ((SR3I=*RG7) /R) )/ (R#RSQ)
INKG=((SR1I#EL1{(J)/E2(J) ) +SR12) #R
IF (BPA) GO TO 19
TNSM=NSM (JsFMI)
GO TO 20
19 TNSM=1
C MODE SELECTION FOR APPROXIMATE ANALYSIS
20 DO 10 CTS=1sTNSM
IF (BPA) GO TO 22
LM=SMS(CTSsFMIsJ)
ML=LM
LN=SNS(CTSsFMIsJ)
NL=LN
C CALCULATION OF TERMS DEPENDING ON LAMBLA
22 DO 5 M=LMsML
LMD=K1#FLOAT (M)
LMOS=LMD*LMD
Cl1A=LMDS#Cl1Al
C12B=LMD#=Cl2A
C13D0=(C13A#LMD) +(C13B#LMD#*|_MDS)
C310=(C13A#LLMD) + (C31B4LMD#*#LMDS)
C13E=C13C#LMD
C22A=LLMDS*JNKA
C23C=UNKC#LMDS
C33C=UNKF#LMDS
C33E=JNKGH#LMDS*#LMDS
C CALCULATION OF TERMS DEPENDING ON ETA
D0 5 N=LNsNL
ETA=K2#FLOAT(N)
ETAS=ETA#ETA
Cl1=-=Cl1A-(Cl1B#ETAS)
Ci2=-ETA#C128
C136=C13E*ETAS
C13=C13D+C13/5
C31=C31D+C136G
C22=-C22A-(E.TAS®(C228)
C23=-(C23A#IETA) + (C23B#ETA®ETAS) =(C23C#ETA)
C33=~-C33A+(C33B#ETAS) -(C33CH#ETAS) - (C33D#ETAS#ETAS) -C33E
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AB=(Cl1#L MDS#* ((R#_MDS) +((ETAS~=1.0) #ALF))) #DP#R
JINK1=C11#C33-C13#C31

JINKZ2=(C11#C22)~(C12%#C12)

BB=( (UNK2+JUNK1) #R# (LMD#LMD) #DP) + (UNK2# ((ETA%ETA) ~1.0) #ALF)
CB=(C11#C22#C33)~(C12#C12%#C33) +(C124%C23#C31) +
1(C13#C12#C23)=-(C13#C31#C22)~(CL11#C23#C23)

C TEST FOR AXIAL LOAD

24

25

o~

34

IF (DPeNE«0Oe0) GO TO 24
PC==CB/BB

IF ( PC oLEe 060 ) GO TO 5

G0 T0 15

JINK4=(4,0#AB) # (CB/BB)

JNK1=BB# (BB=JNK&)

IF (UNK1.LT«0,0) GO TO 2
JNK1=SQRT (JUNK1)
JNK2=(=BB=JUNK1) /7 (2.0%#AB)
JNK3=(=BB+JUNK1) /7 (2,0%#AB)
JNK4=JUNK&4 /88

IF (ABS(JUNK4) «GT+0e1) GO TO 25
JNKS=(UNK4/2e0) + ( (IUNKSGH#INKS) /8:0) + ( (UNKGH##3) /16.0) +
L((5.0% (UNK4G##4))/128.0)
JNKZ2=(BB#* (UNK5=2.0) )/ (2.0%AB)
INK3=(~BB#JUNKS5)/(2.0%AB)

IF (LD1.GT.0.0) GO TO 3

IF (UNKZ2eLTe060) GO TO 4

IF (UNK3.GT«0.0) GO TO S

GO TO 6

IF (-BBelLTe0s0) GO TO 7

PC=UNKZ2

GO T0O 8

IF (UNK3.GTe0.0) GO 70O 9
PC=UNK3

IF (RI.EQe.0) GO TO 11

IF (PCueGT.CLL1) GO TO 11

GO T0 16

IF (UNK2.GTe0.0) GO TO 12

IF (UNK3.6T«0.0) GO TO 13
CONTINUE

WRITE (69405) UNK1 ¢ UNK2 9 JNK3 s JNK& 9 JNKS
WRITE(6+406)C119Cl29C139C22+C239C33
WRITE(6+408)ABsBBsCB
WRITE(6s409)MoeN
WRITE(6+410)LMDIETAIKL19K29SR4sR
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12
13

l4

b

GO 70 5

IF (UNK3.LTe0.0) GO TO 14
PC=JNK3

GO TO 15

PC=JNKZ

SELECTION OF MODES FOR APPROXIMATE ANALYSIS

15
11

16

26

28
27

IF (RI.EQe0) GO TO 11
IF (PC.GT.CL1) GO TO 16
CL1=PC

MS=M

NS=N

RI=1

IF (ML.EQ.LM) GO TO 27

P=PC

MT=M

NT=N

DO 28 ISC=1sNST

IF (CLT(ISC)«NE.0.0) GO TO 26
CLT(ISC) =P

SMS (ISCeFMIsJ) =MT

SNS (ISCeFMIsJ) =NT

GO TO 27

CONT INUE

IF (ABS(P).GT.ABS(CLT(ISC))) GO TO 28
PT=CLT(ISC)
MTT=SMS(ISCsFMIsJ)
NTT=SNS(ISCsFMIsJ)

CLT(ISC)=P

SMS (ISCeFMI 9 J) =MT
SNS(ISCsFMIsd)=NT

P=PT

MT=MTT

NT=NTT

CONT INUE

CONTINUE

END OF SELECTION Of MODES FOR APPROXIMATE ANALYSIS

PRI
2

GO TO 5

NTOUT FOR IMAGINARY ROOTS
WRITE(6+406)C11+C129C13+C22+C23,C33
WRITE(6+408)ABsBB+CB
WRITE(69409)MeN

WRITE(69405) UNK1
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S CONTINUE
10 CONTINUE
31 IF (((ML.EQeLM) sORe(FMIeNE«3))eORa(JeNEeI)) GO TO 29
PRINTOUT FOR END OF CYCLE
WRITE(6+400)
WRITE(69403) (CLT(JD) s JD=19NST)
WRITE(69+401)
DO 32 ID=1,3
D0 32 LD=l»l
NST=NSM(LD,ID)
32 WRITE(6+9404) (SMS(JDeIDsLL) 9 JD=1sNST)
WRITE(6+402)
b0 33 10=1,3
DO 33 LD=1»1
NST=NSM(LDsID)
33 WRITE(69404) (SNS(JUDsIDsLD)sJD=1sNST)
29 CONTINUE
RETURN
END
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FUNCTION EPB(NsNUsDsTYsDY)

CRITICAL EDGE STRAILIN
THIS FUNCTION CALCULATES THE CRITICAL BUCKLING STRAIN FOR A CIRCUMFERENTIAL
STIFFENER SIMPLY SUPPORTED ON ONE EDGE AND FREE ON THE OTHER.,
N NUMBER OF WAVES IN CIRCUMFERENTIAL DIRECTION
NU POISSON#S RATIO
D RATIO OF STIFFENER DEPTH TO RADIUS OF SUPPORTED EDGE
TY THICKNESS OF STIFFENER

DY DEPTH OF STIFFENER PORTION IN QUESTION
EPB CRITICAL CIRCUMFERENTIAL STRAIN
REAL NUsDeTYsDYosAsBeCoeN
400 FORMAT(12H NU D TY UY +4E15.5)
Az (((2.0%# (N##2)#(1,0~-NU))+1,0)%D)
Cr((((2.08N#N*(2+0=NU))=1e0)/2.0)#D%D)
3¢ ((((N#N)=10)# ((N¥N)=1,0))#
G(((Du#3)/3,0)=((D*%4) /4,4,0)))
B=leO+((((240%(N#%2))=]e0)/340)%#D)
2 +{ (025 (N¥#2)/3s0) ) (L##2))
C==(lea0/(640%(1la0=(NU#2))))#((TY/DY) %##2)
2H((1le0+((1a0%(la0=NU))#(L+((D#¥2)/2.0))))/(1le0+(2.0%D)+(D¥%2)))
EPB=(C#A) /B R .
RETURN
END
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400
401
402
403
404
415

4l6
417
418
419
420
421
422
423
424

SUBROUTINE FP{VDOPsRDsFMsGeB1)

IS SUBROUTINE USES THE VALUES OF THE ACTIVE DESIGN VARIABLESs VDP»s
AND THE VALUE OF RD TO CALCULATE THE UNCONSTRAINED FUNCTIONs FMs
AND ITS GRADIENTs G, THE DESIGN VARIABLE BOUNDS ARE CHECKED.
USING THE SUBROUTINE ANAL THE BEHAVIOR FUNCTIONS ARE GENERATED.
THE BEHAVIOR IS CHECKED. IF Bi IS TRUE A COMPLETE ANALYSIS
IS USED. IF Bl IS FALSE AN APPROXIMATE ANALYSIS IS USED.

LOGICAL BlsBpv

LOGICAL 8BDVV1sBDVVZ

REAL INCsLBSINRINXoLXoLYoLosMNDs INCF

INTEGER CC

COMMON/DIMEN/TSeTXsTYsDXeDYoLXoLY
1/C8F/BF (11+10)
1/DEN/GAM(3) sDLT (3)
3/NLC/1
4/SYNCON/DVL(297) s INCF(T7)
5/8000v/BDV(8)
6/CLR/LR
7/CP1/PI
8/CWT/WT
9/DESVAR/DV(T)

COMMON/MODLIM/ML(3s10) oNL(3910)9LM(3910)9oLN(3910)
1/CMSNS/MS(3910)9NS(3910)
2/CBDVV/BDVV1sBOVVZ

DIMENSION VDP(T7) +s6(T7),
19GSC(7)+GS(T)

FORMAT (BHO WwT '£15.8)

FORMAT (8H WG +7L16.8)

FORMAT (8H GSC +7E16.8)

FORMAT (4H SIGsBE1S.8H)

FORMAT (8H GS +7L16.8)

FORMAT (4HOTS=E15e8s4H TX=E15e894H TY=E15«894H DX=E154894H DY=E15.8
lo4H LX=E15.894H LY=E14.7)

FORMAT(8H0 ©G.Be 98E15.8)

FORMAT(BHO PeBe 3s8E15.8)

FORMAT(8HO S.Be. 9s8E15.8)

FORMAT (8H0 LRBe. +8L15.8)

FORMAT (8H0 CRBU +8E15.8)

FORMAT (8H0 CRBL +8E15.8)

FORMAT(BHO LRYU +8E15.8)

FORMAT (BHO LRYL +3E15.8)

WO (7)+DVI(T7)9INC(7)9S1G(8)



921

425
426
427
4238
429
430
431

432

2468

31

FORMAT (BHO CRYU s8E15.8)

FORMAT (8HO CRYL +8E15.8)

FORMAT (9H ENTER FP)

FORMAT (1H 94Xs4HVDP=9T7E15.8)

FORMAT (4HOAX=E15.894H AY=EL15.8)

FORMAT(8HO TB '£15.877)

FORMAT (# WARNINGs DX LESS THAN 5XTSs SKIN BUCKLING FAILURE MODE M

1Ay NOT BE MEANINGFULe#)

FORMAT (# WARNING. DY LESS THAN 5XxTS. SKIN SUCKLING AND PANEL BUC

IKLING FAILURE MODES MAY NOT BE MEANINGFUL «%#)

FORMAT (1H )
BOVV1I=.FALSE,.
BOVVZ2=.FALSE.
N=0
D0 31 M=1.7
IF («NOT.BDV(M)) GO TO 31
N=N+1
DV (M) =VDP (N)
CONTINUE
IF (BOV(B)) DV(5)=0V(4)

BEGINNING OF DESIGN VARIABLE CHECK

34

DO 34 M=l.7

IF ((DV(M) eLTeDVL(19M)) e ANDe (DV(M) oGT4DVL(29eM))) GO TO 34
FM=1.0E30

BOVV1i=.TRUE.

GO TO 7

CONTINUE

COMPATIBILITY BOUNU CHECK

IF ((DV(2)eLTeDV(T)) dAND(DV(3) LTsUV(6))) GO TO 35
FM=1.0E30

BOVVZ2=.TRUE .

GO TO 7

END OF DESIGN VARIABLE CHECK

35

CC=0

ANALYSIS OF INPUT DESIGN=--=COMPLETE IF 81 1S TRUEs APPROXIMATE IF Bl IS FALSE

CALL ANAL(OVeMLeNLILMoLNeBL)
IF («NOT.Bl) GO TO 54

PRINTOUT FOR END OF CYCLE

WRITE(692468)

WRITE(69415) TSeyTXeTYsDXoDYsbLXoLY
IF(ABS(DV(4) ) alLTo(5.%DV(1))) WRITE(64431)
IF(ABS(DV(5) ) ol Te(5e#0V(1))) WRITE(64432)
AX=TX#DX



AY=TY#DY
WRITE(6+2468)
WRITE (69429)AXsAY
WRITE (6+2468)
WRITE(64416) (BF (19J)9eJ=1s1)
WRITE(6+2468)
WRITE(6+417) (BF(2sJ)9J=1s1)
WRITE (6+2468)
WRITE(6+4418) (BF(39J)9sJ=10e1)
WRITE(64+2468)
WRITE(6+419) (BF (49J) 9J=191)
WRITE(6+2468)
WRITE(6+420) (BF (SeJleJd=1s1)
WRITE(6+2468)
WRITE(6+421) (BF (69J) su=1s1)
WRITE(692468)
WRITE(6+422) (BF (79J) 9J=1s1)
WRITE (6492468)
WRITE(6+9423) (BF (8sJ) 9J=19s1)
WRITE (692468)
WRITE(6+424) (BF (99J) 9J=1y1)
WRITE(6+2468)
WRITE(6+425) (BF (109J)sJ=191)
WRITE (6+2468)
WRITE(6+426) (BF(119J)eJ=1s1)
54 CONTINUE
C BEGINNING OF BEHAVIOR VARIABLE CHECK
DO 36 M=1,11
DO 36 J=1lsl1
IF (BF(MsJ) el Tels0) GO TO 36
FM=1,0E30
GO TO0 7
C END OoF BEHAVIOR VARIABLE CHECK
36 CONTINUE
C BEGINNING OF CALCULATION OF WEIGHT AND GRADIENT TO WEIGHT
IF (((DXeGTe0e0) e ANDe (DY eGTe000))eORe ((DXelL.Te0e0)aANDe (DYolLT40.0))
1) GO T0O 38
DLT(1)=0,.,0
GO 70O 39
38 DLT(1)=1.0
39 GD=(GAM(2)#DLT(2)) +(GAM(3)#DLT(3))
MND=AMIN1 (ABSA{DX) +ABS (DY))
NR=(L/LX)=1.,0
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NX=(2+0#PI#R) /LY
SW=ABS ((2.0#R#DY) = (DY#DY) = (TS#ABS (DY) ))
WT=(2,0%PI#R*TSHL#GAM (1) ) + (SWHGAM(2) #*TY*PI#NR) +
LIL#TX#GAM(3) #ABS (DX) #NX) = (MNDH#OLT (1) #TX#TY#GD)
C END OF CALCULATION OF WEIGHT
WRITE (692468)
WRITE(6+400)WT
IF (.NOT.Bl) GO TO 58
TB=WT/ (2. 0%#PI#R#L#GAM(1))
WRITE (6+2468)
WRITE(6+430)TB
58 CONTINUE
WRITE (69428) VOP
IF (ABS(DY) «GEABS(DX)) GO TO 40
DDX=0.0
DDY=1.0
GO TO 41
40 DDX=l.0
0DY=0.0
41 EIO=-1.0
IF (DXeGTe0,0) EI0=1.0
Ell=-1.0
IF (DYeGT«0.0) EIl=1.0
IF (DXeEQe0+40) EI0=0.0
IF (DY.EQe040) EII-’-0.0
C WEIGHT GRADIENT COMPONENTS
WG(l)=PI#((2.0#R#L%#GAM(]1))~=(DY*#GAM(2)#TY#NR))
WG (2)=(ABS(DX) #L#GAM (3) #NX) = (MND#DLT (1) #*TY#GD#NR#NX)
WG(3)=(SWH#GAM(2) #PI#NR) = (MNO#DLT (1) #TY#GD#NR#NX)
WG(4)=EIO0® ((L#¥TX#GAM(I3)#NX) = (DOX#DLT (1) #TX#TY#GD#NR#NX))
WG(S)=EIL#((ABS((2,0%#R)~(2.0#DY)~(TSHEIL1)) #GAM(2) #TY#P[#NR) -
L(DDY#DLT (1) #TX#TYRGD#*NR®¥NX) )
IF (BDV(8)) WG(4)=WG(4)+WG(5S)
WG (6)=((SWH#GAM(2) #TY#PI) =~ (MND#DLT (1) #TX#TY#GD#NX) ) # (=L/ (LX#LX))
WG(7)=((L#TX®#GAM(3) *ABS(DX) )= (MND#DLT (1) #TX#TY#GD#NR) )
18 ((=2,0#PI#R) /7 (LYH#LY))
C END OF CALCULATION OF GRADIENT TO WEIGHT
C DESIGN VARIABLES PUT IN NEW ARRAY (COMPLETE SET)
OVI(1)=TS
DVI(2)=TX
DVI(3)=TY
DVI(4)=0DX
DVI(S)=DY
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Ovi(6)=LX
DVI(7)=LY
BEGINNING OF CALCULATION OF DESIGN VARIABLE CONSTRAINT PENALTY TERMS
AND GRADIENT COMPONENTS
S1GS=0.0
DO 42 M=1l+7
UPPER AND LOWER. BOUND PENALTY TERM GRADIENT COMPONENTS
IF («NOT.BDV(M)) GO TO 42
UBS=(DVL (19M) =DVI (M) ) #=2
LBS=(DVI(M)~DVL (24M) ) #42
DBS=DVL (1 9M) =DVL (2sM)
GSC (M) =DBS/UBS
G5C (M) =6SC{M) ~(DBS/LBS)
42 CONTINUE
COMPATIBILITY BOUND PENALTY TERMS AND GRADIENT COMPONENTS
UBS=(LY-TX) #it2
LBS=(LX~TY) #%2
DBS=DVL(257)<DVL(1+7)
DBC=DVL(2+6)~DVL (1+6)
IF (.NOT.(BDV(2) cAND.BDV(7))) GO TO 44
GRADIENT COMPONENTS
6GSC(2)=GSC(2)~-(DBS/UBS)
GSC(7)=6SC(7) +(DBS/UBS)
PENALTY TERM
SIGS=SIGS=-(DBS/(LY~TX))
44 IF (JNOT.(BDV(3),AND.BDV(6))) GO TO 45
GRADIENT COMPONENTS
6SC(3)=GSC(3)-(DBC/LBS)
6SC(6)=6SC(6) +(DBC/LBS)
PENALTY TERM
SIGS=S1GS=-(DBC/(LX~-TY))
45 CONTINUE
JPPER AND LOWER BOUND PENALTY TERMS
DO 46 J=1,7
IF (.NOT.BDV(J)) GO TO 46
UBS=DVL (15 J)=DVI (J)
LBS=DVI (1) -DVL (24 J)
DBS=DVL(1+J)=DVL(2sJ)
PENALTY TERMS
SIGS=SIGS+ (DBS/UBS)
SIGS=SIGS+ (DBS/LBS)
END OF CALCULATION OF DESIGN VARIABLE CONSTRAINT PENALTY TERMS AND
GRADIENT COMPONENTS
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46 CONTINUE
BEGINNING OF BEHAVIOR CONSTRAINT PENALTY TERMS AND GRADIENT COMPONENTS
DO 47 J=1+7
47 DV =DVI (J)
CALCULATION OF BEHAVIOR CONSTRAINT PENALTY TERMS <= FINITE DIFFERENCE
4 SIG(CC+1)=0.0
DO 48 M=1,11
DO 48 J=lsl
48 SIG(CC+1)=SIG(CC+1)+(1.0/(le0-BF(MeJ)))
IF (CC.GT.0) DV(CC)=DVI(CC)
IF((CCsEQe4) s ANDBDV(8)) DV I(5)=DV(4)
2 CC=CC+]
TEST TO SEE IF ALL COMPONENTS HAVE BEEN CALCULATED
IF (CC.EQe8)-GO TO 1
TEST TO SEE IF A DESIGN VARIABLE IS ACTIvVE _ :
IF (BDV(CC)) GO TO 55 ?
SIG(CC+1)=0.0
GO TO 2
55 INC(CC)=INCF(CC)
DESIGN VARIABLE ALTERED BY FINITE DIFFERENCE INCREMENT
3 DV(CC)=DVI(CC) +INC(CC) : |
IF((CC.EQe4) «sAND.BDV(B)) DV(5)=DV(4)
DESIGN VARIABLE UPPER AND LOWER BOUND CHECK
IF ((DV(CC) «GTeDVL{14CC)) oeORs (DVICC) 4LTDVL(2sCC))) GO TO S
COMPATIBILITY BOUND VIOLATION CHECK
IF (eNOTe ((CCeEQe2) eORa (CCeEQe7))) GO TO 49
IF (DV(2).6GT.DV(7)) GO TO 5
49 IF (eNOTe((CCeEQe3)+OR«(CCeEQ.6))) GO TO 6
IF (DV(3).GT.DV(6)) GO TO S
GO TO 6
END OF COMPATIBILITY BOUND VIOLATION CHECK
S INC(CC)Y=INC(CC)/2.0
IF(INC(CC) oL Te (INCF(JU)/24)) GO TO 4
GO TO 3
ANALYSIS FOR FINITE DIFFERENCE MOVEs ONE BUCKLING WAVE PATTERN FOR EACH
FAILURE MODE FOR EACH LOAD CONDITION
6 CALL ANAL (DV9MSINSIMSINSs ¢ TRUE )
DO SU M=1,11
DO 50 u=lel
BEHAVIOR VIOLATION CHECK
50 IF (BF(MsJ)eGTele0) GO TO 5
GO TO 4
CALCULATION OF UNCONSTRAINED FUNCTION VALVE
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1 FM=WT+ (RD#(SIG(1)+S1IGS))
WRITE(6+403) SIG
DO S1 J=1s7
IF («NOT.BDV(J)) GO TO 52
IF (INC(J) LT (INCF(J)/2.0)) GO TO 56
BEHAVIOR CONSTRAINT PENALTY TERM GRADIENT COMPONENTS:
6S(J)=(SIG(J+1)=-SIG(1))/INC(J)
GO TO 57
56 GS(J)=1.0E6
UNCONSTRAINED FUNCTION GRADIENT TERMS
57 GS(J)=WG(J) +(RD®(GS(Y) +GSC(J)))
GO TO0 51
52 6S5(J)=0.0
51 CONTINUE
7 N=0
DO 53 M=1+7
IF (JNOT.BOV(M)) GO TO 53
N=N+1
G(N)=GS (M)
53 CONTINUE
RETURN
END
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SUBROUTINE INTER3(NsX9SeTeFleGleAsBeFAsFBsGA9GByGASsGBSsRsB4 s XX)
C GIVEN THE NUMBER OF ACTIVE OESIGN VARIABLES Ns THE VALUE OF THE MULTIPLIER Ry
C THE VECTOR OF DESIGN VARIABLE Xs THE DIRECTION OF MOVE S,
C THE INITIAL DISTANCE OF MOVE Ts AND THE FUNCTION VALUE AND ITS
C GRADIENT AT THE INITIAL POINTs T=0s THIS SUBROUTINE FINDS TwO
C POINTS A AND Bs B GREATER THAN As WITH FUNCTION VALUES FA AND FBoe
C GRADIENTS GA AND GBs AND SLOPES GAS AND GBSs WHICH LIE ON OPPOSITE
C SIDES OF THE MINIMUM, IF THE MOVE DISTANCE BECOMES TOO SMALL s
C B4 IS SET TO FALSE AND THE DESIGN IS SET TO XXe
LOGICAL Bls829B3+8B4
REAL INCF
REAL INCF1
COMMON/SYNCON/DVL (297) 2 INCF (7)
L/CINCF1/INCF1(7)
OIMENSION TGA(T) s XX(T7) o X(T7) S (7)961(7)9GA(T7)+GB(T7)
400 FORMAT(# MOVE DISTANCE TOO SMALLs MINIMUM NOT FOUND IN THIS DIRECT
1ION#)
Bl=eTRUE.
82=0FALSE-
B3=,FALSE.
B4=eTRUE .
C CALCULATION OF MINIMUM MOVE DISTANCE TM
TM=INCF1(1)/ABS(S(1))
DO 14 J=2¢N
SM=INCF1(J)7ABS(S(J))
IF (SMeLToTM) TM=SM
14 CONTINUE
1 H=T

C T MINIMUM TEST

2 IF (ABS(H)«GT.TM) GO TO 17
FA=F1}
DO 18 I=1leN
XX(I)=X(I)

18 GA(I)=G1(])
T=H
B4=FALSE.
WRITE(69400)
GO TO0 11

17 CONTINUE
DO 3 I=1lsN

3 XX{1)=X{I)=(H#S(]})
B=H

]



C GENERATION OF FUNCTION VALUE AND GRADIENT USING APPROXIMATE ANALYSIS
CALL FP(XXsRoFBsGBe«FALSE,)
IF (FBel.TeleOEZ26) GO TO 4
T=T/2.0
B2=«TRUE .
IF («NOT.B3) GO TO 5
H=H~T
GO TO 2
GO 70 1
TS=0.0
U0 6 I=1lsN
TS=TS~-(GB(I) %S (1))
GBS=TS
IF (ABS(GBS) L. Tels0E-~4) GO TO 7
IF (GBS.LT«0.0) GO TO 8
IF («NOTeBl) GO TO 9
A=0.0
TS=0.0
DO 10 I=1lsN
TS=TS=(Gl(1)y%#5(1))
10 6A(I)=6G1(1)
GAS=TS
Fa=Fi
G0 TO 11
9 T=n
A=TA
FA=TFA
DO 12 I=1sN
12 GA(I)=TGA(I)
GAS=TGAS
GO TO 11
8 TA=H
TFA=FB
HBl=.FALSE .
DO 13 I=1sN
13 TGA(I)=GB(I)
TGAS=6BS
7 B3=+TRUE
IF (B2) T=1/2.0
C T MINIMUM TEST
IF (ABS(T)GT«TM) GO TO 15
HB4=eFALSE
WRITE(6+400)

o &Y

G0 TO 9
15 H=H+T

GO TO ¢
11 CONTINUE

RETURN

END
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SUBROUTINE LOC3(NeXoeSsAsBsFAsFBIGASIGBSsTEWXTESFXTEeGXTESR)

THIS SUBROUTINE
MINIMUM
INPUT
N
X
S
AsB
FAsFB
GAS GBS
R
QUTPUT
TE
XTE
FXTE

GXTE

MAKES A CUBIC INTERPOLATION TO FIND AN ESTIMATED
DESIGN.

NUMBER OF INDEPENDENT DESIGN VARIABLES

THE VECTOR OF INDEPENDENT DESIGN VARIABLES

THE DIRECTION OF MOVE

DISTANCES ALONG S FROM X TO POINTS BRACKETING THE MINIMUM
FUNCTION VALUES AT POINTS A AND B

SLOPES AT POINTS A AND 8

PENALTY FUNCTION MULTIPLIER

DISTANCE TO THE ESTIMATED MINIMUM FROM X

DESIGN AT THE ESTIMATED MINIMUM

FUNCTION VALUE (NOT ESTIMATED) AT THE ESTIMATED MINIMUM
DESIGN

GRADIENT OF THE FUNCTION AT THE ESTIMATED MINIMUM DESIGN

DIMENSION X(7)9S(7) s XTE(T7) sGXTE(T)
Z=(3.0%(FA-FB) )/ (B-A) +GAS+GBS

W=SQRT (Z#Z=(GAS#GBS))

TE=B=(((GBS+W=7)/ (GBS=GAS+2.,0#W) ) #(B~A))

00 1 I=leN

1 XTE(D) =X(I)=(TE#S (1))
CALL FP(XTEsRsFXTEsGXTEs«FALSES)

RETURN
END



SUBROUTINE RIBBA
RIB BUCKLING ANALYSIS
THIS SUBROUTINE OBTAINS A CRITICAL BUCKLING STRAIN FOR THE CIRCUMFERENTIAL
STIFFENERS IN EACH LOAD CONDITIONs FOR AN EXPANSION OF THE CYLINDERS
EBU()s FOR CONTRACTION OF THE CYLINDERs EBL{()s AND A BUCKLING STRESS
FOR THE LONGITUDINAL STIFFENERSs LRCB()e LOGICAL VARIABLES ARE
ALSO SET TO INDICATE THE EXISTENCE OF THESE CRITICAL VALUES.
IN THE SAME ORDER AS ABOVE THESE ARE BEU()s BEL()s BLR(O).
LOGICAL BEUsBEL sBLReBYCU
REAL NUZ2sNULlsL o LRCBsNZsLRBINUSLXsLY
COMMON/DIMEN/TSeTXeTYeDXsDYoLXoLY
1/RIBPRO/ZEX(10) sEY(10) o NU2(10) oNUL(10)
2/CRTRIB/EBU(10) sEBL(10) oLRCB(10)
3/CBVA/BEU(10) +BEL(10) ¢BLR(10)
4/NLC/]
5/CPI/PI
6/CLR/LsR
T/7YIELD/LRCU(L10) oLRCL(10) sCRCU(10)9CRCL(L10)
DIMENSION 1LRB(2) 4EB(3)
400 FORMAT(12H ENTER RIBBA)
401 FORMAT(8E15.8)
C FUNCTION FOR LONGITUDINAL STIFFENER CRITICAL BUCKLING STRESS
SIGMAX(EoToBoLoNL)==((PIss2) #E# ((T/B) #42) % ( ((B/L)#%#2)+0.425))/
1(12.0%(140=(NUH#2)))
D0 1 J=1,1
BEU(J) =+ TRUE.
BEL(J)=eTRUE.
BLR(J)=. TRUE.
BYCU=.FALSE.,
IF (ABS(DY) aLTe(104#TY)) BYCU=eTRUE.
EYU=CRCU(J) ZEY (J)
EYL=CRCL(J) /7EY (V)
IF ( DYJNEs 040 ) GO TO 14
BEU(J)=+FALSE.
BEL(J)=.FALSE.
IF ( DX «NEe« 0.0 ) GO TO 15
BLR(JU)=.FALSE.

QOOOOOO0

GEI

6o 70 1 -
C LONGITUDINAL STIFFENER BUCKLING STRESS FOR THE CASE OF NO CIRCUMFERENTIAL
c STIFFENERS

15 LRCB(J)=SIGMAX(EX(J) s TXeUXsLoNU2(J))
GO T0 1
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14 CONTINUE
IfF ( DY «GT. 0.0 ) GO TO 2
EXTERNAL CIRCUMFERENTIAL STIFFENERS
D=DY/ (R=-DY+(TS/2.0))
IF («NOT.BYCU) GO TO 22
EB(3)=EYL
N2=0.0
G0 TO 23
22 CONTINUE
BUCKLING STRAIN FOR EXTERNAL CIRCUMFERENTIAL STIFFENERS,
CONTRACTION (FULL DEPTH)
CALL SEPBM(NUL(J)sDsTY9sDYeN2SEB(3))
23 IF ( DX «LTe 0.0 ) GO TO 3
BUCKLING STRAIN FOR EXTERNAL CIRCUMFERENTIAL STIFFENERS,
EXPANSION (FULL DEPTH)
EBU(J)=EPB(0sNUL(J) 9D TY DY)
IF (BYCU) EBU(J)=EYU
EBL (J)=EB(3)
IF ( DX «NEe 0.0 ) GO TO 16
BLR(J)=.FALSE.
GO TO 24
BUCKLING STRESS FOR LONGITUDINAL STIFFENERS ON OPPOSITE SIDE
(INSIVE) OF CYLINDER FROM CIRCUMFERENTIALS
16 LRCB(J)=SIGMAX(EX(J) s TXeDXeLoaNU2(J))
GO TO0 1
ALL STIFFENERS ON OUTSIDE (DX AND DY NEGATIVE)
LONGITUDINAL STIFFENER BUCKLING STRESS BETWEEN CIRCUMFERENTIALS
(FULL DEPTH)
3 LRB(2)=SIGMAX(EX(J) sTXeDXsLXaNU2(J))
24 G=(PI%*R)/LY
CIRCUMFERENTIAL STIFFENER BUCKLING STRAIN WITH NUMBER OF HALF
WAVES EQUAL TO THE NUMBER OF STIFFENER SPACES
EB(2)=EPB(GaNUL(J) s0sTYsDY)
IF ( G «GTe N2 ) GO TO 4
IF ( EB(2) «GTe 040 ) GO TO S
EBL(J)=EB(3)
GO TO 6
4 EBL(J)=EB(2)
6 BEU(J)=.FALSE.
GO TO 7
5 IF (BYCU) EB(2)=EYU
EBU(J)=EB(2)
EBL(J)=EB(3)




LET

OO0

7 IF ( DX «LTe DY ) GO TO 8
IF ( DX «EQs DY ) GO TO 9
D=(DY=DX)/(R+(TS/2.0)=DY)
WASHER MODE FOR OUTSTANDING PORTION OF CIRCUMFERENTIAL STIFFENER
EB(1)=EPB(OsNUL(JI) sDsTYsDY-DX)
YIELD SUBSTITUTION
IF (ABS(DY=DX)«LT.(10.%#TY)) EB(1)=EYU
IF (BEU(Y)) GO TO 18
BEU(J)=+TRUE .
GO TO 17
18 IF ( EB(1) «LTe EBUCJ) ) GO TO 17
60 TOo 9
17 EBU(JI=EB(])
9 LRCB(J)=LLRB(2)
G0 TO' 1
BUCKLING STRESS FOR OUTSTANDING PORTION OF LONGITUDINAL STIFFENER
8 LRB(1)=SIGMAX(EX(J) s TXsDY=UXoL sNU2(J))
IF ( LRB(2) LT« LRB(1) ) GO TO 19
G0 TOo 9
19 LRCB(J)=LRB(1)
GO 70 1
END EXTERNAL CIRCUMFERENTIAL STIFFENERS
INTERNAL CIRCUMFERENTIAL STIFFENERS
2 0=DY/(R=(TS/2.0)-DY)
IF ( DX «GTe 040 ) GO TO 10
WASHER MODE FOR INTERNAL CIRCUMFERENTIAL STIFFENERS
EBL(J)=EPB(0sNUL(J) 9DsTYsDY)
IF (BYCU) EBL(J)=EYL
IF ( DX oNE« 0.0 ) GO TO 20
BLR(J)=.FALSE.
GO TO 13
LONGITUDINAL STIFFENER BUCKLING STRESS FOR FULL DEPTH STIFFENERS
FULL LENGTH
20 LRCB(J)=SIGMAX(EX(J) s TXsUXsLoNU2(J))
GO TO 13

10 G=(PI#R) /LY
CRITICAL BUCKLING STRAIN FOR FuULL DEPTH CIRCUMFERENTIAL STIFFENERS

WITH THE NUMBER OF HALF WAVES EQUAL TO THE NUMBER OF
LONGITUDINAL STIFFENER SPACES
EB(2)=EPB(GsNUL (J) sDsTY»DY)
IF (BYCU) EB(2)=EYL
LONGITUDINAL STIFFENER BUCKLING STRESS FOR FULL DEPTH STIFFENER BETWEEN
CIRCUMFERENTIALS



8¢l

LRB (2) =SIGMAX (EX (J) s TXsDXsLXsNU2(J))
IF ( DX 4GTe DY ) GO TO L1
LRCB(J)=SIGMAX (EX(J) s TXsLXsLXsNUZ(J))
IF ( DX +EQe DY ) GO TO 12
D=(DY=DX) /7 (R=(T5/2.0) =DY)

WASHER MODE FOR OUTSTANDING PORTION OF STIFFENER
EB(1)=EPB(0sNUL(J) 9D TYsDY=DX)

YIELD SUBSTITUTION
IF ((DY=DX) oLTe (10.%TY)) EB(1)=EYL
IF ( EB(l) o LT. EB(2) ) GO TO 12
EBL(J)=EB (1)
6o To 13

BUCKLING STRESS FOR OUTSTANUDING PORTION OF STIFFENER FOR FULL LENGTH

11 LRB(1)=SIGMAX (EX(J) s TXsDX=DYsLsNU2(J))
IF ( LRB(1) +LE. LRB(2)) GO TO 21
LRCB (J) =LRB (1)
GO TO 12

21 LRCB(J)=LRB(2)

12 EBL(J)=EB(2)

13 BEU(J)=.FALSE.

1 CONTINUE
RETURN
END
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SUBRUUTINE SEPGBM(NUsDsTYsDYsNsEPBM)
MINIMUM CRITICAL EDGE STRAIN

THIS SUSBROUTINE OBTAINS THE NEGATIVE BUCKLING STRAIN CLOSEST TO ZERO FOR A

CIRCUMFERENTIAL STIFFENER OR PORTION OF A CIRCUMFERENTIAL STIFFENER
WHICH IS NOT SUPPORTED BY LONGITUDINAL STIFFENERS AND THE NUMBER
OF CIRCUMFERENTIAL wAVES.

INPUT
NU POISSON#S RATIO
0 RATIO OF STIFFENER DEPTH TO RAUIUS OF SUPPORTED EDGE
TY THICKNESS OF STIFFENER
Dy DEPTH OF STIFFENER
QUTPUT

400

N NUMBER OF CIRCUMFERENTIAL WAVES
EPBM CRITICAL VALUE OF THE STRAIN

REAL NUsDsTYsDYINIETsTE9EPSM

FORMAT (6H0 N=sE15.8)

N=0.,0

TE=0.0

N=N+1.0

ET=EPB{(NsNUsDsTYsDY)

IF (ET «GEe. 0.0) GO TO 1

IF (TE «GE.ET) GO TO 2

TE=ET

GO To 1

IF (TE «NEe 0.0) GO TO 3

TE=ET

GO TOo 1

EPBM=TE

N=N-1.0

RETURN

END
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SUBROUTINE SGENZ2(N9sSesTsGXeGXEMeBleB2)
FLETCHER~POWELL DIRECTION GENERATOR
THIS SUBROUTINE GENERATES CONJUGATE DIRECTIONS BY MULTIPLYING THE CURRENT
GRADIENT BY A MATRIX OBTAINED FROM INFORMATION ACQUIRED FROM
THE PREVIQUS DIRECTIONS.

INPUT
N NUMBER OF INDEPENDENT DESIGN VARIABLES
S DIRECTION VECTOR
T DISTANCE ALONG DIRECTION TO MINIMUM

GX GRADIENT OF FUNCTION AT PT FROM WHICH PREVIOUS SEARCH STARTED
GXEM GRADIENT OF FUNCTION AT MINIMUM OF PREVIOUS SEARCH
B1 «TRUE, THE H MATRIX WwILL NOT BE UPDATED
B2 «TRUEs THE H MATRIX IS REPLACED BY THE IDENTITY MATRIX
QUTPUT
S NEW DIRECTION (NORMALIZED)
LOGICAL BlsB2
REAL LV
COMMON/COH/H(T7+7)
DIMENSION S{7)¢GX(7) sGXEM(T7) sHY(T) oY (T) s DELTA(T)
400 FORMAT(1H #22X97E15.8)
IF («NOT.B2) GO TO 20
H REPLACED BY IDENTITY MATRIX
DO 21 I=1leN
DO 21 uJ=l»sl
H(Je I)=((J/71)#(1/70))
21 H(IeJ)=H(JsI)
GO TO0 1
20 IF («NOT.Bl) GO T0O 22
Bl=.FALSE.
G0 Tu 1
UPDATING H
22 LV=0.0
TS=0.0
DO 23 I=1sN
DELTA(I)==T#5(])
Y(I)=GXEM(I)=GX(I)
TS=TS+DELTA(I) *Y(I)
23 CONTINUE
00 24 I=1sN
Dv=0.0
DO 25 J=1lN
25 DV=DV+H(I+J) #*Y (J)
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HY (1) =DV
24 LV=Y(L)#HY(I)+LV
DELTAY=TS
YHY=LV
DO 26 I=1.N
D0 26 J=1»Hl
IF(DELTAY«EQe0eeOReYHYeEWeOe) GO TO 261
H(IsJ)=H(IsJ)+ ((DELTA(I)#*DELTA(J))/DELTAY) = ((HY(I)*HY (J)) /YHY)
261 CONTINUE
26 H(JsI)=H(IsJ)
C END UPDATING H
1 DO 27 1I=19sN
Dv=0,0
DO 28 J=1lsN
28 DV=DV+H(I9J)#6GXEM(Y)
27 sS(I)=Dv
C NORMALIZING s
75=0.0
DO 29 J=1sN
29 TS=TS+S(J)#S5(J)
DV=SQRT(TS)
IF (DVeEQe0.0) GO TO 2
DO 30 J=1sN
30 S(J)=S(J)/DV
2 CONTINUE
RETURN
END
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TH

TH

400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

SUBROUTINE SYN(NsVDP)
IS IS THE MASTER SUBROUTINE FOR THE SYNTHESIS ROUTINEe. N IS THE NUMBER
OF DESIGN VARIABLES AND VOP IS THE VECTOR OF ACTIVE DESIGN VARIABLES.
IS SUBROUTINE USES THE FOLLOWING SUBROUTINES
FP GENERATES FUNCTION VALUE AND ITS GRADIENT
SGENZ GENERATES MOVE DIRECTION
INTER3 FINDS TWO POINTS ALONG A DIRECTION WHICH LIE ON OPPOSITE
SIDES OF THE MINIMUM
LOC3 DOES A CUBIC INTERPOLATION TO THE MINIMUM DESIGN ALONG A
DIRECTION
INTEGER REILLOCSeRCOUNT 9+ COUNT
LOGICAL BlsBisB4
LOGICAL BID
LOGICAL BDVV1.BOVVZ
REAL MGe INCF o NG
REAL INCF1
DIMENSION G(7) sOCXEM(T7) o XEM(T) oGA(T) 9GB(T) aD(T7) o X(T)9S(T)eNG(T7)
LTP(T7) sGP(T) s VDP (7)) sEXMI(T) o XX(T)
COMMON/CWT/WT/CRU/RDsRDC
1/CBDVV/B8DVV18DVVZ
2/CINCFL/INCF1(7)
1/SYNCON/ZDVL(2+7) s INCF(T)
2/7COH/H(T47)
COMMON/CTIM/TLIM
COMMON/BOODV/BDV (B)
FORMAT(1H +4X+27HCLEARED H=-MATRIX DUE TO =GS)
FORMAT(1H s4Xes4HFEM=9E15.8)
FORMAT(1H o3Xs4HTEST9ELS.T)
FORMAT(1H +4X919HUNACCEPTABLE OESIGN)
FORMAT(1HO 94X s 7THFOR RD=9E13e5¢5H FEM=9E13e594H WT=9E13.5)
FORMAT(1H +4Xe3HXEMeTELS.7//)
FORMAT (1H+925X93riTS=9E15.8)
FORMAT(1H s4X916HCONVERGENCE TEST)
FORMAT(1H +4Xe3HTT=9E15.8)
FORMAT(1H +4X9e3HTP=9T7E15.8)
FORMAT (1H 94Xe3HS= +7E15.8)
FORMAT(1H +4Xe2HD=97E15.8)
FORMAT(1lH +8E15.8)
FORMAT(1lH +101I5)
FORMAT (2HOH)
FORMAT (% INITIAL DESIGN UNACCEPTABLE®)
FORMAT (# MOVE SIZE CONVERGENCE TEST SATISFIED#*)
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C

c

417 FORMAT (% QUADRATIC CONVERGENCE TEST SATISFIED%)
418 FORMAT (# GRADIENT CONVERGENCE TEST SATISFIED#)
419 FORMAT(%# SUGGEST INCREASING INITIAL RD AND/OR NO. MODES SAVED#)
420 FORMAT (% RD INCREASEDs CYCLE RESTARTED#)
421 FORMAT (% DESIGN VARIABLE(S) EXCEEDING UPPER BOUND(S) AND/OR LESS T
1HAN LOWER BOUNDS(S)#)
422 FORMAT(* STIFFENER THICKNESS(ES) GREATER THAN THE CORRESPONDING SP
1ACING (S) #)
423 FORMAT (# BEHAVIOR IN VIOLATION®#®)
424 FORMAT(# S INTERPOLATIONS ATTEMPTEDes MINIMUM NOT FOUND IN THIS DIR
1ECTION®)
425 FORMAT (# TS INCREASED BY 20 PERCENT#)
2468 FORMAT(1H )
RCOUNT=0
BID=.TRUE.
ANALYSIS OF INITIAL ODESIGN
44 CONTINUE
CALL FP(VDPsRDsF1eGe.TRUE,)
IF(FleLTeleE28) GO TO 6
IF(BID) 60 TO 43
WRITE(69403)
GO T0 14
43 CONTINUE
WRITE(649415)
IF(BDVV]1) WRITE(6s421)
IF(BDVVZ2) WRITE(6+422)
IF(BDVV1.0R«BDVVZ2) GO TO 14
WRITE(6+423)
IF (oNOT#BDV(1)) GO TO 14
VDP(l)=1l.2%VDP(1)
WRITE(6+425)
BID=.FALSE,
GO TO 44
6 DO 15 I=19N
GP(I)=G(1)
15 x(I1)=vDP(I)
10 COUNT=0
FEST=WT
INITIALIZE H MATRIX
CALL SGENZ2(NsD9TeG9sGe«FALSEe9eTRUES)
2 T7S=0.0
WRITE(69411) D
DO 30 I=lsN



30 TS=G(I)#D(I)+TS
6G=TS
IF (GGeGTW0.0) GO TO 4
REINITIALIZE H MATRIX WHEN DIRECTION IS BAD
CALL SGEN2(NsDsUDT9GeGeeFALSEe9+TRUE.)
WRITE(6+400)
GO 70O 2
4 RELOCS=0
INITIAL ESTIMATE OF DISTANCE TO MINIMUM ALONG D
TS=F1=-FEST
IF (TSeGTe040) GO TO 16
FEST=FEST+2.0%TS
G0 TO 4
16 T=(2.0%#TS) /GG
LIMITS ON THE INITIAL ESTIMATE OF MOVE DISTANCE
IF (TelTe0e425) T=0.5
IF (TeGTele0) T=0.5
FINDING TWO POINTS WHICH LIE ON OPPOSITE SIDES OF MINIMUM ALONG THE
OIRECTIONs D
12 CALL INTER3(NeXsDoTsFleGeAsByFAWFBsGAsGBeGASsGBSsRDB4 e XX)
IF (84) GO TO 13
REPLACEMENT FOR TOO SMALL A MOVE SIZE
FEM=FA
RELOCS=4
DO 35 I=1eN
GXEM(I)=GA(I)
35 XEM(I)=XX(I)
GO TO 36
MAKING CUBIC INTERPOLATION TO MINIMUM ALONG DIRECTIONs D
13 CALL LOC3(NeX9sDoA9sBsFAIFB9GASsGBSesTaXEMIFEMsGXEMeRD)

36 CONTINUE

WRITE(6+401) FEM
IF (FEM.LT.1.0E28) GO TO 17
UNACCEPTABLE DESIGN === MOVE DISTANCE CUT
T=T/2.0
GO To 12
17 75=0.0
DO 18 I=1sN
18 TS=TS+GXEM(I)#GXEM(I)
TS=SQRT(TS)
WRITE(642468)
WRITE(6+406) TS
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GRADIENT CONVERGENCE TEST
IF(TS«GTe0el#*WT) GO TO 40
WRITE(6+418)

GO TO 3

COUNT IS THE NUMBER OF DIRECTIONS SEARCHED

40 IF(COUNTSLTeN) GO T0 11

THIS PERMITS A WEIGHT INCREASE IF THE FUNCTION IS NOT UNIMODEL
IF((FleLT<FEM) eANDeB4) GO TO 11
WRITE(60407)

DO 32 J=1lsN
EXMI(J)=0.0
DO 32 I=1lsN

32 EXMI(J)=(H{(Js 1} #GXEM(I) ) +EXMI (J)
EXM=0,0
DO 33 J=1l+N

33 EXM=(GXEM(J) #EXMI (J)) +EXM
WRITE(69412) EXM
EXM=EXM/ (2. 0%FEM)

WRITE(64+2468)
WRITE(6s414)
DO 34 I=1leN

34 WRITE(69412) (H(IeJ)eJd=1sN)

QUADRATIC CONVERGENCE TEST
IF(EXMeGTe002) GO TO 39
WRITE(69417)

GO T0 3

39 DO 19 J=1leN

19 S(J)=6GXEM(J) /TS

MINIMUM MOVE OISTANCE
TT=INCF1(1)/7ABS(5(1))

D0 20 J=2+¢N
MG=INCF1(J) /ABS(S(J))
IF(MGoLTTT) TT=MG

20 CONTINUE
WRITE(69+412) INCF (I) MG
WRITE(6+413) 1
TT=2.#TT
DO 21 J=leN

2l TP(J)=XEM(JI) =-(TT#S(J))
WRITE(6+408) T7T
WRITE(6+409) TP
WRITE(6+410) S

GENERATING FUNCTION VALUE AND GRADIENT USING APPROXIMATE ANALYSIS
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CALL FP(TPsRDsDF ¢NGy oFALSE.)
MOVE SIZE CONVERGENCE TEST :
IF(DF.LT.1,E28) GO 70 38
WRITE(69416)
GO T0 3
38 PIP=0.
DO 31 J=1sN
31 PIP=(S(J)Y#NG(J))+PIP
IF(PIP.GT.0.0) GO TO 11
WRITE(6+416)
GO TO 3
END MOVE SIZE CONVEROGENCE TEST
11 GS=0.0
AGXEM=0.0
AG=0,.,0
DO 22 1I=1+eN
GS=0S-GXEM(I)*#D(I)
AGXEM=AGXEM+GXEM(I) *GXEM(])
22 AG=AG+D(1)*D(I)
TEST=GS/ (SQRT(AGXEM) #SQRT (AG))
WRITE(6+402) TEST
IF (FEMeGT.F1l) TEST=1,0
TEST OF CONVERGENCE ALONG DIRECTIONS
IF (ABS(TEST) .LT«.5.0E=-2) GO TO 5
RELOCS=RELOCS+1
IF(RELOCS«LT5) GO TO 42
WRITE(6+424)
GO TO 5
42 IF(GS.GT.0.0) GO TO 23
FA=FEM
A=T
GAS=GS
DO 24 I=1sN
24 GA(I)=GXEM(I)
GO0 TO 13
23 FB=FEM
=T
GBS=6S
DO 25 I=1sN
25 6B(I)=GXEM(I)
G0 TO 13
S COUNT=COUNT+1
BI=«FALSE.
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IF (COUNT«.NEJN+1) GO TO 26
BI=«TRUE,
COUNT=0
26 Bl=.FALSE.
IF (RELOCS.EQ.5) Bl=+TRUE,.

GENERATING A DIRECTION =~-= FLETCHER-POWELL DIRECTION GENERATOR
CALL SGENZ2(NsD9sTsGsGXEMeB1+BI)
D0 27 I=1sN

G(I)=GXEM(I) -

27 X(L)=XeM(I)
F1=FEM
Go TO 2

THE FOLLOWING IS THE END OF A MINIMIZATION CYCLE
WRITE(642468)

3 WRITE(69404)RDsFEMeWT

WRITE(69405) XEM
RCOUNT=RCOUNT +1
CALL FP(XEMsRDsFEM9GXEMs o FALSE W)
CTESTS(FEM=WT) /((2.0%WT) =FEM)
IF ( CTEST +LTe 0.0 ) CTEST=10.0
RD=RD/RDC
CALL FP(XEM9RD9F1l9Ge+TRUL,)
TID=RCOUNT
IF(CTEST.LT«0403) TID=TLIM
IF ( TID.GE. TLIM) GO TO 14
IF(FlesLTeleE28) GO TO 37
WRITE(69403)
IF(RCOUNT«GTW1) GO TO 4!
WRITE(69419)
GO TO 14 *

INCREASE OF MULTIPLIER RD IN THE CASE Of AN UNACCEPTABLE DESIGN AT THE

END OF A MINIMIZATION CYCLE

4] RD=(RD#RDC+RDO)/2.
WRITE(6+420)
CALL FP(VDPsRDsF1l9Gs«TRULE,)
60 TO 6

37 RDO=RD#RDC
00 28 I=1sN

28 VDP(I)=XEM(I)
GO TO 6

14 CONTINUE

OPERATIONAL HINTS
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INITIAL VALUES OF RD AND RDC
THE VALUES OF RD SHOULD BE PICKED SO THAT THE MAGNITUDE OF THE
UNCONSTRAINED FUNCTION IS ABOUT TWICE THE MAGNITUDE OF THE WEIGHT.
THUSe IN THE FIRST MINIMIZATION CYCLE THE VARIABLE FEM SHOULD BE
ABOUT TWICE THE MAGNITUDE OF THE VARIABLE WT. A VALUE FOR RDC THAT
WORKS WELL IS 2.0

MESSAGE =~ MINIMUM NOT FOUND IN THIS DIRECTION
A REPEATED OCCURRENCE OF THIS MESSAGE IS AN INDICATION THAT THE
DESIGN CHANGES ARE OF THE ORDER OF MAGNITUDE OF THE FINITE DIFFERENCE
INCREMENTS. SEE BELOWe.

MESSAGE == MOVE SIZE CONVERGENCE TEST SATISFIED
THIS IS AN INDICATION THAT THE DESIGN CHANGES ARE OF THE ORDER
OF MAGNITUDE OF THE FINITE DIFFERENCE INCREMENTSe. SEE BELOWe.

MESSAGES == QUADRATIC CONVERGENCE TEST SATISFIED
-= GRADIENT CONVERGENCE TEST SATISFIED
THESE MEAN THE MINIMIZATION IS PROCEEDING NORMALLY.

MESSAGE =-- DY LESS THAN 5 TIMES TSs ETC
THIS INDICATES THAT THE CIRCUMFERENTIAL STIFFENERS MAY NOT BE STIFF
ENOUGH TO FORCE NODES IN THE BUCKLLING PATTERN. IT MAY BE AN
INDICATION THAT THESE STIFFENERS ARE NOT NEEDED AND THE PROBLEM
SHOULD BE RERUN WITHOUT THEM,.

MESSAGE =- DX LESS THAN S5 TIMES TSs E£TC
THIS INDICATES THAT THE LONGITUDINAL STIFFENERS MAY NOT BE STIFF
ENOUGH TO FORCE NODES IN THE BUCKLING PATTERNe. IT MAY BE AN
INDICATION THAT THESE STIFFENERS ARE NOT NEEDED AND THE PROBLEM
SHOULD BE RERUN WITHOUT THEM,.

MESSAGE =~ WARNINGs A MODE SHAPE NUMBER IS APPROACHING ITS UPPER LIMIT.
THE UPPER LIMIT ON THE MODAL SEARCH SHOULD PROBABLY BE INCREASED.

DESIGN CHANGES THE ORDER OF THE FINITE DIFFERENCE INCREMENT
EITHER THE FINITE DIFFERENCE INCREMENTS SHOULD BE REDUCED (NOT
NECESSARILY) OR THE PROBLEM SHOULD BE CONSIDERED CONVERGED.

DO NOT SET DESIGN VARIABLES EXACTLY EQUAL TO ZERO OR EQUAL TO A BOUND.

RETURN

M
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NO.

No.

LOAD COND. =

MODES SAVED

3

GROSS PANEL SHEET
40 20 10
40 20 10
20 15 10

TS= 9.90000E-02 TX= 6.00000£~02 TY=

El=

1.00000E+07

1.00000e+07

NUX= 3,33000000E-01 3.33000000£~01
E2= 1.00000000E+07 1.00000000£+07
NUy= 3.33000000E~01 3.33000000£-01
GSM= 3.75093770E+00 3.75093770t+06

EY=
NUl=
EX=
NU2=
Pl=
p2=
GAM=

L= 1.65000E+02 R= 6.00000E+01 LLT(2)= 0.

ML 50

"ML 20

ML 20
NL 30
NL 100
NL 15

LRCuU=
LRCL=
CRCU=
CRCL=
DVLY=
DviL=

BDv=

RO= 1.00000000E+01 RDC= 2.,00000000E+00
1.00000E-0>

INCF=

1.00000E+07
3.,33000€-01
1.00000E+07
3.33000E-01
7.00000E+02
0.
1.,01000E-01

1.00000E+07
3.33000E~01

1.,00000c+07
3.33000c~01

9.40000E+02

=2.00000c+00

1.01009E-01

6.00000E-02 DX= 5,00000t-01 DY= 5.00000E-01 LX= 6.00000E+00 LY= 3.,00000€+00

1.00000E+07
3.33000000E-01
1,00000000E+07
3.33000000E=01
3.72093770E+006
1.00000E+07
3.33000E-01
1.00000E+07
3433000E-01
2.12000E+02
4.00000E-01
1,01000E-01

ULT(3)= 1.,00000£+00

50 30

20 20

20 20

30 30

100 150

15 15
5.00000E+04
~5.00000E+04
S5.00000E+04
=5.00000E+04

T

1

5.,00000E-01
l.90000E-02

T T

«00000E-06

TLIM= 2,00000000E+00

KTT
KCT
KCC
KTC
SXO0T
SXxeC
SYOT
SYocC

1.00000E+00
1.00000E+00
1.00000e+00
1.00000E+00
5.00000E+04
5.00000c+04
5.00000E+04
5.00000E+04

5.00000E+04

-5.00000E+04

5.00000t+0¢4

-5.,00000E+04

5.00000c-014
5.00000E-U2

T T

1.00000E+00
1.00000E+00
1.00000E+00
1.00000E+00
5.0000uUE+04
5.00000E+04
5.00000E+04
5.00000E+U4

5.00000E+04
-5.00000E+04
5.00000E+04
~5,00000E+04
5.00000E-04¢
5.00000E-02

2.00000E+00
-2400000E+00

1.00000E+01
5.00000E-02

1.00000£+01
5.00000E=-02

2.00000E+00
-2.00000E+00

T F

1,00000E~-05 1.00000E-04 1.00000E-04 1,00000£-03 1.,00000E-03

1.00000E+00
1.00000E+00
1.00000E+00
1.00000E+00
©.00000E+04
9.00000E+04
5.,00000E+04
5.00000E+04



0st

CLT
3.20727e-03
l.27125E-02

SMS
9 11 10 10
14 8 7 11
13 12 13 12
15 13 16 17

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
2 3 1 4
2 3 4 5
2 1 3 4
SNS

14 15 15 la
15 15 la 17
15 la 14 15
13 17 17 16
6 7 8 5
23 24 22 25
19 20 18 21
27 28 26 29
1 1 1 1
1 1 1 1
1 1 1 1

CRITICAL LOADS

MODE SHAPES

3.00439E-03
1.387169E-02

12 11 8
14 B 9
14 11 14
17 ie 10
2 2 1
1 1 1
1 1 1
1 1 1
5 6 7
] 1 7
S [) 3

1 1 1

1 1 i

1 1 2
GROSS

M N
9 14
13 15
1 6

4401252£-03

8 11 12
6 12 15
14 13 15
11 i1 9
I 3 Z
1 1 1
1 1 1
It 1 1
4 5 3
4 5 d
4 i 5

13 16 16

16 16 15
16 12 13

27 19 28
23 15 24
31 23 32

2 2 i
2 1 2
PANEL

M N
1 23
1 19
1 27

LRS =-6.39090707E+03~8.93122622E+03-1.86570165E+03
CRS 2.03671423E+03 3.87708285E+03 3.68300130E+¢02
DES 1.62529415E-02 3.34407249E~02 1.34838745E-03

EBU II111

IIILI

II1il

EBL =-5.00000000E-03-5,00000000E=-03=5,00000000E~03
LRCB =5.75377534E+04=5,75377534E+04=5,75377534E+04

BEU F F F
BEL T T 7
8BLR T T 7T

EPA 2+.03671423E~-04 3.87768285E-04 3.88300130E-05

5,45054£-03

9 9 7
14 15 9
15 12 11
13 l6 17

3 3 1

1 1 1

1 1 1

i 1 1

15 13 13
14 17 iz
16 13 15
12 13 14
9 11 10
18 29 17
14 i3 25
22 33 21

SHEET

202985181t +03 3.74486614E+03 3.,98637038E+03
2.40752048E+03 3,97541935E+03 4459316698E+03

©.80931608L+02 3,49259135E+03 3.57120810E+03

M N
Z 1
2 1
2 1

7.40003E-03

13 12 13

15 13
11 13 15
17 14
4 4 2
1 1 1
1 1 1
1 1

16 14 15

15 18
13 13 14
17 12

11 12 11
30 16 15
12 26 i1
34 20

9.,82525E~03

10 10 12

12 10 14

16 13 17
16 14 13
12 10 12

31 14 32
10 217 9

1.25640E=02

13 14 7

16 16 10

~ - U]

17 16 12
15 le 13
13

13
28

1.26465€-02

6 13 11

14 15 16

12 14 13

17 17 14
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TS

AX

GeB.
PeBo
SeBe
LRBe.
CRBU
CRBL

SeYe

9.90000000E-02 TX=

3.00000000E~-02 AY=

3.44852760E-01
1.86922569E-01
1459566440E-01
1.11073281E-01

0.

6.00000000E-02
3.00000000E-02
3.90443199E-01
2.36453042E-01
1.85207231E-01
1.55223756E~01

0.

TY= 6,00000000E-02 uX= 5,00000000E-01 DY= S.00000000E-01 LX= 6,00000000E+00 LY= 3,0000000E+00

3.11338169E~-01
6.06999156E~02
S5.41393775E~02
3.24256952E-02

O

=4,07342845E-02~7.75536571E-02-7.76600259E-03

1.27487025E-01 1.82868053E-01 3.67203956E~02

LRYU =1.27818141E-01~1.78624524E-01-3.73140331E-02

LRYL
CRYU
CRYL
w7

T8

1.27818141E=01 1.,78624524E-01 3.73140331E~02

4407342845E =02 7.,75536571E-02 7.76600259€-03

=4407342845E-02-7.,75536571E-02-7.76600259E~03

T7.14917932E+02

1,13794102E-01

VDP= 9,90000000E-02 6.00000000E-02 ©6,00000000E-02 5.,00000000E~01 5.00000000£-01 6,00000000E+00 3,00000000E+00
SI6 3,64464920E+01 3,0446436BE+0]1 3.64461968E+01 3,04463794E+01 3,64461280E+01 3,644601112E+01 3,64467905E+01 3.64472015E+01
D= 7.95109528E-02-7.01914796E=01=7.07806864E=01 1.57805768E~03 5.28323407E~04-2.43017322E~05-5,48525906E~04

L})

1.00952553E+03

VDP= 5,92445236E=02 4,10957398E-01 4,13903432E=01 4.99210971E-01 4.,99735838t-01 6,00001215E+00 3,00027426E+00
SIG 3,59419947E+01 3.,59418560E+01 3.59419344E+01 3.59419970E+01 3.59413498E+01 3.59419027E+01 3.59420392E+01 3.59446207E+01

wT

8.17383051E+02

VOP= 8,51929827E-02 1.81886977E~01 1.82910130E-01 4.99725971E-01 4.99908257£-01 6,00000422E+00 3,00009525E+00
SIG 3,52870187E+01 3.52869741E+01 3.52869671E+01 3.52870013E+01 3,52866551E+01 3,52868139E+01 3,52871540E+01 3.52878438E+01

FEM= 1,57811033E+03

TEST

6.8104294E~02

TS= 4.84852044E+03
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WT T7.54371883E+02
VDP= 9,36861589E-02 1,06910062E~-01 1,07303838E-01 4.99894536E-01 4.99964691E-01 6.,00000162E+00 3,00003666E+00
SIG 3.562348B0E+01 3.56234443E+0]1 3.56233945E+01 3.56234426E+01 3.56231333E£+01 3.,56232017E+01 3,56236903E+01 3.56241831E+01
FEM= 1.59350499E+03

TS= 5.11302687£+03
TEST =2.5928862E-01

WT T.846T70455E+02
VOP= 8.96032670E~02 1.42953426E=01 1.,43649760E~01 4.99813503E-01 4.99937562E~01 6.00000287E+00 3.00006483E+00
SIG 3.53975860E+01 3.53975430E+01 3.53975218E+401 3.53975614E+01 3.53972317E+01 3.53973691E+01 3,53977421E+01 3.53983300E+01
FEM= 1.56687415E+03

TS= 4.94864050E+03
TEST ~1.3362270t-02
D= 9.95454259E-01 5.20498096E-02-5.03766980E-02 5.41783228E-02 2.68933117E~02-1.97721430E-03~1.27032753E-02

L2) 6.48737514E+02
VOP= 6.,81356659E-02 1.41830938E-01 1.44736165E-01 4.98645113€E-01 4.99357591E-01 6,00004551E+00 3.00033B78E+00
SIG 3.71160804E+01 3.71159267E+01 3.71159419E+01 3,71160526E+01 3.71154093E+01 3.71157684£+01 3,71162483E+01 3.71186050E+01

wT 5.80772795E+02
VDP= 5.,74018653E-02 1.41269695E-01 1,45279368E-01 4.98060918E~01 4.99067605E~01 6.00006683E+00 3.00047576E+00
SIG 4.08103034E+01 4.08094911E+01 4.08098192E+01 4.08103363E+01 4.08085546E+0) 4.08100892E+01 4,08101254E+01 4.08230382E+01

WT 6.,06357839E+02
VDP= 6,14425829E~02 1.41480974E£-01 1,45074B80E=-01 4.98280837E-01 4.99176769E-01 6.,00005881lE+00 3,00042419E+00
SIG 3.86627594E+01 3.86624102E+0]1 3.86625144E+01 3.86627453E+01 3,86617311E+01 3.86624428E+01 3.,86628498E+01 3.86683407E+01
FEM= 1.,46567342E+03 :

TS= 3.95408956L+02
TEST =4,3731620E-01

wT 6.04397598E+02
VOP= 6.11329974£~-02 1.41464786E-01 1,45090547E=-01 4.98263987E~01 4,99168406E~01 6,00005942E+00 3.00042814E+00

SIG 3.87742744E+01 3.87739069E¢01 3.,87740198E401 3.87742620E+0) 3,87732160E+0) 3.,87739602E+01 3,87743558E+01 3.87801394E+01
FEM= 1.,46565370E+03

TS= 3.67048518£+02
TEST 1.3358397£-01

WT 6.04817434E+02
VDP= 6.11993032E~02 1.41468253E-01 1.45087192E-01 4.98267596E~01 4.99170197£-01 6.00005929E+00 3.00042730E+00

SIG 3.87499086E+01 3.87495452E+01 3.87496561E+401 3.87498959E+01 3,87488568E+01 3,87495938E+01 3,87499920E+01 3.87557109E+01
FEM= 1.46565207E+03

. TS= 3.61928314E+02
TEST 3.4154170E-04
0==3,20311055E-02 4.47585913E=01=4,52426795E-01 6.47978810E-01 4,13913760E~01-3.52392150£-02-3.88318541E~02



€61

wT 5.74816526E+02
VDP= 6.52031914E-02 8455200143E-02 2.01640541E~01 4.17270245E=01 4.47430977E-01 6.00446419E+00 3,00528128E+00
SIG 4.,01323717E+01 4.,01319718E+01 4,01319326E+01 4,01323534E+01 4,01306612E+01 4,01319180E+01 4,.01328177E+01 4.,01381954E+01)

T 5.90147359E+02
VDP= 6,29389041E=-02 1,17159980E-01 1,69658372E~01 4.63076037E~01 4.76690649E=01 6.,00197312E+00 3,00253624E+00

SIG 3.,91851907E+01 3.91848099E+401 3,91849077E+01 3.91851757E+01 3.91840803E+01 3.91848105E+01 3.,91853799E+01 3.91909833E+01
FEM= 1,45820568E+03

TS= 3.9326015659L+02
TEST 1.5124891E~01

wT 5.91962225E+02
VOP= 6.27064212E-02 1.20408575E-01 1.66374642E~01 4.67773090E-01 4.79694850E-01 6.00171735E+00 3.00225440E+00 :
SIG 3,91223940E+01 3,91220151E+01 3.,912211626+01 3,91223793E+01 3,91212947E+01 3,91220233E+01 3,91225661E+01 3,91281939E+01
FEM= 1.45802159E+03

TS= 3.16327578L+¢02

TEST 2.2864357E-03
D==1.05779025€E-02-5.10185407E-02 4.67680127c-02 7.89¢26087E~0]1 6.07229960E-01-4.98676642E~02-3,17040082E-02

WT 5.36624609E+02
VDP= 6.53508968E~02 1.331632106-01 1,54682639E~01 2.70472569E-01 3.27887360E~01 6.,01418427E+00 3.01018040E+00

SIG 4¢51083585E+01 4.51077230E+401 4.51076348E+01 4.51081478E+01 4.50993549E+01 4.51054448E+01 4.51103259E+01 4.51155355E+01

wT 5.56745685(£+02
VOP= 6.44256223E-02 1.28700496E-01 1.58773549E=01 3.39508067E-01 3.81003221E-01 6.00982223E+00 3,00740718E+00

SIG 4.11946621E+0]1 4.11942474E+01 4.11943018E+01 4.11945918E+01 4.11916428E+01 4.11936425E+01 4.11953238E+01 4.12004219E+01
FEM= 1,43324687E+03

TS= 3.99621112L+02
TEST -7.8205202e-02

WT 5.53121161E+02
VDP= 6,45951008E=02 1.29517911t-01 1,58024236E-01 3.,c0863142E-01 3.71274225E-01 6,010621206+00 3,00791514E+00
SIG 4.16202909E+01 4.,16198602E+01 4.16139021t+01 4.16202008E+01 4.16167843E+01 4.16190940E+01 4,16210729E+0]1 4.16261454E+01
FEM= 1.43301581£+03

TS= 5.14407281c+02

TEST 3.0038162E-02
D= 1.32767384E-03 5.30805511E-02-5.38894564E-02-3,80297300E-01 9.20018323E-01-4.28736383E~02~]1.65630957E-02

[2) 5.43168407E+02
VDP= 6.,44291415E-02 1,22882842E-01 1,64760418E-01 3.74400304E-01 2,56196934E=-01 6.01598041E+00 3,009948552E+00
SIG 4.36657753E+01 4.36652454E+01 4.36653807E+01 4.36653b79E+01 4,36629845E+01 4.36585409E+01 4,36671781E+0]1 4436711965€+01

WT 5.49369222E+02
VOP= 6.45267122E-02 1,26783730t~01 1.,60800083E-01 3.46452268E=-01 3.23853146E~01 6,01282962E+00 3,00876830E+00
SIG 4.18593304E+0]1 4.18588963E+01 4,18589472E+01 4.18592003E+01 4,18561862E+01 4.18573621E+01 4,18601047E+01 4.18649758E+01
FEM= 1,43254862E+03
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TS= Se54124676+02
TEST S5.5208843E-02

WT 5.50981491E+02
VDP= 6,45550171€=02 1.27915363E-01 1,59651205E~01 3.38344647E~01 3.43479960E=01 6.01191559£+00 3.00841519E+00
SIG 4.17090259E+01 4,17085973E+01 4,17006318E+01 4.17089175E+01 4.,17056385E+01 4,17074396E+01 4,17097904E+0]1 4417147933E+401
FEM= 1.43225606E+03

TS= 5.17577137E+02
TEST -3.7068864E-02
D==6,66965604£~03-1,01345876E=-02 9,01173693E-03-6,31067965E~-02~1.65021300E~04=6.,59330167E~01-7.49040491E=~01

WT 5.68377991E+02
VDP= 6,78898452E~02 1.3298265TE~01 1.54845336E~01 3.69898045E-01 3.43562471E-01 6.34158068E+00 3.38293544E+00
SIG 4.15909002E+01 4,15904344E+0) 4,159055226+01 4.15908042E+01 4.15883245E+401 4.,15895080E+01 4,15916159€+01 4.15967319€+01

WT 5,56282783E+02
VOP= 6,55898012E-02 1.29487725E=-01 1,98159903E-~01 3.48135542E-01 3.43505563E~01 6,11420938E+00 3,12462736E+00
SIG 4416567562 +01 4,16563171E+01 4.16563943E+01 4.16566410E+01 4.16538309E+01 4.16550892E+01 4,16575250E+01 4.16624901E+01
FEM= 1.43193059E+03

TS= 4.80190433E+02
TEST 249079948E-03
D= 4.24968B24E-03 2.86949637E=03-3,06107740E-03-2,16378854E-02=3.03766787E-02-8.66214423E=-01 4.98242882E-01

WT 5.51745679E+02
VDP= 6.34649571E-02 1.28052976E-01 1.59690501E-01 3.58954485E-01 3.58693903E-01 6.54731659E+00 2.87550592E+00
SIG 4.09619052E+01 4.09615540E+01 4.09615798E+01 4.09617954E+01 4,09592840E+01 4,09604188E+01 4,09628237E+01 4.09662216E£+01

W7 5.53628820E+02
VOP= 6,44474006E-02 1.28716347c=01 1,58982841E-01 3.53952236E-01 3.51671418E~01 6,34706503E+00 2.99068977E+00
SIG 4.12512909E+01 4412509073E+01 4.12509349E+01 4.12511771E+01 4.12483977E+01 4.12496772E+01 4,.12519115E+01 4.12567488E+01
FEM= 1,43128]135€+03

TS= 3.08992114t+02
TEST =-3.5904454E-03
D= 1.02433117£~02-3.04620128E=02 2.78955893E-02-3.13108387E-03-9,27271942E~02-7.73503993E-01 6.25517717E-01

WwT 5.44243030E+02
VOP= 5,93257447E=02 1.43947353E=01 1.,45035047E~01 3.55517778E-01 3.98035015E~01 6,73381702E+00 2,67793091E+00
SIG 4.08461428E+01 4.08457733E+0] 4.08458253E+01 4.08460228E+01 4.08433396E+01 4.08447496E+01 4,08408943E+01 4.08514696£+01

WT 5.51773778E+02
VOP= 6435959160E-02 1.31248530E~-01 1.56663995E-01 3.54212510E-01 3.59379450E-01 6.41136325E+00 2.93869304E+00
SIG 4411464240E+01 4.11460452E+01 4.11460958E+401 4,11463199E+0]1 4,11437560€+0) 4.11449642E+01 4,11469723E+01 4.11518473E+01
FEM= 1.43088421E+03

TS= 2.83421243E+02
CONVERGENCE TEST
1.25162925E+00




GGT

H
2437888993E=05 2.45640122E-05-2.38585450L-05~7.25756142E-05-5.28914298E-05-2,19713470E~-03 1.,42147758E-03
2.45640122E-05 7.71141110E=05-7.54200627E-05-1.36825326L-04~1.73481197E~05-2,95465504E-03 1.52186567E-03
=2438585450E-05=7.54200627E=05 7.75437689t~05 1.33075800E-04 1.26217621E~05 2.96482848BE-03=1.48664139E-03
=7e25756142E-05-1.30825326E=04 1.33075800t-04 6.,16315585E~04 3.241834026~04 1.,01428440E-02-4,13733256E-03
~5.28914298E~05~1,73481197E~05 1.20217621E-05 3.24183402E-04 1.16926420E-03 1.75283230E-02~3,07563959E-03
~2,19713470E=-03-2.95465504E-03 2.96482648E-03 1.01428440E-02 1,75283230E-02 6.,09110131E-01-1,33966625E~01
1,42147758E=03 1.52186567E=03=1.48664139E~03-4,13/33256t-03-3,07563959E-03-1.33966625E-01 9.38554199E~02
QUADRATIC CONVERGENCE TEST SATISFIED

FOR RD= 1.00000E+01 FEM= 1.,43088E+03 wI= 5,51774E+ue

XEM  6,3595916E~02 1,3124853E-01 1,5666399E-01 3,5421251£~-01 3.,5937945E-01 6,4113632E+00 2,9386930E+00

WY 5.51773778E+02
VOP= 6,35959160E-02 1.31248530E-01 1,56663995E~0]1 3.54212510E~01 3.59379450£-01 6.41136325E+00 2.93869304E+00
SIG 4.11464240E+401 4.11460452E+01 4.11460958E+401 4411463199t +01 4,11437560E+01 4e11449642E+401 4,11469723E+01 4.11518473E+01



9a1

CLY

SMS

LRS
CRS
DES
EbBu
EBL

10
14
12
14

1.52741E=-03
5.59503E~03

1+34425E-03 l.61174E-03

5.26247E-03

11 11 12 9 10 12 9 13 12
14 12 7 15 9 15 13 10 i>
13 13 la 14 12 11 12 15 11

12 11 13 le 17 17 io 13 1le
1 1 1 2 2 1 2 3 2
1 1 1 1 i 1 i 1 i
1 1 1 1 1 i 1 1 1

1 1 i 1 1 1 1 1 i
3 4 i 5 6 7 4 8 5
3 4 5 6 7 i 8 5 4
1 3 4 5. 6 7 4 3 5

15 14 15 la i> 1ae 13 15 le
17 17 12 16 ile2 15 13 12 L7
14 i5 15 14 is5 14 13 15 13
12 12 12 17 15 l6 12 17 13
7 8 5 8 9 9 10 10 7
28 26 29 25 30 24 31 23 KT
22 c4 21 25 20 26 19 27 18
32 34 31 35 30 36 29 37 28
1 1 1 1 1 1 I 1 2
1 1 1 1 1 1 1 2 2
1 1 1 1 1 1 2 2 I
CRITICAL LOALDS

GROSS PANEL

1429979800E+03 2,07340219E+403 1.09559259E+03
1.52339488L+03 2,28246449E+03 1.30432639E+03

5.10607910t+402 1,8566014BE+03 9.61512205€+02

MODE SHAPES M N M N
10 14 1 a7
12 14 1 23
1 [ 1 33

=84719141956+03~1.21518742E+04~2,55199198E+03
2.58598776E+03 5.09831963E£+03 4.58043360E+02
3.00330914£-02 6414230737£=02 2.51524641E=-u3
5.00000000-03 5.00000000E=03 5,00000000E-03
=5.00000000£-03~-5.00000000E~03=-5.00000000E~03

LRCB =5.,43651325E405-5.43651325E+05=-5,43651325E+05

2.11494E=03
10 i3 8
11 6 15
1« 13 13
14 9 17
3 3 4
11 1
11 1
1 1 1
13 16 13
17 12 14
16 13 16
12 13 1s
9 11 11
33 22 34
28 1729
38 39 27
SHEET

M

2

N

i

2.80834E-03

11
11
15
17

S

1
1
1

16
12
14
17
12
21
l6
40

11
16
15
10

4

1
1
1

14
13
10

20
15

3.67730E-03

14

11

15
15
12

36
31

14

10

le
13
13

15
14

14
15
11

37
kY

4.71557€-03
9 12 13
16 10 12
6
1
1
15 13 17
16 14 le
12
18
i3

5.21019€~-03
7 10 8
16 15 15
13 16 12
14 13 17



BEU F F F
BEL T 1T 7T
BLR T T 7

EPA 2458598776E-04 5.09831963E-04 4.58043366E~05

TS= 6435959160E-02 TX= 1.31248530E-01 TY= 1.56663995E-01 DX= 3.54212510E~01 DY= 3.59379450E-01 LX= 6.41136325E+00 LY= 2,9386930E+00

[}

AX= 4,64898711E-02 AY= 5,63018204E-02

GeBe 5.38545220E-01 6.17042903E-01 4.15191374E-0i
PeBoe 3.37609367E-01 4,11835542E-01 1.14187133€E-01
SeBe 5413022753E-01 5.73290857E-01 1.78497689E~-01
LRBse 1.,60381140E-02 2.23523307E=02 4.69417044E-03
CRBU 0. 0. '

CRBL -5.i7l97552E-02-l.01966393E-01-9.16086732E-03
SeYe 1473300581E-01 2.47836788E-01 5.01522324E-~02
LRYU =1.74382839E=01-2.,43037485E=-01-5.10398396E-02

LRYL 1.74382839E-01 2.43037485E=-01 5.10398390E-02

LST

CRYU 5,17197552E~02 1.01966393E~01 9.16086732E-03
CRYL =5.17197552E-02-1.01966393E-01-9.16086732E-03
wT 5.51773778E+02

T8 8,78263069E-02

VOP= 6.35959160E-02 1.31248530£-01 1,56663995E-01 3.54212510E-01 3.59379450E~01 6,41136325E+00 2.93869304E+00
SIG 4.11464240E+40) 4.11460452E+401 4.11460958E+01 4.11463199€+401 4.11437560E+01 4.11449642E+01 4,11469723E+01 4411518473€+01
D= 9.95053042E-01 B.02544695E-02 2.80871778E~02 4.50167101E-02 2.41439349E-02~1,27602253€-03~-5,35843806E£~03

wT 4.97488920E+02
VDP= 5.,50727326E-02 1.30561105E~01 1.56423413E-01 3.538206917E=01 3.59172644E=01 6,41137418E+00 2.93873894L£+00
SIG 4.94168341E+01 4,94139781E+01 4.94154284E+01 4.,94168859E+01 4,94093617E+01 4.94154100E+01 4,94147321E+01 4.94618947E+01

wT 5.1870748lE+02
VOP= 5.84042497E-02 1.30829804k-01 1.56517451E-01 3.53977637E-01 3.59253480b=01 6.41136991E+00 2.93872100E+00
SIG 4+41563705E401 4,41554705E+01 4.41557927E+01 4.41562719E+40]1 4.41523531E+01 4.41546074E+401 4.415653B5E+01 4.41699217E+01
FEM= 9,80511215E+02

TS= 3.09271974E+02
TEST -B.4787555E-01



8¢G1

WT S«15905819E+02
VDP= 5,79643637E=02 1.30794325E~01 1,96505034E~01 3,.53957736E~01 3,59242806E~01 6,41137047E+00 2,93872337E+00
SIG 4.457748060E+01 4.45764779E+01 4.,45768575E+01 4.45773871E+01 4,45732498E+01 4.,45757039E+01 4,45775491E+01 4.45926612E+01
FEM= 9,80512207E+02

TS= 3.47953869:+02
TEST 8.2262282E~01

wT 5.17293176E+02
VDP= 5,81821913E£-02 1,30811894E-01 1,56511183E~01 3.53967591E-01 3.59248092E-01 6.41137019E+00 2,93872220E+00
SIG 4.43632800E+0]1 4.43623306E+0]1 4,43626804E+01 4.43631838E+01 4,43591588E+01 4.43615094E+01 4.43634007E+01 4.43776148E+01
FEM= 9,80481426£+02

TS= 1.80259266L+02
TEST 143633900E-02
==3,66762148E~02 6,56112728E=01 5,19028276E=01 3,95350900E-01 3.,43777538E~01-3.45502068E-02 1.51991925E=01

WT 44,82677384E+02
VOP= 6,04744547E=02 B8.98048484E=-02 t,24071915E-01 3,29258159E-01 3.37761996£~01 6.41352958E+00 2.92922270€+00
SIGC 4.84178568L+0]) 4.,84167699E+01 4.84104051L+0) 4.84174702E+01 4.84077745t+01 4.84134660E+01 4.,84196650E+01 4.84316770E+01

wT 5.04874237€+02
VDP= 5,89642373E-02 1.16821620E=-01 1,45443957E-01 3.45537534E-01 3.51917733E-01 6,41210690E+00 2,93548128E+00
SIG 4.5189248lE+01 4,51883100E+01 4.,51885230E+01 4.51890804E£+01 4,51841027E+01 4.51867870E+01 4,51897424E+01 4.52029640E+01
FEM= 9,78729007E+02

TS= 1459911620£+02
TEST 4.7118819E-~01

WT 5.07159129+02
VOP= 5.,88173276E=02 1.19449734L =01 1.47522968E-01 3.47121145E~01 3.53294762E~01 6.,41136851E+00 2.93605009E+00
SIG 4450008077E+01 4.49998717E+0]1 4450001054E+01 4.50006524E+01 4.49958259E+01 4.49984603E+01 4.50012284E+01 4.50146459E+01
FEM= 9,78616210E+02

TS= 1.27180061t+02
TEST 1.8856205E~-01

WT 5.,07801679E+02
VDP= S5.87762699€-02 1.20184230E-01 1.48104002E-01 3.47563727E-01 3.53679609E~01 6,41192983E+00 2.,93626024E+00
SIG 4.49503956E+01 4.49494602E+0]1 4.49497002b¢01 4.49502437E+01 4.49454632E+01 4.49480789E+01 4,49507973E+01 4.49642671E£+01
FEM= 9.78621281E+02

TS= 1.21396526L+02
TEST 8.2257111E-02

wT 5.08056926E+02
VOP= 5.87599907E-02 1.20475452E-01 1,48334378E-01 3.47739207E-01 3.53832199E~01 6.41191450E+00 2,93632770E+00
SIG 4.,49306T748E+0]1 4.49297394E+01 4.49299816E+01 4.49305241E+01 4.49257590E+01 4.49283701E+0]1 4,49310687E+0]1 4.49445606E+01
FEM= 9,78627571E+02



6ST

TS= 1.19246064E+02

TEST = 3.9306593E-02
D= 1.60914422E~02-4,09511492E-01 5.066377969E-01 2.68297720E~01 4.88906312E~01-7.06639537E-02 4.41872106E=01

wT 4495423900E+02
VOP= 5,67485605E~02 1.71664389E-01 7,75371323E-02 3.14201992E-01 2.92718910E-01 6.,420747495E+00 2.88109369E£+00
SIG B8.33552061E+01 8.33394923E+01 B.33496774E+01 B8.32650009E+01 8.33254675E+01 B8.27097797E+01 B.34657013E+01 8433917966E+01

L 2] 4,99818049E£+02
VOP= 5,74813392£-02 1.53015885£-01 1.03329087E-01 3.206419845€-01 3.14982928E-01 6.41752957E+00 2,90121585E£+00
SIG 4.83340366E+01 4,83329238E+01 4.83333156E+0]1 4.83330162E+01 4,83268169E+01 4.83244349E+01 4,83367975E+01 4.83450657E+01
FEM= 9,98804585E+02

TS= 1.40421187E£+03
TEST 5,9496942E-01

WT  5.06134285E+02
VDP= 5.84720367E~02 1.27803603E-01 1,38199125E-01 3.42938058E-01 3.45083290E-01 6.41317902E+00 2,92842047E+00

SIG 4452170629E+01 4.52161362E+01 4452103785E+01 4.52168755E+01 4452117385E+01 4.52144673E+01 4.52174932E+01 4.52306027E+01
FEM= 9.78208727E+02

T5= 1.35983088E+02
TEST 2.0079047E-01

WT 5.06601951€+02
VOP= 5.85426394E-02 1.26006831£-01 1,40684163E-01 3.44115240E~01 3.47228414E~-01 6.41286897E+00 2.93035922E+00
SIG 4.51385344E+01 4.51376066E+01 4,51378488E+01 4.51383568E+0) 4,51333187E+01 4,51360144E+01 4,51389548E+01 4.51521508E+01

FEM= 9,78155898E+02

TS= 1.260164799E+02

TEST 3.1401953E~02
D= 5.86765027E=03~7.98516774E=02-2,68165676L~01 2.,64140685E-01 4.71246576E-01~1,13791765E~01 7.85419791g=-01

wT 4,96416789E+02
VDP= 5.70757269E-02 1,45969750E-01 2.077259582E~01 2.78080069E-01 2.29416770E-01 6.44131691E+00 2.73400428E+00

SIG 5.73109675E+01 5.73085963E+01 H.73091088E+01 5.73095625E+01 5,72863031E+01 5.72772889E+01 5,73172404E+01 5.73270519E+01

wT 5.04855585E+02
VOP= S5,79311488E=02 1.343284b4E-01 1,68630748E-01 3.16588115E~01 2.98117980E~01 6.42472765E+00 2.84850758E£+00

SIG 4.69641127E+0]1 4.696309BYE+01 4.69633524E+01 4.69637969E+401 4.69567234L+01 4.69588500E+01 4.69663190E+01 4.69751096E+01
FEM= 9.,79186668E+02

TS= 3.86236906c+02
TEST 1.4577831E-01

WT 5.06333853E+02
VDP= S5,83013716E-02 1.,29290196E=01 1.,51710679E~01 3.33254225E-01 3.27851557£-01 6.41754790E+00 2,89806410E+00
SIG 4456564T22E+0]1 4496555369t +0)1 4.,56557772E+401 4.56562531E+01 4,56505799E+01 4.,56533401€+01 4,56583016E+01 4.56671783E+01

FEM= 9.77487700E+02

TS= 7.11863560c+01

TEST 9.0558927E-03
= 1.57957959€-02 1.016416266-01 1.47047131E-01-2,74862544E-01-2,139186043E-01 6.78500386E=-02 9.17541628E-01



091

") G.03823194E%VCE
VOP= 5,04034737E-02 7.84693831€-02 7,.81871136E-02 4.70685497E~-01 4.34810578E~01 6.38362288E+00 2,43929328E+00
SIG 4,56384203E+401 4.56369724E+01 4.56371843E+01 4.,56380869E+01 4.5035352TE+01l 4.56362868E+01 4.56396019E+0]1 4.56588653E+01

wT 4,86178482E+02
VOP= 5,50390991€-02 1,08298365E-01 1,21341345E-01 3.,90021008E~01 3.72031600E-01 6,40353497E+00 2.,70856616E+00
SIG 4,47922537E+01 4.47912261E+01 4.47915051E+01 4,47920420E+01 4,47883332E+01 4.47899152E+01 4,47935013E+01 4.48057416E+01
FEM= 9,79855899E+02

TS= 7.36135827c+02
TEST 6.9535748E~02

wT 4,99839689E +02
VOP= S5,71151326E~02 1421657072E-01 1.40667674E~01 3.53895963E~01 3.43916461lt-01 6,4124524T7E+00 2.82915819€+00
SIG 4.51610795E+01 4.51601330E+01 4.51603662E+01 4.51608700E+01 4,51559192E+0]1 4.51583450E+01 4.51626617E+0]1 4.51726732E+01
FEM= 9,76686482E+02

TS= 1.09586608E+02
TEST 6.0730897e-03
D= 7.16599492E-03-2,43759390E~02 9.01243093E-02 2.96090666E~01-5.22501995E-01 2.64085533E~01 7.48874412E~01

wT 4.85723409E+02
VDP= 5,53236338BE-02 1.27751057£~01 1,18136597E~01 2.79873297E-01 4.74541959E~01 6,34643108E+00 2.64193958E+00
SIG 4.72751140E+01 4.72739704E+0]1 4 72739803E+01 4 72749473E+01 4.72625931E+01 4.72735272E+01 4.727B0602E+01 4.72903484E+01

wT 4,97144379E+02
VOP= 5,66678828E-02 1.23178443E-01 1,35042764E-01 3.35416116E-01 3.76527273E-01 6,39597015E+00 2,782418B4E+00
SIG 4.51793647E+01 4.51784013E+01 4.51706463E+01 4.51791930E+01 4.51737384E+01 4.51772707E+01 4,51809901€+01 4.51913994E+01
FEM= 9.76365647E+02

TS= 2.23425636E+02
TEST 3.8051396E-02
D= 3.58451076E-03 5.71959336E-03-5.,13823401E-03 1.96934359E£-02 1.80739901E-02 9.31740375E-01 3,62040618€-01

W7 4.,90831348£+02
VDP= 5,48756274E£-02 1.20318646E=-01 1,37611881E~01 3.25569398E~01 3.67490278E~01 5.93009996E+00 2,60139853£+00
SIG 4.49203180E+01 4.491943L1E+01 4.49196308E+401 4.49201168E+01 4.49146935E+401 4.49178418E+401 4,49219542E«01 4.49311590E+01

WT 4,B54¢7269E+02
VDP= 5,30833720E-02 1.17458849:-01 1,40180998E~01 3.15722680E-01 3.58453283E-01 5,46422977E+00 2.42037822E+00
SIG 4,47733085E+01 4.47724722E+0) 4.47726184E+01 4,47730580£+01 4,47673311E+01 4.,47701939E+01 4,4T750133E+01 4.47831789E+01

wT 4.89786348E+02
VDP= 5,45532828E~02 1.19804300€~-01 1.38073947E~01 3.23798424E-01 3.65864937E-01 5.84631127€+00 2.56884127E+00
SIG 4.48843784E+01 4.48835030E+01 4.48836925E+01 4.48841693E+01 4,48787089E+0) 4,.48818022E+01 4,48860233E+01 4.,48950300E+01
FEM= 9,74433352E+02

TS= 2493569834E+01
GRADIENT CONVERGENCE TEST SATISFIED
FOR RD= 5.00000€¢00 FEM= 9,74433E+02 WT= 4.89786€£+02
XEM 5,4553283E-02 1.1980430E-01 1,3807395E-01 3.,2379842E~01 3.6586494E~01 5,8463113E+00 2.5688413E+00

wT 4.89786348E+02
VDP= 5,45532828E=02 1.19804300E-01 1.38073947E~01 3,23798424E-01 3.65864937E-01 5,84631127E+00 2.56884127E+00
SIG 4.48843784E+01 4.48835030E+01 4.48836925E+01 4.48841693E+01 4,48787089E+01 4,48818022E+01 4.,48860233E+01 4.48950300E401



19T

CLT

SMS
11
15
13

LRS
CRS
DES
EBY
EBL

1.27096E=-03
5.066756-03

12
15
14
10

) e e e

15
17
15
13
7
30
25
35
1
1
1

CRITICAL LOADS

MODE SHAPES

12
16
14
12

WP e

1

13
16
13
11

1

E o e

15
15
15
15
8
31
26
38
1
1
1

1.47050E-03
5.26123E-03

11

9
12
13

(3210« T AT )

1
1

10
l4
15
14

NG =N

GROSS

M4

11

13

1

1

1

N

4

4

[}

13

8
15
14

-~ O e e

1.49282E-03

13
9
13
11
2

14 10
12 10
12 15
17 12
3 3
1 1
1 1
1 1
4 5
5 9
3 5
15 i3
17 12
13 le
17 16
10 9
25 34
28 19
32 “41
2 2
2 1
2 4
PANEL

M

1

1

1

N

29

24

36

=9.92987925E+403-1.38312894E+04=2.90795883E+03
2.89846753E+03 5.75160242E+03 5.05940674E+0¢
3.,88975373E-02 7.94198727E-02 3.26459977E-03
5.00000000E£-03 $,00000000E-~03 5.00000000E~03
=5,00000000€-03~5,00000000E~03=-5.00000000E=-03
LRCB ~5.,42088416E+05=-5.42088416E+05-5.420884]16E+05

1.93246E-03
i2 14 11
8 16 11
14 12 16
10 18 18
2 4 3
1 1 1
1 1 1
i 1 1
le 16 13
14 17 le
io 15 15
14 15 16
10 11 11
24 35 23
29 18 30
31 42 30
SHEET

M

2

N

1.108977726+03 1,86107316E+03 8.97320247E+02
1,27240508£+03 2.03602721E403 1.06375342E+03

4o72776811E+02 1.67078506E+03 7.79821813E+02

2454342E-03

10
14
15

——

13

13
ie
10
36

43

10
7
11
17
5

1
1
1

15
12
14
13
12
37
31
29

14
13
14

le6

3.31094E=-03
14 12 15
16 16 13
7 6 5
1 1 1
1 1 1
14 13 15
16 14 16
13 12 11
38 21 39
32 15 33

4.22B86E-03
15 11 8
15 17 17
8

1

1

16 16 13
13 15 16
14
20

14

4.96002E-03
13 14 13
15 17 16
13 17 17
17 14 17



91

BEU
BEL
BLR
EPA

~ =
- -
- -

2.89846753E-04

TS= 5.45532828E=02 TX=

AX= 3.87924435E-02 AY=

GeBe
P.Be
Se.Be
LRYB.
CRBU

CRBL

T8

6631211962E-01
3.76127072E-01
6012989019E-01
1.83178222E-02

Oe

5.75160242E~04
1.,19804300E-01
5.05164160E-02
7.38758446E-01
4,61683417E-01
6.87313136E~01
2+55148220E~02

0.

5.05946674E~05
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7.79597144£-02

VDP= 5.45532828E=02 1419804300E=-01 1,38073947E=01 3.23798424E~01 3.65864937£-01 5.84631127E+00 2.56884127E+00
SIG 4.48843784E+01 4.48835030E+401 4.48836925€+401 4.4B8u41693E+01 4.48787089E+01 4.48818022E+01 4.48860233E+01 4.48950300€+01
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