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ABSTRACT

The present paper is concerned with predictions of the total emissivity
of metals at cryogenic temperatures based on the anomalous skin effect theory
(the ASE theory). An exact numerical result as well as an approximate expres-
sion has been developed to represent the spectral emissivity of metals at
cryogenic temperatures. The two representations of spectral emissivity after
appropriate integrations over wavelength result in, respectively, a closed-
form expression and an exact numerical tabulation of total normal emissivity
in terms of three dimensionless parameters, These results are then compared
with the existing experimental data of the low-temperature total emissivity
of metals and with the prediction obtained from the exact numerical integra-
tion of the spectral emissivity as given by the Drude single (or free) electron
theory (the DSE theory). The comparison reveals the enhanced accuracy of the
ASE theory in predicting the radiation properties of metals at cryogenic

temperatures.



Introduction

Due to the rapid growth of the cryogenic technology and the accompanying
rise in the use of high vacuum insulation, thermal radiation of metals at
cryogenic temperatures has become an area of increasing importance. Indeed,

[1]

a recent review article of the subject indicates the extent to which the
development of experimental as well as theoretical techniques involved in
this area has rapidly progressed.

Since the primary objective in the consideration of thermal radiation
at cryogenic temperatures is the calculation of radiant heat interchange
between metallic surfaces, it is only natural that the subject of radiation
properties of metals has received much emphasis. It should be noted, however,
that the most widely employed basis for the prediction of emissivities of
metals has been the Drude single (or free) electron theory of the optical
[2]

properties of metals. (For the convenience of discussion this theory will
be denoted here as the DSE theory.) But in the cryogenic temperature range,
the adequacy of the DSE theory is questionable and recourse must be made to
what is known as the anomalous skin effect theory (the ASE theory) of the

optical properties of metals.[B’h’S]

In the region of practical interest for
thermal radiation, the predicted emissivity of metals at cryogenic temperatures
based on the ASE theory could be one or more orders of magnitude larger than
that predicted by the DSE theory.

It is the purpose of the present work to demonstrate the importance of
the anomalous skin effect as regards the prediction of radiation properties
of metals at cryogenic temperatures. The relative significance of the ASE

theory of the optical properties of metals is demonstrated by a comparison of

the total emissivity as predicted by both the ASE and the DSE theories. Then



by comparing these predictions with experimentally obtained values of total
emissivity, an assessment of the applicability of these theories is carried

out.

Theories of Optical Properties of Metals

The region of engineering interest for the calculation of radiation
properties of metels at cryogenic temperatures is the far infrared portion
of the electromagnetic spectrum. In this frequency range, which lies below
the lower frequency limit for internal photoelectric absorption, the absorp-
tivity of the metal can be attributed wholly to the motion of the free electrons.
The theoretical prediction of absorptivity requires an analysis of the motion
of the free electrons as they interact with the electric field within the
metal and as they experience damping due to collisions with the lattice phonons
and the defects or impurities. Both the Drude single electron (DSE) theory and
the anomalous skin effect (ASZ) theory of the optical properties of metals take
into account the above-mentioned factors. The major difference in the two
theories is that the DSE theory neglects the effects of the space variation
of the electric field within the metal whereas the ASE theory takes this spatial
variation effect into account.

In the development of the DSE theory, a simple physical model is constructed
in which the equation of motion is written for a model electron which represents
the behavior of the whole set of electrons playing a role in the absorption
process.[2] The demping of the free electron motion is then assumed to be viscous
in nature, i.e. with a demping force opposing and proportioned to the velocity
of the model electron. The driviug electric field is assumed to be a periodically

varying function of time only. The solution based on this model can be expressed

in the form of the relations between the electrical and optical properties of metals:



(1a)
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where n is the index of refraction, k is the absorption coefficient, N is the
electron number density, m is the electron mass e is the electron charge, T is
the relaxation time. The relaxation time is related to o, the d-c electrical
conductivity, by the Lorenz-Sommerfeld relation, 1 = mo/Nez.

As was pointed out previously, the DSE model does not take into account
the effect of the spatial variation of the electric field on the free electron
motion, i.e. the amplitude of the driving electric field should be a function
of the position coordinate. The actual state of affairs within the metal is
one in which the amplitude of the electric field decays with distance into the
metal. Since the electrons which contribute to the absorption of the electro-
magnetic energy are those which move within the penetration depth of the decay-
ing electric field, the electrons must necessarily experience some effects due
to the spatial variation of this field. Therefore, the DSE theory can be thought
of as an approximation which is valid only when the motion (mean free path) of
the electrons is small compared to the penetration depth of the electric field.
Since the penetration depth is given approximately by 6 « —l—-the DSE theory
should be applicable when cw is small, i.e. high temperaturgg or low frequency.
Under these conditions the electrons "see" an electric field which varies only
with time.

In order to predict the optical properties of metals when the penetration

depth of the electric field is of the order of the fice electron mean free path

such as at the conditions of cryogenic temperatures and moderate frequencies,



5.
(3]

Reuter and Sondheimer solved simultaneously the Maxwell ecuations and the
Boltzmaenn transport equation as applied to the free electrons in a semi-
infinite medium. The analysis based on the resulting integro-differential
equation indicates that the motion of the free electrons in the penetration
layer depends upon the electric field everywhere in the metsl, i.e. the
spatial variation of the electric field. Included in the integro-differential
equation is a parameter arising from the boundary condition on the electron
motion. This parameter accounts for the nature of the reflection suffered by
the electrons at the metal surface. The form of the deceying electric field
resulting from the solution of the integro-differential equation is much more
camplex than the exponentially decaying field resulting from the usual assump-
tion of the current density proportional to the electric field at a given point.
With the specification of the electric field given by the solution of the

integro-differential equation, the surface impedance is given by

_ lbwiwe E(o)
2=- 2 E'o) (2)

where u is the magnetic permeability, ¢ is the speed of light, and E is the
electric field, a function of the penetration distance.
For the case of diffuse reflection of the free electrons at the metal

surface, which sppears to be the prevalent case as indicated by experimental

investigation, Dingle[h] obtained an equation for the surface mpedBnce as:
. 1 o
ﬁ=; J in {1+§—§M}dt (3)
t
vhere 7 = (cz/hﬂwruv)z (v being the Fermi velocity)
w=1+ iwt
E=1i0v/L+1i53)
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Instead of using numerical means to evaluate (3) directly, Dingle obtained
two series solutions for the impedance, one in terms of ascending powers of

1/2 /3

£ , the other in descending powers of El . The solutions obtained by Dingle

are as follows:

for |g| < 0.8

(3

i_o 11547 €2 C 0.2500 € + 0.1540 £3/2 - 0.1262 €% + 0.1188 £°/2
. 3 7/2 4 9/2 (ha)
- 0,121k €2 + 0.1307 ¢ [-0.148 £°] + 0.1685 ¢ coe
for |g| 2 0.8
i . 3.5u7(ne)M3 - {0.1351 1n(ng) + 0.5330} + 0.0416(rg)"Y/3
wZ
2/3 -1
- 0.0649(nE) + (mg)™" {-0.016L 1n (ng) + 0.0184} (4b)

+ 0.0660 (n)™*/3 _ 0.0307 (ng)>/3 ..o

The optical and spectral radiation properties can be obtained from the surface

impedance given by (4a) and (4b) via the impedance concept.

Relations Between Optical and Spectral Radiation Properties

On the basis of the DSE model, the calculation of the optical properties
is quite straightforward. The solution of (la) and (1b) results in the

following:
1/2

[ 2x ]
(v2 + 4x)2 _

o
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(5a)
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where

2 2
= (hﬂge )2 s 2T2 5 (63.)
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By using the complex index of refraction, i = n - ik, in the Fresnel formulae,
the spectral directional reflectivity or sbsorptivity can be obtained.[a] The

spectral emissivity for the case of normal incidence is given by

2
fi -1 4n
E(wT)gl_l———lg (7)
N 4 i+ 1 (n+l)2+k2

This has been calculated using (5a) and (5b) and is shown in Fig. 1 for various

temperature levels.
For calculations based on the ASE theory, the analogy between electro-
magnetic waves and a-c transmission lines is used to obtain the spectral normal

emissivity in terms of the surface impedance as follows:

2
(4n/c) - 2

(w,T) =1 - (hn/o) + 2 (8)

N
The spectral normal emissivity calculated in this manner using (L4a) and (4b)
is also shown in Fig. 1.
In the case of the ASE theory, the electric field in the metal is demped

in a form other than exponential, so the complex refractive index does not

retain the usual physical significance, i.e.

E(y) # B exp [i(t - ju)

[5]

However, it has been shown that if the refractive index is redefined as

8= /e + (212 (9)



L4

where ¢ is the angle of incidence, then the Fresnel formulae give the desired
spectral directional radiation properties. For cryogenic temperatures and in

the far infrared, the following approximation can be mede:

Lo

fi= A (10a)

or N
ns -—gﬂ——é— k = :ﬂx 5 (19p)

c(R° + X°) c(R® + X%) .

where X and R are related through Z = X + iR and can be evaluated from (lLa) and (kb).
While the use of the series (4a) and (4b) is satisfactory for machine

computations a simple closed form expression would be more desirable from the

viewpoint of engineering calculations. Thus, an approximate curve fit was

sought for the spectral normal emissivity. A good approximate expression is

found to be

2/3
(@D =T+ D Lo e(-2® 1 (11)
g

where v = v/c is the dimensionless Fermi velocity. This expression labeled as
V4

the ASE spproximation in Fig. 1 has the correct approach to the high frequency

limit and agrees quite well with the exact ASE theory in the primary spectral

range of the Planck distribution for the given temperatures.

Total Normal Emissivity of Metals

The usual engineering calculation of radiative flux involves the use of
the total or integrated hemispherical emissivity. The spectral hemispherical
emissivity is related to the spectral normal emissivity as is shown by Dunkle.[6]
For the cryogenic temperature range, the spectral range of importance is the

far infrared in which the ratio is epproximately 1.33 and is relatively inde-

pendent of wavelength. Thus the ratio of total hemispherical to total normal



emissivity can be also considered as approximately 1.33. In the past much
effort has been made to predict the t¢ i1l normal emissivity of metals using
the DSE theory.[T’B]
In order to provide a basis for assessment of the applicability and signi-
ficance of the ASE theory, as opposed to the DSE theory, in predicting the
total emissivity of metals, exact numerical computations have been performed
using both theories. In the case of the DSE theory, the spectral normal emis-
sivity, given in (7), comtined with the optical constants described by (5a)
and (5b) was integrated together with the Planck function over frequency to
obtain the desired total normal emissivity. Similarly the exact spectral
normal emissivity given by the ASE theory was integrated numerically. The
results of these numerical calculations are precented in Fig. 2 and Table I,
vhere total normal emissivity can be obtained as a function of the two dimen-

[7]

sionless parameters, b2 and b3, first developed by Rolling and Tien. These
two parameters represent both the temperature and material properties dependence
of the total normal emissivity. In the case of the ASE theory, the total normal
5 and b3.

It is quite evident from the Table I and Fig. 2 that the contribution due

emissivity depends on the dimensionless Fermi velocity as well as b

to the skin effect can be greater than one order of magnitude. In order to gain

a better physical understanding of the total emissivity, calculations were made

to obtain total hemispherical emissivity as a function of temperature for copper
with various residual resistivity levels (impurity levels). The d-c electrical
conductivity was obtained from the Bloch-Griineisen formula together with Matthies-

[9]

sen's rule, The resulting temperature-dependent total hemispherical emissivities
are shown in Fig. 3 for the ASE theory, DSE theory and that based on the Hagen-

Rubens relation for the residual resistivities indicated. Also shown are the



[10,11,12,13]

existing total emittance data fcr copper. In addition, the roam

temperature spectral data of Bennett and Bennett[lh]

for gold and silver were
integrated over the Planck function and are presented in Fig. 3.

In order to provide a simple closed-form engineering approximation to the
total normal emissivity as predicted by the ASE theory, the approximate form
(11) was integrated together with the Planck function over frequency. This was
accomplished by expanding the exponential in equation (11) in a Taylor series

expansion and integrating term by term. The result is & series involving

Gamma and Zeta functions:

2
eg® =7 @+ D) r&) e @ a- @ (Ao (12)
(0]
where
A=3[2 (3m 12 E]2/3
T2 7 2 h
v Neu

h is the Planck constant and k is the Boltzmann constant. This series can be

approximated by the binomial expansion of

e(T)=2.h7?h-+— I (13)

Figure 4 is a comparison of the approximate total normal emissivity (13) with

the exact numerical calculations based on the ASE theory.

Discussion

Some insight into the physical significance of the DSE and ASE theories
can be gained by a discussion of the spectral absorptivity curves of Fig. 1.
First, it should be noted that at 300°K, there is fair agreement between the
ASE and DSE theories. This is a -onsequence of the high degree of damping
present at high temperatures whici limits the motion of the electrons so that

the spatial variation of the electric field has little effect. Second, both

10



the exact ASE and exact DSE theories approach the Hagen-Rubens relaticn in
the long wavelength limit at both 4.2°K and 300°K. Third, in the near infrared
at 4,2°K, the ASE theory predicts a normal sbsorptivity approximately two orders
of magnitude larger than that predicted by the DSE theory. In fact, in this
high frequency range, the limiting value of the ASE absorptivity is %-;ras seen
from the approximate form (11), which is correct for this frequency range. This
is the extreme anomalous skin effect region, where the absorptivity is indepen-
dent of the relaxation or damping phenomena., This is accounted for by the fact
that at relatively high frequencies and low temperatures, the free electrons
moving within the penetration depth (which is very small compared to the mean
free path of the free electrons) experience negligible damping in this very
thin region at the surface of the metal. Therefore, in this situation the
energy gained by the electrons in the penetration depth is not dissipated
immediately. Instead the electrons are driven back into the bulk of the metal
by the field where they then interact with the lattice or defects to give up
their excess energy in the form of Joule heating. Sfince the spectral absorp-
tivity is determined by what happens within the penetration depth, this damping,
which occurs deep within the metal, does not appear as a parameter in the
extreme anomalous skin effect region. The relative difference between the DSE
and ASE predictions as exhibited in the spectral absorptivity will, of course,
be evident in the total normal emissivity as well.

Figure 2, which allows the calculation of total normal emissivity given
the material properties of the metal, illustrates the relative importance of
the damping phenomena and skin effect as regards total emissivity. The largest

disparity between the ASE and DSE predictions occurs when b, is small but b, is

2 3

large. This corresponds to low temperature, high electrical conductivities and



12

large relaxation time in agreement with our previous discussion of spectral
absorptivity. It can also be seen that when the relaxation time, or b3, is
small, the ASE and DSE predictions converge more repidly with increasing
temperatures or increasing b2.

To provide a specific example for discussion, the total hemispherical
emissivity of copper for varying residual resistivity levels are plotted in
Fig. 3 as a function of temmerature. The total hemispherical emissivity based
on both the DSE and Hagen-Rubens formulaticns show a marked effect due to the
varying impurity levels which were introduced via Matthiessen's rule. On the
other hand, the ASE prediction was insensitive to the impurity levels intro-
duced. This insensitivity to impurity levels can be accounted for by the
fact that those residual resistivities introduced, which become important below
about 30°K, are still so small that the resulting differences in the damping
are still inconsequential~as compared to the skin effect.

Upon comparison of theory and existing experimental data ir Fig. 3, it
is quite evident that the ASE theory represents a considerable improvement
over the DSE theory in the prediction of thermal radiation properties of metals
at cryogenic temperatures. The remaining discrepancy between the ASE theory
and experimental data is probably due to one of two causes. The real surface
effects which are exhibited by the data of Betz et al., Caren, and Fulk and
Reynolds would tend to increase emissivity as a result of the increased damp-
ing by surface impurities and imperfections. In contrast, the points obtained
by integrating the spectral data of Bennett and Bennett are in extremely good
agreement with both the ASE and DSE theories at room temperature. The gold
and silver samples used by Bennett and Bennett were prepared under extremely

stringent conditions of purity and surface finish. It should be noted that



13

the comparison between measurements performed on gold and silver and predic-
tions for copper is permissible on the basis of the similarity of material
properties, Also shown is the data of Ruccia and Hinckley for copper but under
less strict conditions of purity and surface finish then those mainteined by
Bennett and Bennett.

Secondly, there arises the question of the validity of one of the assump-
tions basic to the formulation of both the DSE and ASE theories, that of the
relaxation or damping phenomenon being independent of frequency. Much work
has been done recently to obtain the frequency dependence of the damping via

[15,16]

a quantum mechanical treatment. Inclusion of the effects of frequency
dependent damping may improve the predictions still further than has the ASE
theory.

Figure 4 shows the extremely accurate agreement of the approximate ASE
expression (13) with the exact numerical ASE calculations of total normal
emissivity at cryogenic temperatures. Thus, with the use of this simple

expression, the total normal emissivity predicted by the ASE theory can be

calculated with relative ease.
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The total normel emissivity as predicted by the ASE theory. (DSE values

are in parentheses and the notation -x refers to 10=X,)

Table I.
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FIG. 3 TOTAL HEMISPHERICAL EMISSIVITY OF COPPER
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FIG. 4 COMPARISON OF THE ASE APPROXIMATE AND EXACT
RESULTS FOR THE TOTAL NORMAL EMISSIVITY OF
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