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ABSTRACT 

The present paper i s  concerned with predictions of t he  t o t a l  emissivity 

of metals at cryogenic temperatures based on t h e  anomalous sk in  e f f e c t  theory 

( the  ASE theory).  An exact numerical result as w e l l  as an approximate expres- 

sion has been developed t o  represent the  spec t r a l  emissivity of  metals at 

cryogenic temperatures. 

appropriate integrat ions over wavelength result i n ,  respectively,  a closed- 

form expression tad  an exact numerical tabulat ion of t o t a l  normal emissivity 

i n  terms of three dimensionless parameters. These r e s u l t s  are then compared 

with t h e  ex is t ing  experimental data of t h e  low-temperature t o t a l  emissivity 

of metals and with the  prediction obtained from the  exact numerical integra- 

t i on  of t he  spec t r a l  emissivity as given by the  Drude single (or free) electron 

theory ( t h e  DSE theory).  

ASE theory i n  predicting t h e  radiat ion propert ies  of metals at  cryogenic 

temperatures . 

The two representations of spec t r a l  emissivity after 

The comparison reveals t h e  enhanced accuracy of the  
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Introduction 

Due t o  the  rapid growth of t h e  cryogenic technology and t h e  accompanying 

r i s e  i n  the  use of high vacuum insulat ion,  thermal radiat ion of metals at 

cryogenic temperatures has became an area of increasing importance. 

a recent review article‘’] of the  subject indicates  t h e  extent t o  which t h e  

Indeed, 

development of experimental as w e l l  as theore t ica l  techniques involved i n  

t h i s  area has rapidly progressed. 

Since the  primary objective i n  t h e  consideration of thermal radiat ion 

at  cryogenic temperatures i s  the  calculation of radiant  heat interchange 

between metal l ic  surfaces,  it is o n l j  na tura l  t h a t  t h e  subject of radiation 

properties of metals has received much emphasis. It should be noted, however, 

t h a t  t h e  most widely employed basis for t h e  prediction of emissivities of 

metals has been t k  Drude s ingle  (o r  free) electron theory of t h e  op t i ca l  

properties of metals . 
be denoted here as the DSE theory.) 

(For the  convenience of discussion t h i s  theory w i l l  k l  

But i n  the cryogenic temperature range, 

t h e  adequacy of t h e  DSE theory is questionable and recourse m u s t  be made t o  

what is  known as the anomalous skin e f f ec t  theory ( the  ASE theory) of  the  

op t i ca l  properties of metals. [3’4’53 I n  the  region of p rac t i ca l  i n t e r e s t  f o r  

thermal  radiat ion,  the predicted emissivity of metals at  cryogenic temperatures 

based on the  ASE theory could be one o r  more orders of magnitude larger than 

t h a t  predicted by the DSE theory. 

It i s  t h e  purpose of t he  present work t o  demonstrate the  importance of 

t h e  anomalous skin effect as regards the  prediction of radiat ion properties 

of metals a t  cryogenic temperatures. The relative significance of t ne  ASE 

theory of the op t i ca l  properties of metals is demonstrated by a comparison of 

the t o t a l  emissivity as predicted by both the  ASE and the  DSE theories.  Then 
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by comparing these predictions w i t h  experimentally obtained values of t o t a l  

emissivity,  an assessment of t h e  app l i cab i l i t y  of these theories  is car r ied  

out . 

Theories of Optical  Properties of Metals 

The region of engineering i n t e r e s t  f o r  t he  calculation of rad ia t ion  

properties of metals at  cryogenic temperatures i s  the far infrared 

of the  electromagnetic spectrum. 

portion 

In  t h i s  frequency range, which l ies  below 

t h e  lower frequency l i m i t  f o r  i n t e r n a l  photoelectr ic  absorption, the absorp- 

t i v i t y  of the metal can be attributed wholly t o  the motion of the  free electrons.  

The theo re t i ca l  prediction of absorpt ivi ty  requires an analysis of the  motion 

of the f ree  electrons as they in t e rac t  w i t h  the  e l e c t r i c  f ie ld  within the 

m e t a l  and as they experience damping due t o  co l l i s ions  with the la t t ice  phonons 

and the defects o r  impurit ies.  Both the Drude single electron (DSE) theory and 

t h e  anomalous skin e f f e c t  (ASS) theory of t h e  o p t i c a l  propert ies  of metals take 

i n t o  account the  abovementioned factors .  

theories  i s  tha t  the DSE theory neglects the e f fec ts  of t h e  space var ia t ion 

of t h e  e l e c t r i c  f i e ld  within the  m e t a l  whereas the  ASE theory takes t h i s  s p a t i a l  

The major difference i n  the  two 

var ia t ion e f f ec t  i n t o  account. 

In  the development of the DSE theory,  a simple physical model i s  constructed 

i n  which t h e  equation of motion is wri t ten fo r  a model e lectron which represents 

t h e  behavior of the whole set of electrons playing a r o l e  i n  the absorption 

process. [23 The damping of the free electron motion i s  then assumed t o  be viscous 

i n  nature,  i.e. wi th  a damping force opposing and proportioned t o  the veloci ty  

of the model electron. The driviug e l e c t r i c  f i e l d  is assumed t o  be a per iodical ly  

varying function of t i m e  only. 

i n  t h e  fora  of t h e  re la t ions  b,etween the  e l e c t r i c a l  and op t i ca l  propert ies  of metals: 

The solut ion based on t h i s  model can be expressed 
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I 
w(u2r2 + 1) 

T 
2 

2nk = - 4nNe 
m 

where n is t h e  index of re f rac t ion ,  k i s  the  absorption coeff ic ient ,  N is  the  

electron number density,  m i s  t h e  electron mass, e i s  t h e  electron charge, 'I is  

t h e  relaxation time. 

conductivity, by t h e  Lorenz-Smerfeld r e l a t ion ,  r = ma/Ne 

The relaxation time i s  r e l a t ed  t o  u, the  d-c e l e c t r i c a l  

2 

As was pointed out previously, t he  DSE model does not take i n t o  account 

t h e  e f f e c t  of the  s p a t i a l  var ia t ion of t h e  e l e c t r i c  f ie ld  on the  free electron 

motion, i.e. t h e  amplitude of t h e  driving e l e c t r i c  f i e l d  should be a f'unction 

of  t h e  posit ion coordinate. The actual  state of affairs within the  m e t a l  is  

one i n  which t h e  amplitude of t he  e l e c t r i c  f ie ld  decays w i t h  distance i n t o  the 

metal. Since t h e  electrons which contribute t o  the  absorption of t h e  electro- 

magnetic energy are those which move within the penetration depth of t h e  decay- 

ing e l e c t r i c  f i e ld ,  the electrons must necessarily experience some e f f e c t s  due 

t o  t h e  s p a t i a l  var ia t ion of t h i s  f i e ld .  Therefore, the  DSE theory can be thought 

of as an approximation which i s  va l id  only when tbe  motion ( m e a n  free path)  of 

t he  electrons is small compared t o  t h e  penetration depth of t h e  e l e c t r i c  f i e ld .  

Since the  penetration depth is  given approximately by 6 a - t h e  DSE theory 

should be applicable when au  i s  s m a l l ,  i .e .  high temperatures or low frequency. 
6 

Under these conditions the electrons "see" an e l e c t r i c  f i e l d  which varies only 

wi th  time. 

In  order t o  predict  the op t i ca l  properties of metals when t h e  penetration 

depth of t h e  e l e c t r i c  f i e l d  i s  of t he  order o f  t h e  flee electron mean free path 

such as a t  the  conditions of cryogenic temperatures and moderate frequencies, 
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[33 Reuter and Sondheimer solved simultaneously the Maxwell eLuations and t h e  

Boltzmann t ransport  equation as applied t o  the free electrons i n  a semi- 

i n f i n i t e  medium.  

equation indicates  t h a t  the motion of t h e  free electrons i n  the penetration 

The analysis based on the resulting integro-differential .  

layer  depends upon the  e l e c t r i c  f i e l d  everywhere i n  t h e  m e t a l ,  i.e. t h e  

s p a t i a l  var ia t ion  of the e l e c t r i c  f ield.  Included i n  the integro-different ia l  

equation i s  a parameter a r i s ing  from the  boundary condition on the  electron 

motion. This parameter accounts f o r  t he  nature of the r e f l ec t ion  suffered by 

the  electrons at  the metal surface.  

resul t ing from the  solut ion of t he  integro-different ia l  equation i s  much more 

camplex than the exponentially decaying f i e ld  resulting from t h e  usual assump- 

The form of the decaying e l e c t r i c  f i e l d  

t i o n  of the current density proportional t o  the e l e c t r i c  f i e l d  at a given point.  

With the  specif icat ion of  the e l e c t r i c  f i e ld  given by the solut ion of the 

integro-different ia l  equation, the surface impedance i s  given by 

where P i s  t h e  magnetic permeability, c i s  the speed of l i g h t ,  and E i s  the  

e l e c t r i c  f ie ld ,  a flrnction of the penetration distance.  

For the case of diffuse ref lect ion of the  free electrons at  the  m e t a l  

surface,  which appears t o  be the  prevalent case as indicated by experimental 

invest igat ion,  Dingle r43 obtained an equation for the  surface fmpedI3nce as: 

2 where E = ( c  /h~rwrpv)Z (v being the  Fermi veloci ty)  

w = 1 + i W T  
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Instead of using numerical meus t o  evaluate (3 )  d i r ec t ly ,  Dingle obtained 

two s e r i e s  solutions f o r  the  impedance, one i n  terms of ascending powers of 

E l l 2 ,  the  other  i n  descending powers of 51/3. The solut ions obtained by Dingle 

are as follows: 

for 161 5 0.8 

- =  i 1.1547 $I2 - 0.2500 5 + 0.1540 6 3/2 - 0.1262 E2 + 0.1188 5 5/2 - 
wz 

912 0 . .  
4 0.1211! c3 + 0.1307 5 7/2 [-0.148 5 ] + 0.1685 E, 

The opt ica l  and spec t r a l  radiat ion propert ies  can be obtained from t he  surface 

impedmce given by (ha) and (4b) v i a  t h e  impedance concept. 

Relations Between Optical  and Spectral  Radiation Properties 

On the  basis of t he  DSE model, t h e  calculation of the  op t i ca l  properties 

i s  qui te  straightforward. The solution of ( l a )  and ( l b )  results i n  t h e  

following: 

2x 
1 2  n =  [ 

(Y2 + 4x1 / - y 
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where 
2 - 'I 

2 4nNe 12 x = (-- 
m 4"2(w2T2 + 112 

By using t h e  complex index of re f rac t ion ,  = n - i k ,  i n  the  Fresnel fomulae, 

the  spec t ra l  d i rec t iona l  r e f l e c t i v i t y  or absorpt ivi ty  can be obtained. L2J me 
spec t ra l  emissivity fo r  t he  

E ~ ( w , T )  = 1 - I 

case of normal incidence is  given by 

8 - 1  - 4n - 
2 (n  4. 1)2 I- k 

8 + 1  l 2  - (7) 

This has been calculated using (Sa) and (5b) and i s  shown i n  Fig. 1 f o r  various 

temperature levels .  

For calculations based on the  ASE theory,  t h e  anaJ.0~ between electro-  

magnetic waves and a-c 

emissivity i n  terms of 

EN(u,T) = 

transmission l i n e s  is used t o  obtain the  spec t r a l  normal 

the surface impedance as  follows: 

2 

The spec t r a l  normal emissivity calculated i n  t h i s  manner using ( 4 s )  and (4b) 

is  a l s o  shown i n  Fig. 1. 

I n  t h e  case of t h e  ASE theory,  the  e l e c t r i c  f i e l d  i n  the metal i s  damped 

i n  a form other tha_r, exponential, so the  complex re f rac t ive  index does not 

r e t a in  t h e  usual physical  significance,  i.e. 

However, it has been shown[51 t h a t  if the  refractive index is redefined as 

I 2  7r2 A = s i n  0 I- (9) 
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where $ is  the  angle of incidence, then the  Fresnel formulae give t h e  desired 

spec t ra l  d i rec t iona l  radiat ion properties.  For cryogenic temperatures and i n  

t he  fa r  infrared,  the following approximation can be made: 
* 

4n f t 3 -  
cz 

4nx k =  4nR 
n =  9 

c(R2 + X2) c(R2 + X2) 

where X and R are r e l a t ed  through 2 = X + i R  and can be evaluated from (ha) and (hb). 

While the  use of the  series (ha) and (4b)  i s  sa t i s f ac to ry  for machine 

computations a simple closed form expression would be more desirable  from the  

viewpoint of engineering calculations.  Thus, an approximate curve f i t  was 

sought fo r  the  spec t ra l  normal emissivity. A good approximate expression i s  

found t o  be 

where = v(c, is t he  dimensionless 
Y 

# 

Fermi velocity.  T h i s  expression labeled as 

t h e  ASE Gpproximation i n  Fig. 1 has t he  correct  approach t o  the  high f’requency 

l i m i t  and agrees qui te  w e l l  with the  exact ASE theory i n  t h e  primary spec t r a l  

r m g e  of t he  Planck d is t r ibu t ion  f o r  t h e  given temperatures. 

T o t a l  Normal Ehissivity of Metals 

The usual engineering calculation of radiative flux involves the  use of 

the t o t a l  or integrated hemispherical. emissivity. 

emissivity i s  r e l a t ed  t o  the  spec t ra l  normal emissivity as is  shown by Dunkle. 

For t h e  cryogenic temperature range, t h e  spectral. range of importance is t he  

The spec t r a l  hemispherical 

[ G I  

far infrared i n  which t h e  r a t io  i s  approximately 1.33 and is r e l a t ive ly  inde- 

pendent of wavelength. Thus the r a t i o  of total. her.ispherica1 t o  t o t a l  normal 
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emissivity can be also considered as approximately 1.33. I n  t h e  past  

e f f o r t  has been made t o  predict  t he  t t  tl normal emissivity of metals 

much 

using 

C7,81 t h e  USE theory. 

In  order t o  provide a bas is  f o r  assessment of  t h e  app l i cab i l i t y  and signi- 

ficance of t he  ASE theory, as opposed t o  the  DSE theory, i n  predict ing the  

total. emissivity of metals, exact numerical computations have been performed 

using both theories.  

s iv i ty ,  given i n  (7), coa3ined with the  o p t i c a l  constants described by (5a) 

and (5b) w a s  integrated together with t h e  Planck function over frequency t o  

obtain the desired t o t a l  normal m i s s i v i t y .  

normal emissivity given by the ASE theory was integrated numerically. 

results of these numerical calculations are presented i n  Fig. 2 and Tab le  I, 

where t o t a l  normal emissivity can be obtained as a Axnction of the  two dimen- 

sionless parameters, b2 and b 

two parameters represent both the  temperature and material propert ies  dependence 

of the t o t a l  normal emissivity. In  t he  case of t h e  L5E theory, the t o t a l  normal 

emissivity depends on the dimensionless Fermi veloci ty  as w e l l  as b2 and b 

In the  case of t he  B E  theory, t h e  spec t r a l  normal emis- 

Similarly the  exact spec t r a l  

The 

first developed by Rolling and TienOr7’  These 3’ 

I .  

3’ 
It i s  qui te  evident from the  Table I and Fig. 2 t h a t  the  contribution due 

t o  the skin e f f ec t  can be grea te r  than one order of magnitude. 

a be t t e r  physical understanding of t he  t o t a l  emissivity, calculat ions were m a d e  

t o  obtain t o t a l  hemispherical emissivity as a function of temperature fer copper 

wi th  various residual  r e s i s t i v i t y  levels (impurity levels). 

conductivity was obtained from t he  Bloch-GrUneisen formula together with Matthies- 

sen’s rule. l 9  

are  shown i n  Fig. 3 f o r  the ASE theory, DSE theory and t h a t  based on t h e  Hagen- 

Rubens re la t ion  f o r  the residual  resistivities indicated. Also shown are the  

I n  order t o  gain 

The d-c e l e c t r i c a l  

The resul t ing temperature-dependent t o t a l  hemispherical emissivities 
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existing t o t a l  emittance data [109u,129131 fcr copper. I n  addition, t h e  roan 

for gold and s i l v e r  w e r e  ~ 1 4  1 temperature spec t r a l  data of Bennett and Bennett 

integrated over t h e  Planck function and are presented i n  Fig. 3. 

In  order t o  provide a simple closed-form engineering approximation t o  t h e  

t o t a l  normal emissivity as predicted by t h e  ASE theory,  t h e  approximate form 

(11) w a s  integrated together with the  Planck function over frequency. 

accmplished by expanding the  exponent ic  i n  equation (11) i n  a Taylor series 

expansion and integrat ing term by term. 

Gamma and Zeta f’unctions: 

Th i s  w a s  

The result is a series involving 

where 
1/2 kT 2/3 

h 
A = 5 [ - ( ( 2 )  3 2 3 m  -1 

3v Ne11 

h i s  the  Planck constant and k i s  the Boltmaan cons tmt .  This series can be 

Erpproximated by the  binomial expansion of 

Figure 4 is a comparison of the  approximate t o t a l  normal emissivity (B) with 

the  exact numerical calculations based on the  ASE theory, 

Discussion 

Same ins ight  i n t o  the physical significance of the  DSE and -4SE theories 

can be gained by a discussion of t n e  spec t r a l  absorpt ivi ty  curves of Fig. 1. 

F i r s t ,  it should be noted t h a t  at 300°K, there is fair agreement between t h e  

M E  and DSE theories. 

present at high temperatures which l i m i t s  t h e  motion of the  electrons so t h a t  

t he  s p a t i a l  var ia t ion of the  e l e c t r i c  f i e l d  has l i t t l e  e f fec t .  

This is a Lonsequence of the high degree of damping 

Second, both 



t he  exact ASE and exact DSE theories  approach the  Hagen-Rubens r e l a t i c n  i n  

t h e  long wavelength l i m i t  at both 4.2OK and 300°K. 

at 4.2'K, t h e  ASE theory predicts  a normal absorpt ivi ty  approximately two orders 

of magnitude l a rge r  than t h a t  predicted by the  DSE theo,y. 

high frequency range, the  l imi t ing  value of the  ASE absorpt ivi ty  is r v  as seen 

from t h e  approximate form (ll), which is correct  f o r  t h i s  fPequency range. 

is the  extreme anomalous skin effect region, where the  absorpt ivi ty  is  indepen- 

dent of t h e  re laxat ion o r  damping phenomena, This is  accounted f o r  by t h e  f a c t  

t h a t  at r e l a t ive ly  high frequencies and l o w  temperatures, t h e  free electrons 

moving within the  penetration depth (which is very small compared t o  the  mean 

free path of the  free electrons)  

t h i n  region at t h e  surface of the  m e t a l ,  

energy gained by t h e  electrons i n  the  penetration depth is not diss ipated 

immediately, 

by the  f i e l d  where they then i n t e r a c t  

t h e i r  excess energy i n  the form of Joule  heating, 

t i v i t y  is determined by what happens within t h e  penetration depth, t h i s  dampins, 

vhich occurs deep wi th in  the  m e t a l ,  does not appear as a parameter i n  the  

extreme anomalous skin e f f e c t  region. The r e l a t i v e  difference between the  DSE 

and ASE predictions as exhibited i n  the  spec t r a l  absorpt ivi ty  w i l l ,  of course, 

be evident i n  t h e  t o t a l  normal emissivity as w e l l .  

Third, i n  t h e  near in f ra red  

In fact, i n  t h i s  

3 -  

This 

experience negl igible  damping i n  t h i s  very 

Therefore, i n  t h i s  s i t u a t i o n  t h e  

Instead the  electrons a r e  driven back i n t o  t h e  bulk of the m e t a l  

with the l a t t i c e  o r  defects  t o  give up 

Fince t h e  s p e c t r a l  absorp- 

Figure 2, which allows the  c a k u l a t i o n  of total  normal emissivity given 

the  material  propert ies  of the metal, i l l u s t r a t e s  t he  r e l a t i v e  importance of 

the  damping phenomena and skin effect as regards t o t a l  emissivity. The l a rges t  

d i spar i ty  between the  ASE and DSE predictions occurs when b2 is s m a l l  but b3 is 

large. This corresponds t o  low temperature, high e l e c t r i c a l  conductivit ies and 
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l a rge  relaxat ion time i n  agreemelit with our previous discussion of spec t r a l  

absorptivity.  It can a lso  be seen t h a t  when the  relaxat ion time, or  b i s  3' 
small, the  ASE and DSE predictions converge more rapidly w i t h  increasing 

2' temperatures o r  increasing b 

To provide a spec i f i c  example f o r  discussion, t he  t o t a l  hemispherical 

emissivity of copper f o r  varying res idua l  r e s i s t i v i t y  l eve l s  are p lo t t ed  i n  

Fig. 3 as a function of  temera ture .  

on both t h e  DSE and Hagen-Rubens formulaticns show a marked e f f ec t  due t o  the  

The t o t a l  hemispherical emissivity based 

varying impurity levels which were introduced v i a  Matthiessen's rule. 

o ther  hand, the ASE prediction was insens i t ive  t o  the  impurity levels intro-  

duced. 

f a c t  t h a t  those res idua l  r e s i s t i v i t i e s  introduced, w h i c h  became important below 

On t h e  

This i n s e n s i t i v i t y  t o  impurity l eve l s  can be accounted f o r  by the 

about 30°K, are s t i l l  so s m a l l  t h a t  t he  r e su l t i ng  differences i n  the  damping 

are s t i l l  inconsequential as cornpared t o  the sk in  e f f ec t .  

Upon coolparison of theory and ex is t ing  experimental da t a  ilz Fig. 3, it 

is qui te  evident tha t  the ASE theory represents a considerable improvement 

over t h e  DSE theory i n  the  predict ion of thermal rad ia t ion  propert ies  of m e t a l s  

at cryogenic temperatures. The remaining discrepancy between the ASE theory 

experimental data i s  probably due t o  one of two causes. The real surface 

e f f e c t s  which are exhibited by the  da ta  of Betz - e t  -* al 9 Caren, and F'ulk and 

Reynolds would tend t o  increase emissivity as a result of t h e  increased damp- 

ing by surface impurit ies and imperfections. In cont ras t ,  t he  points obtained 

by integrat ing the  spec t r a l  data of Ber ie t t  and Bennett are i n  extremely good 

agreement wi th  both the  ASE and DSE theor ies  at room temperature. 

and s i l v e r  samples used by Bennett and Bennett were prepared under extremely 

s t r ingent  conditions of pur i ty  and surface f in i sh .  

The gold 

It should be noted t h a t  
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the  comparison between measurements performed on gold and silver and predic- 

t ions f o r  copper is  permissible on t h e  basis of t he  s imi l a r i t y  of  material 

properties.  

less s t r i c t  conditions of puricVy and surface f in i sh  than those maintained by 

Bennett  and Bennett, 

Also shown is  t h e  data  of Ruccia and Hinckley fo r  copper but under 

Secondly, there  arises t h e  question of t h e  v a l i d i t y  of one of t h e  assump- 

t ions  bas ic  t o  t h e  formulation of both the  DSE and ASE theories ,  t ha t  of the  

relaxation o r  damping phenamenon being independent of frequency. Much work 

has been done recently t o  obtain the  frequency dependence of t he  damping v i a  

a quantum mechanical treatment . 
dependent damping m a y  improve the predictions s t i l l  fur ther  than has the ASE 

theory. 

Inclusion of t h e  effects of frequency [l5,163 

Figure 4 shows the  extremely accurate agreement of the  approximate ASE 

expression (13) with the  exact numerical ASE calculations o f  t o t a l  normal 

emissivity a t  cryogenic temperatures, 

expression, the  t o t a l  normal emissivity predicted by t h e  ASE theory can be 

calculated with r e l a t i v e  ease, 

Thus, with t h e  use of t h i s  simple 
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Table I. The t o t a l  normal emissivi ty  as predicted by t h e  M E  theory. 
are i n  parentheses and t h e  notat ion -x refers t o  

(DSE values 

-6 b2= 10  - 3  
V X l O  b3 10-5 1002 

0.5 

1.0 

i .5  

2.0 

2.5 

3.0 

3.5 

4.0 

2 63-2 
2.66-2 
2 . 5 k 2  

(2.50-2) 

2 0 10-2 
2 15-2 
2 0 17-2 

(1.90-2) 

1.81-2 

1.90-2 
(1.60-2) 

1 0  87-2 

1.63-2 
1.69-2 
1 72-2 
(1 39-2 > 
1. 50-2 
1.57-2 
1 0  59-2 

(1.25-2) 

1.40-2 
1.46-2 
1.49-2 

( 1.14-2) 

1.32-2 

1.42-2 
1.38-2 

(1.06-2) 

1.26-2 
1.32-2 
1.36-2 

(9 92-3 
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