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INTRODUCTION

PURPOSE

FOLDP, which is an acronym standing for FORTRAN Optical

Lens Design Program, is a digital computer program written in 7094

FORTRAN IV source language which employs the principles of geometric

optics in order to perform automatic designing of optical systems. It is

modeled after an earlier program  written by C. A. Lehman of the Los

Alamos Scientific Laboratory.

The performance of an arbitrary optical system is measured

by a merit function, which is essentially the sum of the squz res of a set of

weighted aberrations. Designing is a linearized least squares process

for iteratively reducing the magnitude of the merit function (aberrations)

by automatically adjusting system parameters.

2.	 SCOPE

The complete description of FOLDP comprises 3 volumes

where:

a) Volume I is a mathematical specification including
geometry, ray specification and tracing, system
characteristics, computation and display of spot
diagrams, sensitivity analysis, designing, and cross
sectional plotting.

b) Volume II is a user's manual which describes, by means
of examples, the input, output and display functions of
the program.
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c)	 Volume III relates to the program logic and includes
a description of the structure, flow charts and the
program listing.

FOLDP is designed to sequentially execute a set of user

selected options. In general, each option (currently there are thirteen)

requires certain specific inputs and performs some major computational

or display function. The following table contains a list of the options

which are currently available. They are described in detail, in Volume 2.

Option Number	 Function

0 Terminate processing

1 Input on octal cards (Restart)

2 Design computation

3 Spot diagram computations

4 Twinray diagnostic maximum object

5 Twinray diagnostic zero object

6 Punch octal cards

7 Plot spot diagram

8 Sensitivity computations

9 Print geometry data

10 Print all input data	
II

11 Cross section plot

12 MTF data card punch

FOLDP can handle systems containing up to 100 surfaces

(including aspherics), 7 object points, 6 colors and 200 rays.
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MATHEMATICAL SPECIFICATIONS

Section 1

GEOMETRY

The basic frame of reference is a rectangular cartesian

coordinate system oriented so that the z axis coincides with the optic

axis and is positive to the right.
tr

Il	 p z
Figure 1. Coordinate System

An arbitrary lens system comprises the following:

1) An object which is the source of the rays to be traced
through the system.

2) A set of N surfaces (including aspherics) denoted
by a- i where 1 < i < N, with a material of specified 	 j
index of refraction ni between each consecutive pair. r

3) An entrance pupil plane cr o of radius p o which is used
to specify a pattern of rays to be traced through the
lens system.

4) An image plane (or surface) to which the rays are
traced.



x'

TR-67-700-10-2
Page 1-1-2

The arrangement of the components is illustrated in

Figure 2, where: S is the signed axial distance from the object

to (r 1 , Si is the signed axial distance from v i _ 1 to v i for 1 < i < N,

and S= is the signed axial distance from cr N to the image plane.

image
TN -1_	 T N	 Plane

SN 
/
I S

Figure 2. Lens System

1. 1	 OBJECT POINTS

Let C' be a cartesian system located at the object. An

object point is normally defined by specifying its height h (h > 0) which

the program interprets as a point on the negative y' axis with

coordinates (0, - h, 0) , as illustrated in Figure 3. This "on axis"

object point is the source of a set of rays to be traced through the

lens system.

Figure 3. On Axis Object
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In certain non-symmetric lens systems, e.g. , one which

contains a cylindrical element it is desirable to have the rays originate

from an object point which is not necessarily located on the y axis. This

is accomplished by specifying, in addition to h, an azimuth angle 0 which

is measured clockwise from the negative y-axis so that (h, 6) are, in

effect, polar coordinates of the object point.

Figure 4. Off Axis Object

The rectangular coordinates of the object point are:

X' _ - h Sin g	(1.001)

Y' _ - h Cos 6	 (1.002)

z' = 0	 (1.003)

The case 0 = 0 corresponds to an on axis object. The program

has the capability of handling N H object points ( 1 < NH < 7) distributed

along the radius vector 0 at equal increments of h. These NH points are

specified by the object heights h j where:

hi = ho + (j - 1)Oh	 1 < j < N H .
	

(1.004)
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The rectangular coordinates of the jth object point are
(- h  Sin 0, - hi Cos 6, 0) where ho , A h, NH , and 0 are input to the
program.

1. 2	 LENS SURFACES

Each of the lens surfaces (v.1 1 < i < N) is parameterized in a
cartesian coordinate system C (1) such that the vertex of the surface is at
the origin of C (1) and is described by an equation of the form:

F  (x, Y , z) = 0.	 (1.005)

In principle, there are only two restrictions on F i (x, y, z):

1) A procedure must exist for determining the point
of intersection, (x l , y l , z l ) , of an arbitrary straight
line with F  (x, Y, z)

and,

2) The gradient of F i , G F i , .nust exist at (x l ) Y 1 , z1).

In practice the program is designed to consider 3 types of surfaces
plane, conic, and polynomial.

1.2.1	 Plane

A plane is described by the equation:

F ; ( x , Y, z ) = z = 0.	 (1.006)
3

F
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1. Z. 2	 Conic

A conic of revolution about the optic (z) axis having its

surface vertex at (0, 0, 0) is described by the equation:

2	 2	 2	 22 + (z -R) = R + bzX + y 	 ( 1.007)

where R is the radius of curvature at (0, 0, 0) and b is an eccentricity

dependent parameter, b = b(c ), whose value determines the type of

conic as follows:

b = 0 Sphere

b = 1	 Paraboloid

0<b<1	 Oblate Ellipsoid

-1 <b<0	 Prolate Ellipsoid

b>1	 Hyperboloid

If R>0 the center of curvature is to the right of the origin and the surface

is convex. If R<0 the center of curvature is to the left of the origin and

the surface is concave.

The conic of revolution defined by equation (1. 007) is pro-

duced by rotating the plane conic,

2	 Z	 2	 2+ (z - R) = R + bzy 	 ,	 (1.008)

about the z-axis.



V

z

Concave (R < 0)

Figure 5. Circle (b = 0)

.r

Convex (R > 0)
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1. 2. 2. 1	 Circle ( b = 0). Setting h = 0 in equation ( 1. 008) yields:

y2 + (z - R ) 2 = R 2 ,	 (1.009)

which is a circle of radius R in the y-z plane with center at (R, 0), as

illustrated in Figure 5.

Since E = 0 for a circle it follows that:

b = E
	

(1.010)	 J^^

I
1. 2. Z. 2	 Parabola (b =-D-. Setting b = 1 in equation (1. 008) yields:

y2 = 2Rz,	 (1.011)

which is the standard equation of a parabola in the y-z plane. (See

Figure 6.)

r:}



v IL,

z z

t

2

b = 1 _ al
a2
2

(1.015)
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Convex (R > 0)	 Concave (R < 0)

Figure 6. Parabola (b = 1)

Since E = 1 for a parabola, then:

b = E	 (1.012)

1. 2. 2.3	 Ellipse (0 < I b I < 1). The standard equation of an ellipse in

the y-z plane whose vertex is at the origin is:

	

2	 (z - a2)2

	

Y+̂	 2	 = 1
	a l	a2

(1.013)

where a 1 > 0 and a 2 -^ 0. Comparing (1.013) to ( 1. 008), it follows that:

2
al

R = a1	(1 . 014)
a2



t

i
it

_ ia-, !>a_ Oblate Ellipse
^ 6

Eccentric i ty is +ivec by:

E 
2 = 

1 _ al

t
a 

s o that

b = E`

where 0 <b < 1. The oblate ellipse is illustrated in Figure 7,

1 Y	 I 

41. 014)

(l, ill-T)

(1. O1 s)

(1 . 01'4)

E I

MW

1

1

Convex (R> 0)	 Concave (R < 0)

Figure 7. Oblate Ellipse (0 < b < 1)
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b)	 ( a 2 ) < a l Prolate Ellipse

Eccentricity is given by:

a
2

E 2 = 1 - ? (1.020)
al

where 0 <E < 1. It follows from Equation (1. 015) that:

_ 2
b =	 E 

2	
(1.021)

1 - E

and

E2 = 1 -bb	
(1.022)

The prolate ellipse, which is specified by -1 <b < 0, is illustrated in

Figure 8.

Figure 8. Prolate Ellipse (-1 < b < 0)

'	 t	
x
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1.2.2.4	 Hyperbola (b> 1). The st-ndard equation of a hyperbola in

the y-z plane whose vertex is at the origin is:

(z - a2) 
2 

Y 
2

2	 - 2 = 1	 (1.023)
a 2	al

where a l >0 and a 2 0. Comparing (1.023) and (1.008):

-a
2

R =	 1
	

(1.024)
a2

2
a

b = 1 + 2 	 (1.025)
a2

or,

.'R

	

a 2	 b-1

	

2	 R2
a l - b-1

The eccentricity E (E> 1) is given by:

a
2

E 2 = 1 + 2
a2

so that

b = E2 .

(1.026)

(1.027)

l

(1.028)

(1.029)



Convex (R> 0) Concave (R < 0)

z z

(1.030)

2	 2	 2	 2+ (z - R) = R + bzx (1.031)
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The two types of hyperbolas are illustrated in Figure 9.

Figure 9. Hyperbola (b > 1)

In addition to the conic of revolution, defined by Equation (1. 007),

the program will accept the two types of conic cylinders described below.

The horizontal conic cylinder (axis of cylinder parallel to

x axis) iF: defined by:

2	 2	 2+ (z - R) = Ry 	 + bz 2 .

The vertical conic cylinder (axis of cylinder parallel to

y axis) is defined by:

1. 2.3	 Nonstandard Conic

Equation (1. 007) describes a conic of revolution in standard

position in the sense that the vertex is at the origin and the axis of
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revolution is the z (optic) axis. A nonstandard conic of revolution is one

whose vertex is located at a specified point (x T , YT , 0) in the x-y plane

(translated) or one whose axis of revolution points in a specified direction

S = (u, v, w) where S is a unit vector (tilted). To specify a tilted conic,

one must supply u and v such that u 2 + v 2 < 1 from which w is computed:

t	 1/2
W = + { 1 - (u 2 + v 2 ) (1. 032)

The triplet (u, v, w) may be interpreted as the components of a unit vector S

which lies along the axis of revolution or the direction cosines of the line

collinear with this axis. A conic of revolution may be translated and

tilted by the appropriate choice of (x T , y T ) and (u, v).

In a coordinate system whose origin is at the point (x T , y T , 0)
y

and whose z axis points along S , the conic of revolution is described by

Equation (1.007). As will be seen, the nonstandard conic requires

special treatment during ray tracing.

1.2.4	 Polynomial Aspherics

The aspherics are parameterized in such a manner that the

polynomial terms represent the result of deforming a standard conic.

The first step is to solve Equation (1. 007) for z to obtain:

(1.033)Z	
R +E {R2	 }



5

z =	 ai4i
i=2

(1.036-1)
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where
^ _ x2 + y2	 (1.034)

1.	 R > 0

E _
	 (1.035)

-1. R < 0

The aspheric of revolution is obtained by adding deformation terms:

5
Z1/2 + E a i l 	(1.036)2 

R+ E {R - (1-b)0}

where ai are the deformation coefficients.

A plane may be deformed by applying the usual convention

that R = 0 in which case the e quation becomes:

Equation (1. 036) may also be used to represent horizontal and. vertical

aspheric cylinders by defining (^ such that:

y2 Horizontal Cylinder
(1.036 - 2)

x2 Vertical Cylinder.

No provision is made for translating or tilting aspheric elements,

a
F
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1 . 3	 IMAGE SURFACE

Associated with each of the NH object points considered by

the program, there is a principal image plane (perpendicular to the

z axis) to which the specified pattern of rays is traced. The image plane

is positioned by specifying its axial distance Sj (1 < j < N H) from the last

lens surface (Q N) as follows:

S"" + d-	 IMODE = 1
S": _	 (1.037)

S* + BF + d )	IMODE = 0

IMODE is an input flag. B F is the computed back -focal distance for the

first color.''' S" is an input which, in the case IMODE = 1, can be

interpreted as the axial distance from O N to the image surface.

The dj are a set of NH ( input) distance increments which can

be employed to specify a curved image surface. A plane is always

specified by setting d j = 0. for 1 < j < N H-

Let (xj , yj ) be the centroid of a set of points on an image

plane whose position is given by Equation ( 1. 037). This set of -)oints is

produced by tracing a specified pattern of rays from the object point

(hj , 0) to the image plane.

The polar coordinates of the centroid ( Rj , '6 j  ) are:

1/2

R j = 3Z2 	 y^ 
1
	 (1.038)

_	 Y
0. = Tan -1 -	 (1.039)

X.

*See Section 4. 2
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The image vector is a radius vector on the image plane

which is rotated 1800 clockwise from the object as illustrated in

Figure 10.

Figure 10. Image Vector

By definition, image height h! is the projection of R. onto
J	 J

the image vector. Thus:

	

h'.	 Cos 0'	 (1 . 040)

	

J	 J	 J

where 0! = 6. - (90 - 0) is the angle between R. and the image vector
J	 J	 J	 /

(Figure 11.)
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Figure 11, Image Height

Since Cos 0' = Cos ©. Sin 0 + Sin 8 . Cos 8 then Equation (1. 040) becomes
J	 J	 J

h^ = R  Sin 0 + y
j 

Cos 8	 (1.041)

_1vw,..
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Section 2

RAY SPECIFICATION

Each ray to be traced through the lens system is initially

specified by its coordinates, (x 0 , yo, 0), on a unit radius entrance

pupil. The actual coordinates ( x0 , yo , 0) are:

A
x0 = P 0 x09

y0 = P 0 y0'	
(2.001)

and	 z0 = 0.

where P O is the radius of the entrance pupil. The ray is, thus described

by the equation:

x-x0	 y-y0	 z-z0 . (2.002)
Qx _ Q  - — Qz 

The initial direction of the ray, Q = (QX , Qy, Qz ^, is determined by the

conditions:

1. The ray originates at a specified object point (h, 0).

2. Q is a unit vector.

Vill
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Let S' be the (signed) axial distance from the object to entrance pupil.

S' = S-S 1	(2.003)

From section 1. 1, the rectangular coordinates (xi, y l , z 1 ) of the object

point are:

x  = -h sin 0

Yl = -h cos 0
	 (2.004)

z 1 = - S'

Condition 1. requires:

x  - x0 Y1 - YO _	 z 
Qx Qy Qz

x0	 xl
Q = Qx z S'

(YO --

 yl.
Q	 = Qy Z '

or,

I

Condition 2. requires:

_	 2	 2

Q 2 1 1 + x
0 xl	

+ ( YO -Yl	 = 1
z	 S'	 S'

t



--4
^ Q	 I/

x
Y10

z
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Define:

1/2

0 = { (S`)2 + (x0 + h sin 0) 2 + (y0 + h cos 0)2) 

(2.005)

Then:

x0 + h sin 0
Qx	 0	 (2.006)

Y O + h cos 0
Qy =00	 (2.007)

S'

Qz	 0	 (2.008)

The specified ray* is illustrated in Figure 12. The object point (h, 0)

determines *he ray position since the ray originates the object; whereas,

the entrance pupil point (x 0 , y0 , 0) determines the ray direction since

the ray is along a line joining (h, 0) and (x 0 , y 0 , 0).

y	 y

Figure 12. Ray Specification
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The specification of a pattern of rays (on the unit radius

entrance pupil) to be traced from each object point (h.
J

, 0) where l< j < NH
—

and for each color i where 1 < i < Nc requires the following input:— — 

N R = Total number of rays to be traced.

Ay = Vertical spacing increment of rays in entrance pupil.

NSL = Number of vertical slices into which entrance pupil

is divided such that 1 < NSL < 26.

The entrance pupil is divided up into N SL vertical slices where

(x K' yK) is the coordinate of the first ray in the Kth slice. Succeeding

rays in this slice have coordinates (x K' YK + Ay), (x K , YK+20y),...,
(xK, YK + C mK - 11 y), where mK is the total number in the Kth slice. This

information is contained in the 3 x NSL matrix I where:

x 	 x2 . . . x 	 . . . x 
5L

=	 yl	 Y2	 YK	 YN
SL	

(2. 009)	 1`

m 1 	 m2 .	 mK .	
mNSL

Rays are generated starting with the first point of slice 1, continuing to

the last point of slice 1, and then proceding to the next slice. The above

data must be selected so that x 2 + y2 < 1 for every (x, y) in the pattern.

An additional constraint is that
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NS L

E m  > NR
	 (2.010)

K=1

If the inequality applies in equation (2. 010) only the first N R rays of the

tocal pattern will be generated.

An additional degree of flexibility in pattern specification is

provided by the input trigger LMODE which must be set to 0, 1, or 2.

If (x', y') are the coordinates of an arbitrary ray in the pattern described

above:

1. LMODE=O instructs the program to also trace (- x', y')
and to compute an average x at the image plane.

2. LMODE=1 instructs the program to trace only the
specified rays and to assume average x is zero at the
image plane.

3. LMODE=2 instructs the program to trace only the
specified rays and to compute average x at the image
plane.

i
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Section 3

RAY TRACING

The technique of tracing a ray from the object point (h, 0)

through the lens system to a point on a-N is a three step iterative

procedure whereby the coordinates P i = (x i , yi , z i) of the ray on (r i and

its direction Qi = (Qxi, Qyi , Qzi) following refraction* at vi are deter-

mined from Pi - 1 and Qi-1 . The starting conditions Po and Qo are

assumed to be known (see Section 2). The three steps in the iteration are:

a) Determine P i = (xi , y i , z i) as the simultaneous

solutic.'! of:

x - xi -1	 y - yi-1	 z - (z i-1 - Si)	 (3.001)
Qx, i-1	 Qy, i-1	 Qz, i-1

and the equation of o-.
1

F i ( x , Y, z ) = 0 •

b) Determine the unit vector N., which is normal
1

to v i at (xi , yi , z i ) , as follows:

OF.
Ni = Ii	 (3.002)

i

where OF, is evaluated at P. .

Refraction is used in the general sense so as to include reflection
as a special case.

fi
7): T-M
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C)	 Determine, by means of Snell's law, the direction

of the refracted ray di .

3. 1	 POINT OF INTERSECTION AND NORMAL VECTOR

If during the computation of P i it is determined that the ray

missed a- 	 the ray trace should be terminated. This is the case

if Q	 =z, i-1	 z, i-10. or Q	 : ^ 0 . but there is no real solution for P i .

Another condition which can occur is vignetting when there is

an aperture located at a- i . Vignetting is not considered to be of sufficient

importance to abort the ray trace. If it occurs a tally of the first surface

at which it happened should be made and the trace continued.

The aperture at a- i may be circular or rectangular according

to the values assigned to A li and A li as follows:

1) Ali = A 2i - 0	 no aperture. The program will z

check for vignetting at u- i .

2) A 	 0 A 2i = 0 circular aperture. The ray vignets 	 f

if x? + y? > A 2I(
i	 i	 I 

3) Ali <0 A2i = 0 circular aperture with central

opacity. The ray vignets if xi + yi < A l i

4) Ali >0 A 2i >0 rectangular aperture. The ray

vignets if I x.i I > A li	 rr I yi I > A2i'

^p -^.n	 ^trti,,s^n r^. .'k a +!'^^ r ^,^, .f-f



aF.

ax = 0

aFi
a	 = 0

v

aFi
Oz	 1

(3.004)
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5)	 Al i <0 A li >0	 rectangular aperture with central

opacity. The ray vignets if 
Ix i I < A 1 i I and' yi `< A 2i

il)	
A 2 < 0 is not permitted.

The determination of P, and ";^-F. depends upon the shape

of a- ; hence, the different types of surfaces are considered separately.i
3.1.1	 Standard Conic

Let P" = (x", y'`, 0) be the point where the ray intersectsi	 i	 i
the x-y (vertex) plane. From Equation (3. 001), with z = 0:

J.

X i 	 Xi -1 + X 1 Qx, i-1

^k

y i 	 yi-1 + X 1 Qy, i-1

0.
i

where

_ - (z i-1 - Si)

Q z, i-1

(3. 002)

(3. 003)

If R = 0, a-
i 

is the plane z = 0 and:

.j ^ji ^.Wrt.

I.. "wr
 T
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Suppose R :4 0, then the ray equation may be written:

x =	 2 Qx, i-1 + xi

y =	 2 Qy, i -1 + yi

z =	 2 Q z, i-1

where

21, 2	 - 2	 2
^ 2 = ( x - xi) + ( y - Yi) + z

(3. 005)

(3.006)

Clearly, k 2 is the distance along the ray from Pi to any other

point P = (x, y, z) on the ray.

If a. is a conic of revolution then:
i

F. = x2 + y2 + (1 -b) z 2 - 2Rz = 0	 (3.007)
i

Using Equations (3. 005) to eliminate x, y, and z in Equation (3. 007)

	

yields the equation:	 f
i

- a ^ 2 + 2 p x 2 + y = 0	 (3.008)

where

	

a = b Q 2	 - 1	 (3.009)
z,i -1

	

^`	 3.010

	

(i	 xi Q i-1 + yi Qy, i-1 - RQz, i-1	 (	 )
X, 

Y = (xi ) 2 +' (Yi)2	 (3.01 1 )

^k-t .:
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In order to circumvent the difficulties which arise when b = I,

Equation (3. 008) is solved for I/% ? and the result inverted to get X 2 . Let

O = a2 + a y .	 (3. 012)

If 0 < 0 there is no real solution for X2 which implies that the ray

missed v.1

If o = 0, then:

x2 = p	 (3.013)

If A> 0, then:

y17 2)
	 (3.014)

faro

From the definition of % 2 it is clear that the smallest of the two values

ex pressed in Equation (3.014) is the desired root; hence, O l/2 should

be given the sign of P.

Using the computed value of X2 , Pi = (xi, yi , z i ) is given by	 /r

Equation (3. 005). VFi comes directly from Equation (3. 007) since:

aFi
-ax	 x

aFi
ay	 y

aF.
1 = ( 1-b) z-Raz

the partials being evaluated at (xi , yip zi).

(3.015)

- Mr



(3.020)
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If a- i is a horizontal cylinder

F . = 2 + (1 -b) z 2y	 - 2Rz = 0i

P i is determined in exactly the same manner except that:

a = (b-1) Q 2z, i-1 - Q2
2
 i-1

yi Qy , i-1 - RQz, i-1

y = (y)2

(3.016)

(3.017)

(3. 018)

(3.019)

OF,i for a horizontal cylinder is given by:

aF.
ax = 0.

aF.

ay - y

aF.
1 = (1 -b) z-Raz

evaluated at P i = (xi, yif zi)'

If T,
i 

is a vertical cylinder

F . = x2 + (1 -b) z 2 - 2Rz = 0 .i
(3.021)
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To determine P.i the following definitions apply:

(	 )	 2	 2a	 b-1 az, i -1 - Qx, i-1

p	 xi Qx, i-1 - R4 z,

Y 
_ (x,)2

i

(3.022)

(3.023)

(3.024)

OF.i for a vertical cylinder is, from Equation (3. 021):

aF.
i

ax - x

aF.
'	 1 = o.

ay

aFi
(1-b)z-R

az

(3.025)

evaluated at P i = (xi , yi , z i ). The program must check for vignetting	
1^--

at (Yi before proceeding with refraction.
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3.1. 2	 Nonstandard Conic

The determination of P, and VF. when (, is a nonstandard

conic of revolution involves several coordinate transformations. Con-

sider the following definitions of the terminology.

C	 Cartesian coordinate system with origin on the optic axis
and z axis collinear with it.

X	 Column vector with components (x y z).

C'	 Cartesian coordinate system with origin at (x 
To 

yT , 0)
and z' parallel to z.

X'	 Column vector with components (x' y' z').

C"	 Cartesian coordinate system with same origin as C' but
Z" in the direction S = (u, v, w).

X11 	 vector with components (x" y" z").

Po Point of intersection of ray on ai -1'

Q Direction of ray incident on vi .	 (Q—

P
i

Point where ray intersects x"-y" plane.

P i Point where ray intersects a-i.

X X^ , X" Coordinates of P
00 0 0

-y
X 1 ,

—1X 1 ,
—11 
X 1 Coordinates of Pl.

Direction of ray with C' components (Qx' Q 	 Q
If

Q itDirection of ray with C	 components (Q", Q	 Q ).
xy

XT Column vector with components (xT YT 0).
_.

X
1
,,

— 1

X ynX . Coordinates of P• .
11 1

S Vector with components (u v w)
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The transformation from C to C I is a translation defined

by the vector equation

X. _	 - XT ,	 (3. 026)

and the inverse

X = X I + R  .	 (3. 027)

The transformation from C' to C" is a rotation about a line perpendicular

to the plane defined by z' and z" . Thus:

X" = AX'	 (3.028)

where A is the orthogonal matrix giver. 'oy:

a ll a12 a13

A _
	

a21 a22 a23	 (3.029)

u v w )

Since A is othogonal the transformation preserves inner products (and 	 ^._.

consequently distance) and the inverse is given by

X' = At -911

where "t" represents transpose.

nP4	fi	 '^	 Jr 'fA

	

?^•	 '
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The equation of the ray (in C) is

X = ^Q + To 	(3. 031)

where X^ _ (X - X 0 ) (X - XXo) = (x - xo ) 2 + (y - yo ) 2 + (z - z o ) 2 is the

distance along the ray from P O to any other point P. X o is given by:

x0	 xi - 1

k0 =	 yo	 =	 yi - 1	 (3.032)

zo	 zi-1 - Si

Transforming Equation (3. 031) to C' yields:

XQ + X ,	 (3. 033110

where R'0  Xo - X I . If u-.1 	not tilted (u = v = 0), then the conic is in

standard position in system C'. In this situation the method described in

Section 3. 1. 1 may be applied to determine P. and OF, starting with X'
o

in place of (x 
i - 1 , 

y
i-1 , 

z 
i- 1 	 i - 1

) , Q in place of Q	 (which are identical),

and X1	 zo/ Qz - The procedure produces Xi (coordinates of P i in C')

and OF.. After checking for vignetting using (x i' , y!)	 X is given by
ii	 i 

Equation (3. 027).

If a-i is tilted (lu I + I v I it 0) the situation is significantly more complicated

the first step being to determine P l . Transforming the ray Equation (3. 033)

into C" by employing Equation (3. 028):

KIT 	 kQ" + R11 	 034)
0

where Q" = AQ' - AQ-

a
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P 1 is the point where z" = 0. From Equation (3. 034):

Z'' _ XQ z + zo	 (3.035)

with

z1f = ux I + vy + w z^	 (3. 036)0	 0	 0	 0

Q  = u Qx + v Q  + w Q 	 (3. 037)

Let X 1 be that value of X for which z '' = 0; hence:

If
z

X 1 = - 0	 (3. 038)
z

It follows immediately that

X1 = 1\ 1 Q + Xo	 (3. 039)

which can be transformed into C giving

Xi = ^ 1 Q + 3i ,
0

	040)

If R = 0 ( i is a plane) it follows that P i = Pl therefore, Xi = X1v 

and OF. = C.1

If R 4 0,	 must be computed as the simultaneous solution ofi

+ Xi	 (3.041)

and the equation of u- i . In C" the equation of T i may be written:

( X ") 2 + (y")2 + (z") 2 - 2Rz" - b(z") 2 = 0	 (3. 042)

4W a '
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Since the transformation from C' to C" preserves distance and

z" = ux' + vy' + wz' from Equation (3.028), Equation (3. 042) trans-

forms into:

(x') 2 + (y') 2 + (z') 2 - 2R (ux' + vy' + wz') - b(ux' + vy' + wz') 2 = 0 ( 043)

Equation (3. 041) may be used to eliminate x', y', and z' from

Equation (3. 043) since:

(x')2 + (Y') 2 + ( z ' ) 2 = X ' . X'

2
= x + 2X1 - 

QX 
+ X1 - Xl

and

ux' + vy' + wz' = X(uQx + vQ + wQ z ) + (uxi + vyi + wz,,)
Y

XQif + z
 1

= XQ^
z

The resultant equation is:

- ax 2  + 2A +Y = 0	 (3.044)

where
ifa = b Qz - 1	 (3.045)z

	

= x Q + y  Q + z^ Q - Rd'	 (3.046)
l x	 1 y	 1 z	 z

x	 Y = {xi) 2 + (yi) 2 + (zl) 2	(3.047)

Ii

^7.N,
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Equation (3. 044) is solved in exactly the same manner as Equation (3. 008)

of Section 3. 1. 1 to yield the real root X 2 which when substituted into

Equation (3. 041) gives the desired solution Xi . X. is given by

Equation (3.027). Since 8F i /8x = 8F i /8x' , 8Fi/8y = 8Fi/8y'

and 8F i /8z = 8Fi /8z' then V—F i comes directly from Equation (3.043).

Let

K = - R - bz	 (3.048)

where	 z = uxi + vyi + wzi	 (3.049)

Then, at the point Pi, it follows from Equation (3. 043) that:

VF.	 + KS	 (3.050)

In checking for vignetting at a- i the aperture parameters A li and Ali

describe an aperture in C" (not C); hence, one must use (x", y") insteadi	 i
of (x.1 , y 1).

If the aperture is circular (A li 4 0 and A li = 0), the ray vignets if

(xi')2 + (y )2 > Ali (A li > 0) or (xi )2 + (y!') 2 < A	 (A li < 0) :where:

(x,')2 + ( y!') 2 = 
W) 2 

+ W) 2 + (a!) 2 - (z!') 2 . (3.051)
1	 1	 i	 i	 i
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If the aperture is rectangular (A li 4 0 and Ali > 0), the ray vignets if:

x"1> 
A li or lyi'l> Ali (A li >0)

or

Ix 1<1Ali and IY"^< Ali (A li <0) .

where

X^^ = A X' .	 (3.052)

In a document entitled "Least Squares Fitting of a Paraboloid to a

Discrete Set of Data Points, " C. L. Lawson of JPL shows that the trans-

formation matrix A is given by:

where

1 - w
9 1 = u

2 +v 2

1 - gl u2

A =	 - g l uv

U

- g l uv -u
1 -glv2 -v

v	 w )

(3.053)

(3.054)	
1

making it poesible to compute (x i , y" .



(3.056)

,,	 •rC
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3.1.3	 Aspherics

A method of successive approximations is used to compute Pi

when a-i is an aspheric element. The procedure begins with an estimate

Po from which a sequence of improved estimates P 1 , P 2 , .	 , PK is

generated such that PK converges to P i as K increases.

The equation of (T
i 

is

5
+ E a i -0 1	R 0

R +	
R2 - (1-b)46, 1/2	 i_ 2

Z =

5
E ai	R = 0
i= 2

with

1.	 R>0

-1.	 R

13.055)

	

2	 2x +y

=	 y2

2x

Surface of Revolution

Horizontal Cylinder

Vertical Cylinder

(3.057)



C
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The initial estimate Po is the point where the ray intersects

the undeformed conic, that is, the solution with a i = 0. With the deforma-

tion coefficients all zero, v i is a standard conic; hence, the procedure

described in Section 3. 1. 1 is employed to compute Po = (xo' yo , zo)•

Let PK = (xK , yK , zK ) be a vector from the origin to

(xK , yK , zK ) which represents the Kth estimate. The first step in

generating FK+1 is to project P  onto the aspheric, i. e. , to the point

P  = (x K' yK' Q where zK is given by Equation (3. 055) with

y

(x, y) = (xK' yK 	 PK+1 is then taken as the point (xK+1' yK+l' zK+1 )

where the ray intersects the plane z = zK . Since (xK , yK' zK ) always

lies on the ray, the equation of the ray is:

P = P  + @Q.	 (3.058)

Figure I-3-1. Aspheric Iteration

^^ '- t
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—^	 y
Let 0 K be that value of 0 such that PK+1 = P  + 0K Q. Since

zK+1 - zK it follows that:

zK - z 

6K	 Qz
(3. 059)

Since z  lies on the ray and zK lies on the aspheric, if, during the q

iteration, zK = Z  it follows immediately that P  is the required
y

solution. Having determined 0 K' PK+1 is given by Equation (3. 058). The

iteration continues until IOKI < 10 -7 which is then followed by 3 additional

iterations.

There are two conditions under which the ray is considered

to be a miss:

1) If for some K the term R2 - (1-b)+K which appears

in Equation (3. 055) is negative.

2) The sequence 10 K K = 0, 1, 2, .	 is assumed to be

decreasing, i.e. , (OK I > IOK+1I' If this is not true for

some K the ray is treated as a miss.

From Equation (3.055) the equation of a- i may be written:

F  (x, y, z) = z - G [4,(x, y)l = 0 .	 (3. 060)

?"`v'^°=^'^CL^ '^r'1'L^ JlY^d 'a'ti:j{l•rr. Lr±::,"^	 .-
z-
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It follows that:

aFi aG-
ax	 -

-
a4 ax

aFi
aG a¢

ay	 =
_
a^ a y

aF.

From Equation (3.057):

2x	 Surface of Revolution

= 0.	 Horizontal Cylinder
ax

2x	 Vertical Cylinder

2y	 Surface of Revolution

a - 2y	 Horizontal Cylinder
ay -

0.	 Vertical Cylinder

If R # 0 then G((0) is given by:

5
G(^) =	 1 	 + E ai4o

R + E^R 2 - (1 -b) ^^	 1=2

Therefore:

aG	 1	 +	
^i - 1

a^ =	 1/2	
ia.

2f{R 2 - (1 -b),O)	 i=2

(3. U61)

(3.062)

(3. 063)

(3.064)

(3.065)

(3.066)

(3.067)
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I: R = 0 then:

5
G W _ F, a i d 	 (3.068)

i=2

from which:

5
a_ F, ia i ^l	 (3.069)

i=2
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3.2	 REFRACTION

Snell's law makes it possible to determine Q i from 
Qi - 1'

N., n., and n,	 where n, is the index of refraction of the material

between (T,	 and cr
1-1	 i

Qi-1

Qi

Ni

1
i

Figure 13. Refraction

In Figure :3, 0 1 is called the angle of incidence, 0 2 the

angle of refraction, and the plane defined N i and Q i - 1 is called the plane

of incidence. It shci , l= = be noted that there is no loss in generality in

assuming that N 
i 

points to the left instead of to the right.

The law of refraction states that the refracted ray (Q.) lies
1	 ^-

in th plane of incidence and is irected such that: 	 r

n i Sin 4 1 = n  + 1 Sin 42 .	 (3.089)

Since Q i - 1 x N i = Sin (n - 1 ) = Sin 4) 1 , and IQ I  x N i _

Sin (1T
2

 = Sin (0 2 , equation (3.089) becomes:

n  (Qi - 1 x Ni ) = n  + 1 (Qi x Ni ).	
(3.090)



(3.095)
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Define v such that
n.

V -	 1—,	 (3. 091)
ni+1

and re-write (3. 090) as follows:

(Qi - v Qi - 1) x N
i = 0.	 (3.092)

Since Q.
i 

lies in the plane of incidence, equation (3. 092) implies that

there is some scular µ such that:

Qi = v Qi - 1 + µ Ni.	 (3.093)

Insisting that Q. Q. = 1 produces the foilowing equation in µ .

µ2 +2v (Qi -1	 Ni )I L + v2  - I = 0.	 (3.094)

Let

0 _ 
v 2	 v2 -1 t

( i-1	 i)

Equation (3. 094) has (in general) two ,3olutions given by:

1

µ = (Q i	 iN) ( -v f A ).
-1 

(3.096)

It will be shown in Section 3.2. 1 that A<0 implies internal reflection.

e ^_



1
Qi

y
Ni

TR-67-700-10-2
Page 1-3-22

The sollrtions —Q and Q, corresponding to the two values of µ

are illustrated in Figure 14.

Figure 14• Q, and Q^

The correct solution is determined by the requirement that

Qi Ni has the same algebraic sign as Qi -1 Ni'

Qi  Ni - v (Q i -1 Ni) + µ1

1

It is immediately clear that A  must have a positive sign, that is,

1

µ = (Q i -1	 Ni)(-v+O2).	 (3.097)

6i is then given by equation (3. 093) using the value of µ from (3. 097).
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3.2. 1	 Interna? Reflection

It follows from equation (3.095) that0<0 only if v>l. This

situation occurs when n  > ni +
1' that is, when the ray is travelling from

an optically dense to an optically rare medium, and, as a consequence,

42 > 01'

That value of 4) 1 for which +2 = 900 is called the critical angle 4lc.

Substitutin	 0g ^2 = 90 into equation (3.090):

Sin +1 c = v	 (3.098)

2
and	 Cos +lc - 

VV 	 (3.099)

At values of 1 greater than +lc the ray is not refracted but, instead, is

infernally refracted at v..
i

It is a simple matter to show that ♦1>^lc implies A<0. Since

Cos 41 < Cos ^ 1 c and Cos 41 - 4i -1 Ni then:

I

	

2	 2
(Qi -1 Ni) < Cos *lc'

2

(Qi -1	 Ni )2< 'v

v2 	
(v2 -1)	

< 0
fQ^ -1 • 1V1)2	

,

or	 A<0.



Ni

-1
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If this condition occurs when tracing a ray the process should be

terminated. It also follows that 0 = 0 if and only if ¢ I = ^1 c'

3.2.2	 Reflection

Suppose fr 
i 

is a mirror so that the ray is reflected. In

Figure 15, ^I is the angle of incidence and to 2 is the angle of reflection.

The law of reflection states that the reflected ray (Q 
i ) 

lies in the plane

of incidence and is directed such that:

^2 =0 1 .	 (3. 100)

Figure 15. Reflection

Since Q  -1 • N i = Cos (n - ^)=-Coo ^ I ,-the following relations must hold

for reflection:

(Qi -I	 N i ) = Cos I	
(3. 101)

Cos 2¢
1

.	 (3. 102)



Ni

i-1
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y
Consider the direction Q1 of a refracted ray which results by

setting n	 _ - n.. It follows that v _ -1, o= 1, µ= 2 (Q	 N ), andi+l	 i 

Q = -Q—Q -1 + 2 (Q -1 IN) Ni.

The orientation of Q with respect to Qi -1 and Ni is given by:

Q 1 Ni = Qi - l • N i = Cos (n - 4 1

Q	 Qi- 1 =-1 + 2 (Q i -1 N i ) 2 = Cos 2 ^1

(3. 102)

(3.103)

(3. 104)

and is illustrated in Figure 16.

Figure 16. U*
i

Since - Q i Ni = Cos ^ 1 and - Q i Qi -1 =-Cos 2 ^1 it follows that

Q = -Q
	

(3.105)

Consequently, reflection is a special case of refraction which is
specified by setting ni+1 =-ni . The resultant direction is - Qi where Q'i
is t' a uirection of the reflected ray.
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SECTION 4

SYSTEM CHARACTERISTICS

The procedures outlined below for computing such things as

focal length were abstracted from Lehman ' s program', and no attempt

will be made to reconcile the technique with the usual definition of the

parameter being cc:mputed.

4. 1	 FCC "A, ?':)!NT AND FOCAL LENGTH

A focal point F
P 

and a focal length FL are determined for

each of the N  colors by tracing a paraxial ray with entrance pupil

coordinates (x0 , y0) ( 0, U 2 ) from the object point (h, @) _ ( p0 o2, n )
where Q 2 is input.

From Section 2. , the initial position P O and the initial

direction Q 0 of the ray are:

PO = ( 0 , PO n 2 , 0),

and	 Q0 = ( 0, 0, 1).

Let this ray be traced to a point P 1 = (x I , y I , z I ) on a-N and let

Q 1 ^Qxl' QY 
1' Qzl) be the direction of the ray following refraction

at ON.



A
z
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If, during the ray trace, the ray misses a surface or is

internally reflected at a surface the program should print an appropriate

message containing the surface number and them terminate the run. If

the ray vignets at some surface it will be ignored.

If QY1 1 0 the ray intersects the x - z plane at a point

(x2 , 0, z 2 ) where:

x 2 = -Qxlylixl	 (4.001)
yl

z2 =-QZ1 Y1 + z l .	 (4.002)
yl

The focal point is, by definition,

z2	Q 
Y 
1^Oandz210

F =

	

(4.003)
P	 oo	 Qy1=0orz2=0

and is illustrated in Figure 17.

v

Figure 17. Focal Point

fir '--	 --



-Qzlz 3 =	 Q 1	 PO S2Z .
Y

(4.005)

z

f^
I
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The focal length is given by:

	

z 3	 Qy1#0 nN+: >0	 z3#0

F =	 -z3	 Q 1#0 n1V+1 <0	 z3#0
L	 Y

	

ao	 Qyl=0 or z3=0

(4.004)

where nN + 1 is the index of refraction of the material following a- , and

If L is a line through the point (0, p 0 Q 2 , 0) with direction Q 1 , then z3

is the z coordinate of the point where L intersects the x - z plane (see

Figure 18).

Figure 18. Focal Length



TR-67-700-10
Page I-4-4

The sign change in (4. 004) when n  + 1 <0 is required to

maintain compatability with the focal length sign convention for a re-

flective element.

4.2	 BACK FOCUS AND f/ NUMBER

Back focus BF. and f number f/ are determined for each of the

Nc colors by tracing a meridional ray with entrance pupil coordinates

(x 0 , y 0 ) _ (0, 0 ) from the object point (h, 8) ' (0, 0) where 0 is input.

From Section 2. the initial position PO and the initial direction

Q 0 of the ray are:

P O = ( 0 , P O 52 1 , 0),

and	 Q0 = (0, Qy0 0 Qz0)

PO  1where	 Qy0 = 0

S,

Qz0 A
I

- ( (S i ) 2 + (P0Q1)2i,2

Let. P 1 = (x l , y l , z 1 ) he the point where the ray intersects

T N and Q1	 (Qxl' Qyl' QzI) its direction following refraction. If the

ray misses a surface or is internally reflected the program should print

an appropriate message including the surface number and terminate the

run. Vignetting is ignored.

N
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If QY1 1 0 the ray intersects the x - z plane at a point

P 2 = (x 2 , 0, z2 ) where x 2 and z 2 are given by equations ( 4. 001 and 4. 002).

Back focus is, by definition,

z 2	QY1 0 and z 2  0

B F, _

	

	 (4.006)
00Qy1 =0 or z2=0

Let L be a line through the point (0, Sa l , 0) with direction Q 1 . If z3 is

the coordinate of the point where L intersects the x - z plane then:

Qzlz 3 = - Q 1
Y 

1

f number is, by definition,

(4.007)

1 z32

f/	 _

co

Qy l ^ 0 and z 3 1 0

Qyl =0 or z3=0
(4.008)

l^4.3	 EXIT PUPIL LOCATION

Exit pupil location. E
P 

is determined for every different

combination of color and non-zero object height. Let (i, h.
a ) 

represent

some combination of color (1 5i <_N ) and object height h, where 1:5j 5N

	

c	 J	 H

and h.
J 

> 0. E 
P 

is computed by tracing a ray with entrance pupil coordinates

(z0, 40 ) 	 (0, 0) from the object point (h, 0) _ (h 
j, 

0. 1.
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Frc a-. Section 2. the initial position P O and the initial direction
QO are:

PO = (
0 , 0, 0)

and	 QO = ( 0 , QyO , Qz0),

h.
where	 QY0 = 0

_ S 
Qz0 A

1
O = ((S )2 + (h^)2`.2

Let P I = (X I , y I , z I ) be the point of intersection on ON and QI =

(QxI V Qy1 9
 Qzl) be the direction of the ray following refraction at wN.

If the ray misses a surface, is internally reflected, or Q
yl	 p

= 0 then E =w.

Vignetting is ignored.

If QYI # 0 the ray intersects the x - z plane at a point

P2 = (x2 , 0, z2 ) where x2 and z2 are given by equations (4. 001) and (4. 002).

Exit pupil location is then given by:

z2 QYI # 0 and z2 # 0

E _	 (4.009)
p	 ap QYI=O or z2=0.
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Section 5

TWINRAY DIAGNOSTICS

The following definitions are pertinent to the discussion:

C i - Cartesian coordinate system whose origin is at the

	

vertex of or 	 (0 < i < N)

	

1	 - -

Si - Directed distance from vertex of or 	 to vertex of

o.. (1<i<N)
1	 - -

ni - Index of refraction between of-1 and of . (1 < i < N + 1)

'	 Pk - Point where ray k intersects o. with -oordinates
1	 (xk , yk , zk ) relative to C.. 1

i	 i	 i	 i

--kk	 k	 kQ. - Unit vector with components (Qxi , Q 
Yi

p Q zi ) which isi 
along ray k as it leaves o. .s

T k - Thickness associated with surfaces Q and o.+1'
(0 < i < N).

5.1	 ZERO OBJECT HEIGHT

Consider two rays, R 1 and R2 , both of which originate at the

object point (h, 9) _ (0. , 0. ) where R 1 has entrance pupil coordinates
A	 A

(X o' yo) (0. , A2 ) and R  has entrance pupil coordinates (0. , 1. ). It

follows from Sec:.ion 2 that
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1
1'o = ( 0 ''Po 02 , 0.)

and	 Po = (O.,Po , 0.).

Let R  be traced through the lens system to produce
k --k`(Pi , 0 i ); i= 0, 1, ... , Nkj . If R  misses or is internally reflected at

surface Mk where 1 < Mk < N then an appropriate comment should be

printed including k and Mk, and N  = Mk - 1. If R  vignets at surface

Mk a comment should be printed and N  = N. If R  reaches a-n without

vignecting then N  = N.

k
Compute I X 'i ; i =0 , 1, .. , Nk where:

k	 k

k	 Zi+ 1 - (Z i - S i+ 1)	 0 < i < Nk-1

A	 _	 (5.001)
i	 -Zk	 i=Nk.

Nk

It follows from Figure 19 that kki is the distance measured

parallel to the optic axis between Pk and P, k

Figure 19 Feathering Condition
^r



hmax

-hmax

z
0

TR-67-700-10-2
Page i-5-3

Compute thickness set T k; i = 0, 1, ... , N
k) 

where:

n	 k
Tk	 i

	

= l + 1 ^i	 (5.0O2)i	
ni + l I

The data 
f 

lPi , Q. T ; 0 < i < Nk ; k = 1, 2, should be printed with

appropriate headings.

5. 2	 MAXIMUM OBJECT HEIGHT

Consider two rim rays, R 1 and R2 , both of which originate at
the object point (h, 6) = (h max' 0.) where hmax h0 + (NR- 1)&h. R 1 has

entrance pupil coordinates (xo) yo) (0. , -1. ) and R2 has entrance pupil

coordinate, (x y) _ (G. , 1. ). From Section 2, it follows ti. at:
o ^

1
Po = (0 •,- Po p O.)

and	 Po = (0. , Po , 0.)

Figure 20. Rim Rays
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Ray R 2 is referred to as the conjugate of R 2 . The position
_	 r.

and direction of R 2 at a,i is designated by Pi = (x'i , y?	zi ) andQi
z	 2	 2

(Qxi' Qyi' Q
zi ) where 0 < i < N. The relationship between R 2 and R 2 is

initially given by:

2	 2
X = X = O.00

2
Yo = - yo

_2	 2z= z
o 0

Q2 = Q2 = 0.
xo	 xo

Q2 = - Q2

yo	 yo

Q2 = Q2

zo	 zo

Trace R 1 and R2 through the lens system and compute thick-

ness (see Section 5. 2) to yield:

IP(i , Q T i); i =0,  1, ... , N1

and

I(P2T	 2
i , Q i , T i );	

2).

The next step is to compute { (ALit, AR. ); i = 0, 1,	 l
... , N^ where ALi isi 

aperture location and ARi is aperture radius associated with Ti.
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Let M = Min (N 1 , N2 ). The following computations are per-

formed for 0 < i < M. If Q l. = 0. or Q2 . = 0. setzi	 zi

Li = 0.

and
ARi=-1.

If 0 
Z1 

# 0 and Q2
Zl 

# 0 compute:

Q1
mi = yi	 (5. 003)

Q.zi

Q2

mi = 2 .	 ( 5.004)
Q .zi

If m  + mi = 0 set Li = 0 . and ARi = -1. If mi+ m1 # 0 then:

2 2	 2	 1 1_ i
ALi =

M. zi -y i+mi zi yi 	 (5.005)
m. + m.

and

AR  = ,mi (. - zi) + yi I	 (5. 006)

If M < N then for M < i < N set ALi = 0. and ARi = - 1.

In an attempt to interpret (ALi' ARi) geometrically suppose

that the system contains only standard conics and aspherics. The normal

IT
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vector at any p-:)int (o, y, z) in the y-z plane at any of the T.a has no x com-

ponent. It follows that any ray starting out in the y-z plane is confined to

that plane as it travels through the lens system, hence:

Pl = (0. , yl,z i )

22 2
Pi = (0. , y i , z i )

Q'i = (0. , Q , . 1 Q,

-'22	 2
Q. = (0. , Qyi , QZ.)

for i=0,1,...,N.

A second consequence of the assumed symmetry of the system

in conjunction with the law of refraction is that the initial relation between

R2 and R2 is preserved at every surface, that is:

2	 2	 2	 2	 2	 2Pi = (X i 	 (0 • , -yi , z i )
(5.007)

12	 2	 2	 2	 2	 2
(Q i ' Qyi ' Q i ) - (0 ' ' -Qyi ' Q ziQi	 x	 z  )

Let L 1 be the line through Pi with direction 2i and L 2 be

the line through Pi with direction Qi 	 L1 and I^2 intersect at a point,

(yI , zI ), which is the simultaneous solution of:

1	 1	 1	y = mi (z-z i ) + y i	 (L^ ) (5.008)

and

y = - mi (z-z i - y  .	 (L2)
	

(5.009)
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Solving for (y I , z  ) :

2 2	 2zI = mi z i - yi + m i z i yl	 (5. 010)
1	 2

M. + M.
1	 1

yI = mi (LI - zi) + yi	 (5. 011)

It follows that:

ALi = zi

and	 ARi = IyI

Therefore, (A LiARi) are in essence the coordinates of the point of

intersection of L 1 and L2 , the situation being illustrated in Figure 21.

y

Figure 21. Aperture Location and Radius
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If this system contains a transiaLed or tilted element it is not

clear'i.ow (ALi, ARi ) should be interpreted.

The data { (P i , Q i , T i ); i = 0, 1, ... , N1 1

{ (1)2, Q. , T ? ); i = 0, 1, ... , N., ) and f(ALV  ARi); in 0, 1, ... , N }

should be printed with appropriate headings. If A Ri = --1 co not print

(ALi' ARi ).
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Section 6

SPOT PATTERN STATISTICS

Let i and (h 
i
., 0) be an arbitrary combination of color and

object point where 1 < i <NC and 1 < j < N__. The ray pattern specified

in Section 2 is traced through the lens system to the final surface QN.

The total number of rays, M R , that are traced is

N	 LMODE # 0
MR = R	 (6.001)

2N 	 LMODE = 0,

From this pattern of MR rays let:

NM = Number of rays which missed a surface

NRF = Number of internally reflected rays

NV = Number of rays which vignetted

NR = Number of successfully traced rays

If vignetting is counted as a failure then:

NR = MR - (NM + NRF + NV).	 (6.002)

00 0 0Let P i = (x i , yi , z  ) be the coordinates of the it`s ray on
y

uN and Qi = (Q-xi , QY 
i' Qzi) be its direction following refraction at o 

where 1 < i < NR . It is assumed that Qzi # 0, for when it is, the ray is

counted as an internally reflected ray.
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Let A represent the signed axial distance from the A-ertex of

v v to some arbitrary image plane which is perpendicular to the optic axis.

The point where Lhe ith ray intersects this plane has coordinates (x., y.)

given by

Q .
x. _ - ( - z i + x i 	 (6.003)

1	 zi

Q .
yi = yi 

(,k - z i ) + yiQ 
	 (6. 004)

zi

Let:

Q .
mxl Qx.	 (6.005)

zi

k =
xi 

ix - m	 i
xi
. z	 (6.006)

Q .
myi= Q
	 (6.007)

zi

kyi =yi - !n	 i
yi z
	 (6.008)

Then:

X. (A) = m . A + k .	 (6.009)
1	 xi	 xi

v i (A) = m yi A + k yi	 (6.010)

a
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The pattern of points I(X i p yi); i = 1, 2, ... , N 	 a

monochromatic spot on the image whose center is, by defini
))))
tion, the point

(x, y) given by:

NR

x	
1	 xi (71) ;MODE i 1

r
NR i= 1	 (6.011)

1 0.	 LMODE = 1

NR

y (,k) = N	 1 yi (A)
	 (6.012)

R

Let:

NR

1 E m	 LMODE # 1
ximx	 NR i - 1 	 (6.013)

0.	 LMODE = 1

NR

k = 1	 kxi	 LMODE 1
x	 N iR = 1

(6.014)
0.	 LMODE = 1

NR

m = i	 m	 (6.015)
y	 NR i = 1 y 
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NR

k = 1	 k	 (6.016)
YNR i = 1 Y1

'''hen:

x (^) = m ^+ k	 (6. 017)
x	 x

y	 myA+ ky	 (6. 018)

The monochromatic spot may also be described in a coor-

dinate system whose origin is at the center (x, 'y) giving rise to the point

set (x i , y i ); i = 1, 2, ... , NR } where:

x i W = x i M - x M	 (6.019)

Yi M = y i M - YM	 (6.020)

Let:

m
xi	 xi	 x

= m . - m	 (6.021)

k= k . - k	 (6.022)

	

xi	 xi	 x

m= m - m	 (6.023)

	

yi	 yi	 y

k	 =
Yi	 Yi	 Y

k . - k	 (6.024)
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Then:

;.(k) = m . x + k .
1	 X1	 xi

Yi ( k ) = myi x + kyi

(6.025)

(6.026)

Let xM (k), y* (k), and R* (k) represent RMS x, RMS y, and spot size,

respectively. By definition:

NR

X* (k) = 1	 E	 (6. 027)
NR	 i = 1 1

NR

Y* 	 2 M !
NR	 i = 1	 1	 (6.028)

Rm M = r x* M 2 + [y*	 2	 (6.029)

Let:

^. = 1	 E m2	 (6.030)
x	 xi

NR i = 1

NR

B = 1	 m k	 (6. 031)
X	 X1 X1

NR i = 1

NR

C = 1 E k . 2	 (6.032)

x NR i - 1 x1
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NR

A = 1	 E m2	 (6.033)
Y NR i = 1 Yi

NR

B = 1	 m k	 (6.034)

	

Y NR i = i	 Yi Yi

NR

C = 1	 k2	 (6.035)
Y NR i = 1 Yi

A = A
x	 y
+ A	 (6.036)

B=B +B	 (6.037)
x	 y

C=C +C	 (6.038)
x y

Then:

x* W = 4AYA2 
+ 2B A+ Cx l`	 (6.039)

y ()l) = ^A
y
 A 2 + 2BY A + Cy l
	

(6- 040)
11 =

R	 A A 2 + 2B A +C^	 (6.041)

Let A denote that value of X for which x *	 is a minimum
x

and define A y and AR analogously with respect to y * (11) and R'^ (J^).
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It follows directly from equations (6. 039), (6. 040), and (6. 041) that:

A x - B x 	 (6. 042)
A

x

2
x (Ax) - Ax C  - B 	 (6.043)

A
x

BA y = - _y	 (6.044)
A

Y

2
y* ( Ay ) = Ay 

CY By	 (6.045)
A

Y

AR = - B	 (6.046)

R * (AR) = 
ACA B2
	

(6.047)

Let h 	̂ denote the image height associated with the point

set 
I 

(xi I yi ); i = 1 1 2 1 ... , N
R)	

It follows from equation (1. 041) of

Section 1. 3 that:	 J

h' (A) = x (,k) Sin 9 + y (A) Cos 9	 (6.048)

where 9 is the azimuth of the object.

The principal plane. associated with the object point (hj , ^) is positioned

at ,k = S^ where
J

i
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S + d.	 IMODE = 1
S: =	 J	 (6.049)

J	 S*+BFl+d.	 IMODE= 0
J

S''` and d.
J 

are input and B Fl is the computed back focus for color 1.

There are 4 segments of the program which utilize data from

tracing the ray pattern:

1) Optics Diagnostics

2) Design Computations

3) Spot Diagram Point Plotting

4) Spot Size Sensitivity

Except during design computations, a vignetted ray is always counted

as a failure.

For designing and plotting the following parameters are

required:

1)	 NM , NRF , NV' NR

x ( S
J
 ), y (S

J 
)

3)	 {xi (S^ ), yi (SJ ); i = 1, 2, ... , NR1

For optics diagnostics the required data is:

1)	 rlM , NRF , NV' NR

f
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2) m k , m k
x x y y

3) Ax, Bx, Cx , Ay , By, Cy , A, B, C

For sensitivity analysis the same information is required as

for designing plus x" (S"' ), y ( S^ ), and R', (S ).



TR 67-700-10-2
Page I-7-1

SECTION 7

SENSITIVITY COMPUTATIONS

The purpose of the sensitivity analysis is to determine the

effect on rms x, spot size etc. when some specified parameter is

perturbed by a given percentage.

Let T = It i ; i = 1, 2, . . . , Mp} denote a set of parameters

such that 1 <_ Mp 5 30, the members of T being indentified by means of

input symbols. Parameters are such things as element seperation,

radius of curvature, index of refraction etc. Let P = I p
i ; i = 1, 2, . . . , M

P
denote a set of (input) percentage values in one-to-one correspondence

with the t i . Let T O = {t0; i = 1, 2,	 .. MP} and TI =ti; i = 1, 2,	 , Mp}

denote sets such that t. is the nominal value of t. and tl the perturbed value
I	 i	 i

where:
t 1-	 . 01 pi	ti = 0

i	 t0(1+.Olpi)	 t0¢0
(7.001)

Let AT dat.
1 ; i = 1, 2, . , . , Mpt be a parameter increment set such that:

1	 0
1	 1	 1
	 (7.002)

For some arbitrary combination of object point (h., 8) and
J

color i let V denote the set of statistical data I x, y, x , y , R " } , the

elements being defined in Section 6. If v  is some element of V it

follows that v = v (t , t	 t	 0
k	 k . 1 2	 Mp)• Define v to be the nominalk

value of v k and vk the value when t i is changed from t. to ti, that is,
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vk a v k (t I
, tZ,	 t0	 tMp)	 (7. 003)

vk a v k (t^, t 0 ,	 ti, . . .	 tM p )	 (7. OOS)

The absolute change Avk and the percentage change (sensitivity)0-k are given by:

i	 0
AVk = V i - v k 	(7. 005)

0fo.	 v = 0i	 k
^	 _	 (7.006)

k	 (100 
AVk)1V0	

Vk ^ 0

It should be noted that e 0 depends only on object point and color and hence

should not be re -computed for the several values of parameter number i.

This is accomplished by generating a 3 dimensional matrix of nominal

statistical data, prior to the parameter variation, in such a way that layer j

contains the information for all colors and the jth object point. For fixed

j let ( x i' yi' xi y i
" 

, R i ` ' denote the statistical e.ata for color i. Layer j

of the matrix contains the following nominal data.

J.

x 
	

y1	 x 
	

yl	 RI	 NR1	 NM1	 NRF,	 NVI

x2 y2 x2 y2 R2 N R 2
	

N M 2
	 NRF2 N V 2

6x9x7

x 
	 yN x 
	 yN RN 

NRN NMN NRFN NVN
c	 c	 c	 c	 c	 c	 c	 c	 c
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All of the data in this layer is computed on the principal image plane

whose position S, is defined by equation (6. 049).
J

Consider some arbitrary parameter t  and arbitrary object

point (h„ g ). Suppose that t  has been perturbed, i. e. , t  = tk. The
J

perturbed statistical data for the ith color is, from Section 6.

x. (^) = m	 X+ Rr	 xi	 xi	 (7.007)

Y i W = myi X+ kyi (7.008)

x i M _ IA X2 + 2B	 X+ Cxi 1/2 (7.009)xi xi

Y i W = JA X2 + 2B	 X + Cyi }
 

1/2
(7.010)yi yi

R . W = JA. X + 2B. X + C, 11/2 (7. 011)r r r	 r

where k represents the position of the image plane upon which the statisitical

variables are to be evaluated. Let G be the N x 17 matrix whose ith rowc
consists of the following data:

m km k A B C A B C .,
xi	 xi	 yi	 yi	 xr	 xi	 xl	 yi	 yi	 yi

A i: B i , C i , NR , NM , NRF. P NViI	 1	 1

Ordinarily the perturbed statistical data and corresponding sensitivities

are evaluated only on the principal plane of the perturbed system. How-

ever, on option ( REFOCS>0), the computations are also performed on a

"refocused" plane whose position k F,is computed as follows:
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a)	 REFOCS = I

The refocused plane is that plane upon which rms x for all

colors taken together is a minimum. Define an overall rms x as follows:

N

[x " (X).}
L =

Fl [x i (X)]2
	

(7.0!2)
i- 1

Making use of equation (7.000,

	

2	 1/2
^A x 	+ 2B x X + C x }	 (7.013)

where:

Nc

	

A x =^ Axi	 (7.014)

i= 1

Nc

B 
x	

B
xi	

(7.015)
i= 1

Nc

C	 C
xi	

(7.016)
x i= 1

It is assumed that A xi = Bxi C xi = 0 if NRi 0.

Equating the derivative of (7.013) to zero and solving for

X gives:

B
_ - x
	

(7.017)
F Ax



B
^F A

(7.021)

NC
A	 A

i=1
i (7.023)
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b)	 REFOCS = 2

The refocused plane is that plane upon which rms y for all

colors taken together is a minimum. it follows immediately that:

B
XF, _ - A	 (7.018)

Y

Nc

By	
BY

_^	 i	 (7.019)
i =1 

Nc

A =	 A	 (7.020)
Y i=I Yi

C)	 REFOCS = 3

The refocused plane is that plane upon which spot size for all

colors taken together is a minimum.

Nc

B  	 B 
	 (7.022)

i=?
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Section 8

LENS PERFORMANCE OPTIMIZATION

By lens designing is meant a technique for automatically

altering certain members of some specified set of lens system param-

eters in such a way ghat the performance of the system is ..mproved.

A computerized procedure for lens designing introduces two

requirements The first requirement is to define a merit function V

whose magnitude is a measure of the performance. The definition of f

must be such that any process which reduces the magnitude of JP results

in unproved performance. The second requirement is then to devise a

numerical process for iteratively decreasing the magnitude of fp.
i

8. 1	 MERIT FUNCTION

The basic criterion employed in the definition of f is that a

set of monochromatic rays originating at a single object point should

converge to the same image point after passing through the lens system.

If { (xl , yi ); i = 1, 2, ... , N	 are the image coordinates produced from

tracing N rays and (x, y) is the mean, then the deviation from the mean

for the ith -point has two components, x. - x and y. - y. The complete

set of weighted deviations become independent components o an error

vector E whose length is taken as the merit function.

^P = E	 E	 (8.001)
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Because there are N H different object points and N  colors
to be considered simultaneously as well as such things as chromatic

aberration and magnification, the structure of the weighted error vector

will be developed in detail.

Definitions

NR	Number of specified rays in pattern.

MR	Number of rays that are traced.

NH Number of object points.

N Number of colors.
c

E Error Vector ( e l e2	eM) .

M
y

Order of E

f(R)/ Required f/ number.

FL(R) Required focal length.

W* Weight applied to focal length deviation.

(R)E Required exit pupil position.
P

h Object height used to compute Ep.

W** Weight applied to exit pupil deviation.

W Weights which reflect the importance of thes^ different object points (1 < j	 < NH)



N s
M =E M.ii= 0

(8. 003)
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n,.r_ - _ --

W	 Weights which reflect the importance of theci	
different colors. (1 < i < N )

— — c

Wx	 Weight on x-direction.

W
Y	

Weight on y-direction.

WA	Weights on lateral chromatic abberation which
reflect the importance of the different object
points. (1 < j < NH)

h' Ej	 Expected image height corresponding to jth
object point. (1 < j < NH)

W	 Weights on image height deviations for the N
Ij

	

	 Hdifferent object points.

If there are N > 0 substitution sets to be considered ins
addition to the nominal system then E actually comprises N s + 1 ei ror

y
vectors. Let E 0 and M0 be the error vector and its order correspond-

ing to the nominal system and let E. and M, be the error vector and its

order corresponding to the ith substitution set where 1 < i < N	 It— — s
follows that:

E = (E0 E 1 E 2	 ENs)	 (8.002)
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It is important that the program determine M before initiating design in

order to ascertain if the problem requires more computer storage than
.y

that which is available. Each of the E.i is structured in the same way;

hence, the discussion which follows applies to any arbitrary one of the

Ei . In practice E is produced by generating each of the E  in succession

starting with E0 . It will be convenient to drop the subscript on E  and

M,i so that E and M in the following context actually refer to the appro-

priate subset of the final error vector.

If f (R) /# 0 the entrance pupil radius, p0 , is re-computed in

an attempt to force the f/ number of the lens (for color 1) to be the same

as f(R ) I Although this will not affect the structure of VE, it is certainly

a part of the design process in the sense of improving performance.

Let P 0(0) represent the current value of P0 . For i= 1 1 2, 3,

first compute the current f/ number of the lens, designated f

replace PO with p0 M where:

P G)	 P (i- l) f 	 (8. 003)0	 0	 f(R)/

and repeat until P 0(3) has replaced P0.

If W* # 0 the first component of E is a weighted focal length

deviation which is computed by tracing a paraxial ray for color 1 from

object point (h, 0) = (P O 0 n ) with entrance pupil coordinates

*See Section 4. 2
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(X 0 , y O ) 	 (0. , 0 2 ). Let (xi, Y l , z l ) and (Q 
X1 , Qyl' Q zl' ) be the

coordinates and direction of this ray at a- N' If the ray misses or reflects

or Qzl = 0, a diagnostic is printed and the run is terminated. If Qzl # 0

compute:

1nN + 1	
>0

	

Q zl	 PO 02
1

	

F =	 ( 8.004)
L

	

_yl 	 1	 nN+1	 <0

	

Qzl	 PO 922

where n  +1 is the index of refraction for color 1 of the material follow-

ing a-,v . The deviation e l is then:

	

'(

1	 -	 1 	 (R)

	

F	 R) W	 FL	 # 0
L FL

e l	=	 (8.005)

	

W*	 F (R)

	

F	 L	 = 0
L

If W** # 0 the next component of E (that is, e 2 if W* # 0

or e l if W* = 0) is a weighted exit pupil position deviation which is com-

puted by tracing a ray for color 1 from the object point (h, 0) = (h E , 0. )

with entrance pupil coordinates (x 0 , yO) 	 (0. , 0. ). Let (x i , yl , z.) and

(Qxl , Q yl , Q  l ) designate the position and direction of this ray on 
N. 

If

the ray misses or reflects or Qzl = 0, a diagnostic is printed and the

design process is terminated. If Qzl # 0 the component, say e 2 , is given

by:
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e 2 = W** y1 + Q (E (R) _ z 1 )	 (8.006)
zl	 p

As a point of review the number of rays traced is

NR	 LMODE^0
MR =	 (8.007)

2NR 	LMODE=O

where 1 < MR < 200.

It will be convenient to refer to the remaining components of

E as constituting a set ,j containing M' elements. It follows that:

M'	 W*=W**=O

M -	 M' + 1	 W*#O W**=0 or W*=O W**O

M' + 2	 W140 W**#0

The set 4, is the logical sum (union) of N H disjoint subsets t^ j corre-

sponding to the N H different object points.

N
q/ = U (8.009)(8. 009)

j=1

Each of the 4i j contains 
N1^

 elements where:

2M it N
 
 + N  + 1	 LMODE=1

N^	 _	 (8.010)
2M  N  + 2Nc + 1	 LMODE# 1

Since there are NH mutually disjoint subsets then

M'	 =	 NH N^	 ( 8.011)
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Since 1 < MR < 200, 1 < N c < 6, and 1 < NH < 7 then:

4<N <2413,

4 < M' < 16891,

and
	

4 < M < 16893.

To define the elements of 4j
j , 

for arbitrary i < j < NH , le`.— —

(xi J'k	 J' yijk) be the coordinates of the point of intersection of the kth ray

(color i) and the principal ima ge plane associated with j. The pattern of

points i (x jk' yi k )' k = 1, 2, ... , M R I produced by tracing the MR
j

specified monochromatic (fixed i) rays defines a "spot" on the image

plane whose "center'' is the point (x 
iJ
,., iy.J ) given by

MR
Xi , =	

M	
Exi 

J
. k
	 (8.012)

J 
R k =1

MR

y ij	 M	 E yijk	
(8.013)

R k=1

It should be noted that if any of the rays miss or reflect a diagnostic
y

comment should be printed and the generation of E aborted.

If the coordinate system is translated to (x,.J, y1..J ), the center
_	 _	 ^

of the spot, the pattern of paints becomes I (xijk' yijk)' k 1, 2, ... MR)
where:
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xijk	 xijk - xij	 (8.014)

y ijk	 yijk	 yij
	 (8. 015)

Each of these 2 M R numbers, after v,, --ighting, becomes an independent

component of the error vector E = (ex ijk' eyijk), which adds 2 M

elements tc ^ j .

ex i k - WXk x i . k	 (8.015. 1)

	

j	 J	 J

eyijk = WYijk yijk	 (8.015.2)

Nominally, the weights are given by:

W W W
Wi k=	

sJ 

M 
x = W 	 (8.016)

	

J	 W. 	 J

W W . W
Wi k =	

sj 
*c1 y = W	 (8.017)

ij

where W
sj	 ci	 x	 y

, W , W , and W are input parameters which remain constant

during the design.

and
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The first 2 M R N c elements of ^ j are then:

Color 1:
exljk , evl,Jk

J5 k 5 MR

Color 2:
ex2 j k ' eY2 ik 1:5 k 5108

Color is	 exijk ' eYijk	 15 k 5 MR

Color Nc :	 e	
ey.. k 15 k5 MRxN ekj ^	 N `j

This scheme permits weighting the components of a monochromatic spot

according to both object point number (Wsj) and color number (Wci).

Considering, for the moment, only the N H N C monochromatic

spots, the merit function cp - E E may be written:

MR 	 2 MR
2 2 

W 
x	 2	 y E —2V 	 Wsj W c i MR k=1 xijk Y MR k_1 yijk	 (8.017. 1)

For any given !-pot (fixed i and j), all. x directional error items (x ijk ) are

weighted the same (Wx), and all y directional error items (y ijk ) are weighted

the same (W,I ), that is, the weights are independent of k. The directional

weights, :'4'x and Wy, allow a system to be designed in which the spot is not

necessarily circular, e. g. , with Wx = 1. and Wy = 0. the spot is permitted

to smear in an unconstrained fashion in the y direction to produce a

vertical line image.

{ar	 1..
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In the usual case WX = Wy = 1, so that:

MR

i,j	
S i	 R k=1	 i jk	 ij k

	 (8.017. 2)

the quantity in brackets being the square of the spot size, R ij . With

r Jk = x2 k + 
-2 

k , it is seen that spot size is actually the rnzs radius of

the points describing the spot.

O'Brien 7 suggests a Gaussian weighting procedure for systems

in which contrast characteristics (N,TF) are important. For the common

case of VVx = Wy = 1, the deviations, x
iJ

. k and yi .
Jk

, are weighted by

---2
r.

k

iW. = wŝjC1 e 2o-2
Jk FR (8.017. 3)

with a-, an input n=rameter, representing the radius about the center

within which 68,c of the energy should lie.

For the general case equations (8.016) and (8.017) become:

2
T ijk

W W W	 2T2WX _ SJ C1 X e

:lk R
(8. 017. 4)
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and	
T L ilk

	

W W W	 2(r2

	

W ijy = 
sJ 

`1 	 ek VFW 

where

T2 = W2 x? + W2 —2
ijk	 x ijk	 y yijk

(8.017. 5)

(8. 017. 6i

The major disadvantage of using a Gaussian weighting; procedure is the

increased computation time which results frorn having to compute the

exponential term for each and every image point. The case a- = 0. will

be used to specify the absence of a Gaussian.

Consider the "spot" described by the point set

{( x ij' y ij ) 	 1, 2, ' • , NJ which are the "centers" of the N c monochromatic

spots. The center of this spot 11as coordinates (x j , yj ) given by:

_
1 Nc

	

X. = — Fx..	 (8.018)
J	 Nc i=1	 1J

NC

J	 Nc i=1	 1J

Translatin-the origin to (x. , y.) the point set becomes
J	 J

(x ii, y ij ) i = 1, 2, . . . N c^ where:

x 	 x.. - x.	 (8.020)
1 J 	 1J	 J



and i = 1, 2, 	 N
c^WAi xi...	 J

TR-67-700-10-2
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yij - yij - yj	 (8.021)

Treating 
I i

!x.
J
., 

I
y..

J
 ); i = 1, 2, ... , N 

c	 c
as a set of 2N independent devi-

ations, the inclusion of these (after weighting) into 	 corresponds to
J

reducing lateral chromatic aberration since reducing the length of E

forces the centers of the Nc monochromatic spots to a single point.

Let

_ Wq

W . = —L
AJ

C

The next 2N elements of 4) j are:c 

WAj yi j

(8.022)

i = 1, 2, .... Nc

If LMODE=1 the program assumes x,.= 0 for all i (and j). It follows that
1J

xj = 0 and xii = 0 and, in this instance, the dements WAj 
Xij 

for 1 < i < N 

are not included in
J

If equations (8. 012) and (8. 013) are substituted into equations

(8.018) and (8. 019), respectively, there results the following equations,

which illustrate that (x 
J
., y 

J
.) is the average x and y for all rays traced

--
from  the object point (hj,W.

MR Nc

_	 1	 x, .	 (8.023)
X 
	 MRNc	ijk

k=1	 i=1
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M R N 
1

yj = M N	 yijk	 (8.024)
R c k=1 i=1

If (x. , v.) is interpreted as the image point of the object point (h. , 0) then
J	 ^J	 J

the image height h . is, from Section 1. 3.
J

hiJ = x J.	
J

Sin6 + y. Cosh
	

(8.025)

The fir_al element of q is a weighted deviation of h: from an (input)
J	 J

expected image height, h ' 	that is, W (h' - h ' )
E j	 Ij J	 Ej

e. 1. 1	 Image Plane Computation

As has been mentioned, there is a principal image plane

associated with the object point (h.J , 0) wi:nse position is given by

equation (1.037) where S-* (or S + B F ) is the location of tree vertex of

the image surface and d. is the sagitta which positions the plane.
J

^--	 _S*	 dJ I

i
	 Figure 21. 1 Curved Image Surface
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Suppose that the image surface is a standard conic of revolution with

the equation

2	 2	 2	 2	 2X + y + (z - R)	 = R + bz	 (8. 025. 1)

The uses- selects d. so that the expected image height, hEi s a point lying
J

on the image surface, that is, d,
J 

must satisfy.

(b-1) d
i
 + 2Rdj - (h ' .) 2 = 0,	 (8.025.2)

since hE is a radial distance. This equation has, in general, two
J

solutions the appropriate one depending upon the type of conic (b) and the

sign of the curvature (R). As an example for a spherical image surface with

positive R,

d. = R -	 VR` - (h'
	

(8.025, 3)

the other solution, R + , R 2 - (h^j ) 2 , being rejected on physical grounds.

Lack of a real solution indicates an incompatibility between the image

surface and the expected image height.

Since the computed image height. h' , on the plane z - d. is
J	 J

usually different from h F i the image is not actually in focus. This is

especially bad when constructing E since the spot is examined on a poorly

positioned image plane. It would be more appropriate to first compute a

new value of dj by insisting that h' , as given by equation (8. 025), satisfy

equation (8.025.2)



y.. = m	 X + k
iJ	 yij	 yij (8.025. 5)

x. = m . X + k
J	 xJ	 xJ

(8.o25. 6)

= m ^+k
yj	 Yj	 Yj

(8.025. 7)

k
xj	 Nc

1 E k
xi

N	 i=1	 J
c

(8.025. 9)

LMODE / 1
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With (x..
1J , 

y 
1J

..) as the mean of all rays with color index i from

the object paint (hj , 0), it follows from Section 6 that:

x.. = m .. X + k	 (8.025. 4)1 3	 xiJ	 xiJ

where A is the position of a plane relative to the last optical surface,

that is, X = S + z where z is measured from the vertex of the image

surface. Equations (8.018) and (8.019) become:

with

0.
	 LMODE =1

mx 
J	

Nc

	

1	 m
	N 	 i=1	 xij

c

(8.025. 8)

LMODE i 1

0.
	 LMODE =1
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Nc

m = I E m	 (8.025. 10)
YJ	 Nc i=1Y1J

Nc

k	 = 1 E k	 (8.025. 11)
YJ	 Nc i =1	 Y13

Equatioji (8. 025) which defines h' in terms of (x. , Y.) is written:

	

J	 J	 J

h	 a.
J 

(S + d.) + b.	 (8.025. 12)
J	 J	 J

where

a. = m
xJ 

Sin6 +m 
YJ 

Cos0	 (8.025. 13)
J 

and	 b. =
J	

k xJ Sin  + 'K YJ CosO	 (8.025. 14)

In order for h'. to lie on the image surface, d. must satisfy:
J	 J

[a.
J 

(S* + d.) + b 	 (b-1) d? + 2 Rd.	 (8.025. 15)
J	 J	 J	 J

or	 d? + 2(3 d. + y = 0 .	 (8.025. 16)
J	 J

where	 a = (b-1) - a2	 (8.025. 17)
J

p = a  (b
i
 + a  S*) - R	 (8.025. 18)
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and	 2Y = (b. + a. S = )
J	 J

Let	 2
0= R +ay.

(8.025. 19)

(8.025. 20)

If A < 0, there is no real solution for d.
J 

and the program should retain the

old value. If A = 0 then:

d J	 R
	 (8.025. 21)

If A > 0 then:
-Y

d	 Rt A1/2J

where A l /2 is given the sign of R.

(8.025. 22)

One of the major disadvantages of computing d.
J 

is the necessity

of tracing all rays of all colors before calculating the desired plane position.

In order to avoid the costly re-tracing of these rays, for each color the

	

following data must be preserved:m 	 k	 m	 and x where 15i<_NR,
Xi	 yi	 yi	 yi

a total of 4 • 200 • 6 = 480 items in the maximum case.

The automatic computation of the sagitta (d.) during design would
J

be a program option controlled by means of a trigger, say ATRGGR, where

ATRGGR = 0 instructs the program to always use the input d.
J 

and ATRGGR = 1

instructs the program to compute d. using the equation of the image surface

	

J	 ,.
and the computed image height, Initially, thel'user must supply b and R for

the image surface and a starting set of d. based upon. desired image heights.
J

t
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The program then overstores the input d.
J 

with new values computed

according to the procedure described above. If h, is such that there is
J

no real solution for d.J , the program will retain the old value rather than

abort the design.

Since the program overstores d,
J 

with new values it follows

that when using this option with substitution sets the parameters

CIMPL(1), CIMPI.(2), . 	 must be included as substitution parameters;

otherwise, at the conclusion of generating E , the d. will have been
J

replaced with values corresponding to the final substitution set instead of

the nominal system.

As will be seen a design cycle begins with the initial vector
f

E
0	 0

= E (U ) and proceeds to compute the ''derivative'' vectors

I 1 , I2 , .	 In as given by equation (8. 042). During the computation of

E ( U + AU.) , ATRGGR should be zero so that derivatives are examinedo	 1
.y

on the same set of planes as E
0 . 

The trigger is restored to normal

status for computing the new error vector E '.

*See Volume II.
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8.2	 LEAST SQUARES MINIMIZATION

In Section 8. 1 it was shown that the merit function is essen-

tially the length of an error vector E whose components comprise a set

of weighted aberrations or deviations. The magnitude of If then becomes

a measure of performance since decreasing f corresponds to decreasing

the various aberrations.

The procedure for minimizing V is an iterative linearized

least squares technique. Each iteration begins with a set of n design

variables (lens system parameters) which are taken as independent com-

ponents of a parameter vector U so that:

y = y (U) = E (U) • E (U).	 (8.026)

The iteration commences with a nominal value or estimate
for U, say U 0 , and determines a new value U* such that IP (U*) <F (U0).

This modified lens system is then used a.s the initial estimate for the

next iteration.

8.2.1	 Design Variables

The manner in which U is established for each iteration is

rather involved; consequently, it will be discussed in detail.

Let v represent a master set of ND composite variables such

that 1 < ND !L50.  Each member vi of 'v comprises IN.I system parameters

here 1 < IN , I <6; hence, v: 	is more adequately described by a matrix

V whose ith column, vi , is given by:

i



N.

J

(R)
J

Qv.
J

V.
J

K 1J

K2
(8.027)

TR -67 -700 -10-2
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i

K6
J

o(c)
J

The parameters associated with v J
	 1J
., denoted by v ., 

v2 J 
,

. . . , vN , are identified by a set of data indices K ., K 2 , . . . , KN Y
The significance of A( R) and Al c) is discussed later.

1J
 Av. is an increment

J	 J	 J

which is applied to v. during the computation of partial derivatives. If
J

v, represents the perturbed value of v
i

, then Avg is applied as follows:

V. = v. + AV.	 if N. > 0	 (8.028)
J	 J	 J	 J

(v 	 (v^) 1 +Avg if N^ <0	 (8.029)

N.
j
 should only be assigned a negative value when v.

i
 represents

a radius of curvature parameter. Since 71 is actually a composite variable
J

the perturbation by Ov.
J	 J

actually applies to all IN . I parameters simultaneously.

k
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For example, suppose N. > 0, then forming v . + AV actually consists of:
J J	

i

V
lj

+w
j

K	 >0
lj

vi	 =i
V

(8.029)

v
lj

-AV
j

K	 <0
lj

V
2J

+Av . K	 >0
2JJ

Vz j 	= (8.030)

V2j -Ovj K 2j <0

	v^TjJ

NJj +AV	 KNj>0

vN j =
	

(8.031)

J	 - &v
J
,	

KN J < 0

By letting the variables v, be composite rather than simple
J

and allowing Ov,
J 

to be either added or subtracted from the v 
1J
.. depending

on the sign of K..
iJ

, it is possible during an iteration to let system param-

eters change in such a way that their sum remains fixed. For example,

suppose it is desirable to let S 2 and S3 be design variables but constrained

so that S 2 + S3 remains fixed. This is accomplished by setting N I = 2 ai.d

letting K  I >0 and K21 <0 where v  I s. S2 and v21 a S3 . Whenever Z  is

perturbed by AV  the following is performed:

^^e' •fit-
,:,msst	 -
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S2 Zvi 1 = S 2 +pvl

and

S3 = v21 = S3 -Ovl

so that	 S2 + S3 = S2 + S3.

Matrix V which is referred to as the design matrix must be

specified prior to initiating a sequence of design iterations. This is

accomplished by supplying:

1 < ND <50,

and for 1S j S ND the values Nj , ta^R ) , and Ovj . The data indices Ki j for

1 S i _< IN I are determined from a set of I Nj j parameter symbols which
must be provided.

Each composite variable v,J is uniquely identified by the sub-

script j which is referred to as the design variable number or index.

For any arbitrary design itei tion the applicable parameter

vector U is some proper subset U = ^u.; i = 1, 2, 	 n I of the masteri
set v such that 1< n < 10. The composite variables u, are actually ident-_	 1

ified by a set, J = ( j i ; i = 1, 2,	 n 	 of design variable numbers such

that u =i	 vii.

It is also convenient to define an n-component parameter

increment vector At with components Au i such that Aui :Ovj i for all

1_< i _< n. In general J, and therefore U, changes, in a manner to be

V
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specified below, from one design iteration to the next, that is, th(- design

process operates with a different set of variables during each iteration

If J (k) represents the design variable number set for the kth iteration

then J(k+1) is determined as follows:

j(k) + 1	 if j ( k) < j
j (k + 1) _	

i	 i	 max

(8.032)
i

if
(k)

imin	 ji	 Amax

for 1 < i < n,where j min	 maxand j 	are bounds such that 1S min, j	 <_ j max <_ N D'

J (1) , n, and the number of iterations N 1 must be specified in order to

start the process. The following constraints apply to J(1).

j	 <j(1)<j	 1 <i<n,min i	 max

and

i(1) # j (k )	 i 4 k	 1 S i, k S r^.

This incrementation procedure thus establishes a unique par- meter vector

U for each iteration. It should be noted that this scheme actually cycles
$

through the different design variable number sets, that is, J (k+ P) J (k)

k = 1, 2, . . . where the period P is given by:

P = j
max - jrnin + 1.
	 (8.033)
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As ar, example, let:

i min - 4

i max 8

n	 = 3

N1	= 15

J `1) 	 14 5 7

1 	 (5 6 8

J(3) _ ^6 7 41

J(4) _ `7 8 5 4

1 (5) _ ^8 4 6

J(6) ='4 5 7 } = J^1)

J(7) = 15 6 8	 = J(2)

J (15) = 18 4 61 s J^5)

oid-



TR-67-700-10-2
Page I-8-18

8.2.2	 Design Iteration

Having established the parameter vector Lil = (u I u2 . . . un),

a necessary condition that V be a minimum is that its first partials vanish

simultaneously:

	

aw = 0.	 j = 1, 2,	 n.	 (8.034)
au.

J

In terms of E, from equation (8. 026),

( )	 a
8u.	

= 0.	 j = 1, 2,	 , n.	 (8.035)

J

Equations (8. 035) are a set of n non-linear equations in the
n unxnowns u I , u2 , . . . , un whose solution is V m , the required value of
i^. Since it is not possible, in general, to derive a closed formed expres-

sion for i! = j^ (1) the procedure followed in solving (8.035) entails a

linearized approximation of the non-linear system which can then be

iterated upon.

With 11
0
 as the initial estimate of V * , expand 'f 01* ) in a

Taylor Series about U0.

rn 8E
M*)= P M + b T1 = 

E O +u 8u. buj

fi
n

` [nom 2
+ 2 	 25^ _ bu, bu lgy +a	 ... +.

j=1 k=1	 J k	 J
(8.036)
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where:

EO = E (U O)

a20 _ alb
auk 8u

J
 U = UO

and	 600 = (bu 1 	but . . . bun).

Equation (8.036) is linearized by dropping all the high order

terms, giving the approximation

na!!0
E ( )^'	 +r -- bu,.	 (8.037)

	J =
= 

1	 J

	

0	 8u.	 J

This equation is then substituted into (8.035) producing the n x n linear

system

n (

af o aEO	 _ 8EO

auk 	auk	 bud = 
-E 0 auk k = 1, 2, ... , n

(8. 038)

in the n unknowns (bu 1 but ... Sun ). The problem then is to invert

(8. 038) yielding the correction vector 69 O such that U 0 + 6U 0 is an

improved estimate of TT'` which, in principle, could be used as the starting

point for a second iteration.

With DU as the iven parameter increment vector define

A 
( ^1 ^2	

Xn) such that

	

X . = bu 
J
. tau..	 (8.039)

J	 J

i Y a

-	 .Y_	 3	 ^`
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The linear system expressed by (8. 038) can be written with n
as the unknown instead of Si10 by multiplying the kth equation by uk .

Vin` aE
0	aE0	 aE0

L^ 8u. Auj	auk Duk Xi 	E 0 auk Duk
j=:	 J

	

k = 1, 2, . . . , n	 (8.040)

Before inverting this system it is necessary to determine the

coefficients:

8E 0 Du.	 = 1, 2,	 n.
au.	 J

J
Let DU be an n vector whose jth component is Au^ and whose

remaining components are zero. By definition:

aE0 lira E (t60 +&V.) -E0.
(£s. 041)au. Auk AU.

J	 ?	 J

Therefore the term (aE 0 /au.) Du.
J 

is approximated by I
J 

where:
J 

Ij = E (Lu0 + AUi ) - it 	 (8.042)

E0 and il (9 0 + AL^ J.) are determined by the procedure discussed
in Section 8. 1 using LU = 11 0 and 111 = V0 + OLD J., respectively.

If any ray fails during the generation of i g 0 this is considered

to be sufficient justification for aborting the entire design process.

L	 ,
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A =

^n

(8.046)
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If, during the kth iteration ( k _> 1) any ray fails while computing

E ( T + DO the system is restored (U = U ) and the program proceeds
0	 j	 0

directly to the k + 1 st iteration.

Equations ( 8.040) can be written in terms of the I.
J 

as follows:

n_ --4	
---

	

--4
	

1 < k<n	 (8.043)
j=1

In matrix form:

In= C
	 (8.044)

where

	

I1 T1 I1 I2	 T1 7n

	

I2 I1 I2 I2
	 n

I =
	 (8.045)

	^1 n ^2	 n - n

t
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R0 Ti

-20^T2

C-I
	

(8.047)

- 0 In

If I is numerically singular the program should proceed

immediately to the next iteration. If not the solution vector is given by

-1A = I	 C	 (8.048)

The improved parameter vector -T* is obtained by applying
(8.039).

0"'-, = C0 + 6T70 = (u I + XI Au lt u2 +X 2 AU2 6 . . "rAUn+XnAun)

There are instances when one or more of the I X.
J
 I are so

large that there is serious doubt regarding the reliability of A. This can

occur when the linearized equations represent a poor approximation or

when the determinant of I is small (I is nearly singular). In an attempt
to prevent "overshooting" U*, the components of ^ are scaled by a factor

t <1. prior to forming 11 0 + 6V0.

Let

3

x = Max [t, 1X I 1, 1AZ I,	 1Xnj1

where ^%0. is input, and define 6 0 so that

t = 2 :0

(8.049)

(8.050)
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Consider an ordered sequence of scale factors t,i given by

	

_ to
	

i = 1, 2,	 1,8.051)1	 2i

It is clear that 1. > E I A	 > f; i and i ---+0. as i—	
y J.► oo. Let U represent

the improved parameter vector given by.

N J.

U -= (u l + i ^ I Au l ,u2 +^ X Au2,...,un+t X Aun)

(8.052)

-T"i`—+UO

a s i--Poo.

	

The reason for considering a sequence of	 and Lei instead

of just ^, is because of the possibility of boundary violations.'' AboundL:y

violation occurs when one or more of the u  (parameters) has been altered

too much, i. e. , ^i X  Au k is too large. The mode of operation then is to

try C1 and check for boundary violations. If there is a violation try 2

and repeat. This process is continued until the violations cease or until

X10 is reached. If the boundary violations have not been eliminated by the

time i = 10, the design iteration :s considered to be a failure, the program

restores LT1 0 and procedes to the next design iteration.

Suppose then, that there is some 1S i <_ 10 such that U. causes
i

no boundary violations. Let E ms` = E (iU'^ and let I ( designate the length

of Fes.. It there is any ray failure while computing 2* restore IO to 60 and

procede to the next design iteration.

See Section 8. 2, 3

Since t i^0. as i in::reases it also follows that

:v^l^
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The "old" :ength and "new" length are, respectively,

1

^9 0 ^ _ ,E O 	EO ) 2	 (8.053)

1

and	 I E I= E	 Ems) 2 .
	

(8.054)

The relative improvement, C, is

^:
Iro 

I	 I	
I.
	 (8.055)oil

Since the relations a W/au .J = 0. are equally valid for a local

maximum it is possible for 	 ' > I 0	 that is, e < 0. If this occurs

set U to U 0 (restore) and proceed to the next iteration.

8.2.3	 Boundary Conditions

It is obvious that the procedure described above for computing

the parameter correction vector bu0 imposes no constraints on the in-

dividual components of 111. In practice it is often desirable to constrain

some parameter u. to lie in a specified interval u. 	 <_ U. <_ U.
min1	 1	 1	 lmax

A typical example is the surface separation between element i and element

i+ 1.

Boundary conditions on individual parameters are specified

by a boundary condition matrix B (3 x 100) whose jth column contains rj,

u.J min , and u J max ' 	 J.	 The first entry r. is a data index which uniquely

identifies some parameter u.
J 

constrained by u J. min <_ u J. <_ u.J max' There

are several special cases which require explanation.

I -

r.



TR-67-700-10-2.
Page I-8-25

If u,
J 

is the radius of curvature of some element then (u J.	 ,min
uj maxi actually applies to 1 /u., that is, u. is constrained so that

1
< — <

11 j min	 u.	 uJ max'
J

If u. is the index of refraction of some material and N = 1
J	 c

the bounds apply in the usual way. However if N c > 1 then u J. should be

chosen as the index of the mate_ial for the first color. Let n i , n 2 , . • • nNc

z present the N c indices of the material in question and suppose they are

ordered such that n  < ni+l' Then u.J __ n 1 and the bounds apply as follows:

u.	 < n_.	 n	 < u J.J min	 i ^ Nc 	 max

In addition to this constraint the set must always remain

ordered. Because of the special nature of indices of refraction they will

be identified by requiring r.J < 0 when u J. is an index.

Suppose J = ( j.; i = 1, 2, 	 n 	 is the set of design variable

numbers for the current iteration and let j c J. Each of the parameters

associated with the composite variable v.
J 

must be checked for a possible

	

boundary isolation. Let K i , K Z	 . , K !NJ be the data indices of the INI

parameters which comprise v.. Finallv, let k represent any of the K.
J

and vk j the corresponding parameter.

To check vkj for a boundary violation, I kl must be compared

against I r i i = 1, 2, . . . , NCOND where NCOND is the number of

boundary conditions defined by matrix B. If neither of the conditions

described below is satisfied for some 1<_ i < NCOND then N kJ 
is not

subject to boundary constraints.
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a) If r  > 0 and J kl = r  for some i then vkj must satisfy:

u  min < v kJ
 < 

U  max	 if N > 0,

or	 U.	 < 1 < U.	 if N < 0.i min — v	 1 max
ki

b) If r  < 0 and ^iI < Iki j Iri i + Nc - 1 then vki is one of

the indices of refraction of the material whose index of refraction for

color 1 is specified by I r i 1. If N  = 1 then hr,(_ Iklandv
ki must satisfy

ui min -S 	 S ui max'

If N C > 1 let Ill `2	 lNc be a set of integers which

specifies the order of the indices prior to designing. For example, if

N  = 3, n  = 1. 77, n2 = 1, 46, and n3 = 1. 62 then 111 12 131 = 13 1 2 I.
Let 

I1
, 12 . . .	 c I represent the current order. If n l, n2 , . . . , nNc

are the set of indices identified by (r i ) then the following conditions must

be. satisfied.

lm = lm	 1 < m -< N C	 (same order),

u  min < Min (n 1 , n2 , . . . , nNc )'

and	 Max (n 1 , n2 , . . nNc ).S ui max.

In addition to the boundary conditions defined by matrix B

which apply to individual parameters there are several boundary condition

type constraints which apply to the lens system as a whole.
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The first c*)nstraint is on the length of the lens system denoted

by L. Let Lmax	 maxbe an input. If L	 = 0. then I. is not constrained;

however, if Lmax > 0. then L must satisfy i. < L max	 iLeta (1 -,,- i < N)

designate the signed axial distance from a 0 (entrance pupil) to ai , where

N is the number of surfaces. Remembering that S, is the signed axial

distance from Q i 1 to a it follows that:-	 i

al-S1

and	 ai - 6  -1 + S i	2 < i < N.	 (8. 056)

With amin = Min (a is i s	 maxN) and a	 = Max (a i 	 i <_ N),
i 

the length L is given by:

L= 1 6 max - a min I•	 (8.057)

A second boundary violation which can occur is known as

feathering which is a condition that results when two consecutive surfaces

intersect one another as a consequence of certain parameters being

altered too drastically during the design iteration. To check for feathering

it is necessary to trace a ray (color 1) through the lens system and compare

thickness at each element against a specified minimum Tmin

From Section 5. 1, thickness at 
O i 

is given by

,r _ n i+1	 1 5 i < N _ 1	 (8. 057)
i f i+11 1

where

Ai = Zi+ 1 - (Z i - Si+1)-	
(8.058)
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If the ray in question misses or reflects at any surface it is

treated as a boundary violation. If not then feathering has occured if

T. 5 7- for some 1 _< i <_ N - 1. Feather checking should be performedi	 min
for the following 4 rays where 0 F, and 02 are input and hmax h 0 +
(NH - 1)Oh.

Ray 1

(h , 0) =(hmax' 0.)	 (X0, yo) 	 ( 0 • , - 9F,)

Ray 2

(h, 0) _ (h 
max' 

0.)	 (X0,	 y 0 ) 	 ( 0 • , nF,)

Ray 3

(h,0) _ ( 0 • , 0 .)	 (X0,Y O ) = ( 0.	 2)

Ray 4

(h , 0) _ (('• , 0.)	 (X0, yo ) 	 ( 0 • , 0F,)

8.2.4	 Termination of Iteration

Let K be the number of the current iteration where K Z 1.

The iteration commences with a set of design variables identified by

J(K) l
j l j2 ' ` - Jn , , a nom = -ial parameter vector LT1 = Cot and the

corresponding error vector t0 a 
j9 (90)'

r-.
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The first step in the iteration is to recompute Av.
J 

as follows:

Ov. = Max[I pv.J 1, pu min	 1 <i <i ma::	 (8.059)

where aumin is an input parameter.

There are two classes of failures which can be'defined in

connection with the design iteration.

1 j	 Failures which occur prior to the inversion of matrix I.

This class includes one or more ray failures during the computation of

E 0 +:J^	 <LI) 1 < j n, and unsuccessful inversion of matrix I due to its
j

being singular.

2)	 Failures which occur following the inversion of matrix I.

This class includes a negative improvement (E < 0), a boundary violation,

and a ray failure while computing E	 E (LLl * ). Before proceeding to the

next iteration it is necessary to restore L to 60 and to modify Av.
Ji

(1 :5;i _< n) as follows. With ^^i ) =Ii Ii , ? &^i :;^ 0 then:

An
= t AV.

J 1 	 I	 J1

1
(R) 2

A_^L I
i

(8.060)

Regardless of the type of failure the program should print

J (K) and a comment indicating the cause of the failure.
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Let P c be a counter which is initally set to zero. Each time
an iteration fails set Pc	 c= P + 1 and compare it against 2P where P is

the incrementation period defined by equation (8. 033). If P > 2P thec
design process should be aborted with a comment indicating there were

2P successive failures. in order to insure that the 2P failures are truly

successive whenever the iteration is successful set P c = 0. '1his pro-
cedure prevents wasteful looping when all possible design variable combina-

tions result in a failure.

It is possible to remove some combination of design variables
say J (K) = Jil j2	 in I from the iteration sequence when it results in

a failure. This is accomplished by sending it to "jail" with a specified

"sentence" and keeping it there until it has served its sentence at which

time it is parolled. A maximum of 10 different offenders at any one time
is permitted. Considl-I- the following definitions.

NJ	The number of cycles (sentence) that each offender is

jailed (input). NJ > 0

T

OF The current number of offenders which is initially zero.

0 5 NOF 5 10.

H	 The jail matrix such that h.. 1 < i < n contains the
iJ

design variable numbers for the jth offender.

G	 The sentence vector such that g.
J 

contains the current

sentence of the jth offender.
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Suppose it has been determined that J (K) resulted in a failure.

If NJ = 0 or NJ > 0 but NOF, = 10 then J (K) is not jailed. if NJ > 0 and

NOF, < 10, J (K) is jailed by setting:
_ T

OF N OF +

hiN OF - J
i	1 S i < n

9NOF = N J.

Following the generation of J (K) from J(K 1) and prior to

iterating with J (K) it must be determined if J( K) is currently in jail as

the result of some previous offense (failure). If N J = 0 or NOF = 0

iterate with J( K) . If NJ > 0 and NOF > 0 check J (K) against the NOF'

columns of matrix H. If J( K) does not match any column of H (not in

jail) iterate with J(K).

Suppose j i = h it. for all 1 < i r, which means that . 1 (K) is the

rth offender in jail. Reduce the sentei.-- by setting g = g - 1. If

g	 0 do not iterate with J (K) , instead proceed directly to J(K+1)r	 . If—
g r = 0 then J(K) is parolled by setting:

hi' - hi , j +1	 I <i <n	 1 <j <9

9  = gj+I	 1 < j <_')

NOF, = NOF, - I
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After parolling J (K) it i^ the used in the iteration.

Thus far the discussion has been limited to iterations which
fij for one reason or another. When the iteration is successful the

following quantities are printed: J (K) ,	 I) , 1E0 1 , (E^	 and E . L
replaces LT10 and 	 should replace E 0 . In addition set Pc = 0 and

recompute Av,
Ji 

as per equation (8.060).
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Section 9

PROFILE DIAGRAM

The lens system is described by a set of N surfaces designated

1 o f 1 < i< N	 The center of the entrance pupil (oo ) is taken as the

origin of a z-y cct-rdinate system where z is along the optic axis and y is

vertical. Let ac = o. and let (a	 0. ) be the coordinates of the vetex of o. .i	 1
From Section 8. 2 3.

b i = 6 i-1 + Si	 1 < i < N.	 (9. 001)

With S*is the directed distance from the vertex of a to then
vertex of the image surface. The image surface vertex has coordinates

( a , 0. ) where:

a* = a + S.	 (9. 002)n

One of the first steps is to establish the set of lens elements

and the set of air spaces which taken together comprise the lens system.

9. 1	 ELEMENT AND AIR SPACE MATRICES

An element is either a single surface (mirror) or a pair of

consecutive surfaces between which the index of refraction exceeds one.

An air spa(- ^ is a pair of consecutive surfaces between which the index of

refraction is one.

r.
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The elements are described by a 2 x N e matrix E of th form:

e 11	 a 12 ... e1Ne
E _	 (9. 003)

e 21	 e22 ... .2Ne

where N  is the number of elements. The pair (e lk, elk) represents the

surface numbers for element k such that:

ilk E 1
e lk =

elk

k is not a mirror
(9.004)

k is a mirror

Similarly, the air spaces are described by a 2x N a matrix A of the form:

a ll	 a 12 " ' a1Na
A =	 (9.005)

a21 a22 " ' a2Na

where Na is the number of air spaces. The pair (a lk, a2k) represents

the surface numbers for the kth air space such that:

a 2 = alk + 1.	 (9.006)

If e2,k-1#el,k-1 then e lk satisfies:

e lk =	 e2, 
k	 (9. 007)

e2, k-1 + 1
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If e lk = e2,k-1 then (e 1,k-1' e2,k-1)	 and	 (e lk , elk)

comprise a cemented doublet. If e lk = e2 k-1 + 1 there is an air space

between (e 1, k-1' e 2, k- 1) and (e 1 k' e2k).

Let n i represent the index of refraction (hereafter simply called

index) between ai-1 and Cr i and suppose n l	1.

To establish E and A, Ne	 aand N are initially set to zero.

Starting with i = 1 and continuing to i = n the pair (ni' ni+ 1) is examined

with the following possibilities:

1) ni = 1. and n
i + 1 > 1

(°i' on + 
1) is an element thus set:

N = N + 1e	 e

	

elN = i	 e 2 = i+ 1
e	 e

2) ni = 1. and ni + 1.	 1

Q. is a mirror and there is an air space between v. and
i	 1

Ori+ 1. thus set:

N  N  + 1

	

e 1Ne - i	 e2Ne 1
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Na = a+ 1

a 1 
=i	 a2N =i+1

a	 a

3) n  > 1. and n i + 1 - 1

._ ei L _E• an air space between QOr. and (T 1 thus set:

Na	 a+ 1

a1Na= i	 a2Na- i+ 1

4) n  > 1. and n  + 1 > 1.

( a , ai+ 1) is an 
element thus see 1.

5) n  > 1. and n  + 1 = - n 

G. is silvered glass and (OO, ori+ 1) is an element

thus see 1.

6)	 nC- 1.  and ni + 1	 1

( q , o. + 1) is an element thus see 1.
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7) ni = - 1. and ni+l = 1.

vi is a mirror and there is an air space between a-i

and a-i+l thus see 2.

8) n, < - 1, and n.. , = - 1.

There is an air space between v i and (Ti+l thus see 3.

9) n.<-1, and n. . <-1.

(0i' a- i+l) is an element thus see 1.

10) ni < - 1, and ni+1 - n 

vi is silvered glass and (a- a- i+l) is an element thus see 1.

The following 4 conditions are included in girder to allow for

dummy surfaces which will not be plotted. A dummy surface is a surface

with the same index of refraction on both sides.

11) n. = 1, and n, , - 1,

v.i is a dummy surface and it is necessary to correct

the current air spac^. If Na > 0 set:

a 2 = i + 1
a

a
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12) n  = - 1, and n
i+1	 - 1.

a-i is a dummy surface (in air) thus see 11.

13) ni > 1, and n
i+l = n 

v.i is a dummy surface in glass thus set:

e 2 ,v = i 4 1
e

14) ni < - 1. and n
i+l = n 

a- .i is a dun,niy surface (in glass) thus see 13.

Because of the possibility (in a reflective system) that one or

more elements may be repeated it is necessary to edit matrix E by deleting

all equivalent elements. Each element is identified by a pair (i, j) where

i and j are the surface numbers of the bounding surfaces.

Let (i l , j l ) and (i 2 , j z ) be two arbitrary elements. These two

elements are equivalent, (il I j 1 ) (i2' j2), if they both describe the same

physical lens element.



TR-67-700-10-2

Page I-9-6

It follows that:

(i, j) = ( i , j )	 i9. 008)

and

(i, j )^ (j, i ).	 (9.009)

For arbitrary o. let a., 'r., R., and b. represent vertex

coordinate, type, cu. vature and eccentricity, respectively.

An element (i, j ) is ordered if a.
1 < 

a 
J
,. Any arbitrary element

— 
may b^ expressed in ordered form by invoking equation (9. 009).

Suppose that (i l , ji) and (i2 , j 2 ) are both ordered elements.

If i t = i2 , and j 1 = j 2 they are (trivially) equivalent. They are also (non-

trivially) equivalent if the following conditions are satisfied:

a il = aiz

Ti   = Ti2

R il Rig

bil biz

ajl = aj2

Tjl=Tj2

Rjl = Rj2

b j 1
	 bj2

^	 a.
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The editing process applied to E should retain only one member

from each set of equivalent elements.

A similar procedure is used to edit matrix A except that the

conditions for non-trivial equivalence are simply:

a il - ai2

6  1 = a 2

Because of the complexity entailed with translated and/or

tilted elements only those Lystems composed of surface types 1, 1:, and 3

will be considered where Type 1 is a plane or standard conic of revolution,

Type 2 is a horizontal conic cylinder and Type 3 is a vertical conic

cylinder.

The z-y trace of a Type 1 (R = 0) or Type 3 surface is simply

the local y axis, that is,

Z =0
	

(9. 010)

The z-y trace of a Type 1 (R ^ 0 ) or Type 2 eurface. is a plane conic speci-

fied by

y2 + (z - R) 2 = R 2 + b z 2 .	 (9. 011)

where the origin (0, 0) is at the vertex of the conic.

Since (9. 010) and (9. 011) are symmetric in the z -axis only the

upper half (y % 0) need be generated which is then reflected in the z -axis

to produce the lower half.
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9.2	 RANGE MATRICES

A	 n
Let z and y be 2 x N e range matrices of the form:

A n	 n

A	 z11 z 12	 z1Ne
Z	 n	 n	 n	 (9.012)

z 21 z22	
z,Ne

A n	 n

yl l y12 '	 yl Ne
A = n
	

n	n	 (9.013)
Y21 y22	 y2Ne

A	 n	 n	 n
The pairs (z 1 i' z 2i) and (yii, y 2i) apply to the ith element, (e 1 i' e2i)'

in particular, (z li' yli) refers to eli and J(z 2i' y2i) to e 2i . 'Let fI (z, y)

= 0, be the z - y trace of e li . The pair (z ii , yli) specifies the range

of z and y over which f l (z, y) is defined.

A
If fl (z, y) = z = O.then z li= 0. and y1i 0.

Suppose that eli is a plane conic, that is, R 1 # 0. If R 1 > 0.
A

then f l (z, y) is defined for 0 < z < z 1i , If R 1< 0, the f l (z, y) is

defined for z ii < z < 0. The .range of y is always 0 < y < yii*

A
Let C be a 2 x N e code matrix of the form:

A n	 n

A	 C11 C12	 CINe

`	 C =	 (9.014)
n n	 n
C 21 C22	 C2Ne



z
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A	 A	 A
where C 

i i 
refers to e i i and 

CZi 
to e2i Each element in C is a code or

flag whose setting is related to some constraint on the corresponding curve
Awhich causes it to be confined to some range specified by z. For example,

if e  i is a circle (or ellipse) f i(z, y) is not defined beyond the maximum
A

point (see Figure 22). In this case C li = 1.

v

Figure 22. Code 1

9. 3	 MAXIMUM APERTURE CONSTRAINT

The first constraint to be applied to the system is the

maximum aperture constraint whereby all curves are limited so that

-Amax ^ y ^ A max where y	 > 0. is an input parameter. The code
A	 max

(C) for this type of constraint is 2. Eacii type of curve is considered

below.

A.	 Plane

The equation is z = 0. so that:

A
z 
li

= 0.

A
	

(9.015)

y l i= Ymax



If R > 0:
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B.	 Circle (b = 0.)

The equation is:

y 2 + (z - R) 2= R2	(9.016)

R	 y > R
A	 max —
z 1 i =	 (9. 01')

R -! R2<R
Y max	 ymax

A	
R	 ymax R

y l i -	 (9.018)

ymax	 ymax
<R

1	 y	 >_ R
max

C 	 (9.019)

2	 y	 < R
max

Jf R<0:

A	
R	 ymax I R

z-	

1/2
 2	

1/2	 (9.020)
(	 I

R + R - 2 ymax	 ymax R



(9.021)

(9.022)

ymax 
I

ymax I R

>
ymax 

I R I

ymax I R I

_	 IRIA 

yli

yma x

1
A

C11
2
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C.	 Parabola tb = 1

The equation is

y2 = 2 Rz

Thus:

2
A = ymax

li	 2R

(9.023)

(9.024)

A

y l i	 ymax
	 (9.025)

A

C li = 2
	

(9.026)



I

R^al	
(1 - b)1 /2

Ra2	
1 - b

(9.028)

(9.029)
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D.	 Ellipse (0 < I b I < 1)

The equation is

2 +	 2	 2	 2( z - R) = R + b zy	 . (9.027)

Let

If R > 0 then;

_ a2	 1/2	
ymax> a1

zli	
a2 _ 7.

_	 1 ymax
a2	

1 - b	 ymax al

a 1	 ymax a 1

yli

ymax	 ymax<a I

n	 1	 ymax a a 1

Cli

2	 ymax<a I

(9.030)

(9.031)

(9. 032)

I
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If R < 0 then

A
	 a2	 2	 2	 1/2	 ymax 

a 
a1

z li	 a1 - ymax	 (9.033)
a2+	 1 -b	 y	 <amax 1

al	
Ymax a aln

y l i	 (9. 034)

ymax	 ymax< al

A

(1	 y max >_ a 1
C

	

	

(9.035)  li

2	 } ma x< a 1

E.	 Hyperbola (b>1)

The equation is

y + (z - R) 2 = R ̀+b z 2	(9.036)

al = -	 l	 (9.037)
(b - 1)

a	 -R	 (9.038)2	 b - 1

Let;



Ymax

Z
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2	 2	 1/2

ja 1 + Ymaxa2+	 b-1	 R>0.
A
Zli=	

ja2 + 
2	 1/2	 (9.039)

Y
ja, _	 lb -max	 R<0.

A
Y1i	 Ymax	 (9.040)

A
C 	 2	 (9.041)

9.4	 INTERSECTION CONSTRAINTS

Consider some arbitrary element, say (e 1V e2i), and suppose

e li # e2i' Assume that R 1 > 0 and R 2 > 0 so that the element is equiconvex.

It is clear that, should the two curves describing the element intersect at

a point, the range matrices should be edited so that the curves are not

allowed to procede beyond the point of intersection. This situation is

illustrated in Figure 23.

t y

Figure 23. Equiconvex Element

Illustrating Intersection Constraint
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Each curve in the lens system is described by an equation

of the form

	

f(z, y) = 0.	 (9.042)

where z	 < z <_ z 
max is the domain of definition specified by matrix zmin	 .

Consider th- problem of determining the point of intersection

(if it exists) of two such curves, say f I (z, y) = 0 and f 2(z, y) = 0.

Let:

it = surface number of curve 1

b, = coordinate of vertex of curve I

(z 1 ,min, 1 ,max!z	 = Interval of definition of curve 1 ref-
I

i
erenced to its vertex

i 2 = surface number of curve 2

b 2 = coordinate of vertex of curve 2

f z 2, min, z 2, max, = Interval of definition of curve 2 ref-

erenced to its vertex.

Choose a z - y coordinate system with the origin at the

vertex of curve 1 . The vertex of curve 2 is at the point (S, 0. ) where

S = b2 - b l .	 (9.043)

The two curves are given by:

	

f I (z,y) = 0.	 z 1, min < z < z1,max	 (9.044)
i
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f 2(z - S, y) = 0. z2 min < z < 
z 2 max

where

I

z 2, min 
_ 

z 2, min + S

z'	 = z2, max	 2, max +S

Interpreting the closed interval 
I 

Z i , z 21 as a point set, let:

,z	 (^,z
[z A B _[

z 1,min z
1,max [z'z,  min 2, max]

(9.045)

(9.046)

(9.047)

(9.0471)

If [zA' zBJ = 0 (void set) then f 1 and f2 do not intersect. Suppose then,

that C
zA, 

zBJ :^ 0 and consider those cases when z  = zB.

If Z  = z  = 0. it follows that f 1 (z, y) = z = 0. and the

point of intersection, (zip yI ), is given by:

z 1 = 0.	 (9.048)

(	 1/2

yI = {(b2 - 1) S 2 - 2R 2S	 (9.049)

If z  = z  = S then f 2(z, y) = z = 0. and the point of intersection is

given by:

zi = S	 (9.050)

(	 1/2
yI = {(b 1 - 1) S 2 + 2R 1 S}	 (9.051)



zA= z B = 0. zA= z  = S

Y Y

I)

z z
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These t\,,u cases \^hich involve a plane are illustrated in Figure 24.

Figure 24. Intersection of Conic and Plane

All other cases are such that

f 1 ( z, Y) = y 2 + (1 - b  ) z2 - 2R 	 z = 0.	 (9.052)

f 2 ( z - S, Y) = y 2 + (1 - b2 )( z - S) 2 - 2R2 ( z - S) = 0.	 (9.053)

Suppose that zA= zB = C where 0 < C < S. From equations (9. 052) and

(9. 053):

1/2

Y I (C) = (b 1 - 1) C 2 + 2R  C I
1/2

Y 2 (C) = ( b 2 - 1)(C - S) 2 + 2R 2 (C - S).^

The curves intersect only if y I ( C) = V, 2 (C) in which case

z  = C	 (9.054)
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a^

y  = y 1 (C).	 (9.055)

Finally, suppose zA< zB so that (z I . yI) is the simultaneous solution of

equations ( 9. 052) and (9. 053). Subtracting the two equations and simpli-

fying yields:

a z 2 + 2 pz + Y = 0.	 (9.056)

with

a = b 1 - b2 	(9.057)

P = R 1 - R2 + S (b2 - 1)	 (9.058)

Y = 2R2S - S2 (b2 - 1)	 (9.059

Suppose a = 0 and let:

-Yz 1 = 2 Y	 (9.060)

If zl it CA , z, the curves do not intersect; otherwise,

z I = z 1	 ( 9.061)

1/2

yI = (bl - 1) zi + 2R 1 z l	(9 062)

Suppose a # 0 and define A so that:

0 = ^2 - aY	 (9.063)



TR-67-700-10-2
Page I-9-19

There is no intersection if A< 0. If A = 0 let:

Rz = - a

If z  < z l < z  the point of intersection is given by equations (9. 061) and

(9.o62).

Finally, suppose A > 0 and let:

z - - p + A 1/2	 (9.065)
1	 a	 a

R	 1/2 
z = - a -	 (9. 066)2	 a 

If z l ^ L zA' z Bl and z 2	 rzA, z B , there is no point of intersection.

If z 1 E rz A , z Bl bst z2 4 rzA , z Bl the point is given by (9. 061) and

(9. 062). L If z l it [ZA' z Bl but z 2 E rzA , z  ] the point is given by

(9. 061) and (9. 062) using zJJ 2 in place of z1.

Suppose that z I E IzA' z Bl and z 2 [zA , z B I , that is,

there are two points of intersection. If
JJ 
R > 0 then C

z	 , z
1 	 1, min' 1 ,max JJ

[0'' z 1, max, and, consequently, 0, < z A < zB . Thus z 1 > 0. and

z 2 > 0. so that:

z I = min ( z 1 , z2 )
	 (9.067)

yI = (b l - 1) zI + 2R1 z  
I 

1/z	 (9.068)
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If R 1 < 0. then 
I z 1, min' z 1, max]	 [ z 1, min' 01 and V zB < 0.

Therefore z I < 0. and z 2< 0. so that:

z I = max (z I t z2)	 (9.069)

and y  is given by (9. 068).

In order to edit z and y by subjecting the elements to inter-

section constraints, consider the ith element and suppose eli 0 e 2 and

let the equation of eli be (9. 044) and the equation of e 2 be (9. 045).

The interval rz 1, min' 1 , max]z	 J which is relative to the
LL 

vertex of eli is given by:

L0. , Z li]	 zli > 0.

1Z I, min' z 1, max,	 L
	

(9.076)

Similarly:

nn10., z2i	 z2i >0.

z2, min' Z 2, max, 	
An	

(9.071)

[
7
2i , 0. ]	 z2i < 0.

Suppose eli and e 2 intersect at (z ip yI) relative to the vertex of eli*

The coordinates relative to the vertex of e 2 are:

zI = zI - S	 (9. 072)

(

I

1,
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yI = yI	
(9.073)

where S is the coordinate of the vertex of e 
2 

relative to the vertex of

eli

The point of intersection is valid provided z 	 < z
1, min — I

< z	 z	 <z, < z	 0<y <y	 and 0<y <y	 In this
1 , max	 2, min — I — 2, max	 — I	 1 i	 — I — 2i'

instance set:

A
z = z
li	 I

A
z 2i = z I

A	 n

y l i = y2i = y 

A	 n
C li = C 2i = 3

where "3" is the code for an intersection.
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9. 5	 SEPARATION CONSTRAINTS

Consider two elements, say A and B, which are separated by

an air space but shaped so that they intersect (see Figure 25).

Figure 25. Intersecting Elements

This type of intersection is not detected when the system is subjected to

aperture and intersection constraints; therefore, further editing is

required which is designed to prevent elements from coming to close,

namely within Az min of one ancther in the z direction. (See Figure 26).

min

Figure 26. Separation Constraint
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Let equations (9. 043), (9. 044), and (9. 045) and the definitions

pertaining to them represent two curves separated by an air space such

that S > 0. With the origin at the vertex of curve 1, let:

PI : (z I , yI) be the point of intersection,

P 1 . ( Z i t y 1 ) be a point on curve 1,

and	 P2 : (z2" y 1 ) be a point on curve 2, such that

z 2 - zl_ Az min(9.074)

where A zmin > 0. is a specified number.

The problem is to determine P 1 and P2 given the equations

of the curves.

Consider first the case zA= z  = 0, or f 1 (z, y) = z = 0, so

that:

zl= 0.	 (9.075)

z2 - &zmin	
(9.076)

y l = I (b 2 - 1)( z2 - S) 2 + 2R 2( z 2 - S) ) 1/2
	

(9.077)

as illustrated in Figure 27.



z
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v

S

Figure 27. P 1 and P2 when

f 1 (z, y)= z=0.

Next, suppose that z = z B= S or f2 (z- S, y) = z - S so that:

z 1 = S - Az min

z2 S

(9.078)

(9.079)

y 1 = (b 1 - 1) z i + 2R 1 z1 1/2 	 (9. 080)

y
PI

P1 — — P2

S
	 z

Figure 28. P 1 and P2 when

f2 (z-S, Y)= z - S=Q
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Finally, suppose z  < z B and solve equation (9. 0 52) for y = y( z 1 ) and

(9. 053) for z 2 = z 2 (y) to give:

1112
Y (z) = S (b 1 -1) z1 + 2 R 1 z 1 (9.081)

2

z 2 (Y) = S+	 2	
Y	

2 1 /2	
(9.082)

R 2 + E R 2 - (1 - b 2 ) Y

1.	 R2 > 0.

E _	 ( 9.083)

-1.	 R2<0.

Treating z 1 as an unknown let:

	

g ( z l ) _ [z 2 (Y) - zi - Ozmin	
(9.084)

At the point of intersection PI:

z l = z 2 = z 

so that g( z I ) = - Az min  < 0.

At the origin (0. , 0. ) we have z 1 = y = 0, and, from (9. 082), z 2 = S so

that g(0) = S - Az
min '	 min

The parameter Az	 must be chosen so that

dk zmin < S; otherwise, the elements are spaced too close axially.

Therefore g(0) > 0.
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The problem is to determine that value of z 1 , say z T , such

that g( z T) = 0. Let z
P 

be any value of z 1	
P

such that g(z ) > 0. and 
z 

any value such that g(z M ) < 0. , in particular, z
P 

= 0. and z M = 
z 

Having determined z T , P 1 and P2 are given by:

z l = z 

Y 1 = Y (ZT

Z2 = z 2 (y1)

With (0. , z I ) as starting values for (z P , z M ) consider the

following 7 step iterative procedure for establishing z T , P 1 . and P2.

1) SET

Z + Z
z = P M

T	 2.

2) COMPUTE

y (z T)	 (Equation 9. 081)

z 2 Cy(z T)1	 (Equation 9. 082)

g (z T ) _ ( Z
 2 z T ) - A zmin

U.
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3)	 IF:	 (a ) g( z T,) = 0.; O

(b) g ( z T,) > 0.; O

(c) g ( z T,) < 0. ; 05

4)	 SET

Z;) 
	 z 

Go to 6O

5)	 SET

z  = zT

6)	 IF: (a) I (z p-zM)/z M 1.> 10-6;lO

(b) I (Z p-z M)/z M I < 10-6; `:.J

7)	 SET

P1= I z T,, Y( z T ) )

P2 = f z2 (Y), Y(zT)^

The z coordinate of P2 relative to the vertex of curve 2 is

given by:

z2= z 2 -S
	

(9.085)
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If the curves do not intersect, that is, PI does not exist, it

is assumed that they are sufficiently well separated for all z . The
A n	 n

effect of separation constraints on z, y, and C may now be described

by considering an example of two elements:

a) Element A composed of surfaces i t and i2

and

b) Element B composed of surfaces i 3 and i4.

The range and code data for element A is given by z 1 A' z 2A'

C2A and for element B by z1 B' z 2B'	 . ' C2B.

Suppose curves i 2 and i 3 were found to intersect and that P1

and P2 have been computed employing the scheme described above,

A	 n
9. 5.1	 C2A= 3 and C IB # 3

In this instance A is an intersecting element and B is not.

Set:

z1B z2

A

y l B = yl

S=6. -6.
14 	 13

Ultimately, each element must be a closed curve composed of one or

more arcs and wherever possible the arcs should procede to the boundary

y = ymax'
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Suppose B is not a mirror and consider the case R. < 0. (See Figure
1 2 -

29).

(21 - .Ci_ Al

Figure 29. A is ;ntersecting and R i2 < 0.

A
In this case set C1B = 4 which states that a vertical line from P2

towards the line y = ymax is permissible, It is necessary to determine

if curve i4 intersects the line z = z 2 - S. Let (z I - S, P) be the point of

intersection (if it exists) and set:

z	 =z	 S2B

y2B = p
A
C 2 = 1

A
If R  > 0, set C 1B = 5 which states that a vertical. line from P 2 towards

2

V = ymax is not permissible. Let ((i, y 1 ) be the point where i 4 intersects

y = y1 (if it exists) and set:

z2B = P
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A

Y 2B = Y1

A
C 2B= 1

i
s	 ^

P	
^

2	 ((3,YI)

Figure 30. A is Intersecting and Ri2 > 0.

A	 A
9. 5.2	 C2A# 3 and CIB=3

Since B is intersecting and A is not set;

A
z = z
2A	 1

A

Y2A- Y1

S=S.

	

i 2 	it

Suppose A is not a mirror and R. > 0. as illustrated in Figure 31.
i 3 —

d2 1 + S,^f

PA3411 12 

S

Figure 31. B is Intersecting and R. > 0.
13
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A
Set C 2A= 4 and let (z 1 + S, P) be the point where i 1 intersects z = z 1+ S.

If this point exists set:

z1A= z 1 + S

A	
pylA=

A
If R  < 0. set C `A= 5 and (z 1 A' y i A) - (R ' y1) "Where ((l, y1) is the point of

3

intersection of i 1 and y = y1 (see Figure 32).

Figure 32. B is Intersecting and R. < 0.
i3

A	 n
9. 5.3	 C2A= 3 and C 1B = 3

The case where both elements are intersecting is treated in

exactly the same manner as the case where A is and B is not which is

discussed in Section 9. 5. 1.
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A	 A
9. 5.4	 C2A# 3 and C 1B 0 3

When neither element is intersecting there are several

special cases to consider.

If R. < 0, set:
12-

A
z = z

1B	 2

A
y l B = yl

S = 6.	 6.
1 4- 13

n
C 1B = 4

Aand 
(z 2B y2B )  ( z2 - S, P) which is the point where 1 4 intersects

z = z ' - S.
z

RIf i 2 > 0. and R  > 0, set (z 2A'  
y2A) - (z 1' yl) and

3
A	 A	 A

S = 6i - 6 i	 If A is not a mirror set C 2A= 4 and 
(z 1A' ylA)2	 1

= (z l + S, p) which is the point where i t intersects z = z I + S.

A	 A	 A	 A
If Ri2> 0, and R13 < 0, set (z 2A'  

y2A ) _ (z 1 ' yd, (z 1 B' YIB)

A	 A	 A	 A

= (z 2 ' y l ) ' 
C2A= 4, and C 1B= 4. If A is not a mirror set 

(z 1 A' ylA)

= (z 1 + S, R) which is the point where i t intersects z = z 1 + S. If B is not

a mirror set (z2B , y2 B ) - (z 2 - 
S, P) which is the point where i4 inter-

sects z = zZ - S.
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9.6	 ARCS MATRIX

Let A he a 2 x 5 x 100 arcs matrix whose ith layer contains

the end points of each of the arcs which comprise element i, that is,

	

z l	z2	
z 

	

y 1	 Y2	 . . .	
YN

If element i is bounded by surfaces i I and i 2 then each point

is relative to the vertex of i l . The jth arc has end points (z.
J

, y.) and
J

(z
j+l' Yj+1)with 1 < j < N-1 and (z l , Y l ) = (0. 1 0. ).

If i is a mirror (i I = i 2 ) then N = 2 and (z2, 
Y 2 ) _ (z 1i' Y1i)^

A
If i is an intersecting element (C ii = 3) then N = 3, ( z 2 , y2)

A	 A

(z li' y1i)' and (z 3 , y3 ) 	 (S, 0. ) where S = 
a i2 - dil,

With S - ai2 - ai	 suppose first that zli = z 2i + S. Then
1

N	 4, ( z 2 . Y2)	 (zli' Y I d ' ( z 3 , y3 ) = z li' Y2i) and (z 4 , Y4 ) _ (S, 0. j.

If z # z + S but y
li 

= y
li	 2i	 2i 

then, analogously, N = 4, ( z 2 , y2 ) _ ( z
li , 

y
li ),

( z 3 , y3 )  (z 2i + S, v li ) and (z 4 , y4 ) 	 (S, 0. ). These two cases are

illustrated in Figure 33.



z
S 4

z

zli = z2i + S A	 n
y li - y2i

TR-67-700-10-2
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F-

Figure 33. Three Arc Elements

Suppose then, that Y li < y2i ' If Cli	 5 then N = 5, (z2' y2)

(z li' yli), (z3 , y3)	 (zli, y2i), (z4' y4 ) ' (z2i + S, y2i), and (z 5 , y5 ) _ (S' 0.).

If C li = 5 cannot procede vertically from(z li' yli) so let ((3, y 1i ) be the

point (relative to i 2 ) where i2 intersects y = A	 It follows that N = 4,

(z , y ) _ (z	 y ), (z	 y ) _ ( p + S, ^y ), and (z	 y ) _ (S, 0. ). The2	 2	 li	 1i	 3	 3	 li	 4	 4
case for Yl i < y2i is illustrated in Figure 34.

3o : 4

2	 3
2

1Cli 45 	 Cli 5

Figure 34. A li < y2i
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The case AY li> y2i is very similiar to the case A < y2i' ifA	 n	 n	 nn
C 2 ^ 5 then N = 5, (z2' Y2) - (zli, Yli), (z3' y3)	

(z 
2i+ S, Y li ), ( z 4 9 Y4)

(Z 2i + S, y 2i), and z 5 , y 5 ) 	 (S, 0. ). However, if C 2i = 5 cannot procede

vertically from ( z2i + S, y2i), therefore N = 4, (z2' y2 ) _ (p, y2i),

(z3' y 3 )	 (z2i + S, y 21), and (z4' y4 ) _ (S, 0. ) where (R, y2i ) is the point

where i t intersects y = y2i.

9.7	 POINT LIST

In order to produce a z - y profile plot of the system it is

necessary to generate a list of points for each element. Plotting will

consist of joining each consecutive pair with a straight line; consequently,

the points must be dense (closely spaced) along conic arcs.

Let the list to be generated for the ith element. b- • given by,

((z:'` , y: ); 1 :<j  < N
p) , 

where z = y^	
p

= 0, and N is the number of points
J	 J	 1	 1 

in the list. The list is assumed to be arranged so that (z", y: , ) and
J	 J

(zj` +1' yj`+1) are consecutive points on the curve, and is produced by

examining the corresponding arcs matrix (defined in Section 9. 6).

Each curve is composed of from 1 to 4 arcs where an arc is

one of:

a) A vertical line of the form z = z  where y 1 < y < y2 so

that (z l , y l ) anu (z l , y2 ) are added as consecutive points to the list.

b) A horizontal line of the form y = yl where z l < z < z2

so that (z 1 , y l ) and (z 2 , y l ) are added to the list.

I
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C)	 A portion of the conic y 2 - ((b - 1) z 2 + 2Rz I = 0, for

z  < z < z B . The following set of M points (2 <_ M < 149) is added to the

list:

z  = z  + (i - 1) Oz	 (9.086)

1

yi	((b - 1) z2 + 2Rzi 
I 2	

1 < i < M	 (9.087)

z  - z 
Az = M - 1
	 (9.088)

The point list is such that y" > 0. for all j, that is, only the
J

upper half of the curve is represented; however, the lower half may be

produced by reflecting the data in the z (optic) axis. All data must be

referen-ed to a single coordinate system namely the one whose origin is

at the center of the entrance pupil. This is accomplished by replacing

z: with z: + a. ,where b, is the coordinate of the vertex of surface i
J	 J	 11	 11	 1

A profile diagram is produced by generating a point list for

each element and displaying the results as a two dimensional (z - y) plot.

The image plane and the entrance pupil may be included on

the profile diagram by attaching two additional point lists each of which

contains 2 points describing a vertical line. The image plane is the line

z = a with 0 S y 5 ymax and the entrance pupil is the line z = 0. with

0<y<p0.

Suppose some arbitrary ray is traced through the system

and let its coordinates on a- be (x., y., z. ) where 0 < i < (N + 1) with

a
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i = 0 designating the entrance pupil and i = N + 1 the image plane. This

ray is superimposed on the profile diagram by including the point list

given by:

Y J = yj

z= z +

where

0 S j S N+ 1.

f
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Section 10

SPOT DIAGRAM PLOTS

Using the notation of Section 8, let (xijk' yijk) be the coordinates

of the point of intersection of ray k and the image plane where 1 < i < N
— — c

refers to color and 1 < j < N H refers to object point.

The point set, (x ijk' yijk)' k = 1, 2, ... , MR ^ ' describes a

monochromatic spot whose center (x ij , yij ) is given by equations (8. 012)

and (8. 013). Translating the origin to (x.. 	
i

y.) the pattern becomes
( 	 1J	 J
t (xi;k' yijk)' 1 < k < MR) as defined by equations (8. 014) and (8. 015)..

Each of the NNH C monochromatic spots is to be plotted in the

`	 x-y plane using a universal scale which is chosen so that all plots can be

accommodated. Let:

xmin - min x i
J JJ
jk]

lL 
(10. 001)

xmax -max
Lxi.k]L	 J

(10.002)

ymin - min
ry ijk 1

(10.003)

ymax - max [yijk ] (10. 004)

The minima and maxima are taken over all values of i, j,

and k. Define:

y	 1	 (10.005)s	 =min 
[
xmin'	 Jmin	 min

and	 s	 =mar [xmax	 max' ymax	
(10. 006)
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Since all coordinates are relative to spot center then s 	 < 0.min
and  s	 > 0. Define s as follows:max

s= K max [Ismini ,s
J max J
	 (10. 007)

where K > 0. is a scale factor to be applied to all x and y. Both the x

and the y scales are chosen to extend over the interval -[s, s] whose

length, A , is

X =: 2s	 (10. 008)

The teezm, image coordinates, is used to specify the scaled

x-y values.

The plotting is to be performed on a printer where the hori-

zontal coordinate is a character position and the vertical coordinate is a

line position. By choosing 103 character positions and 62 line positions

the grid is essentially square which, of course, is necessary if distortion

is to be avoided. This character-line system will be referred to as the

printer coordinates. The two frames of reference are illustrated in

Figures 35 and 36, respectively.

(-8, s)
	

(s, s)

(-s, -s)
	

( 8 , -8)

Figure 35 Image Coordinates



TR-67-700-10-2
Page 7-10-3

I,

(0,61)
	

(102,61)

(0, 0) 1	 1 (102,0)

Figure 36 Printer Coordinates

Consider a transformation from image to printer coordinates which takes

(x, y) into (C,L). The transformation is obviously linear so that:

C = a l x + a 2	(10. 009)

I f
	 and	 L = b l y + b2	(10. 010)

It is uniquely determined by the requirements:

a) (-s, s) maps into (0, 102) which is the horizontal axis.

b) (-s, s) maps into (0, 61) which is the vertical axis.

C)	 C and L are integers where 0 < C < 102 and 0 < L < 61.

Let:

AC =	 102 (10.011)

AL = 61 (10.012)

Ct= x+ s (10.013)
C

L'` Y+s (10. 014)
AL
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C*= (C 
J	

(10. 015)

L*= [L]	 (10. 016)

X 1 is the largest integer which does not exceed X.

It follows that:

C =	 C* (C '	 - e) < 	 • 5	 (10. 017)

L* (L' - L*)< . 5L _ (10.018)

It is perhaps more convenient to number the lines from the

top of the page instead of from the bottom. In this case replace L as

computed by (10. 018) with 61-L.

To plot the monochromatic spot specified by I (xijk' yijk)'
1 < k < 

N1  
1 determine the set of printer coordinates (C k7 Lk);

1 < k'_MRl where C r = C r (K xijr ) and L s s L s (K '..	 If MR < 35 the

characters 1, 2, 3, ... , 9, A, B, ... , Z are used as plot symbols so

that each ray retains a unique identity. If M R > 35 the character X is

used as a single plot symbol for all points.
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