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FOREWORD

This report was prepared by Thermo Electron Corporation,

Waltham, Massachusetts, under JPL Contract No. 951770/NAS7-100,

The report covers the work performed from January 10, 1967, through

March 31, 1968.

The work was administered under the direction of Mr. Owen

Merrill, California Institute of Technology, Jet Propulsion Laboratory,

Pasadena, California.

The-Thermo Electron Corporation personnel that contributed to

this work includes: L. Lazaridis (Project Manager), Dr. P. Brosens,

T. Athanis, P. Shefsiek, P. Pantazelos and W. Robinson. This report

is designated by Thermo Electron as Report No. 4073-146-68.

Publication of this report does not necessarily constitute JPL

approval of the report's findings or conclusions. It is published only

for the exchange and sti.:iulation of ideas.
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ABSTRACT

This report covers the work accomplished during a 15-month

period originated on January 10, 1967 under JPL Contract No.

9 5177 0/NAS7 - 10 0.

During the reporting period a six-converter solar thermionic

generator (JG-4) was designed, fabricated and subjected to preliminary

evaluation, including performance tests of each converter prior to its

mounting on the generator. Six additional thermionic converters similar

to those used in the generator were fabricated and individually tested.

With the ex, option of one, each of the twelve converters tested produced

more than 36 watts of output power at 0. 7 volt output voltage, and at 	 -°

2000°K emitter temperature. The average power output per converter

was 37. 5 watts.	 --

All converters have identical overall configuration, employing

planar electrode geometry with a rhenium emitter (of about 2 cm  area),

and a molybdenum collector separated by about 0. 005 cm (2 mils) during

operation.

Critical parts of each converter and of the generator in general

were subjected to detailed design analysis and performance evaluation.

A thorough investigation was performed to determine the heat flux

distribution and temperature profiles, the heat transfer mechanisms,

and the heat dissipation requirements in the generator,

iv
	 I



t A 0 1 A t t A 1 A 0	 0 0 A t 0 A A i 1 0 A

TABLE OF CONTENTS

Chapter	 2.aFe

1	 INTRODUCTION AND SUMMARY . . .. . . . . . . . . . 	 1

2	 GENERATOR DESIGN	 7

3	 GENERATOR FABRICATION . . . . . . . . . . . . . . . . 15

4	 CONVERTER TESTS ..................... 27

5	 ELECTRON-BOMBARDMENT UNIT . . . . . . . . . . 33

Appendix

A	 REVIEW OF THE DESIGN DATA FOR THE
CAVI'T'Y OF THE JG-4 . . . . . . . . . . . . . . . . . . . . A-1

B	 DETAILED ANALYSIS OF MODIFIED CAVITY
BACK-PIECE FOR THE JG-4 . . . . . . . . . . . . . . . B-1

C	 THERMAL CHARACTERISTICS OF THE CAVITY
BACK-PIECE . . . . . . . . . . . . . . . . . . . . . . . . . . C-1

v

m om' ammill, 1	 s



PRECEDING PAGE B LANK NOT FILMED.

THl16 RMO KL UCTRON
E N 0 I N f f A I N 0	 0 0 A P 0 A A 1 1 0 N

LIST OF ILLUSTRATIONS

iII

t

Figure	 Page

1 JG-4 Frame with Cavity Front and Back Pieces
Mounted in Place	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 •	 •	 .	 .	 . 16

2 JG-4 Frame with Back Piece Surrounded by
Cooling Jacket	 .	 .	 .	 .	 .	 .	 .	 .	 ,	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 17

3 Typical Thermionic Converter used in JG-4 , , , , . 19

4 Rhenium Emitter used in JG-4 Thermionic
Converters	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 20

5 JG-4	 Cavity	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 21

6 .Electron-Bombardment Gun used for Laboratory
Test	 of	 JG--4	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 22

7 Complete JG-4 (Less Front Piece) 	 . . . . . . . . . . . 23

8 Complete JG-4 with Electron-Bombardment Unit. 24

9 Performance Characteristics of Six Converters
Used	 in JG-4	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 29

10 Performance Characteristics of Six Spare
Converters	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 30

A-1 Sun's Image from Parabolic Mirror Used in the
JG-4 Generator	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . A-22

A-2 Reflection of Solar Flux from Conical Reflector
Placed at Bottom of Cavity in the JG- 4 Generator , A-23

A-3 Computed Paths of Reflected Rays Defining Solar
Flux Incident on Reflector (Cavity-Reflector
Geometry in 5:1	 Scale)	 ,	 ,	 ,	 ,	 ,	 ,	 ,	 ,	 ,	 ,	 .	 .	 ,	 ,	 ,	 ,	 , A-24 

A-4 Variation of Angle of Inclination. (0 1 ) of Reflector
Cone 1 with Distance (H 1 ) of Solar Source from
Cavity	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 ,	 .	 .	 .	 .	 . A  2 5

A-5 Diagram for Deriving Geometrical View Factor
Between Cavity and Flat Part of Reflector . , . , , , A-26

A-6 Diagram for Deriving Geometrical View Factor
Between Cavity and Conical Part of Reflector . . . . A-27

vii

,.,,.:. r.s.,c.3 ,.^xtr..	 ...<..:^.y^uaa	 ^	 .y!a.•trt_:aer.:^e.'.s.Y„	 ^; ..	 ir;?i. i.	 .:^: ^	 ..,	 .,, ,:..	 ..



MO OLOGTRON
C 0 A P 0 R A T 1 0 H

o,

LIST OF ILLUSTRA'T'IONS (continued)

Figure page

B-1 Solar Flux: Distribution at Different. Distances
from Focal Plane	 .	 .	 .	 .	 .	 .	 .	 <	 .	 .	 .	 .	 . .	 B-12 .,

B-2 Equal-Intensity Profiles about Solar Image B-13

B-3 Total Emissivity of Different Materials 	 ,	 .	 .	 .	 . .	 B-14

B-4 Spectral Reflectivity of Different Materials .	 ,	 .	 . .	 B-15

B-5 Spectral. Emissivity and Reflectivity of Polished
Tungsten	 .	 .	 >	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 B-16

B - 6 Relative Intensity of Solar Radiation, Tungsten
Reflection and Tungsten Absorption 	 .	 .	 . .	 B-17

C-1 Temperature Profile in Back Piece . C-2

C-2 W, Braze (0. 65 Pd-0, 35 Co), and Mo Discs Before
Forming Test Specimen	 .	 .	 .	 .	 .	 .	 .	 . .	 C-5

C-3 Complete W-Mo Test Specimen	 .	 .	 .	 .	 .	 .	 .	 . .	 C - 6

C-4 Schematic. of W-Mo Test Specimen	 .	 .	 <	 .	 .	 .	 . .	 C - 8

C-5 W-Mo Test Specimen Brazed in a Water-Cooled
Cu	 Plate	 .	 .	 .	 .	 .	 <	 .	 .	 .	 .	 .	 . .	 C-9

C-6 All-Mo Test Specimen .	 .	 .	 .	 .	 ,	 .	 .	 .	 .	 . .	 C-10

C-7 W-Mo Test Specimen with Electron-Bombardment
Unit Mounted Inside Glass Bell Jar . 	 .	 .	 .	 >	 .	 . .	 C-13

C-8 Test Specimen Heating Arrangement	 .	 <	 .	 .	 .	 . .	 C-14 -

C-9 Plots of Test Specimens Temperature and Input
Power	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 >	 .	 .	 .	 . .	 C-17

C-10 Plots of Thermal Conductivity of W and Mo	 .	 .	 . .	 C- 21

viii

_	 s ..,:?:^	 ^..•'nt t`Sdeff_^:;:.err..



on

C 0 A P 0 A A 7 1 0 N

LIST OF TABLES

Table Page

I Converter Output Current and Power . 	 .	 .	 .	 .	 .	 . .	 31

B -I Solar Flux Distribution in Cavity 	 .	 .	 .	 .	 .	 .	 .	 . .	 B-8 

B-II Cavity Radiation Data .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 B-9

B -III Cavity Radiation Data .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 B-10

B-IV Properties of Cavity Materials 	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 B-11

C-I Temperature of W-Mo and All-Mo Test Specimens	 . .	 C-12

C-II Beat Input in the All-Mo Test Specimen	 .	 .	 .	 .	 . .	 C-19

ix



TtaOiFkflOMO ELMCTRAM
E N 0 1 N E E A 1 N 0	 C 0 R P 0 W A T 1 0 N

CHAPTER 1

INTRODUCTION AND SUMMARY

This is the final report of the work performed under

Contract No. 951770/NAS 7 .-100 during the period from January 10,

1967 through March 31, 1968. The work reported herein involves

the design, fabrication and preliminary test of a six-converter solar

thermi.onic generator designated as JG-A. The generator is to operate

in a solar energy concentrating system cons sting of a parabolic mirror
t

of 57-inch rim radius and a 69-inch focal length. The mirror gen-

erates a solar image in the form of a circular ellipsoid which at

the focal plane of the mirror has a cross sectional area of about

0. 885 square inches and a maximum energy of about 5000 watts.

The design of the six converters is similar to that of the Series VIII

converters that have been used in previous solar generators, but has

been modified to be compatible With a 6-converter system. T!ie
1

converters have planar electrodes with a Re emitter and Mo collector.

The electrode area is 2 cm2. The converters are to operate at an

emitter temperature of 2000°K at an inter.electrode spacing oft mils.

There were several main tasks in this program and they are summar-

ized below:

1, A detailed review and evaluation was made of the original.
i

JG-4 design (discussed in detail in TECO Report No.

TE 18-66). This was proposed because recent tests con-

ducted at JPL showed that solid Re emitters and Re

sleeves were more reliable for extended operation than

the Ta substrate pressure-bonded Re emitters and Ta sleeves

1
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proposed in the original design. FTowever, incorporating

solid Re emitters into the converters of the generator	 --

required redesign of the generator cavity because of the

lower thermal conductivity of Re. The new design has

the rear surfaces of the six emitters (Re) forming a

cylindrical cavity of 0. 61-inch radius and 0. 658-inch	 -

length- The front opening of the cavity is to be placed

at a distance of about 0. 4 inch behind the mirror's focal

plane, i. e. , towards the sun. This produces optimum

impingement and absorption of the solar energy on the

cavity wall. A tungsten cone with a 1-inch diameter

opening protects the cavity walls from adverse effects	 --
caused by inisalignrnent of the generator and the mirror.

The rear of the cavity is formed by a highly reflective

electropolished W surface (rear piece) in the form of an

inverted, doubly truncated cone, so designed as to direct

reflected solar energy uniformly to the cavity wall (the

emitters) This rear piece: zt-Rector is thermally isolated

from the converters. The energy absorbed by the re-
flector is dissipated by a large Cr2 03 -coated Mo

radiator ^,vhich is brazed to the W piece by a high tempera-
ture braze. During solar operation the W rear piece
is designed to operate 2t a temperature less than 1200°C.
With this Solar  irx_ai ge- ca vity arrangement, which is

expected to result in a near-optimum generator performance,
approx-Unatelsr 4500 warts of solar energy enter the cavity;

200 watts are absorbed by the front piece; 2300 watts are

absorbed by the six Re emitters; 1400 watts are absorbed

2
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by the Vv back piece; the remaining 600 watts are reflected

and/or re-radiated and escape through the front opening of

of the cavity.

2. In the fabrication of the various parts of the 3G-4 and final

assembly of the unit, considerable effort was expended in

the preparation of the Re sleeves, which developed vacuum

leaks during machining or thermal cycling. These leaks

resulted from voids left in the seam of the Re tubing during

the heliarc-welding process conducted by the vendor. This

problem was eliminated after the Re tubing was purchased

from the vendor in the "rolled only" state and the seam

was electron-beam-welded by TEGO. Substantial effort

was also expended in the fabrication of the emitters which,

due to their complex geometry and extremely close toler-

ances, required special preparatory techniques, particularly

during electron discharge machining and subsequent process-

ing. Finally, considerable effort was devoted to the gen-

erator assembly, which required the fabrication of special

tools for aligning to critical tolerances the converters and

the back-piece which form the cavity_ Prior to con.-

structing the Mo block, to which the various parts of the

gnerator were mounted. an .Al model was fabricated and

checked for feasibility of the overall block design.

3. Twelve identical thermionic converters were fabricated

and individually tested; six of these converters were

.mounted on the generator. During the test of each con-

verter, the output current was measured at different

3
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output voltages and at given emitter temperatures, with

the cesium temperature optimized for maximum output.

All twelve converters generated nearly identical data of

the following typical values:

Output Voltage = 0.7 volt

Output Current = 53. 5 amperes

Emitter (Hohlraum) Temperature = 2000°K

Cesium Temperature = 630°K

Collector Temperature = 1045°K

The above current-voltage data indicate an average power

output of 37. 5 watts from each converter, or a total of

224 watts from the six converters. The same power

output was obtained at a lover emitter temperature but

also at a lower output voltage.

4. Other work performed in association with the JG-4 included

the evaluation of the thermal transfer characteristics of the

0. 65 Pd - 0. 35 Co braze selected for joining the W and Mo

parts of the cavity back-piece. For this purpose two

samples, identical in geometry, were prepared and

tested. One sample consisted of a W and a Mo disk

joined together with the 0. 65 Pd - 0. 35 Co braze; the

other sample was a solid Mo disk. Both samples were

tested under identical conditions and comparison of the

test results indicated that the rate of heat transfer in

the W-braze-Mo sample was equal to or slightly higher

than that measured in the all-Mo sample.

4
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5. For laboratory tests of the JG-4, an electron bombardment

unit was fabricated and tested. This unit consisted of six

hairpin W filaments arranged to form a cylindrical unit

suitable for insertion into and heating of the generator

cavity. The W filaments could be connected either in

parallel, and controlled as a single unit, or individually,

and controlled as six separate units. The unit was tested

inside a cylindrical Mo block having approximately the

same geometry as the generator cavity. The test results

indicated that for a temperature of about 2000 °K on the

Mo surface facing the filaments, a total output power of

2200 watts was required from the filament assembly.

5
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CHAPTERZ

GENERATOR DESIGN

The original design of the six-converter solar thermionic gen-

erator (JG-4) is discussed in detail in the TECO Report No. TE18-66.

This design provided for Re emitters pressure-bonded to a Ta sub-

strate and Ta sleeves in the converters and also for Ta shoe-pieces

in the generator cavity. The cavity, of hexagonal cross section, was

to be formed by the rear surfaces of the emitters and 11 shoe-pieces "

which were to be welded to the emitters. These "shoe-pieces" were

to be perpendicular to the emitters in the rear of the cavity. Most of

the solar energy reachingthe rear of the cavity was to be intercepted

by the six "shoe-pieces" and 'transferred to the emitter surfaces

primarily by conduction with some radiation. The front cavity surface

is open to admit the solar energy.

Prior to the fabrication of the T G-4 a detailed review of its

_	 design was performed with particular emphasis on the emitter and

sleeve materials and the cavity geometry. This review was prompted

by recent converter life test results at JPL which indicated that con-

verters employing Ta sleeves and pressure-bonded Re emitters often

failed after an extended period of operation due to the following reasons:

1. When the converter operated. in a horizontal position, the

sleeve sagged, causing an electric short between emitter

1	 and collector.

2 . The sleeve developed a. leak at its hottest region, near the

emitter, due to prolonged attack by residual gases (e. g. 02)

present in the converter test environment (vacuum of about

10 -5 - 10 -6 torr).

7
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3. The life tests of the converters revealed a reaction

between the Re emitter and the Ta substrate to which

it was pressure-bonded, resulting in an inter-diffusion

of the two metals at their interface and the formation

of Kirkendall holes. This-, in turn, caused a partial

separation of the metals with a resultant shorting of

emitter to collector as well as a reduction in the

thermal conductivity of the composite emitter due

to theporosity of the Kirkendall holes.

Converters using Re sleeves and solid Re emitters did not develop

the above adverse effects because of the high mechanical strength

and the chemical inertness of the Rhenium and the elimination of

the Ta substrate.

In view of the above results it vras decided to change the

pressure-bonded Ta-Re emitter and the Ta sleeve in the converters

of the JG-4 generator to Rhenium. This change, because of the low

thermal conductivity of Re compared to Ta., made the "shoe-piece"

concept unacceptable. The temperature gradients in the emitters

and the "shoe-pieces" would have been too large. It was necessary

to change the cavity geometry so that the emitter temperature dis-

tribution was controlled by radiation transfer r 	 r than conduction

transfer. This was accomplished by replacing the 'shoe.-pieces"

with a highly reflective element in the rear of the cavity (back piece)

so designed as to direct most of the solar energy incident on it back to

emitters by reflection. The back-piece, in the form of a doubly

truncated inverted cone, covers the whole rear opening of the cavity

and is both thermally isolated and electrically insulated from the

emitters.

8
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Also in order to enhance the uniformity of temperature dis-

tribution in the emitters, their rear surfaces, which form the

peripheral part of the cavity, were designed to form a cylindrical

wall instead of a hexagonal one as originally intended. To provide for

a smaller temperature gradient through the emitter thickness, this

dimension was reduced in the new design; the higher mechanical

strength of Re over Ta allowed for this reduction. Finally, to

increase the absorptivity of the emitter rear surfaces in the cavity,

these surfaces were designed with grooves cut parallel to the cavity

axis. (Described in the text following and illustrated in Figure 4. )

The replacement of the conductive Ta "shoe-pieces" by a reflective

electropolished W back-piece was prompted also by the lack of con-

fidence on the heat transfer capability of the weld between the "shoe-

piece" and the emitter. A poor weld would have cause the "shoe-piece"

to attain prohibitively high temperatures that could result in catastrophic

failure of the generator. Furthermore, the welding of a "shoe-piece"

to an emitter was to be performed after the emitter was incorporated

into a converter. This operation presented severe problems associated

with the critical alignment of the "shoe .-piece" and the structural in-

tegrity of the emitter.

Based on the original data supplied by JPL, taking into con-

sideration the mirror geometry and the. pseudo--source of solar energy,

(a point--source solar image) a new cavity design was prepared. A

detailed study (Appendix A) was performed on the heat transfer

mechanisms of the radiant energy in the cavity and the optimization

of the flux distribution. Following this study additional and more

accurate information about the mirror geometry, the solar image

9
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and the energy distribution at the focal plane was supplied later by JPL.

Further investigation on the optimum cavity design was conducted, and

the results of this work are presented in Appendix B. Data regarding

the geometry, physical properties and operational characteristics of

the final JG-4 cavity assembly, including the converters, are

summarized below. These data are based on the design analyses

presented in Appond'.ces A and B and on experimental results obtained
in previous related programs.

The final JG-4 cavity is in the form of a cylinder of 1 . 22 Winch

diameter with its axis coincident with the optical axis (the normal to

the apex of the mirror). The peripheral surface of the cavity is formed

by the rear surfaces of the six Re emitters spaced 0. 024 inch from each

other; each surface is 0. 65$ inch long and is grooved along this

dimension with 29 parallel rectangular grooves each 0. 010 inch wide

and about 0. 020 inch deep.. This type of surface increases the

absorptivity of the Re surface to about 0.75. A cylindrical hole,

0. 020 inch wide, 0. 160 inch deep, for pyrometric temperature meas-•

urements, is centrally located on the side facing the mirror in each

of the emitters. The center of the hole is 0. 040 inch away from the

rear surface and 0. 070 inch away from the front surface of the emitter. ,

The estimated temperature difference along the 0. 070=-inch path is about

40°K when the thermionic surface of the emitter is near 2000°K (the

rear at about 2070 , K)'. The current from emitter to collector is about

60 amperes and the output voltage is 0. 7 volt, resulting in a converter

power output of 42 watts- This output occurs at an estimated emitter-

collector separation of 2 mils, and corresponds to a collector tempera-

ture of about 1030°K and a cesium reservoir temperature of about 630°K.

I
10
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The heat losses from the emitter, neglecting heat conduction through

the sleeve, are approximately 230 watts. The cylindrical Re sleeve

is 5 mils thick, 0. 48 inch .long and has an inside diameter of 0. 64 inch.

The heat conduction loss through the sleeve is about 20 watts for a

temperature gradient of 900°K along the length of the sleeve, assuming

perfect shielding for radiation losses.

The sleeve shield consists of a minimum of five Ta cylinders,

5 mils apart from each other, formed by a continuous wrap of Ta sheet

0. 001 inch thick. Assuming that the average temperature of the sleeve

is about 1500°K, that the Ta emissivity is 0. 2, and neglecting any

radiation exchange between sleeve and collector, the total radiation

loss from the sleeve of 1 in. 2 lateral area is about 5 watts. An

additional Re shield in the form of a flat square with a circular hole

to allow for the cylindrical (0. 658 in. dia) emitter body is placed

behind the exposed four flat corners (total area 0. 09 in. 2 ) of the rear
part of the emitter to reduce radiation losses: again, as with the

sleeve shield, the losses through this shield are negligible.

The front opening of the cavity (nearer the mirror) is formed

by the front-piece, having a 1-inch diameter circular aperture

centered at the cavity axis and located 0. 11 inch away from the edge

of the cavity wall (the emitter rear surfaces). The front-piece,

thermally isolated from the emitters, is made of W and its surface,

facing the mirror, is in the form of a cone inclined at an angle of

52 ° with the optical axis. This polished surface has an area of about

18. 6 in. 2, and is maintained at an average temperature of about 1000°K

when the solar energy incident on this surface is about 200 watts. The

total emissivity and the total reflectivity of polished W at 1000°K are

11
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approximately 0. 11 and 0. 55, respectively. Radiation exchange

between the front-piec:, and the six converters is assumed to be

negligible. The difference between their average temperatures is

small and five radiation shields arep lace(' on the back of the front

pieces (front cone).

The rear opening of the cavity is occupied. by the back-piece,

which is symmetrically located about the cavity axis, and is thermally

isolated from the converters. This piece consists of two parts;

(1) the front, made of W, which serves as a reflector of the solar energy

and (2) the rear, made of Mo, which serves as a radiator for tb

absorbed solar energy, The surface of the front part, facing the

cavity, is in the form of a doubly truncated cone, designed so that

the major portion of the reflected solar energy is uniformly directed

toward the six emitters. The top opening of this surface is placed

0. 12 inch away from the edge of the emitters. The electropolished

surface has an area of about 1. 86 in. 2 and during solar testing will

be at a temperature of about 1200°K. This temperature is controlled

by the radiation loss from the rear part surface, which is grooved

and Cr 2 0 3 --coated to produce a total emissivity of at least 0.75. It

has a 76-in. 2 area and is capable of dissipating 1800 watts when its

average temperature is approximately 950°K. The geometry- and the

temperature distribution of the ; ear part of the back--piece are dis-

cussed in Appendix C.

The rear and front parts of the back-piece are joined together

by a high temperature braze, (0. 65 Pd-O. 35 Co). The thermal re-

sistance of this braze, measured across a W/O. 65 Pd-0. 35 Co/Mo

disk in a specially designed experiment, was found to be equal to or

12
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.less than the thermal resistance of an all-Mo disk of equal cross-

section and thickness. Details of this experiment are given in

Appendix C. The energy radiated from the back-piece is absorbed

mainly by water-cooled copper heat sinks that surround the radiating

surfaces. The absorbing surfaces of the heat sinks are Cr2O3-coated.

The heat sink also serves as the generator support structure and has

provisions for terminating all the instrumentation wires extended

from the converter and other parts of the generator.

The design of the back-piece, in particular the tungsten front

part, depends upon the assumed energy distribution within the cavity.

The present design of this piece is based on the most recent data

supplied by JPL regarding the geometry of the mirror, the size of

the solar image and its energy distribution, and also the variation

of the soles: energy distribution in the cavity with image position. The

de'`---:1s of tae design are presented in Appendices A and B, which deal

in detail with the design parameters of the cavity and particularly of

the back-piece. The results of these studies indicate that the near-

optimum mirror cavity arrangement requires a cavity front-solar

image separation of about 0. 4 in. with the image located on the axis

-)f the cylindrical cavity. In this arrangement a total amount of 4500

watts of solar energy enter the cavity; 200 watts are absorbed by the

front-piece; approximately 2300 watts are absorbed by the six emitters,

while approximately 1400 watts are absorbed by the back-pi.ec-a; the

remaining 600 watts are reflected and/or re-radiated arid escape

through the front opening of the cavity.

13
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CHAPTER 

GENERATOR FABRICATION

Following completion of the JG-4 design, the fabrication and

assembly of the generator was performed in several stages including:

1) .fabrication of the generator frame (block); 2) fabrication and

assembly of twelve identical thermionic converters (six mounted

in the generator); 3) fabrication of other parts of the generator, e. g.

the front-piece, back-piece, supports, etc. ; 4) fabrication of the

back-piece radiator and the cooling jacket-generator support, including

thermocouple terminations; 5) fabrication and assembly of a multi-

filament electron-bombardment gun; and 6) assembly of the generator.

Prior to the fabrication of the molybdenum generator frame,

an aluminum model was made and used for checking structural details

and assembly tolerances. The final frame, with the cavity back-piece,
radiator, - frame support structures, and front-piece mounted in place,
is shown in Figure 1. The grooved and Cr 2 O 3 -coated molybdenum rear
surface (radiator) of the back-piece and the polished tungsten front-

piece are clearly shown in this figure. Details of the converter mounting

provisions and the thermocouples (chromelaa.lumel) used for monitoring

the frame's temperature can also be seen in the same figure. Figure 2

shows the frame mounted on the copper cooling jacket; the holes in

the jacket are for mounting terminal posts for the thermocouples,

cesium heater leads, and voltage probes used in the generator operation.

A typical thermionic converter used in the JG-4 generator is
shown in Figure 3. The grooved and Cr 2 O 3 -coated copper radiator,
the copper tube cesium reservoir, its heater (platinum) and heat shield

15
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(nickel) and the niobium A1 3 0 3 emitter-collector seal are clearly

shown in this figure. The tantalum support for the multi-layer

radiation shield around the sleeve and part of the emi+ter including

the hole for pyrometer temperature measurement are also shown

in this figure. The chrome?-alumel thermocouples used for monitoring

the temperature of the various parts (H. g. , collector; radiator, cesium

reservoir) of each converter are also evident in Figure 3.

A detailed view of the rhenium emitter used in the converters

of the JG-4 is shown in Figure 4. Both the flat, smooth front (facing

the collector) and the cylindrical, grooved rear (part of the cavity)

surfaces of the emitter are clearly shown. The generator cavity is

shown in detail in Figure 5 ;where the six converters used in the JG-4

are shown mounted on the frame. In this figure the electropolished

tungsten front surface (reflector) of the back-piece is in clear view.

The six-filarnent electron -bombardment assembly used fc.r

preliminary tests of the JG-4 is shown in Figure 6. The filaments

(tungsten) share . common heat reflector (rhenium) centrally mounted

at the top of the assembly.

The complete JG-4 generator is shown in Figures 7 and 8

(less front-piece). Figure 8 also includes the electron-bombardment

gun, mounted on the front-piece of the generator. In this figure, the

two heavy posts (copper) shown on the side of the generator are the

emitter and collector current leads of the six converters, connected

in series.

During fabrication of the generator, extensive effort was

expended in the fabrication of the rhenium emitters and sleeves.

18
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Because of their complex geometry and close tolerances; the emitters

required special manufacturing procedures, particularly during the

electron-discharge machining (EDM) of their grooved cylindrical
t	 _

surfaces. The rhenium sleeves, of 5-mil wall thickness, alto

required special methods for their construction due to the problem

of maintaining structural integrity, particularly at the sleeve's seam

during the thermal cycling of a sleeve performed prior to incorporating

it into a converter. Forming of the seam of a sleeve was ac,-omplished

by electron-beam welding, the same method was also used for joining

the sleeve to the niobium flange of the emitter-collector seal and the

sleeve to the emitter. Because of some difficulties encountered in

this operation, the last six converters, out of a total of twelve built

L
for this program, had their sleeves joined to the seals with vanadium

brazes. Considerable care and effort were also devoted to assembling

the generator, with particular emphasis on the cavity area, where

very small tolerances and critical alignment were required

L
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CHAPTER 4

CONVERTER TESTS

All converters built for this program had identical overall con-

figuration employing planar electrode geometry with polycrystalline

rhenium emitters and molybdenum collectors. The effective area of

the emitter and the inte-electrode spacing were estimated to be 2 cm 

and 0. 005 cm, respectively, during converter operation. Twelve con-

verters were completed for this program; six of these were mounted

on the frame of the JC-4 generator. All converters were subjected

to identical performance tests using a static load between emitter

and collector. Each converter was tested at an emitter temperature

of 1975°K for output voltages of 0. 6, 0. 8, 1. 0 and 1.2 volt, and at

2000°K for 0.7 volt. During test the cesium temperature was

optimized for maximum output current at the given voltage. The

collector temperature was not controlled independently but it depended

on the emitter and cesium temperatures and varied within a range

determined by the heat rejection rate afforded by the converter design.

The emitter was heated by an electron-bombardment gun placed near

the exposed flat surface of the emitter. A 1000-volt potential was

applied betv;een the gun and the emitter. The cesium temperature was

controlled by a platinvrn wire heater surrou_ ding the cesium reservoir.

In all tests the emitter temperature was measured by an optical

pyrometer through a hole in the emitter body. This temperature was

corrected for pyrometric errors and for absorption loss in the glass

wall of the bell jar surrounding the converter. All converters were

tested in a vacuum of about 2 x 10 6 torr. The collector and cesium
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temperatures as well as the temperature of other parts of the converter

(e. g. , radiator, seal, etc. ) were monitored by chromel-alumel thermo-

couples mounted on the converter. Multi-foil thermal shielding of the

sleeve was not used in these tests.

The performance of converters Nos. 3, 4, 5, 10, 14 and 15 is

shown in Figure 9, where the output current (I) is plotted versus the

output voltage IV); the collector (Tc ) and cesium (T R ) temperatures

are also plotted in the same figure. These six converters, after test,

were used in the JG-4 generator. The performance of the other six

(spare) converters, Nos. 2, 7, 8, 9, 12 and 16 is shown in Figure 10,

where again I, Tc and T R are plotted versus V. These tests were

performed at an emitter temperature (TE ) of 1975°K. Table I shows

the output current, output power and the value of TR and Tc for each

converter at V = 0.7 volt and at TE = 2000°K. At can be seen from

this table that the average output power of all converters tested is

37. 5 watts obtained at average collector and cesium temperatures

of 1045°K and 630°K, respectively.
l
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Converter
No.

3

4

5

10

14

15

w

ti

v
a

0

Average 53.4 37.4 1039 625

2 53.0 37.1 1066 633

7 58.0 40.6 1047 640

8 50.0 35.0 1035 628

9 54.0 31.8 1061 636

12 54.5 38.2 1056 630

16 52.5 36.8 1038 637

m
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s.
!d
fl..

TMERMO ELRCTROM
(% 0 1 11 (( a 1 11 0	 C 0 A F 0 A I( 1 0 f

TABLE I

CONVERTER OUTPUT CURRENT AND POWER

(Output Voltage = 0.7 volt; Emitter Temperature = 2000°K)

Output
Current
( amp)

55.0

54,0

54.0

52.0

52.5

53.0

Output
Power
(watt)

38.5

37.8

37.8

36.4

36.8

37.1

Collector
Temperature

(°K)

1075

1031

1036

1031

1027

1032

Cesium
Temperature

(°K)

622

628

626

626

627

623

Average	 53.7	 3'.6	 1051	 634

Average (12 converters) 37. 5 	 1045	 630
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CHAPTER 

ELECTRON-BOMBARDMENT UNIT

An electron-bombardment gun was constructed for laboratory

test of the JG-4 generator. The gun consists of six identical hairpin

tungsten filaments mounted on tantalum posts terminating in a molyb-

denum flange through Al 2 0 3 electrical insulators. The filaments are

arranged in a cylindrical configuration suitable for the cavity of the

JG-4 generator. Tantalum and rhenium heat shields are used at the

front and rear of the filament assembly. The complete unit is shown

in the photograph of Figure 6.

The unit was tested inside a molybdenum cylinder having approxi-

mately the same geometry as the cavity of the JG-4. Both the inside

and outside surfaces of the cylinder were grooved, and a hole for

pyrometric temperature measurements was provided on the cylinder

wall. During this test, the filaments, connected in series, were heated

up to about 2300°K with an input power of 845 watts (32. 5 amperes,

current *) , provided by an ac supply. An electron accelerating potential

of 1000 volts was applied between the filaments and the molybdenum

cylinder, which received an electron-bombardment power of 2200 watts;

part of this power was dissipated by radiation from two molybdenum

disks attached to the ends of the cylinder. During this test, the

cylinder's inner surface, facing the filaments, reached a temperature

of approximately 2000°K, while the average temperature of each

filament was 2300°K. Atter test the electron-bombardment unit was

mounted on the JG- 4 generator as shown in the photograph, of Figure 8.
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APPENDIX A

REVIEW OF THE DESIGN DATA FOR THE
CAVITY OF THE JG-4



CAVITY DESIGN

1. SOLAR SOURCE

The cavity temperature depends on the intensity of the solar flux

at the sun's image formed by the mirror in '__ ont of the cavity. For a

parabolic mirror the sun's image formed at the focal point of the mirror

from a beam of rays reflected from a single point on the mirror has an

elliptical cross section of semi-axes a and b, (see Figure A-1). (The

sun's image formed by rays reflected from all points on the mirror hay

a circular cross section of radius a. ) The focal length (f) of the mirror

is:
R	 (1 + cos 0 )

f	 m2 sin 0 m
	 (A-1 )

m

where R
m	 m

and B are the rim radius and angle of the mirror respectively.

The semi-axes a and b are:

0R

a sin 8	
(A-2)

m

and

R

	

b 2 sin B	
(A-3)

m

The cross section of the sun's image is simply

	

A = Tra 2	(A-4)
s

In the above equation sG = 0. 0093 rad. [The solar angle is 32'1. For a

parabolic mirror having Rm	 m= 57" and B = 45° the above equations

A-1

t	 ^.



result in: f = 69", a =	 530 11 , b = 0. 375" and A = 0. 885 in. 2 . The
s

solar en^jrgy (W) at the focal point of the mirror is:

W = Tr C f2 sin  0	 (A- 5)m

where
2

C = 4 Q Te	(A-6)

is the solar constant; substituting a = 5. 67 x 10 12 watt/cm 2 - °K4,

T
s 

= 6000°K (the sun's temperature), and 0 = 0. 0093 the result is:

C = 0. 6 watt//cm 2 ; then for the mirror considered here, W = 7700 watts.

H3wever, due to loss of solar energy in the earth's atmosphere in the

mirror and in the window of the vacuum chamber, amounting typically

to 40% of the total radiant energy, the value of W in this case would be

^-4600 watts. Also, if an object (e.g. the chamber housing the generator)

is symmetrically located in the optical axis, a shadow is created in front

of the mirror having an angle (0
s ) 

given by:

0	 R
tan 22f

	

	 (A-7)

where R
s 

is the effective radii.s of the object; for R = 8" and f 69,
s

0
s 

= 6' 40'. Due to the shad	
s

owing object a portion (W ) of the solar

energy is prevented from reaching tae mirror. In the present case

Ws c.+ 120 watts, computed from equation (A-5) after replacing 0m by Os.

This furlher reduce-, the solar energy into the cavity so that the net

energy :s approximately 45GO watts. The intensity at mirror's focal

point is	
W

I	 A s	 (A- 8)

where
2A = ira 	 (A-9 )

s

A--2

f
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Using W = 4500 watts and A s = 0. 885 in. 2 the intensity at the focal point

becomes approximately 800 watts cm2.

Fora given geometry of the cavity its optimum distance from the

sun's image and consequently the optimum collection of the solar energy

on the cavity surface depends on the intensity distribution on the sun's

image (source). For a point source of uniform distribution and for a

cavity with a reflecting rear surface the optimum cavity-source

separation (H 1 )(measured from the front surface of the cavity) is:

R = H 1 tan 9m	(A-10)

where R is the radius of the cylindrical cavity symmetrically located

on the optical axis. For R = 0. 61" and 9m = 45°, H, = 0. 61	 The

curved surface of the cavity is formed by the rear surfaces of the six
emitters of the converters. Part of the solar energy entering the cavity

will impinge on these surfaces and to a great extent (-7076) will be

absorbed; (these surfaces are made so as to have maximum absorptivity).

The rest of the radiation entering the cavity will go through the rear

opening of the cavity and stroke the reflector (reflectivity-7070) designed

to direct most of the reflected radiation back to the cavity surface.

2. CAVITY REFLECTOR

The design of the reflector is governed by the requirement that the

reflected portion of the solar energy reaching the reflector is directed in

its entirety to the cylindrical surface of the cavity formed by the back

faces of the six emitters. This requirement can be readily satisfied by

generating the reflector's surface through the revolution of a straight or

curved line inclined at an appropriate angle with the optical axis, which

A-3



coincides with the cavity's geometrical axis. The resulting surface

would assume the form of an inverted right cone with its apex on the

optical axis. If the additional requirement is imposed that the reflected

solar energy is uniformly distributed on the cylindrical cavity surface,

the conical surface of the reflector would have to be generated by a

curved line conforming to the profile of the intensity distribution of the

solar energy from the source. Since the solid angle subtended at the

source by the rear (circular) surface of the cavity above the reflector

is not large, the solar flux intensity profile wouldnot vary considerably

along the segment intercepted by .he reflector. Furthermore, if the

refl ector is to be made out of tungsten (electropolished), it will involve

great difficulty and expense in accurately machining a cone having a

surface generated by a curved (e. g. circular) line. Therefore, only

a cone generated by a straight line will be considered he: e. However,

such a cone, if made from a single surface, would have to be placed at

an impractically long distance from the cavity in order to direct the

whole reflected portion of the solar flux incident on the reflector ba`

to the cylindrical wall of the cavity. To accomplish this and yet keep

the reflector at a relatively short distance from the cavity a "double"

cone, generated by two straight lines inclined at different angles to the

optical axis would be suitable; such a cone is shown in the diagram of

Figure A-2. The geometry of this cone (reflector) is discussed below.

The geometry of the reflector is conveniently determined by treating

the transmission of light between the source; the cavity and the reflector

as a two-dimensional problem of spatial symmetry. This is accomplished

by assuming that the source (sun's image formed by the rr.irror) is a

"point source" occupying the origin of a coordinate system with both the

A-4
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cylindrical cavity and the conical reflector symmetrically located about

the coordinate representing the optical axis. Referring to the diagram

of Figure A-2, the solar energy incident on the reflector through the

rear opening of the cavity is contained within a solid angl- (W) defined

by the extreme light rays 1 and 3 making angles 8 1 , and 8 s respectively

with the vertical (optical axis); the solid angle is given by:

	

W = 21r (cos 8s '- cos 8 1 ),	 (A-11 )

where 8s is the shadow angle, and

tan 8 = 1R	 (A-12)1 
2

where:

H2 = H 1 + D	 (A-13)

is the distance of the rear opening of the cavity from the source; D is the

height of the cavity wall which is the same as the diameter of an emitter.

For D = 0. 6')8" and H 1 = 0. 61 ", H2 = 1.268" and hence, 8 1 = 25" 40' for

R = 0. 6i ". Since 8 = 6° 40', w = 0. 578 steradians.
S

The total amount of solar enegy entering the cavity is contained within

the solid ang l e (WC ) defined by the angles 8m	 sand 8 , i. e.

We = 2 Tr (cos 8 - cos 8 j	 (A-14)
s	 m

For 8	 6° 40' and 8 = 45°, W C = 1. 80 sterad. The fraction of solars	 m
energy incident on the reflector is given by the radio W%Wc , i. e.

W	 cos 8s - cos 81

WC	 cos 8 - cos 8
s	 m

which, in this case, is 32%.
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The reflector is formed by two inverted truncated cones ( 1 and 2)

having their curved surfaces inclined at. angles 01 and 02 respectively

with the vertical. The value of each angle is such that all the reflected

light from the corresponding cone ( assuming specular reflection) is

directed to the cavity wall, on which the light distribution is uniform

throughout the total height (D) of the wall. The solar energy incident

on cone 1 is contained within a solid angle (W
i ) 

defined by the rays

1 and 2 which make angles 8 1 and 62 respectively with the vertical;

W 
1 

is given by:

W1 = 2n (Cos 0 1 -•Cos 8 2 )
	 (A-16)

Upon reflection from the surface of cone 1, ray 1 impinges on the upper

edge of the cavity wall (e. g. at H 1 ) while ray 2 strikes the lower edge of

the wall, at a distance H 2 from the source. The solar energy incident

on cone 2 is contained within the solid angle W 2 , defined by the rays 2

and 3, making angles b 2 and 9 s respectively with the vertical; W 2 is

given by:

tr°2 = 2n (cos 8 s _ cos 02i
	 (A-17)

Upon reflection from the surface of cone 2, rays 2 and 3 strike the upper

(at H 1 ) and lower (at H2 ) edges of the ca-,---'-,y wail respectively. The

angles of inclination 
(i1 

and (p
2

) of the two truncated cones are given by:

x - x

	

1	 2

	

tan ^ 1 - y,	 yl	 (A-18)

tan 02 = xL x3

	

---	 (A-19 )

y3-y2

A .- b

and

I
1



x
tan 0 = 3 .

s	 y3
(A-22)

where y2 - y  is the height of cone 1 with radii of it: bases x  and x2,

and y 3 - y2 is the height of cone 2 with radii of its bases x 2 and x 3 , as

is evident from the diagram of Figure A-2. From the same diagram it

can be seen that the ray angles 0 1 , 02 and 0 s are related to the x-y

coordinates of the two cones by the following equation:3:

xl
tan 0 1 = — ,	 (A-20;

yl

x
tan 02 = ?

y	
(A-21 )

2

and

For given cavity dimensions (R and D) and given light source extreme

ray angles (0m and 6 s ), a geometry for the conical reflector can be found

to fulfill the requirement of directing all the reflected light to the cavity

wall with uniform distribution along the wall height. This geometry,

need satisfy the following relationships, evident from the diagram of

Figure A-2:
- H

	

tan Y1 = R 1 + x 1	 (A-2 3)
1

	

- H
YZtan 

Y 2 - R + x 2	 (A-24)
2

tail'

	

Y2  	 R + x 1	 (A-2 51

2

_ y 3 - H2	tan 
Y 3	 R + x	 (A-26)

3

Any angle (y) made by a reflected ray and the horizontal is related to

A-7
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the angle (9) made by the incident ray and the vertical and to the angle

(0) made by the reflecting surface and the vertical as follows:

Y = Z -a - g	 (A-27)

whe re
a =	 ®	 (A-28)

and also-,
a = 9 + B	 (A-29)

v,here 8 is the angle of incidence. Eliminating a and 8 from equation

(A-27) it beco-T.es:

Y = 2 + 8 - 2	 (A-30)

and cc zis equently

tan Y = -cot (2 $ + 9)	 (A-31)

where:

ta^z 2p tan 9-1
- cot (2Q + 9) = tan 2¢ + tan 6 	 (A-32)

Also:

tar, ,, = ^ HR	 (A••33)

Combining equations (A-3i ), (A-32; and (A-33) one obtains:

Ir	 H

^Rra":0+1
tan 2q =	 - y I^ 	 (A-34)

tan 9 R + x'

A-8
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IIntroducing:
	

x = y tan 8	 (A-35)

:n equation ( A-34) and rearranging it the result is:

2 y- H + R cot 19

tan 2Q = y (tae - cote) + R + h cot 0'	 (A - 36)

Using equations ( A-23), (A - 24), (A-25) and ( A -26), the above equation

becomes:

2y1 - H l + R cot el
tan 2 

¢ 1 y l (tae l - cot 01) R + H 1 cot el
( A -37)

2y2-H2 +R cot 02
tan 2 ¢ 1 = (A- 38)yy (tan 02 - cot 02 ) + R + H2 cot 02

- H 1 + R cot 02
tan 29,

Q
= (A- 39)

2 y2 (tan 02 - cot 02 ) + R + H l cot 82

2y 3 - H2 +R cot B
tan Zg

2
=	 --

y

s

( tan	 e s - cot e s ) + R + HZ cut 05
(A -40);

Al: c,, by introducing equations (A-20), (A. - ?:1) and (A-22) in equations

(A-18) and (A-i9) the two latter become

y 1 to 0 1 -- y2 tar &2
tan Q1 _	 y - y	 (A-41 )

2	 1

yZta02-y3ta0s
tan ¢2 =

	

	 (A- 42)
y 3 y2

From the six equations (A- 37) to ^'A -42) the six unknown parameters

00 1 , 0 " ), 07 , y 1 , y2 , y3 ) can be found. By combining equation A-37'



and A-41 to eliminate y  and then combining the result with equation

A-38 to eliminate. 01 one obtains a solution for y2 in terms of 92 and

the known parameters 9 1 , R, H 1 and H2 . Following the same procedure

with equations (A--39), (A-40) and (A-42) (to eliminate y 3 and 02 ) one

obtains another solution for y2 in terms of 92 and the known parameters

9 s , R, H 1 and H 2 ; finally,by combining the two solutions, a result for

92 in terms of the known quantities 9 1 , 9s , R, H 1 and H2 is obtained.

This result is extremely complicated and will not be derived here. An

alternate procedure, which does not involve the requirement of

spreading the reflected light from cone 2 uniformly on the entire

cavity wall, is to solve equation (A-37) to obtain 0 1 , assuming yl,

constant; e. g. the value of y  may be dictated by the minimum cavity-

reflector separation (h
0 ) 

that can be tolerated during assembly and

operation. With 4p 1 known, the combination of equations (A-38) and

(A -41)' results in the following equation:

[R+y 1 (tan 0 1 + tan 4p 1 )] sin2o 1 +H2 cos 201
Y = y (tan 9 +tar 0 j{	 ), (A-43)

2	 1	 I	 1	 R-H2 tanip 1 +2y 1 (tan 9 1 +tan 0l)

where:

•3 - h + h
` 1	 0	 7,

(A-44)

The angle 0 is subsequently derived from equation (A-21) after :.:) nputing

x_ from equation (A-18).

If it is required that the second cone is so inclined as to direct

ray 2 to the upper edge (at H l ) of the cavity wall, without regard of Fhe

direction of ray 3, the cone angle 02 can be found directly from equation

(A-39). Alternately, if ray 2 is disregarded and it required only that the

shadow-defining ray 3 stakes the lower edge (at H 2 ) of the cavity wall,

A-10
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another value for 0L8 (0') may be found from the following equation:

sin(61;6s)

sin [2 (0 - 0 l ) - (N2 --9 s )J = sin (20 + 62 1 d s ) -- i n 2(0 1 + 0 '1 sin(61+62) . (A-45)

The above equation is readily derived from the geometrical relationships

of the ray diagram shown in Figure A-2 and with the aid of equations (A-27),

(A-28), and (A-29). By combining the two values of 02 computed fromt(equations (A-3) and (A--45) an average value _1^2 	 f2	
02 + 02=	

2	 is ob-

tained which fulfills the condition of directing the reflected light from

cone 2 to the cavity wall evenly distributed about the middle of the wall

but not necessarily covering the whole wall height (DI. For t:.: two

ualues of $2 there are correspondingly two values of x 3 ; y 3) H l and H2

computed from equations !A-22j, (A-39), (A-40); (A-41 ) and (A-42) as

follows:

For 02	 y2 (tan 62 t tan 02

Y3	 tan s + tan (p2	
(A-46)

x 3 = y
3
 tan 9 s ,	 (A-47)

Ly 3 + R cot 6	 tan 2 
L 

I R t 
L

y (tan B- cot 0
^	 ^	 s	 s	 s

H2 -	 1 t cot 6 tan L Q,;,	
(A-48)

s

For 02 	 y2 (ta 62 t to ip2 i

y3

	

	 to 03 t tan ^	 (A-49!p 
s	 L

x3 = y j tan d s	 (A-50)

2y2 + R cot 62 - tan 2 io2 ^R 	 + yL (tan 62 - cot 6L j)

1 . -t.Ut AL tan L L	
(A-51 )

A 11



The average values of the above parameters are then computed from the

halfeu surn of their corresponding dual values. In order to illustrate

the application of the results of the above analysis the following example

will be given. Let: 9
m 

= 45°, 9 
s 

= 6° 40 ', R = 0. 61 ", D = 0. 658" and

h = 0. 10"; then the unknown quantities assume the values presented in
0

the table below.

REFLEC'T'OR GEOMETRICAL PARAMETERS

Parameter: H 1 H2 01 yl x 1p1 y2

Value: 0. 610" 1. 268'' 25° 40 JI 1.3t)8" 0.658" 47-35' 1.610"

Equation # A-10 A-13 A-12 A-44 A-20 A-37 A-42

Parameter: x
2 92 02 02 V2 y3 x3

Value: 0.39311 13 . 40' 60- 40' 56° 35' 58-40" 1.717" 0.201"

Equation # A-13 A-21 A-39 A-45 A-46 A-47

Parameter: H	 H;	 x.	 y	 x	 Hy	
32	 2	 3	 3	 3	 ?

Value:	 0.970" 1.120" 1.733" 0.203" 1.725" 0.202" 0.860'°

Equation # A-48 A-49 A-50

Parameter. H
1 81 82 X23 ^3

Value: 0. 735 : ' 16° 40 ` 28° 40 ' 17 ° 40' 24° 40^

Equation # A-52 A- 53 A-54 A-55

A- 51

The angles (8) of incidence given in the above table are derived from

the following equations

81 = Z - ( 01 
+ 9 1 )	 (A-52)

A-12
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$2 = 2 - (01 +02 )	 (A-53)

023 = 2 -	 + 82 )	 (A-54)

	

8 3 = ? - 2 + d s )	 (A-55)

The above example is illustrated in the diagram of Figure A-3. It can

be readily deduced from the results presented above and from Figure A-3

that for a fixed reflector geometry (0 1 , ^2 ) and cavity-reflector spacing

(ho ) a limited vertical displacement (/&H 1 ) of the source (along the optical

axis) would not produce any significant changes of the concentration of

the reflected solar energy on the cavity wall. For a given small source

displacement the angles 01 and 02 may be chosen so as to permit all the

reflected radia.tion to fall within the cavity wall height althou gh at an

uneven distribution. However, a small horizontal source displacement

would cause some reflected radiant energy to escape the cavity wall.

Figure A-4 presents a plot of 01 versus H 1 for different values of ho

and for R = 0. 61 ", D = 0. 658".
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3. CAVITY-REFLECTOR RADIATION EXCHANGE

In order to compute the thermal radiation exchange between the re-

flector ani the cavity, the radiation factor ( F) between the cavity and the

reflector must be known. Since the reflector is formed essentially by

two surfaces, one conical and one flat, two view factors are involved in

the exchange of radiation between cavity and reflector. For a net flow

of thermal flux from surface 1 to surface 2, F is:

F	 =	 l	 (A- 56)

	

12 G

	 + (E - 1) 	+ Al (E -1)

	

12 	 1	 2 2

where e 1 and 
e2 

are the total emissivities, of the two surfaces of cor-

responding areas A I and A2 . G 12 is the geometrical view factor between

the two surfaces, given by:

	

l	 cos 
6  

cos b 2

	

G 12 - A I J J	 2	 ^2 ^1	
(A- 57)

AI 
A2	

s

where b 1 and b2 are the angles made by the normals to the two e!ements

of area dA I and dA2 and their distance s. For the case considered here

and illustrated in the diagrams of Figures A-5 and A-6, A l represents the

area of the cylindrical cavity, e. g.

A l = 2 n RD	 (A- 56)

and A 2 is alternatively the area ( A 3 ) of the flat circular portion of the

reflector e.g.

A3 = r x 3 z ,	 (A- i9)

and that (A2 ) of the conical section of the reflector, i.e.

. ► 2 = wc sco (x 1 2 -x 3 2 )	 (.1- 60)

A-14 I
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The reflector conical section consists of two truncated cones 1

and 2 of apex Kali angles Ol and 02 respectively and of base radii x l and

x, for cone 1 and x2 and x 3 for cone 2. However, in order to simplify the

present analysis only one cone of apex half angle 0 = tan-1
 (y3-yl) and

base radii x  and x3 will be considered here.

The geometrical view factor (G 13) between the cylindrical cavity

and the circular portion of the reflector is:i
h1 n x3 n

	

R	 C I	 (R +x cos	G = =	 --	 n) hx	 dI dx drt dh	 (A -6 1)f	 i

	

13 TrA	 J j	 i` Th +x2+ 2Rxcos2
h2 0 0	 n)

The above equaton is obtained from equation (A-57) after substituting

A2 by A 3 and 62 by 6 3 and introducing the following relationships, evident

from Figur ^ A-5:

j
dA l = R dh drI	 (A-62)

dA 3 = xdxdn	 (A-63)

cos 6 1 = R - 
s 

cos n	 (A-64)

cos 63 = s	 (A-65)

?	 2	 2	 2s = R + h _ x + 2R x cos rI 	 (A-66)

where n = y 3 -H. Aiter integration, uyuation (A-61) becomes:

G = ? i 2 -h 2 + ĥ 4 + 2h 2 (R ` +x 2 ) - (R2-x 2)2 - h 4 +2h 2 ( R2 +x 2 ) + (R2 2 ) (Ab7)13 2A 2	 1 N 1	 1	 3	 3	 2	 2	 331
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where:

hl = y3 - H 1 	(A-68)

.ana

h2 = y 3 - H2	 (A-69)

For R = 0.61" and D = 0.6i8", H 1 = 0.61", H2 = 1.268", x 3 = 0.202"

and y3 = 1.725" as computed in Section 2; introducing these results in

equation ( 67) one obtains: G i3 a 0.02 for A l = 2.52 in 2. Assuming that

the cavity emissivity is e: 1 = 0. 7 and that of the reflector: E 2 = 0. 3,

equation ( 56), after replacing F 12 by F 13 and A 2 by A 3 results in

F 13 = 0.0175, for G 13 = 0. 02, A 1 = 2.52 in  and A 3 = 0. 128 in2 ; A 1

and A 3 were computed from equations (A-58) and (A-59). The net thermal

flux (Q 13 ) from the cavity at temperature T 1 to the flat circular part of

the reflector, at a temperature T 3 , is:

Q 13 = F 13 A l a- (T 14 -T34)	 (A-70)

which, for T 1 = 20WK and T 3 = 1000 ' K is: Q 13 = 24 watts.

The geometrical view factor (G 12 ) between the cylindrical cavity and

the conical part of the reflector is:

p l Tr x l Tr

	

4R csc	 x R+x cos rl)(p sin O+R cos 0 cos rl)
G 12	 wA	 2 2 2	

22 drl dxdridp (A-71)

	

1	 2	 3 o (R +p +x csc 0+2Rx cos Tl-2pxcotO

The above equation is obtained from equation (A-57) after substituting:

dA l = R dp drl I	(A- 72)

dA 2 = xcsc#dxdrl	 (A-73)

A-16
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cos b	
F + x cos .17

(A-74)
1	 s

cos b	 =	 ssin o + R cos 0 cos n (A-75)2	 s

s 2 = R 2 + p2 + x2 csc2 0+2 Rx cos n-2 px cot O (A-76)
a rd

P = y3 + x3 cot Y (A-77)

Equati<a: s (A-72) to (A-77) above are readily established from the

geometry of k"ha diagram shown in Figure (A-6). 	 After integrating twice

between the limits 0 and n of the angles rl, and rl' equation(A-71) becomes

r, 1	 2R {xpu l -2x2u 1 cot 0 +x3.F(Csc20-2)}
C
'^1

n^	 cot
X1	 dxdp2	 ,	 2	 +?R (A- 78)A	 !	 2	 31	 {ul -4p xa l cot O+u2 -u3}

P3	 3(

where:

u1 = p2 +x2
(A-79)

i	 u2 = 2x2 (2p 2 cot 	 ¢ +u 1 csc2 0 - 2R 2 ) (A-8 vi

u; = 4p x3 csc 2 0 Coto -x csc 0 (A-8:)

P 
1 = y 3 + x 3 cot p - H1 (A- 32)

and

P3 = y3 + a 3 cot 0 -H2 (A- 33)

Equation (A-78) was evaluated (in a computer program) for R = 0. 67711

D = 0. 681 i1 , and for different values of x 1 , x3 , pl, p3 and 0; the results

of this ccmputation along with the values of F 12 commuted for E 1 = 0. 7 

c- = 0. 3 are given below:

A-17
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x 1 x3 pl p3
Al

G12 A2 F12

0.792" 0.398" 1.567" 0.886 49' 2.89(in2 ) 0.210 1.95(in2 ) 0.115

0.905 0.445 1.767 1.086 52' 2.89 06235 2.41 0.135

1.022 V.Z;U 1.983 i . 3vi 59 ° i.e y u.i6^ 3. u6 u.B5

For the case considered here, I. e., R = 0 . 610", D = 0 . 658", x  = 658",
x3 = 0.202" , o = 47 . 35 1 , y = 1.725", H 1 = 0.735", H2 = 1. 12011, p l = V 175",

P? = 0.790", A l = 2.52 in I and A 2 = 1.73 In  it is est imated that
G 12 m 0.20 and hence F 12 as 0. 165. The net flow of thermal energy (Q12)

from the cavity (at T 1 ) to the conical part of the reflector (at T 2 ) is:

Q 12 = F12 A l it (T 14 -T 4	 (A-84)

Again, assuming T 1 = 2000 'K and T. = 1000 'K, Q 1 = 226 watts, Since

the total thermal energy (Q) fro--n the cavity into the reflector is:
f

Q -. Q 12 + Q 13 ,	 (A-85)

the above results indicate that Q - 250 watts,

E

e
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i

W2 = ' W
WC

(A- 86)

SO T Ar. RADIATION

If all the solar energy (W) from the source (e. g. , the image of the sun)

enters the cavity part of it (W, ) will reach directly the cavity surface and

the rest (W Z ) will reach the reflector surface through the rear cavity

opening. For a solar source of uniform intensity, W2 is related to W by:

where 
w 

(eq. 15) is the ratio of the solid angles subtended at the source
C

by the front (w c ) and rear (w) openings of the cavity. Accourtirg for first

reelections only from both the cavity and the reflector surfaces and

assurning that both surfaces act as gray surfaces, and that all the initially

reflected (specularly) radiation from the cavity strikes the reflector and

vice--versa, then the net solar energy (Wc) absorbed by the cavity and that

(W R )absorbed by the reflector are:

We = E i iI W l T W
2r

1	 (A- 87)

W ;; = E,(IV 1 W lr )
 
	(A- 88)

where E i and E 2 are tie tot:.i emissivities of the two surfaces.

Introducin-:

W = W 1 + W Z 	(A-- 89)

IV	 (I^E1) W	 (A-90)

and

%V	 =Zi 	 (I -E 2 )W 2
	

(A-91)
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=quations (A-^- ) _.-:c (_.-^--,) 4,._c icne.

W

W	
EI (1-f 2 	}	 .A c^)

c

and

W = 
E ^^ 1 _ E 1 ( 1_W ) ] .	 (A-93)

W
C

The fraction {f ) of solar energy:
r

fo = 1 -(W+ w) = 1 -(E l +tr - E^E^)	 (A-94

is assumed to be lost by reflection through the front opening of the cavity.

For the case considered here ( A' = 0. 32, E l = 0. 7, E 2 = 0.3), W = 0.633.
c.^

W W = 0. 157, and f  = 0.210; hence, for W = 4600 watts (eq. 6), We a 2, 410

watts, ( 4Q5 watts on each of the six emitters), and W * = 720 watts. The

input powrr densities to the cylindrical cavity of area A l = 2.52 in  and to

the conical part of the reflector of area A 2 = 1. 73 in 2 , are:

F	 watts	 P	 watt
A a 165	

2 and A e 85	 2 respectively; Pc and P are the total
1	 cm	 2	 cm

input powers to the cavity and the reflector respectively, Le.:

Pc = We -Q (A-9 5)

P = W11 + Q (A-96)

In the present case Pc = 2660 watts, and P as 970 wattio.

The reflector temperature (T 2 ) is controlled by the rate of radiation

and conduction heat losses from the rear pLrt (radiator) of the reflector.

A-20



The front part of the reflector, faring the cavit y is --nade out cf electro-

o;,lished tungsten to assure a high reflecti y it ,: f e. g. i^7 z c.--0. 3). The rear

part is made out of molybdenum with Cr 2 O 3 surface to assure a high

radiation rate; the two oars; are brazed together and fastened b y screws

through to the mol ybdenum frame holding the converte r s. Although a

small amount of heat may be transferred from the back piece to the frame,

most of the heat zbsorbec by the re;iec*.or will be dissi pated b y radiation

to the surroundings from -.he radiator.

i
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Figure A-1. Sun's Image from Parabolic Mirror Used in the
JG-4 Generator.

A-22



^	 I	 ^

Y3

rz

Hz

i

Yi

I	 i y

t

II	 T

1 h^
I ^ E

I

THKMMO KLECTOGN

842E

Ij!

cOCAL PANE

i
--------- --- -- --- -- 4 ISOLAR SOUR"

I
l	

i"	 j"	 MiRR^R
i	 RtM

I	
/ ei

I

E 

-2

EMITTER
'EAR

SL7FACE

Figure A-2. Reflection of Solar Flux from Conical Reflector
Placed at Bottoni of Cavity in the ?G-4 Generator.

A - 2 J



y'L

J-

TNiRMV KLRCTRON
--	 C O R P O R A T I O N

8427
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Figure A-5. Diagram for Deriving Geometrical View Factor
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APPENDIX B

DETAILED ANALYSIS OF MODIFIED CAVITY
BACK-PII:CE FOR THE JG-4



RADIAXT ENERGY DISTRIBUTION IN THE CAVITY
OF THE SIX-CONVERTER SOLAR THERMIONIC GENERATOR (JG-4)

Recent theoretical and experimental data supplied by JPL indicated

that the intensity distribution of the solar energy at the region of the solar

image created by the paraboifc mirror in front of the cavity is different

froi» the distribution previously assumed in computing the radiant flux

transfer in the various parts of the cavity. Some of the JP.',.. ata are

reproduced in Figure B-1 and Table B-1; Figure B-1 sho-* •s plots of the s,-Aar

intensity ratio (I/Im ) versus the relative radius (r 
i

/r) of the solar image

for different distances (d) from the focal plane. Im is the maximum

intensity of the solar flux, which is approximately 1750 watts/cm

r  = 1. 346 cm is the theor etica: radius of the solar image. The plots

were constructed for distances above t,.e focal plane (nearer the sun), but

practically identical plots can be o'-tained for corresponding distances

below the focal plane. Figur z B-2, constructed from the data of Figure B-1,

shows the spacial distribution of eclual-in tensity profiles about the solar

image.

The data of Table B-I show the solar energy distribution in the cavity

.or four of the most promisin g mirror-cavity arrangements characterized

by focal plane-aperture sepa.ations ranging from 0 to 1. 5 cm and all

including the vacuum. glass envelo?e of the generator. For com?ariz;on

purposes, a fifth arrangement which does no: include the glass envelope

and which produces the maximum solar flux (5000 watts) input to the

cavity is also presented in Table B-1. Among the first four arrangements

Nos. 2 and 3 seem to indicate the optimum focal plane-aperture separation

(0. 5 - 1. 0 cm) that results in high initial flux input to the em = tters (290 -

310 watts each), without excessive loss of flux outside the cavity (70 - 570

watts), and without too hig l a flux input to the cavity back-piece (2050 -

2720 watts). Since photographs of the solar image s':owed a second

B-1
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Li

maximum for the solar energy in front of the focal plane (nearer the stern or the

cavity), it may be concluded that the 1-cm local plane-aperture separation

(arrangement #3) would produce the near-optimum solar flux distribution

	

	
ii

in the cavity.
f
F

In view of the above discussion and for the purpose of estimating the

amount of radiant energy transferred to the various parts of the cavity
when arrangement 43 is employed, it will be assumed that a solar energy

of about 4500 watts penetrates the glass envelope and that a portion of it

consisting of 4300 watts enters the cavity with 1800 watts initially incident

on the emitters and 2500 watts incident on the back-piece. For comparison

purposes arrangement #5 is also considered; in this arrangement, where

the focal plane coincides with the cav:ty aperture and the glass envelope

is not present, the whole solar flux (5, 000 wstts) reflected by the

mirror enters the cavity with 1500 watts initially incident on the emitters

and 3500 watts incident on the back-piece. For these two arrangements

(=3 and =5) the radiant energy distribution in the cavity is presented

analytically in Tables B-H and B-III for different back-piece materials selected

for their promising thermal and optical properties given in Table B-IV. For

arrangement #3 three materials, e.g. W, Ta, and Ni, are considered; 	 }

in this case both the front and rear parts of the back-piece are made out

of the same material. In arrangement #5 these parts are made both out

of Al or from combinations of other materials such as; W-Mo, W-Cu,

and Au- Cu.

Tables B-II and B-Iii were constructed using tht- •inissivity and reflectivity

data of Table B-IV ana utilizing tltu results 4 the: i(,llowing analysis for the

radiant flux distribution in the cavity. This analysis considers only first

reflections (specular) of the solar radiation in the cavity and assumes that

all the radiation reflected by the back-piece react.. a first the cylindrical

4all (continuous) foamed by the rear surfaces of the six emitters in the

cavity; part of this radiation is reflected to the front-piece and escapes

B-2



through the aperture. Correspondingly all the radiation initially reflected

by the emitters reaches first the back-piece, from which the portion

reflected is directed to the front-piece and escapes through the aperture.

The solar energy incident on the front-piece is partly absorbed and partly

reflected back to the mirror. Under these assumptions the amounts of

solar energy absorbed by the front-piece (W 0), by the emitters (W 1 ), and by

the back-piece(W2) are:

WO = ( 1 - r  So.	 (B- 1)

W 1 =(I - r l)(S 1 + r2S2),	 (B-2)

and

W2 = (1 - r2)(S2 + r 1S 1 ).	 (B- 3)

where So , S l , and S2 are the amounts of solar energy initially incident on the

front-piece, the emitters, and the back-piece, having refleetivities r ,
0

r i p and r2 , respectively. The amount of solar energy (U) escaping through

the aperture is:

U = r 1 r2 (S l + S2 )
	

(B- 4)

The total input energy to the emitters (P 1 ) and to the back-piece (P2 )

( is computed by accounting for the net amount of the thermal energy (Q)

tra. sferred from the emitters, maintained at a temperature T 1 , to the

back-piece, maintained at a temperature T 2 (T 2 1. T 1 ), while neglecting

any thermal energy transfer between emitters and front-piece, e. g.

and

P2 = W2 +Q	 (B - 6)

Q is given by:

f	 Q = FA1 .: ( T 14 - T24)	 (B- 7)
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T 4 = W0o	 CrE Ao r
(B-10)

where:

1r =	 1	 (B-8)

G + ( - 1) +
X2	

- 1)
2 2

is the radiation factor between the emitters and the front part of the

back-piece, hating areas and total emissivities Al t c It and A2, c 
29

respectively; G is the geometrical view factor between A l and A2. For the

case considered here A I = 16.3 em2, A2 . 12 em2, and G " 0.2. The

area (A2) of they rear part of the back-piece from where the absorbed

power is dissipated by radiation is determined from:
P

A3 =	 3 4	 (B- 9)
e T3

where T 3 ande 3 are the average temperature and total emissivity of the

rear part, assumed much hotter than its surroundings, and P 3 is the

radiated power; neglecting any conduction losses in the back-piece,

P3=P2.

The front-piece, where the aperture is located, has a truncated

conical surface facing the mirror and inclined at an angle of 52 0 with the

cavity axis; the area (A ) of this surface is about 120 cm2o	
. Assuming

that the solar radiation falling outside the cavity is evenly distributed on

the whole conical surface, and that no radiation exchange takes place

between the front-piece and the six converters, then the average tempera-

ture (T0) of this piece may be computed from:

where C0 is the total emissivity of the conical surface, and W 0 is given

by equation 1. The aperture of 2. 54-cm diameter is located at about

0. 28 cm away from the top of the cylindrical cavity which is 1.66 cm high

and has a 3. 1-cm diameter. The bottom of the cavity is about 0. 30 cm
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away from the opening of the conical front part of the back-piece. Some of

f
the above dimensions are slightly different from those used by JPL in

deriving the data of Table B-I, but these differences are too small to intro-

'	 duce any significant effect or, the distribution of the solar energy in the cavity.

The design of --ne coi.ical front part of the back-piece is based on the

assumption that the solar energy entering the cavity emanates from a point-

source at a distance of 1.27 cm from the aperture. For an e,,tended source,

e. g. , a solar image of radius 1. 346 cm placed at a different distance (e.g. ,

1 cm) from the aperture a new design may be required for satisfying the

condition that a.1 the solar flux reflected by the back-piece reaches first the

emitters in the cavity. Since a detailed study (in a computer program) is

currently conducted by JPL to determine the optimurn configuration of the

front part of the back-piece for different mirror-cavity arrangements no

attempt will be made to alter the present design which may be found never-

theless to be adequate for causing the major portion of the back-piece-

reflected solar energy to impinge on the emitters in the cavity.

The design of the rear part of the back-piece is changed to accommodate

the most unfavorable mirror-cavity arrangement (d 5) where a aolar flux

of 3500 watts impinges on this piece. For this case a large surface is

-required fer dissipating bar radiation the absorbed energy and preventing

the temperature of the back-piece to assume undesirable values (e.g. , above

1200°K). In view of the desired radiant energy distribution in the cavity and

because of space and weight limitations of the present overall generator design

and also because of restrictions on converter contamination from evaporating

materials the data of Table B-III indicate that the most. promising choice of

materials for the back-piece is W for the front and Mo for the rear part. W

and Mo can be readily joined (brazed) by high-melting point (e. g. , above

1500°K) alloys such as 0. 65 Pd-0. 35 Co, or 0. 465 Mo-0. 535 Ni. For the W-Mo

combination of the back-piece the radiating area (A 3 ) of the rear part is about 430 cm 

I	 B-5



allowing the Mo piece to be maintained at an average temperature of 10000K

while the W front piece is at about 1200 ' K, with both materials having very

iow evaporation rates at these temperatures. Although W is a better heat

conductor than Mo, it is about twice as heavy and more expensive in original

cost and fabrication than Mo. Therefore, W is used only in the front ( small)

part of the back-piece where its higher reflectivity makes it more desirable

than Mo.

The emissivity data of Table IV were taken from Figure 3 where

the total emissivity of different materials is plotted versus temperature;
t

the plots of Figure 3 were constructed from data given by various sources

indicated in the same figure. The reflectivity data of Table IV were
f

estimated from the plots of spectral reflectivity of different (polished) 	 -

materials shown in Figure 4, which also indicates the sources of the 	 --

original data. The reflectivity of polished tungsten was assumed equal to 	 -a

0.55 J slightly lower than that derived from available data as follows: The

spectral reflectivity ( r X ) at room temperature and the spectral emissivity

(E X ) at 1600 'K were first plotted versus wavelength ( k) as shown in Figure 5

where the sources of the original data are also indicated. Data for E X at

2200 ° K result in a practically identical plot as that for E X at 16000K

indicating that c X is essentially independent of the material ( tungsten)

temperature ( T W)1 this fact is evident from the original data and also from

Figure 6. Assuming that the spectral absorptivity (q.) and reflectivtivity

(r^) are independent of temperature then the total absorptivity (ar) and

reflectivity (r) may be computed from:
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Uo	 ao

E = J0 e I^ (T) dI 
JO

IE (T) dX,	 13-1 1 )

r
and

r = r r^Ia (T) d^ J I% (T) dk,	 1'x-12 )
0	 0

where I% is the relative spectral intensity of the solar radiation at temper-

ature T. Using the data for I X (T) on the earth's surface supplied by JPL

and plotted in Figure 6 for the data for r  and e: k 
presented in Figure R - 5, the

curves for IX r  and I % C X were obtained and plotted in Figure R-6. 13y

measuring the areas under these curves .and computing their ratio, accord-
ing t- Equations R-11 and R-12 (within given limits for X), it was found that

a 1- 0. 394 ( TW = 1600 ° K), a = 0.388 ( TW = 2200 • K), and r = 0.598

( TW = 300'K); these results are in good agreement with the theoretical

prediction: a + r = 1. The emissivity and reflectivity of the grooved Re

_ emitter surfaces and the emissivity of the grooved and Cr 2O 3 -coated surface

of the rear part of the back-piece were assumed equal to 0. 70, 0. 25 and 0. 75

respectively, according to experimental data obtained in the past.

The temperature ( T 3 ) for the different materials suggested for the

rear part of the back-piece vvas estimated from the maximum tolerable
temperature (T2 ) of the front part material and the thermal conductivity and

overall geometry of the back-piece. The data for the thermal conductivity

and evaporation rate at the temperatures of interest for the various materials

presented in I'ahle R -I V were obtained from the following sources: W. H. Kohl,

"Materials and Techniques for Electron Tubes" (1960); S. Dushman, "Vacuum

Technique" (1958); Thermophysical Prorerties Research Center, Purdue

University, Data Book, Vol. I (1966).
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TABLE B-IV

PROPERTIES OF CAVITY MATERIALS

Evaporation Thermal
T emp. Total Total Rate Conductivity

Material (0K) Reflectivity Emissivity (gm/cm2-sec) (watt/cm-Ko)

FRONT-PIECE (Polished)

r
 Eo0

1000 0.55 0.11 5 x 10-34 1.20W

EMITTERS (grooved)

T1
rl

^1

Re 2000 0.25 0.70 8 x 10-14 0.4 7

BACK-PIECE

Front Part ( Polished)
T 2 r2 E 2

-13Al 800 0.80 0. 06 3 x 10 2.25
Au 900 0.70 0.03 3 x 10_ 14 2.80
Ni 900 0.65 0.12 1 x 10 0.70
Ta 1200 0.50 0.14 1 x 10-25 0.60
W 1000 0.55 0.11 1.20
W 1200 0.55 0.13 -288 x 10 1. 15

Rear Part ( Grooved and Cr 2 O3 - Coated)

T 3 I	 E3

Al 750 0.75 2.30
Cu 850 0.75 3.65
Ni 700 0.7 0. 65
Ta 900 0.75 -13 0.60
Cu 900 0.75 4 x 10 3.60
Mo 1000 0.75	 1 1.10
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TEMPERATURE DISTRIBUTION IN THE BACK-PIECE

The design of the back-piece in the generator cavity is dis-

cussed in detail in Appendices A and B. The back-piece consists

of two parts: the reflector (electropolished W) facing the emitter rear
surfaces that form the cavity wall; and the radiator (grooved and	 --
Cr2 03 -coated Mo) that faces a water-cooled copper jacket.

The reflector and the radiator are joined together by a high tempera-

ture braze (0. 65 Pd-0. 35 Co) suitable for operation in a high vacuum

at temperatures below about 1400°K. The geometry of the reflector,

as discussed in Appendixes A and B, is dictated by the optimim solar

energy distribution required in the cavity. The geometry of the radiator

is governed by the requirement of safe operation of , he back-piece and

other neighboring parts of the generator under a high va,uum when the

conditions of maximum heat transfer are imposed on the back-piece.

Under the most unfavorable mirror-cavity arrangement the maximum
amount of solar energy that could be absorbed by the back-piece is

estimated to be 1800 watts (see analysis in Appendix B). In order to

dissipate this power and yet maintain the back-piece at a safe temper

ture range (e.g. , below 1200°K) the rear part, or radiator, must

provide a sufficiently large conduction path bounded by an :tdegc;.tte

radiation surface. To satisfy these conditions, an y ;u to conform
to the size and weight restrictions of tht- generator, 	 a l-idiato- was

designed to assume a partly conical partly cylindrical shell shape.

Dissipation of the absorbed power (1800 watts) by the balk-piece takes
place only by radiation from three distinct regions (R I , RL) it.d Ri;

of the radiator area as shown in Figure C-1. The surfaces of regions R1
and R2 are grooved and Cr2 0.3 -coated to assume an effective emissivity

C-1
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Figure C-1. Temperature Profile in Back-Piece.
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of 0.75 (as measured in past experiments). The hollow region R 3 is

assumed to radiate only through the area defined by the plane

projection of the inside conical surface of the radiator; this area is

assumed to have an effective emissivity of nearly 1. Under the above

assumptions, the use of an approximation method (rectangular approxi-

mation) to solve the heat conduction-radiation equation led to the

temperature distribution in the back-piece presented in Figure C-1.

It can be readily seen from this figure that when the radiator-reflector

4	 interface (brazed section) is at 1200°K the end of the radiator is at

900°K, with the whole radiator surface at an average temperature of

t	
950°K; under these conditions the temperature gradient along the

t	 radiator length is about 33 °K/inch. The above temperatures were

computed for a total radiated power of 1800 watts, with the surroundings

(water-cooled, Cr2 03 copper jacket) maintaii.ed at nearly room

temperature (e.g. 300°K). These conditions are satisfied, provided

the effective radiator surface (regions R I , R2 and R 3 ) is approximately

76 in?

REFLECTOR-RADIATOR BRAZE EVALUATION

In the preceding section the assumption was made that the tem-

perature difference across the braze interface was equal to zero. In

order to evaluate the validity of this assumption, special tests were

performed. These tests involved metallurgical examination of several

brazed samples of W and Mo and thermal measurements of one selected

braze material. Metallurgical examination of two brazes were per-

formed. These were: (1) 100% Pd, and (2) 65% Pd-35% Co. Metallo-

graphs of the brazes were presented to JPL, and the decision was made

to perform the thermal tests on the 651/6 Pd-35% Co braze material.
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The basis of this c-hoice was the wettability of the tungsten piece by the

braze material.

A direct measurement of the thermal resistance of a very thin

braze joint is very difficult because the size of the thermal probe is

much larger than the thickness of the braze joint, and the interface

temperature cannot be determined accurately. Thereiore, a com-

parison type of measurement was used for this evaluation: i. e. , a

comparison of the temperature difference between two points in a

reference material and the temperature difference observed in a

brazed sample under identical conditions of geometry, temperature

and heat flux. Such tests were performed for a reference Mo sample

and a brazed W-Mo sample. The conclusion of these tests was that

the 65% Pd-350% Co braze joint introduces a temperature difference in

the actual reflector-radiator interface which does not exceed 1 °K per

100 watts. A detailed analysis of the thermal measurements is given

below.

TESTS AND RESULTS

The experiment described below was performed in order to

determine the temperature gradient across a W-Mo interface with a

thin film of G. b5 Pd-0. 35 Co brazing alloy providing the thermal con- 	 ^ 1

duction path between the W and Mo surfaces.	 Temperature meas-

urements were taken with iron-constantan thermocouples embedded

in the curved surfaces of W and Mo cylinders of identical geometry, the

cylinders were brazed together in vacuum with an 0. 001-inch-thick disk

of an 0. 65 Pd-0. 35 Co brazing alloy. A photograph of the cylinders and	
t

the disk before brazing is shown in Figure C ,2; Figure C-3 shows a	 1
photograph of the W-Mo s pecimen after brazing. Each cylinder in the

C-4
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Figure C-2. W, Braze (0. 65 Pd-0. 35 Co), and Mo Discs
Before Forming Test Specimen.
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Figure C-3. Completed W-Mo Test Specimen,
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specimen has a diameter of 1. 100 f 0. 003 inch and a thickness of

0. 250 f 0. 002 inch. Three thermocouple holes, each 0. 060 t 0. 002 inch

in diameter and 0. 080 t 0.003 inch deep, are located on the curved

t	 Surface of each cylinder, and they are on the same plane, perpendicular

to the cylinder axis. The cwo planes are 0.245 t 0. 002 inch apart,

almost equidistant from the W-Mo interface. The three holes in the W

cylinder have angular displacement of 90', 135' and 135*; iii the Mo

cylinder the holes are placed 135% 112. 5' and 112. 5' apart. During

assembly the two cylinders were so located that in the completed

specimen any two adjacent holes had an angular displacement of either

45' or 67. 5% as shown in the diagram of Figure C-4. The free flat

surface of the Mo cylinder in the W-Mo specimen is brazed with an

0. 82 Au-0. 18 Ni brazing alloy to the flat surface of an OFHC copper

cylinder of about 1.250-inch diameter and 0.250-inch thickness. The

other flat surface of the copper cyl ; .ider is joined with soft solder

!0.60 Sn-0. 40 Pb) to a copper tube used for circulating water. A

thermocouple hole, similar to those in the W-Mo specimcr is located

on the curved surface of the copper cylinder. A photograph of the

completed specimen is shown in Figure C-5.

Another specimen, similar to the one described above . was

assembled and used in the present experiment. In this specimen the 	 f

W and Mo cylinders were replaced by a one-piece Mo _ylinder having

practically identical geometry and arrangement of the thermocouple

holes. The material in this specimen was obtained from the samf^

raw stock from which the Mo cylinder in the W-Mo specimen was cut.

A photograph of the all-Mo specimen is shown in. Figure C-6.
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SPECIMEN
GEOMETRY

;.2s"

I

To	 Ma HOLE A	 0.250"	
1I -0.245"	 T0.65 Pd-0.35 Co BRAZE

HOLE B	 0.250"	 I	 Mc
0.220;'

•^	 -^ -	 0.82Au-0.18Ni BRAZE
HOLE C	 0.250	 OFHC Cu

0.60Sn - 0.40PC BRAZE
Cu TUBE(3/i6"O.D., 1/8"I.D.)

ALL THERMOCOUPLE HOLES HAVE	 •.

SAME DEMENSIONS:
DIAMETER=0.060

DEPTH : 0.080"	 i
H2O	 H2O

B

A	
46	

A	 I
I

TI	 TS
45°i 45°/

1

 67 C°	 'I	 /675`	 is

	

S I	 4,

\E -T

7 ' l 6T 5°	 67.5°	 T4 	
B

	

\	 T3

A
C

THERMOCOUPLE HOLE ARRANGEMENTAND
TEMPERATURE (T) DESIGNATION.

Figure C-4. Schematic of W-Mo Test Specimen.
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Figure C-5. W-Mo Specimen Brazed on a Water-Cooled Cu Plate.
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Figure C-6. All Mo Test Specimen.
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The all-Mo specimen was used in this experiment to measure

the temperature gradient along a continuous Mo path and compare it

with that obtained from the W-Pd/Co-Mo path in the first specimen.

Both specimens were tested under identical conditions, using the same

heat source and heating arrangement, the some heat sinks, and the

same vacuum level. Heat to each specimen was supplied by electron

bombardment and radiation from a W filament centrally located

directly above the free flat surface of the W cylinder to the first

specimen and above that of the Mo cylinder in the se-:,)nd. In both

cases the heat was removed by water fl owing continuously at a

constant rate through a co pper pipe brazed to the copper base of each

s oecimen.

The results of the present tests, tabulated in Table C-I . were

obtained as follows:

The specimen was mounted on a water-cooled copper tube inside

a vacuum bell jar, and an electron-bombardment assembly was placed

above the free surface of the specimen (see Figure C- 7 ). Se ven irun-

4-onstantan thermocoupleG were connected to the specimen and were

checked for differences in room temperature measuremenrs (in both

tests no temperature difference greater than 0. 5°C was ._bst-rved

between all thermocouples!. After the bell jar was evakuated tv a

,:reesure of about Z x 10 -5 Corr; and with the water fluwtng througt.

the base of the specimen ; the W filament in the ele.t run- b.;rnbardment

assembly was heated ru a given temperature while an electron-

acceierating volta g e of 11.000 volts was applied between .he fiiamFr;t

assembly and the specimen, which was kept at ground potential

(see Figure C- 8,. When the specimen had reached thermal equilibrium
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Figure C-7. W-Mo Specimen with Electron-Bombardment
Unit Mounted Inside Glass Bell Jar.
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FILAMENT
POWER
SUPPLY

A 1 203 - INSULATOR \
s

Mo- SHIELD	 P4

W-FILAMENT
ELECTRON
ACCELERATING
VOLTAGE

H20 
—0 (f /M

THERMOCOUPLES

Figure C-8. Test Specimen Heating Arrangement.
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the specimen temperatures, and also the electron-bombardment current

l	 and the filament input current and voltage, were recorded. From these

current and voltage measurements the electron- bombardment. input power

t. Q e ) to the specimen and the filament input power (Q f) were c omputed.

Q  and Qe are tabulated in the first and second columns of Table C- I. The

temperatures T I , T 3 and T 5 , measured on the W cylinder in the first

L
specimen and in the upper half (nearer the filament) of the Mo cylinder in

the second specimen, were recorded and averaged to give the mean Tem-

pera?ure T a of this section of the specimen. T I , T 3 , T 5 and T 
a 

are
_ 

shown in the third, fourth, fifth and sixth columns of Table C-I - The tem

L
peratures T L , T4 and T b , measured on the Mo cylinder of the W Mo speci-

men and the lower part of the all-Me specimen, were also recorded and

averaged to give the mean temperature T  of that section. T 2 , T 4 , T 

and T  are listed in the se, enth : eighth, ninth and tenth columns of

Table C-1. The temperature difference AT	 T  ' T  was subseq-ently

computed and tabulated ^n the eleventh column of Table C -I . The se tem-

iperature measurements were repeated se-,eral t,lmes fcr the same speci-

men input heat flux (i. e. , the same Q
e ) 

tc en-.ire that the specimen was	 t

:n a state of thermal eq-_.-14br:_,m. and *hus tha' -.he recorded •emperay.re;

were representati-.e cf ?hat state. D-r=ng +h-s — me Qf; and subsequently

Qe - .ar:.ed cn certain occasions, due to :nVr • .mentat.c•n drift, b4t.±his

vat _aticn was too small (i. e. ; up tc 5 watts, to affe ,-t the specimd16 tem

peratures, wr..ch ?n no case were cbser:ed tc change oy more than 1 C,

once the specimen was thermally stabilized.

The experimental prccedL.re described abet e was repeated fc r

different values of The :nput power to each specimen, indicated by

d , fferer, t %alues of Q  and Qe , as shown to Table C I. I^ each case,

C-15
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temperature measurements were initiated only after each specimen had

reached thermal equilibrium.

It should be noted that. the differences between 'he temperatures 	 J
T 1 , T 3 and T 5 , and consequentl y- between T 2 1 T 4 and T 6 , observed in

the two specimens are primarily due to the asymmetrical form (S-shape;

of the filament, which caused a non-uniform distribution of the heat input
-tt

(electron flux and radiation) to the specimen. This non-uniformit y hcw

ever, was the same in both specimens, and therefore the a-.erage tem-

peratures, T  and Tb , obtained in the two cases afford direct comparison.	 4A

T  is plotted versus T  in Figure C-9 0-  it is e-, ident from this plot 	 -r

that in both specimens the temperature difference (T a Tb), measured	 -'
I

across the same iength, is for all practical purposes the same. The 	 -

electron-bombardment input flux (Q ) to each specimen and the corres
e

ponding filament input power (Q f) are also plotted versus T a in Figure C 9.
It can be seen from this figure that, for both specimens, Q e and Qf are

also approximately the same for a given value of T a This implies that

the filament temperature was the same in both cases for the same al..e

of T a . Since the position of the filament and the area and condition cf

the surface of each specimen were almost 4dertical in both tests, the

radiation iQ ) absorbed by each specimen was also the same, a=?•:m4.r.gr
that the W and Mo Furfaces had the same emissivity. In the temperature

range considered here 'i. e. , 60'C to 140 'C:, fcr the specimen s-lrface,

the total emissivity (E) of W and Mo t-arie-3 from about 0. 040 to 0. 041

and 0. OLO to 0. 021 (1) , respectively, and therefore the value c• f Qr for

W should be sl_ghtly larger than for Mo (since E W E e Mci. However.

this difference to Q
r 

would not change appreciably the total heat input	
!1 !j

1 ', G. Gubareif, J. Janssen, R. Torberg, Thermal Rad:anon Prr perttf -

Survey,' Honeywell Research Center, Minneapolis Honevwell Regulatrr
Co. , Minneapolis, Minnesota (1960;.
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Figure C-9. Plots of Test Specimen Temperature and Input Power.
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(Q) to each specimen, since Q r , as will be shown, below, is only a small

fraction (— 10%) of Q. An estimate of Q can be obtained from the heat

flow in the all-Mo specimen, the thermal conductivity (k) of which is

accurately known and is constant (i.4 watt/cm- °C) in the temperature

range (50 °C - 120 *C 11 cf the specimen. Assuming that all the heat (Q) was

conducted throughout the entire area (A) of the specimen in the path

length (L) across which T  and T  was measured, then, in view of the

data of Figure C-8, cne obtains the following results, listed in Table C-II,

from Q =- L (T a Tb), for A .= 6.15 cm  and L - 0. 625 cm; Qr is computed

from Qr = Q- Qe . Table C.-Ilalso presents the filament input power (Qfj,

taken from the data of Figure C-9, and the computed ratios Q r Q and

Qr / Qf. In order to check the above results for Q, an estimate of Q  was

obtained from

Qr = F(7AfTf4

where:

	

	 1

F
A

_	 G + E - 1+ Af IE - l l
f	 I	 J

is the radiation exchange factor between the W filament of total emissivity

E  at a temperature T  and the specimen of to, tl emissivity E at a tem-

perature much imaller than T f. G is the geometrical view factor between

the filament of area A. and the specimen of area A. The filament tem-i
perature is obtained from Dushman' s equation:

C }
I e = C 1 A fT f2 expl- T2 ,

^f f
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c o n • c 
n . 6-,  ^ c	 " _

where

	

C1 = 120	 a rn 
p	 and C Z = 52,400 °K for W.

cm	 °K

ii
i

The electron current (I ) was measured directly in these tests and cane	 Q
he deduced from the data for Qe in Figure C-9, since l e z7

ê with the
e

electron-accelerating voltage V
e 

= 1000 volts, constant In all measure-

ments. From the geometry of the filament (2. 8 cm long, 0. 076 cm ir.

diam), and its separation (0. 635 cm) from the specimen (of 6. 15-cm2

area,, the filament area A  = 0. 67 cm 2 and the view factor G - 0. 5 were

estimated. For the typical value of T = 60 * C, I = 0. 150 k (Q

150 -watts), and hence T  ^ 2130°C with E  ^ 0. 3. i1) Using 
E 
	 e 0. 04

and E Mo ^ 0. 02 (for a specimen surface temperature near 60°C , one

obtains FMo ^ 0. )0 .1 and F 	 0. 144, and subsequently (Qr)Mo

13 watts and (Q ) i zz 18 watts. These results support the data for
r W

fl Z 't;,?.:f c) 7 ::°_.CE fo. s^.c vviaii.2d for iiv pi,:^i.7u^iti" and pIPsented

In Table C=-11, and indicate that a x QMo . Since T. - Tb was the same

in both specimens. the above results indicate that the thermal rer-:sTame

of the W-Braze Mo specimen Is equal to or smaller than tbv a factor of

1. 051 the thermal resistance presented by the solid Mo spec:men. Thos

d_fference is attributed to the slightly higher thermal c onductiv-.ty of W.

For comparison. .he thermal conductivities 2) of W and Mc- are partied

ersus temperature in Figure C-10.

{2)	 Purdue University, ' Thermophysical Properties Data Bcok
Volume I (1966).
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