General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

MIDWEST APPLIED SCIENCE CORP.
 Purdue Industrial Research Park 1205 Kent Avenue - P.O. Box 2157
 West Lafayette, Indiana 47906
 Phone (317) 743-2161

MASC RD-29F
IDENTIFICATION OF LINEAR SYSTEMS, FINAL REPORT ON SIMULATIOI STUDIES

Contract iNo. NAS 5-10106

Submitted to
National Aeronautics and Space Administration Goddard Space Flight Center Glenn Dale Road Greenbelt, Maryland

ATTENTION: Ar. Joe Young

By
F. Kozin

C. H. Kozin

> Midwest Applied Science Corp.
> Purdue Industrial Research Park
> $\quad 1205$ Kent Avenue
> West Lafayette, Indiana 47906

April 1968

TABLE OF CONTENTS
Chapter Page
Objective 1
Introduction 2
I PARAMETPR IDENTIFICATION 7
II THEORETICAL DEVELOPMENT 11
2.1 Introduction 11
2.2 Random Excitations 14
2.3 Deterministic Excitations 33
III IDENTIFICATION OF SIMULATED LINEAR DYNAMICAL SYSTEMS 50
3.1 Introduction 50
3.2 Identification of Simulated One-Dimensional 51
Systems by Random Excitations
3.3 Identification of Simulated One-Dimensional 69 Systems by Sinusoidal Excitations
3.4 Identification of Multi-dimensional Systems 80
3.5 Identification Using Only Acceleration Data 86
IV COMPUTER SIMULATION AND IDENTIFICATION 90
4.1 Computer Techniques 90
4.2 Computer Program Abstract I 96
4.3 Computer Program Abstract II 141
4.4 Computer Program Abstract III 159
v SUMMARY AND CONCLUSIONS 184
APPENDIX
The Concept of the Gaussian White Noise Process 188

LIST OF FIGURES

Figure
Page
I (a) Chain-Like One Dimensional System 12
(b) Two-Dimensional System12
II Coupled Oscillator System 20
III NASA-Goddard Taped Excitation Spectrum 62
IV Computer Flow Operation 92
V Storage Mode, LOC2 107
VI Storage Mode, LOC3 108

LIST OF TABLES

TablePage
I Estimated Parameters, Experiment I (Random) 53
II Estimated Parameters, Experiment II (Random) 57
(a), (b), Estimated Paramenters,Experiment III (Random)60
IV Estimated Parameters, Experiment IV (Random) 62
(a), (b), Estimated Parameters, Experiment V (Random) 65
(c) Estimate* Parameters, ExperimentV (Random) 68
VI (a) Estimated Parameters, Experiment I (Sinusoidal) 71
(b) Estimated Parameters, Experiment I (Sinusoidal) 72
(c) Estimated Parameters, Experiment I (Sinusoldal) 73
VII (a), (b), Estimated Parameters, Experiment II (Sinusoidal) 75
(c), (d) Estimated Parameters, Experiment II (Sinusoidal) 76
VIII Estimated Parameters, Experiment III (Sinusoidal) 79
IX Estimated Parameters, Experiment IV (Sinusoidal) 81
X (a) Estimated Paraneters, Multi-Dimensional System (Random) 84
(b) Estimated Parameters, Multi-Dimensional System (Sinusoidal) 85
XI Estimated Parameters Using Only 89
Acceleration Data

OBJECTIVE

The development of a practical computational technique for the identification of constant parameter linear systems based upon the system response to random or sinusoidal excitation.

INTRODUCTION

This study of duration February 1967 - April 1968 has been devoted to the analytical development and digital simulation experiences of a parameter estimation technique that appears to be of superior practical significance for the identification of real systems.

The technique is applicable to linear systems and is simply based upon the properties of statistical expectations and time averaiges. It also has a potential application to non-linear system identification. The physical situation that one often encounters is that a dynamical model of the system, via differential equations is given, but the various physical parameters, in particular, the mass, spring, and damping factors are unknown. In order to obtain a complete useful model of the system, it is necessary that these parameters ire known. The technique presented in this report requires knowledge of the dynamics of the system; that is, the displacements, velocities, and accelerations, as well as the input data. From these data all unknown parameters can be determined by forming various moments, or time averages, of the input and the dynamical output variables of the system. The resulting linear equations in the unknown parameters are then solved to yield the desired estimates. A theoretical study of the technique was accomplished for linear systems in both the random and deterministic input case.

These results appear in Chapter II. This theoretical study greatly clarifies the role of such parameters as the length of time over which the system is to be observed, the nature of the spectrum of the excitation, as well as the role of the steady-state dynamics of the system in effecting a usable identification scheme.

When the mass is krown, only the displacements and velocities are required in order to determine the estimates of the spring and damping constants.

The technique is applied to study digitally simulated models of one-dimensional linear systems with five degrees of freedom. The parameters for simulation are taken as those of a NASA-Goddard 5-mass experimental model. The simulated model is subjected to various random as well as sinusoidal excitations. The estimated parameters are found to agree with the actual parameters up to four and five place accuracy! Even more of a significant feature is that the actual system simulated parameters have a spread of five or six orders of magnitude between the mass and the spring constant. A major problem ir parameter search techniques is to determine the range of parameter values. For the present technique this presents no problem as can be seen by the extremely accurate estimated parameter values.

A completely detailed program for simulation, as well as estimation of parameters has been developed for linear chain-like mass-spring-dashpot systems with arbitrary degrees of freedom and an arbitrary number of force inputs to the system. This appears in Chapter II.

The technique was also applied to a simulated twodimensional system of masses, springs, and dashpots supplied to us by NASA-Goddard. Again, parameter estimation was truly outstanding as can be seen in Chapter III of this report.

It can safely be stated at this point that when displacement, velocity and acceleration data is available, system identification can be accomplished quite satisfactorily by this method.

It was hoped that actual data taken from vibration tests on the NASA-Goddard five mass system could have been analyzed to obtain an estimate of the real system parameters. However, the tests only yielded acceleration data. Digital integration of this data was attempted in order to yield at. estimate of the velocities and displacements of the five masses. A least squares trend was removed to account for the fact that the initial conditions of the velocities and displacements are unknown at the point at which the acceleration record commences. Due to the numerical inaccuracies present when integrating and removing trends twice, satisfactory estimates were not obtainable from the real system
data during the duration of the contract period. (This is, in part, due to the tine required to put the vibration data on tape and then digitize it in a form suitable for computation. This was all accomplished by NASA-Goddard.) However, we do not hesitite to add that this is merely a numerical problem of simulation, which can certainly be resolved with future investigations. We present a first step in this direction in the present report, by integrating the acceleration once and identifying two parameters of a damped oscillator.

Thus, we can say in summary that:
A. A method has been proposed for identification of linear and non-linear constant coefficient systems, by random or sinusoidal excitations as discussed in Chapter I, Parameter Estimation.
B. The method is studied here for linear systems, subjected to random or sinusoidal excitations.
C. The theoretical studies have generated a rather broad understanding of the method, as presented in Chapter II, Theoretical Development.
D. The method yeilds extremely accurate parameter identification r rather complex systems, as presented in Chapter III, Identification of Simulated Linear Dynamical Systems.
E. A complete discussion of the simulation techniques as well as the program details are presented in Chapter IV, Computer Simulation and Identification.
F. Suggestions for future investigations are presented in Chapter V, Summary and Conclusions.

It is to be noted that the identification scheme proposed here in general places $n n$ restriction on what combination of variables are to be multiplied together and subsequently time averaged in order to create the necessary algebraic equations. On the other hand, it is to be recugnized that if the well known method of least squares curve fitting technique is applied to the identification problem, there will result an identification of the type proposed here with a particular form of variable products. For the hypothetical ituation where one has available both the exact form of the system equations and error-free response and forcing function data, a trivial case exists that can be solved without resorting to time averages of variable products. By trivial it is meant that all one has to do is select data at a sufficient number of distinct times to form the algebraic equations. In such a situation, the least squares curve fitting criterion has no real meaning or significance since there is no error to minimize. But when one considers "real life" situations, where a system with an infinite number of degrees of freedom is approximated by one with a finite number, non-linearities are either ignosed or guessed at in form, measured data contains errors, or the coupling is incorrectly assumed; the question remains to be answered as to what "product form" to use to produce the "best" estimate of the parameters. In fact, the "best product form" to use will probably be a function of the particular assumed form of system equations.

CHAPTER I

PARAMETER IDENTIFICATION

The problem of identification of a system or of a process is now recognized as a basic part of modern engineering technique. It is clear that we must identify in order to design and in order to control in any optimal fashion. Thus, the subject of identification has been actively studied in the past decade, and will continue to develop both theoretically and practically as engineers continue to expand our technology.

Identification problems in engineering have been most actively pursued by electrical engineers in the past 10-15 years primarily motivated by the desire for adaptive and optimal control of systems and processes. Thus, the ideas of cross-correlations and cross-spectral densities for estimating the impulse response function or the frequency response function have been generated by them. Furthermore, electrical engineers and optimal control engineers have been forward in their efforts to apply parameter estimation schemes for identification purposes.

Vibrations engineers have, io a large extent, remained with the classical technique of driving a structural system by sinusoidal excitations at various
frquencies to determine the frequency response characteristics of structural systems. Parameter estimation ideas have not as yet permeated the bag of tricks that structural vibrations engineers can use freely in determining models of structural systems. Although new techniques based upon second order statistics, mean square approximations, or energy techniques are beginning to change that picture somewhat.

The purpose of this report is to present a parameter identification technique. As we indicated above, there is certainly no lack of parameter identification techniques in the literature. However, the technique that is presented in the present report possesses noteworthy features.

In the first place, the technique is simple to comprehend and to apply. Second, the same theoretical concept applies to both random and sinusoidal excitations; indeed, even sweep sinusoidal excitations. Third, it appears that the technique can be extended to non-linear systems with unknown parameters since the basic theory would remain unchanged. Fourth, the technique does not appear to be affected by wide ranges of the parameter values that often plague optimum parameter search techniques. Finally, in simulation studies the technique has produced highly accurate parameter estimates for reasonably complex systems.

Thus, it appears that the identification technique proposed in this report holds promise of being of practical significance for identification of arbitrary systems with unknown constant parameters.

This report is limited to the study of linear systems. It presents a theoretical development of the ideas, and estimates of parameters of simulated 5-mass chain-like systems as well as a two-mass two-dimensional system, among others. These systems, as well as the actual parameters, were supplied by NASA-Goddard. In each case, the mass, spring, and damping constants are estimated from the digitally simulated system subjected to random as well as sinusoidal inputs. It is noteworthy to point out that the mass and spring constants are six orders of magnitude apart in their values and yet each is estimated with very high accuracy. It is also noteworthy to add that a single sinusoidal excitation at what appears to be any arbitrary frequency will yield the identification of the system parameters. Thus, one does not rave to excite the system at a multitude of frequencies, or in some frequency bandwidth as has been implied by many previous investigations. Finally, the description of the digital simulation techniques as well as the program for simulation and identification are presented.

Abstract

One point must be made concerning the identification of systems via parameter estimation techniques. That is, the methods that have been oeveloped as well as the method we describe in this report will identify the analytical or simulated model of the actual physical system. Hence, if the analytical model is not a satisfactory equivalent or approximation to the system, then clearly, one is not identifying the real system. Thus, any analytical model identification scheme (such as parameter estimation) is only as good as the model that will be used to describe the physical system. (We note that identification schemes can sometimes be used to help provide a better system model. However, we will not dwell on that point here.)

With this understanding of the proper role of identification by parameter estimation, we can now proceed to describe our approach.

CHAPTER II

THEORETICAL DEVELOPMENT'

2.1 Introduction

The basic assumptions that we make in this chapter are that a linear time invariant system is being driven by some excitation, either random or deterministic. It will serve our purposes to think of our system as being composed of a number of masses connected to one another by linear springs and linear dashpots. We further assume that each mass may be driven by a separate excitation and further that the accelerations, velocities and displacements of each mass as well as the various excitations may be noiselessly observed, or at least, obtainable by suitable means. We point out that this rules out pure white noise as an input for reasons that shall be discussed below.

We assume that the various displacements, velocities and accelerations of the masses are related to the excitations via a system of linear differential equations of known form and order, but with unknown mass, spring, and damping parameters.

In general, our systems have the character of those given in Figure I. Figure I (a) shows a one-dimensional

"REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR"

chain-like system; Figure $I(b)$ shows a two-dimensional system.

In either case the form of the linear differential equation that governs the dynamics of these systems is

$$
\begin{equation*}
\dot{\bar{y}}(t)=A \bar{y}(t)+\bar{f}(t) \tag{2.1.1}
\end{equation*}
$$

where the \bar{y} vector is the vector of all the states of system. That is, its components are the displacements and velocities of the masses, the A matrix is a constant matrix made up of the various spring and damping constants, the $\overline{\mathbf{f}}$ vector is the excitation vector,

We have assumed all mass and inertia constants to be unity in the general equation (2.1.1). These constants will enter explicitly in the specific classes of systems we study below.

Thus, we write

$$
\bar{y}_{(t)}=\left(\begin{array}{l}
y_{1}(t) \\
\cdot \\
\cdot \\
y_{n}(t)
\end{array}\right) \quad \bar{f}=\left(\begin{array}{l}
f_{1}(t) \\
\cdot \\
\cdot \\
f_{n}(t)
\end{array}\right) \quad A=\left(\begin{array}{lll}
a_{11} & \cdots & a_{1 n} \\
\cdot & & \cdot \\
\cdot & & a_{n n} \\
a_{n 1} & & a_{n n}
\end{array}\right)(2.1 .2)
$$

for the vectors and matrix defining the system.

Abstract

In our development below we shall be concerned with both steady state oscillations as well as transient oscillations. Naturally, we assume the system to be stable in order that the steady state oscillation exists. Having stated these few introductory remarks, we can now present our detailed analytical development.

2.2 Random Excitations

Let us assume that the components $f_{1}(t), 1=1$, ..., n of the $\bar{f}(t)$ excitation vector are stationary random processes possessing as many moments as may be required by our analysis (in general, for linear systems only second moment properties will be required). We will further assume that the excitation processes are smooth enough to guarantee that all the derivatives $\dot{y}_{1}(t)$ exist. (The reader may recall that this is not the case if the excitation is a Gaussian White noise with Dirac "Delta" function for its covariance. See appendix)

We can immediately write a general solution to the A matrix for the linear system 2.1.1 as follows. We multiply equation 2.1 .1 by the transpose vector $\bar{y}^{\prime}(t)$ and take expectations of the resulting equation to yield

15

$\left.E \dot{\bar{y}}(t) \bar{y}^{\prime}(t)\right\}=A E\left\{\bar{y}(t) \bar{y}^{\prime}(t)\right\}+E\left\{\bar{f}(t) \bar{y}^{\prime}(t)\right\}(2.2 .1)$

The equation 2.2.1 can be solved for the matrix A as,
$\left[E\left\{\dot{\bar{y}}(t) \bar{y}^{\prime}(t)\right\}-E\left\{\bar{f}(t) \bar{y}^{\prime}(t)\right\}\right]\left[E\left\{\bar{y}(t) \bar{y}^{\prime}(t)\right\}\right]^{-1}=A$
assuming that the inverse matrix

$$
\begin{equation*}
\left[E\left\{\bar{y}(t) \bar{y}^{\prime}(t)\right\}\right]^{-1} \tag{2.2.3}
\end{equation*}
$$

exists.
The relation 2.2 .2 presents a general solution of the identification of A for linear systems of the form 2.1.1, if 2.2 .3 exists. The existence of this inverse is guaranteed if there is no inear relationship among the components of the $\bar{y}(t)$ vector, since the covariance matrix $\left.E_{\{ } \bar{y}(t) \bar{y}^{\prime}(t)\right\}$ is symmetric and non-negative definite. The non-negative definiteness follows from the fact that

$$
\operatorname{E}\left(\left(\sum_{i=1}^{n} a_{1} y_{i}(t)\right)^{2}\right\} \geq 0
$$

for any constants $\left(\alpha_{1}, \ldots, a_{n}\right)$. Furthermore, the equality sign in 2.2 .4 can only hold if there exists a linear relationship among the components of $\bar{y}(t)$. Thus, 2.2 .3 exists and the constant matrix A is solvable as given by equation 2.2.2 on the basis of observations of the \bar{y} and \bar{f} vectors.

This is somewhat more general than we wish to consider. Since the estimation of the various moments in 2.2.2 as well as the inverse matrix, especially in the transient situation where the moments are functions of t, are difficult to estimate. Therefore, to proceed with our development let us assume that the transients have, for all practical purposes, died out and the system is operating in the steady state. It is known that the \bar{y}-process is a statistically stationary process in that case and all the moments present in equation 2.2.2 are constant.

Furthermore, they ciai be estimated simply by taking time averages over discrete or continuous values of the time parameter.

Therefore, it follows, in the stationary case, that

$$
\begin{align*}
& E\left\{y_{1}^{r}(t)\right\}, E\left\{y_{i}^{r}(t) y_{j}^{s}(t)\right\}, 1, j=1, \ldots, n \tag{2.2.4}\\
& r, s=0,1,2, \ldots
\end{align*}
$$

exist and are constant in time. Hence,

$$
\left.\begin{array}{l}
\frac{d}{d t} E\left(y_{1}^{r}(t)\right\}=0 \tag{2.2.5}\\
\frac{d}{d t} E\left\{y_{1}^{r}(t) y_{j}^{s}(t)\right\}=0
\end{array}\right\}
$$

for l, j and r, s as above.

We now specify that the \bar{y}-process is a stationary, mean square differentiable process. Such processes are generated, for example, by passing a stationary mean square continuous process (ie., a process with continuous covariance function) through a time : invariant linear filter. Thus, if the excitation prows $\overline{\mathrm{f}}$ is mean square continuous, we are assured that the stationary \bar{y}-process is mean square continuous. It is because of the desired differentiability properties of the \bar{y}-process that we are ruling out the white noise type excitations in the random case. We explain this in full detail in the Appendix.

Now as a result of the mean square differertiability of the \bar{y}-process the derivative operator in 2.2 .5 can be taken into the expectation operator to give

$$
\begin{equation*}
E\left\{y_{1}^{r-1}(t) \dot{y}_{1}(t)\right\}=0 \tag{a}
\end{equation*}
$$

$r E\left\{y_{1}^{r-l}(t) \dot{y}_{1}(t) y_{j}^{s}(t)\right\}+\operatorname{sE}\left\{y_{i}^{r}(t) y_{j}^{s-1}(t) \dot{y}_{j}(t)\right\}=0$

In particular, it follows that for $r=2$ in 2.2 .6 a and $\mathrm{r}=\mathrm{s}=1$ in 2.2 .6 b we obtain
$E\left\{y_{1}(t) \dot{y}_{1}(t)\right\}=0$
(2.2.7)
$E\left\{y_{i}(t) \dot{y}_{j}(t)\right\}+E\left\{\dot{y}_{1}(t) y_{j}(t)\right\}=0$

The first equality in equation 2.2 .7 states the well-known fact that a stationary process and its derivative are uncorrelated at any given time. We repeat that the equations 2.2.7 do not hold if the excitation process is a white noise as will be seen in the Appendix.

Thus, on the basis of equations 2.2.6 and 2.2.7, the identification of the parameter matrix A as given by formula 2.2.2 reduces greatly in the stationary case. We illustrate these ideas by a few very simple analytical examples.

Example I.
Consider the system

$$
\begin{equation*}
\dot{y}(t)+a y(t)=f(t) \tag{2.2.8}
\end{equation*}
$$

Upon multiplying 2.2 .8 by $y(t)$ and taking expectations, we find
$E\{y(t) \dot{y}(t)\}+a E\left\{y^{2}(t)\right\}=E\{f(t) y(t)\}$

However, from 2.2.7 a it follows that

$$
\begin{equation*}
a=\frac{E\{f(t) y(t)\}}{E\left\{y^{2}(t)\right\}} \tag{2.2.10}
\end{equation*}
$$

For our estimate of a, therefore, one merely estimates the moments that appear in 2.2.10.

Example II.

We consider here the somewhat more complex system of coupled oscillators as shown in Figure It.

Figure II

Assuming the masses to be unity, we may write the equations of the system as,
$\ddot{z}_{1}(t)+C_{1}\left[\dot{z}_{1}(t)-\dot{z}_{2}(t)\right]+k_{1}\left[z_{1}(t)-z_{2}(t)\right]=f(t)$
$\ddot{z}_{2}(t)+c_{2} \dot{z}_{2}(t)+k_{2} z_{2}(t)-c_{1}\left[\dot{z}_{1}(t)-\dot{z}_{2}(t)\right]$
$-k_{1}\left[z_{1}(t)-z_{2}(t)\right]=0$

Upon setting

$$
\left(\begin{array}{l:l}
z_{1} & \vdots \tag{2.2.12}\\
\dot{z}_{1} & \vdots\left(\begin{array}{l}
y_{1} \\
z_{2} \\
\dot{z}_{2}
\end{array}\right. \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right)
$$

we nay rewite 2.2.11 as the system

$$
\begin{align*}
& \dot{y}_{1}(t)=y_{2}(t) \\
& \dot{y}_{2}(t)=-c_{1}\left[y_{2}(t)-y_{4}(t)\right]-k_{1}\left[y_{1}(t)-y_{3}(t)\right]+f(t) \\
& \dot{y}_{3}(t)=y_{4}(t) \tag{2.2.13}\\
& \dot{y}_{4}(t)=-c_{2} y_{4}(t)-k_{2} y_{3}(t)+c_{1}\left[y_{2}(t)-y_{4}(t)\right] \\
& +k_{1}\left[y_{1}(t)-y_{3}(t)\right]
\end{align*}
$$

The second equation in 2.2 .13 is multiplied by y_{1}, y_{2} and then averaged. The fourth equation in 2.2.13 is multiplied by y_{3}, y_{4} and averaged. On the basis of equations 2.2.7 it will follow that,

$$
\begin{align*}
& E\left\{y_{2}^{2}\right\}+E\left\{f y_{1}\right\}=-C_{1} E\left\{y_{1} y_{4}\right\}+k_{1}\left(E\left\{y_{1}^{2}\right\}-E\left\{y_{1} y_{3}\right\}\right) \\
& E\left\{f y_{2}\right\}=C_{1}\left(E\left\{y_{2}^{2}\right\}-E\left\{y_{2} y_{4}\right\}\right)-k_{1} E\left\{y_{2} y_{3}\right\} \\
& -E\left\{y_{4}^{2}\right\}=-k_{2} E\left\{y_{3}^{2}\right\}+C_{1} E\left\{y_{2} y_{3}\right\}+k_{1}\left(E\left\{y_{1} y_{3}\right\}-E\left(y_{3}^{2}\right\}\right) \tag{2.2.14}\\
& 0=-C_{2} E\left\{y_{4}^{2}\right\}+C_{1}\left(E\left\{y_{2} y_{4}\right\}-E\left\{y_{4}^{2}\right\}\right)+k_{1} E\left\{y_{1} y_{4}\right\}
\end{align*}
$$

The set of four linear algebraic equations, 2.2.14, in the four unknowns are easily solved to determine the parameters C_{1}, k_{1}, C_{2}, and k_{2}.

Thus, for example,

(2.2.15)
where
$B=\left|\begin{array}{ll}-E\left\{y_{1} y_{4}\right\} & E\left\{y_{1}^{2}\right\}-E\left\{y_{1} y_{3}\right\} \\ E\left\{y_{2}^{2}\right\}-E\left\{y_{2} y_{4}\right\} & -E\left\{y_{2} y_{3}\right\}\end{array}\right|$

Similar equations yield C_{2}, k_{2} as well. We shall leave the discussion of numerical results of this system for the next chapter.

For the case of unknown mass, spring and damping constants one must obtain one more set of moment equations in order to obtain a solvable set of linear simultaneous equations. We illustrate the problems that may occur in the proper choice of the third moment equation by the following simple oscillator.

Let us consider the case of the system given by

$$
m \ddot{y}(t)+c \dot{y}(t)+k y(t)=f(t)(2.2 .16)
$$

where m, C, k are all unknown.
Upon multiplying 2.2 .16 by y, \dot{y} and taking expectations, we obtain equations analogous to those in our previous examples, as,

$$
24
$$

$m E\{y \ddot{y}\}+C E\{y \dot{y}\}+k E\left\{y^{2}\right\}=E\{f y\}$
(2.2.17)
$m E\{\dot{y} \ddot{y}\}+C E\left\{\dot{y}^{2}\right\}+k E\{\dot{y} y\}=E\{f \dot{y}\}$

By equation 2.2 .7 a we can reduce these equations to yield
$-m E\left\{\dot{y}^{2}\right\} \quad+k E\left\{y^{2}\right\}=E\{f y\}$
(2.2.18)

C $E\left\{\dot{y}^{2}\right\}$
$=E\{f \dot{y}\}$
(b)

However, we require one more equation. One might consider multiplying 2.2 .16 by y^{2}, for example, and then take expectations to yield
$m E\left\{y^{2} \ddot{y}\right\}+c E\left\{y^{2} \dot{y}\right\}+k E\left\{y^{3}\right\}=E\left\{f y^{2}\right\}$
where, by 2.2 .6 a it follows that $E\left\{y^{2} \dot{y}\right\}$ is identically zero.

But, in general, in practice the excitation fundtin will be a zero mean Gaussian random process. Hence, y, \dot{y}, \ddot{y} are all Gaussian processes; each is a linear operator of the input process f.

Thus, specifically one has,
$y(t)=\int_{-\infty}^{t} H(t-\tau) f(\tau) d \tau$
$\dot{y}(t)=\int_{-\infty}^{t} \dot{H}(t-\tau) f(\tau) d \tau$
$\ddot{y}(t)=-\frac{1}{m} \int_{-\infty}^{t}[C \dot{H}(t-\tau)+k H(t-\tau)] f(\tau) d \tau+\frac{1}{m} f(t)$

Thus, any third order moment in y, \dot{y}, \ddot{y} will involve moments of the form

$$
\begin{equation*}
E\left\{f\left(t_{1}\right) f\left(t_{2}\right) f\left(t_{3}\right)\right\} \tag{2.2.21}
\end{equation*}
$$

Howover, it is a well-known fact that all third order moments of a Gaussian process are identically zero. Indeed, all odd order moments of a Gaussian process are zero so that equation 2.2 .19 cannot yield any new information as all its terms are zero.

Hence, if we cannot apply odd order moments to yield our third equation., the next question. is: "What about even moments?". Here, we get into trouble of a different nature, as we now demonstrate. Let us, for example choose

$$
\begin{equation*}
m E\left\{y^{3} \ddot{y}\right\}+C E\left\{y^{3} \dot{y}\right\}+\operatorname{kE}\left\{y^{4}\right\}=E\left\{f y^{3}\right\} \tag{2.2.22}
\end{equation*}
$$

as our third equation, again the term $E\left\{y^{3} \dot{y}\right\}$ is zero. It is well known that the even product moments of zero mean jointly distributed Gaussian random variables can be evaluated in terms of the second moments. In particular for $X_{1}, X_{2}, X_{3}, X_{4}$ jointly Gaussian, one has

$$
\begin{align*}
E_{\{ }\left\{X_{1} X_{2} X_{3} X_{4}\right\}= & \left.\left.E_{\{ } X_{1} X_{2}\right\} E_{\{ } X_{3} X_{4}\right\} \\
& \left.+E_{\left\{X_{1} X_{3}\right\}} E_{\left\{X_{2}\right.} X_{4}\right\} \tag{2,2.23}\\
& \left.+E_{\left\{X_{1} X_{4}\right\}} E_{\left\{X_{2}\right.} X_{3}\right\}
\end{align*}
$$

If we apply the identity 2.2 .23 to the terms of equation 2.2.22 we obtain
$E\left\{y^{3} \ddot{y}\right\}=3 E\left\{y^{2}\right\} E\{y \ddot{y}\}$
$E\left\{y^{4}\right\}=3\left(E\left\{y^{2}\right\}\right)^{2}$
$E\left\{f y^{3}\right\}=3 E\left\{y^{2}\right\} \quad E\{y f\}$

Thus, equation 2.2.22 may be written as,
$3 m E\left\{y^{2}\right\} E\left\{\dot{y}^{2}\right\}+3 k\left(E\left\{y^{2}\right\}\right)^{2}=3 E\left\{y^{2}\right\} E\{y f\}(2.2 .25)$

We immediately recognize that equation 2.2.25 is equation 2.2 .18 a multiplied by the factor $3 E\left\{y^{2}\right\}$.

Hence, equation 2.2.22 yields no new information.
Again, if one chooses any even moment equation, it will
always reduce to a linear combination of the equations 2.2.18 for the zero mean Gaussian case.

Since, in practice, noise generators yield Gaussian or near Gaussian processes, it will not be possible to identify the three unknowns on the basis of moments
obtained from equation 2.2.16 by multiplying by powers of y, \dot{y} and averaging. However, if the noise process used for excitation is definitely non-Gaussian, then one can establish moments of the nature of those we have idescribed. We shall present data that displays this phenomenton in the next chapter. How then are we to obtain a third condition for evaluating the unknown parameters? The most obvious choice is to use the acceleration variable. This is quite practical since, in general, it is the acceleration data that is actually obtained from experimental tests.

Therefore, we can multiply equation 2.2 .16 by \ddot{y} and take expectations giving us our third, and independent, equation

$$
\begin{equation*}
m E\left\{\ddot{y}^{2}\right\}+C E\{\dot{y} \ddot{y}\}+k E\{y \ddot{y}\}=E\{f \ddot{y}\} \tag{2.2.26}
\end{equation*}
$$

Finally, the system of linear equations available for parameter identification are given as,

$$
\begin{aligned}
-m E\left\{\dot{y}^{2}\right\}+k E\left\{y^{2}\right\} & =E\{f y\} \\
C E\left\{\dot{y}^{2}\right\} & =E\{r \dot{y}\} \\
m E\left\{\ddot{y}^{2}\right\}-k E\left\{\dot{y}^{2}\right\} & =E\{f \ddot{y}\}
\end{aligned}
$$

Thus, in order to identify linear systems by random excitations, we shall construct moment equations by multiplying the coupled equations by the displacement, the velocity and then the acceleration. We illustrate this for the general one-dimensional chatn-like system as shown in Figure I (a).

Denoting the displacement, velocity, and acceleration of the $i^{\text {th }}$ mass by $x_{i}, \dot{x}_{i}, \ddot{x}_{i}$, the equations of motion for N masses in the chain are,
$m_{1} \ddot{x}_{1}=f_{1}-C_{1}\left(\dot{x}_{1}-\dot{x}_{2}\right)-k_{1}\left(x_{1}-x_{2}\right)$ $m_{2} \ddot{x}_{2}=f_{2}-c_{2}\left(\dot{x}_{2}-\dot{x}_{3}\right)-k_{2}\left(x_{2}-x_{3}\right)+c_{1}\left(\dot{x}_{1}-\dot{x}_{2}\right)$
$+k_{1}\left(x_{1}-x_{2}\right)$
$m_{N} \ddot{x}_{N}=f_{N}-C_{N} \dot{x}_{N}-k_{N} x_{N}+C_{N-1}\left(\dot{x}_{i l-1}-\dot{x}_{N}\right)$
$+k_{N-1}\left(x_{N-1}-x_{N}\right)$

Upon multiplying the $i^{\text {th }}$ equation in 2.2 .28 by $x_{i}, \dot{x}_{i}, \ddot{x}_{i}$ respectively, we obtain the following system of parameter identification equations.

$$
\begin{align*}
& m_{1} E\left\{x_{1} \ddot{x}_{1}\right\}=E\left\{x_{1} f_{1}\right\}-C_{1} E\left\{x_{1}\left(\dot{x}_{1}-\dot{x}_{2}\right)\right\}-k_{1} E\left\{x_{1}\left(x_{1}-x_{2}\right)\right\} \\
& m_{1} E\left\{\dot{x}_{1} \ddot{x}_{1}\right\}=E\left\{\dot{x}_{1} f_{1}\right\}-C_{1} E\left\{\dot{x}_{1}\left(\dot{x}_{1}-\dot{x}_{2}\right)\right\}-k_{1} E\left\{\dot{x}_{1}\left(x_{1}-x_{2}\right)\right\} \\
& m_{1} E\left\{\ddot{x}_{1}^{2}\right\}=E\left\{\ddot{x}_{1} f_{1}\right\}-C_{1} E\left\{\ddot{x}_{1}\left(\dot{x}_{1}-\dot{x}_{2}\right)\right\}-k_{1} E\left\{\ddot{x}_{1}\left(x_{1}-x_{2}\right)\right\} \\
& m_{2} E\left\{x_{2} \ddot{x}_{2}\right\}=E\left\{x_{2} f_{2}\right\}-C_{2} E\left\{x_{2}\left(\dot{x}_{2}-\dot{x}_{3}\right)\right\}-k_{2} E\left\{x_{2}\left(x_{2}-x_{3}\right)\right\} \\
& \quad+C_{1} E\left\{x_{2}\left(\dot{x}_{1}-\dot{x}_{2}\right)\right\}+k_{1} E\left\{x_{2}\left(x_{1}-x_{2}\right)\right\} \\
& m_{2} E\left\{\dot{x}_{2} \ddot{x}_{2}\right\}=E\left\{\dot{x}_{2} f_{2}\right\}-C_{2} E\left\{\dot{x}_{2}\left(\dot{x}_{2}-\dot{x}_{3}\right)\right\}-k_{2} E\left\{\dot{x}_{2}\left(x_{2}-x_{3}\right)\right\} \tag{2.2.29}\\
& \quad+C_{1} E\left\{\dot{x}_{2}\left(\dot{x}_{1}-\dot{x}_{2}\right)\right\}+k_{1} E\left\{\dot{x}_{2}\left(x_{1}-x_{2}\right)\right\} \\
& m_{2} E\left\{\ddot{x}_{2}{ }^{2}\right\}=E\left\{\ddot{x}_{2} f_{2}\right\}-C_{2} E\left\{\ddot{x}_{2}\left(\dot{x}_{2}-\dot{x}_{3}\right)\right\}-k_{2} E\left\{\ddot{x}_{2}\left(x_{2}-x_{3}\right)\right\} \\
& \quad+C_{1} E\left\{\ddot{x}_{2}\left(\dot{x}_{1}-\dot{x}_{2}\right)\right\}+k_{1} E\left\{\ddot{x}_{2}\left(x_{1}-x_{2}\right)\right\}
\end{align*}
$$

Naturally, in the steady state case we can apply the identities 2.2 .7 in order to simplify further the system of equations 2.2.29. One point, in passing, is
that the chain-like nature of the system 2.2.28 yields a set of parameter estimation equations that can be solved sequentially. Tris, in 2.2.29 we can solve for m_{1}, C_{1}, and k_{1} from the first three equations, then substitute these estimates in the next set of three equations to yield estimates of m_{2}, C_{2}, and k_{2}. This procedure may be continued along the chain. We shall amplify this in Chapter IV on the details of computer simulation of the various systems.

One obvious question that one must consider concerns the errors that are made when the system is not yet in the stationary state. This is likely to occur when the damping factor, C, is small relative to the spring constant k. We can easily illustrate the effects of an error that is made in the estimated value E\{y爫\}, say, for the simple oscillator.

Let us assume the mass, m, is unity in the equation
2.2 .16 fcr the simple one degree of freedom oscillator. We assume C, k are unknown.

Then equations 2.2.17 yield for estimates

$\hat{k}=\frac{E\{\overparen{f} y\}-C E\{\widehat{y}\}-E\{y\}}{E\{\bar{y}\}}$
where " \wedge " denotes estimate.
If k is very large relative to C, then a small error in the estimate of $E\{y \dot{y}\}$ shall create a large erıor in \hat{C}. Thus, upon placing $E\{y \dot{y}\}$ equal to zero when it is not quite zero can yield large errors in \hat{C}. Indeed, the $k E$ \{ẏy greatly dominates the $E\{\dot{y} \ddot{y}\}$ term. Hence a small error in $E\{\dot{y} \ddot{y}\}$ will not affect the \hat{C} as much.

The story is quite different for the estimate of k, that is, \hat{k}. The error in $E\{y \dot{y}\}$ by setting it equal to zero has very little effect on \hat{k} if $\hat{c} \ll k$. Thus, one would conclude that \hat{k} could still be estimated reasonably well by setting various of the second moments equal to zero, even when this is in error due to the fact that the system has not reached steady state yet. One would also conclude that the damping coefficient estimate would suffer greatly. This is exactly what was observed in our simulation experiments as discussed in Chapter III.

When the system is in the steady state, the estimates obtained from simulations were quite acceptable.

2.3 Deterministic Excitations

We shall now concentrate upon the problem of identification of linear systems by means of deterministic excitations of the eype that are readily available in laboratory test situations. The most common types of excitations that can be generated in the laboratory are the pure sinusoidal and the sweep sinusoidal oscillations.

In order to illustrate the approach one takes for such a deterministic input, let us consider the simple oscillator with a sinusoidal excitation.

Thus, consider
$m \ddot{y}+C \dot{y}+k y=\sin \omega t$

We assume the system to be asymptotically stable in order that the transients will die out. In this case, it is equivalers 0 specify that bounded inputs yield bounded outputs.

For zero initial conditions the solution may be written as,
$y_{(t)}=\int_{0}^{t} d \tau H(t-\tau) \sin \omega \tau$
where

$$
\begin{equation*}
H(t)=\frac{1}{m \sqrt{\frac{k}{m}-\frac{c^{2}}{4 m^{2}}}} e^{-\frac{C}{2 m} t} \sin \sqrt{\frac{k}{m}-\frac{c^{2}}{4 m^{2}}} t \tag{2.3.3}
\end{equation*}
$$

We define an average operator of the form

$$
\begin{equation*}
\langle u(t)\rangle \equiv \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} u(t) d t \tag{2.3.4}
\end{equation*}
$$

for functions $u(t)$ for which this operator exists.
Now on the basis of this operator, let us attempt to identify the constants m, C, and k. We shall multiply equation 2.3.1 by y, \dot{y}, \ddot{y}, respectively, and take averages as defined by equation 2.3 .4 to yield

$$
\begin{align*}
& m\langle y \ddot{y}\rangle+c\langle y \dot{y}\rangle+k\left\langle y^{2}\right\rangle=\langle f y\rangle \\
& m\langle\ddot{y} \ddot{y}\rangle+c\left\langle\dot{y}^{2}\right\rangle+k\langle y \dot{y}\rangle=\langle f \dot{y}\rangle \\
& m\left\langle\ddot{y}^{2}\right\rangle+c\langle\ddot{y} \dot{y}\rangle+k\langle y \ddot{y}\rangle=\langle f \ddot{y}\rangle
\end{align*}
$$

One simply obtains
$\langle y \dot{y}\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} y(t) \dot{y}(t) d t=\lim _{T \rightarrow \infty} \frac{1}{2 T}\left[y^{2}(t)\right]=0 \quad$ (2.3.6)
where we have used the fact that the initial conditions are zero and $y(t)$ is bounded on the interval $(0, \infty)$ since the excitation is bounded.

Therefore, we can in the same fashion determine that

$$
\begin{align*}
& \langle\dot{y} \ddot{y}\rangle=0 \\
& \langle y \ddot{y}\rangle=-\left\langle\dot{y}^{2}\right\rangle \tag{2.3.7}
\end{align*}
$$

It will follow that 2.3 .5 can be written as,
$-m\left\langle\dot{y}^{2}\right\rangle+k\left\langle y^{2}\right\rangle=\langle f y\rangle$

The reader will recognize the equations 2.3 .9 to be identical to the parameter identification equations 2.2.27 except that the expectation operator in 2.2 .27 is replaced by the time average operator as defined in 2.3.4.

However, there is a very significant distinction to be made in the derivation of 2.3 .9 as opposed to the derivation of 2.2.27. In the derivation of 2.2 .27 it was assumed that the processes over which the expectations are applied are stationary processes (at least up to the second moments). This is guaranteed by our assumptions of a stationary process input, into the system 2.1.1, where the constant matrix A is a stability matrix. In that case, the steady state solution is a stationary random process and equation 2.2.27 applies. On the other hand, the equation 2.3 .9 did not make use of the assumption of stationarity, or steady state, for its derivation. This is a very significant point. In fact, for the sinusoidal input case, if $y_{s}(t)$ is the steady state solution, we cannot identify all three constants m, C, k. This can be illustrated very simply.in the following fashiun. The steady state solution is given.

$$
y_{s}(t)=\int_{-\infty}^{t} H(t-\tau) \sin \omega \tau d \tau=\int_{0}^{\infty} H(\tau) \sin \omega(t-\tau) d \tau
$$

$=Q \sin (\omega t-\phi)$
where Q, ϕ are easily determined in terms of the integrals $\int_{0}^{\infty} H(\tau) \sin \omega \tau d \tau \cdot \int_{0}^{\infty} H(\tau) \cos \omega \tau d \tau$

Therefore, we find,

$$
\begin{align*}
& \dot{y}_{S}(t)=\omega Q \cos (\omega t-\phi) \tag{2.3.11}\\
& \ddot{y}_{S}(t)=-\omega^{2} Q \sin (\omega t-\phi)
\end{align*}
$$

Upon applying 2.3.11 into the equations 2.3 .9 we find the equations

$$
\begin{align*}
& -m\left\langle\dot{y}_{s}{ }^{2}\right\rangle \quad+k\left\langle y_{s}{ }^{2}\right\rangle=\left\langle f y_{s}\right\rangle \\
& c\left\langle\dot{y}_{s}{ }^{2}\right\rangle \quad=\left\langle f \dot{y}_{s}\right\rangle \tag{2.3.12}\\
& m\left\langle\ddot{y}_{s}{ }^{2}\right\rangle \quad-k\left\langle\dot{y}_{s}{ }^{2}\right\rangle \quad=\left\langle f \ddot{y}_{s}\right\rangle
\end{align*}
$$

$$
\begin{align*}
& \left\langle y_{G}^{2}\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} Q^{2} \sin ^{2}(w t-\phi) d t=\frac{Q^{2}}{2} \\
& \left\langle\dot{y}_{s}^{2}\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \omega^{2} Q^{2} \cos ^{2}(\omega t-\phi) d t=\frac{\omega^{2} Q^{2}}{2} \tag{2.3.13}\\
& \left\langle\ddot{y}_{s}^{2}\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \omega^{4} Q^{2} \sin ^{2}(\omega t-\phi) d t=\frac{\omega^{4} Q^{2}}{2}
\end{align*}
$$

The determinant of the linear system of equations
2.3.12 in the unknowns m, C, k is

$$
\left|\begin{array}{ccc}
-\frac{\omega^{2} Q^{2}}{2} & 0 & \frac{Q^{2}}{2} \tag{2.3.14}\\
0 & \frac{\omega^{2} Q^{2}}{2} & 0 \\
\frac{\omega^{4} Q^{2}}{2} & 0 & -\frac{\omega^{2} Q^{2}}{2}
\end{array}\right|=0
$$

since the third row is $-\omega^{2}$ times the first row.
Hence, we cannot identify all three unknowns by these equations in the steady-state case with sinusoidal
excitations. The reason is quite clear: y_{s} and its two derivatives are not linearly independent of one another. However, any two unknown parameters can be identified. This will be illustrated in simulated examples in the next chapter. Of course, this problem does not enter into the random excitation case simply because the sample fundtions and their derivatives are not linearly dependent. Therefore, one would not expect to obtain linearly dependent moments from the stationary random solution processes.

The equation 2.3 .9 was obtained for a simple oscillator. We can easily establish that similar equations are possible in higher degree of freedom systems as well. Thus, let us consider the general solution to the system

$$
\begin{equation*}
\frac{d \bar{y}(t)}{d t}=A \bar{y}(t)+\bar{r}(t) \tag{2.3.15}
\end{equation*}
$$

where A, \bar{y}, \bar{f} are defined in Section 2.1.
For zero initial conditions, the solution process can be written as,

$$
\begin{equation*}
\bar{y}(t)=\int_{0}^{t} e^{A(t-\tau)} \bar{f}(\tau) d \tau \tag{2.3.16}
\end{equation*}
$$

Any component $y_{1}(t)$ of the state vector \bar{y} can be given by the integral

$$
\begin{equation*}
y_{i}(t)=\sum_{j=1}^{n} \int_{0}^{t} H_{i j}(t-\tau) f_{j}(\tau) d \tau \tag{2.3.17}
\end{equation*}
$$

where $r_{j}(\tau)$ is the excitation at the j th driving point and $H_{i j}(t-\tau)$ is the influence function or impulse response between the $j^{\text {th }}$ driving point and the $1^{\text {th }}$ state. From our assumed stability we have,

$$
\int_{0}^{\infty}\left|H_{1 j}(\tau)\right| d \tau<\infty \quad \text { for } 1, j=1, \ldots, n(2.3 .18)
$$

We are assuming the $f_{j}(t)$ to be of the form

$$
\begin{equation*}
f_{j}(t)=F_{j} \sin \omega_{j} t \tag{2.3.19}
\end{equation*}
$$

Thus, it follows that y_{1} and its derivatives are bounded.
In order to achieve equations of the form analogous
to 2.3 .9 we must establish
$K y_{1}^{n}(t) \quad \frac{d y_{1}(t)}{d t}=0$
(a)
(2.3.20)
(b)

But this is immediate for by definition

$$
\begin{align*}
& \text { T } \\
& \lim _{T \rightarrow \infty} \frac{1}{T}!_{0} y_{1}^{n}(t) \frac{d y_{1}(t)}{d t} d t=\lim _{T \rightarrow \infty} \frac{1}{T} \frac{1}{n+1} y_{1}^{n+1}(T)=0(a) \\
& \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \frac{d y_{1}(t)}{d t} y_{j}(t) d t \\
& \text { (2.3.21) } \\
& =\lim _{T \rightarrow \infty} \frac{1}{T} y_{i}(t) y_{j}(T)-\lim _{T \rightarrow \infty} \frac{1}{T}{ }_{0}^{T} y_{i}(t) \frac{d y_{j}(t)}{d t} d t \\
& T \\
& =-\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0} \quad y_{i}(t) \frac{d y_{j}(t)}{d t} d t \tag{b}
\end{align*}
$$

In the derivation of 2.3 .21 we have used only the fact that the components $y_{1}(t)$ are bounded on $(0, \infty)$ and that the initial conditions are zero. (This last condition is clearly not a requirement for establishing 2.3.21.)

It was pointed out above that the steady state solution is not required for identification. We should now notice another remarkable fact. That is, the requirement of sinusoidal excitations is not basic in the derivations above. All that is basic is that the system is stable in the sense of bounded inputs yielding bounded outputs. Therefore, all that we require is that a bounded function, any function for that matter, is used for excitation purposes. Thus, for example, a sweep sinusoidal or even a dameed sinusoidal function can lead, theoretically, to the identification of the parameters of the system Even more interesting, a sample excitation from a random process such as those discussed in Section 2.2 will yield identification on this basis. We must stop a moment and reflect upon this last point.

Our whole approach to the identification of the unknown parameters was originally motivated by the statistical reasoning as put forth in Section 2.2. Now we see that there is perhaps a more fundamental point that underlies the procedure that we are proposing. We are led to think this way, simply because we can establish the same technique for identification with any test excitation. Furthermore, it appears that steady state properties are not required.

There is, in fact, a more basic mechanism going on here that subsumes all of the previous analyses of section 2.2 and this section as special cases.

We illustrate this mechanism, again, with the simple linear damped oscillator.

We consider the oscillator driven by a bounded excitant., $\mathrm{n} f(\mathrm{t})$,

$$
\begin{equation*}
m \ddot{y}(t)+c \dot{y}(t)+k y(t)=f(t) \tag{2.3.22}
\end{equation*}
$$

Suppose we are able to observe the excitation, the displacement, velocity and acceleration exactly at three different instants t_{1}, t_{2}, t_{3}. It would then follow that we would have three equations,

$$
\begin{align*}
& m \ddot{y}_{1}+c \dot{y}_{1}+k y_{1}=f_{1} \\
& m \ddot{y}_{2}+c \dot{y}_{2}+k y_{2}=f_{2} \tag{2.3.23}\\
& m \ddot{y}_{3}+c \dot{y}_{3}+k y_{3}=f_{3}
\end{align*}
$$

Hence, with only three observations, these equations, if not singular, would lead to identification of the parameters. However, even if we can obtain simultaneous records of the excitation, displacement, etc., we cannot expect to achieve exact observations of the four quantities at any given time.

Ineed, the observations would yield some error that is c_{i} un independent random error type with zero mean. That is, the observations would be of the form,

$$
\begin{align*}
& m\left(\ddot{y}_{1}+n_{11}\right)+c\left(\dot{y}_{1}+n_{12}\right)+k\left(y_{1}+n_{13}\right)=f_{1}+n_{14} \\
& m\left(\ddot{y}_{2}+n_{21}\right)+c\left(\dot{y}_{2}+n_{22}\right)+k\left(y_{2}+n_{23}\right)=f_{2}+n_{24} \tag{2.3.24}\\
& m\left(\ddot{y}_{3}+n_{31}\right)+c\left(\dot{y}_{3}+n_{32}\right)+k\left(y_{3}+n_{33}\right)=f_{3}+n_{34}
\end{align*}
$$

where the n 's are independent, identically distributed and $E\left\{n_{1 j}\right\}=0$.

But because the noise in the observations has mean zero, it follows that

$$
\frac{1}{\mathrm{~T}} \int_{0}^{T} n(t) d t \rightarrow 0 \quad \text { as } \quad T \rightarrow \infty
$$

If we write the observed excitation and dynamical variables as,

$$
\begin{array}{llll}
\tilde{f}(t), & \tilde{y}(t), & \tilde{y}(t), & \tilde{\ddot{y}}(t)
\end{array}
$$

then it will follow that

$$
\begin{aligned}
& \langle\tilde{\mathrm{f}}(\mathrm{t})\rangle=\langle\mathrm{f}(\mathrm{t})\rangle \\
& \langle\tilde{\mathrm{y}}(\mathrm{t})\rangle=\langle\mathrm{y}(\mathrm{t})\rangle \\
& \hat{\tilde{y}}(\mathrm{t})\rangle=\langle\dot{\mathrm{y}}(\mathrm{t})\rangle \\
& \langle\tilde{y}(\mathrm{y})\rangle=\langle\ddot{\mathrm{y}}(\mathrm{t})\rangle
\end{aligned}
$$

that is, the errors in observation will, so to speak, average out to zero.

If $\langle f(t)\rangle$ is identically zero, then all terms in 2.3.25 will be zero. fence, directly taking a time average of 2.3.22 would nut yield a usable equation for identification purposes. For this reason we will use, as before, time averages of second powers for identification of linear systems.

Hence, the actual identification equations that we apply in the case of the linear cystem 2.3.22 are given as,

$$
\begin{align*}
& 1 \\
& \text { I } \\
& 1 \\
& m \frac{1}{T} \int_{0}^{T} y(t) \ddot{y}(t) d t+C \frac{1}{T} \int_{0}^{T} y(t) \dot{y}(t) d t \\
& +k \frac{1}{T} \int_{0}^{T} y^{2}(t) d t=\frac{1}{\bar{T}} \int_{0}^{T} f(t) y(t) d t \\
& m \frac{1}{T} \int_{0}^{T} \dot{y}(t) \ddot{y}(t) d t+C \frac{1}{T} \int_{0}^{T} \dot{y}^{2}(t) d t \\
& +k \frac{1}{T} \int_{0}^{T} y(t) \dot{y}(t) d t=\frac{1}{T} \int_{0}^{T} f(t) \dot{y}(t) d t \tag{2.3.26}\\
& m \frac{1}{T} \int_{0}^{T} \ddot{y}^{2}(t) d t+C \frac{1}{T} \int_{0}^{T} \dot{y}(t) \ddot{y}(t) d t \\
& +k \frac{1}{T} \int_{0}^{T} y(t) \ddot{y}(t) d t=\frac{1}{T} \int_{0}^{T} f(t) \ddot{y}(t) d t
\end{align*}
$$

where the variables are all considered to be the observed variables.

We wish to make it quite clear that equation 2.3 .26 holds in all cases, random or deterministic. If $f(t)$ is a sample of a random process and T is large enough, then the averages can be replaced by expectation operators, allowing a number of the terms to go to zercl as we have discussed before and follow the analysis of Section 2.2. But, whether T is large or not, equations 2.3 .26 will always hold. As we shall see, they yield extremely accurate parameter estimates.

The equations analogous to 2.2.2.9 for an N mass chain are,
$m_{1} \frac{1}{T} \int_{0}^{T} y_{1}(t) \ddot{y}_{1}(t) d t=\frac{1}{T} \int_{0}^{T} y_{1}(t) f_{1}(t) d t$
$-c_{1} \frac{1}{T} \int_{0}^{T} y_{1}(t)\left(\dot{y}_{1}(t)-\dot{y}_{2}(t)\right) d t-k_{1} \frac{1}{T} \int_{0}^{T} y_{1}(t)\left(y_{1}(t)-y_{2}(t) d t\right.$

$$
\begin{aligned}
& m_{1} \frac{1}{T} \int_{0}^{T} \dot{y}_{1}(t) \ddot{y}_{1}(t) d t=\frac{1}{T} \int_{0}^{T} \dot{y}_{1}(t) f_{1}(t) d t \\
& -c_{1} \frac{1}{T} \int_{0}^{T} \dot{y}_{1}(t)\left(\dot{y}_{1}(t)-\dot{y}_{2}(t)\right) d t-k_{1} \frac{1}{T} \int_{0}^{T} \dot{y}_{1}(t)\left(y_{1}(t)-y_{2}(t)\right) d t \\
& -c_{1} \frac{1}{T} \int_{0}^{T} \ddot{y}_{1}(t)\left(\dot{y}_{1}(t)-\dot{y}_{2}(t)\right) d t-k_{1} \frac{1}{T} \int_{0}^{T} \ddot{y}_{1}^{T}(t)\left(y_{1}(t)-y_{2}(t)\right) d t \\
& m_{0}^{2}(t) d t=\frac{1}{\bar{T}} \int_{0}^{T} \ddot{y}_{1}(t) f_{1}(t) d t \\
& m_{2} \frac{1}{T} \int_{0}^{T} y_{2}(t) \ddot{y}_{2}(t) d t=\int_{0}^{\frac{1}{T}} \int_{0}^{T} y_{2}(t) f_{2}(t) d t \\
& -c_{2} \frac{1}{T} \int_{0}^{T} y_{2}(t)\left(\dot{y}_{2}(t)-\dot{y}_{3}(t)\right) d t-k_{2} \frac{1}{T} \int_{0}^{T} y_{2}(t)\left(y_{2}(t)-y_{3}(t)\right) d t \\
& +c_{1} \frac{1}{T} \int_{0}^{T} y_{2}(t)\left(\dot{y}_{1}(t)-\dot{y}_{2}(t)\right) d t+k_{1} \frac{1}{T} \int_{0}^{T} y_{2}(t)\left(y_{1}(t)-y_{2}(t)\right) d t
\end{aligned}
$$

We repeat that these equations hold for any T. In somes cases many of the terms will be close to zero relative to the other terms. This is especially so when the excitation is a sample from a stationary process and the system is operating in steady state. In that case, the analysis of Section 2.2 will apply.

We also wish to repeat that equations 2.3 .27 hold for any excitation function as long as there is-an appreciable magnitude of the output vector. This is quite distinct from the analysis of Section 2.2 where the stationary properties were significant.

In the next chapter we present the results of our experiments on simulated systems using both the statistical as well as the deterministic approaches to the identification of the unknown parameters for a variety of systems.

CHAPTER III
IDENTIFICATION OF SIMULATED
LINEAR DYNAMICAL SYS'REMS

3.1 Introduction

Simulation studies were carried out for a number of linear dynamical systems. Coupled oscillators of the one-dimensional type as shown in Figure I (a) as well as a two-dimensional system shown in Figure I (b) were simulated and studied on the digital compater. For the coupled oscillator case stuties were made on two and five mass systems. The most significant five mass system was defined by mass, damping and spring constants provided by NASA-Goddard. Inputs to the simulated systems were random as well as sinusoidal. The random excitations used were of two types. One was generated on the computer by passing white noise samples through a filter with selected band pass properties. The other excitation process was that taken from di ital tape records of noise generator sources as provided by NASA-Goddard. Ir the case of sinusoidal excitations, both fixed frequency as well as sweep frequency excitations were applied. In all cases, identification was accomplished. In many cases, as will be
seen below, the estimated parameters are remarkably close to the actual parameters. In the followine sections we present these results as well as various significantly chosen cases to shed as much light as possible on the present approach to the problem of identification. In Section 3.2 we shall present and discuss results based upon random excitations. In Section 3.3 we present and discuss results based upon sinusoidal excitation. In Section 3.4 we present preliminary results related to the estimation of parameters when only the excitation and acceleration data are known. In such a case one must integrate the acceleration data to yield the velocity up to an unknown initial constant. The initial condition is then determined by a least squares linear fit of the integrated acceleration data.
3.2 Identification of Simulated Systems One-Dimensional by Random Excitations

Among the random excitation simulation experiments, we have considered cases in which we achieve, for all practical purposes, a steady state condition so that equations 2.2.7 hold and can be applied to simplify the parameter identification equations 2.2.29.

We have also considered the siswation in which the damping factors are small so thei the stationary solution
process has not developed. In that situetion we merely revert to the time average and apply all terms in the equation 2.2.29. In all cases identification of the parameters is quite successful. We shall describe our results in the experiments that follow.

Experiment I. The object of this experiment is to study the effect of the transient period before observations are taken.

For this case we consider a two mass chainlike system whose dynamical equations are given by 2.2 .28 with $N=2$. The parameters for the simulated system are

$$
\begin{equation*}
m_{1}=m_{2}=1, \quad k_{1}=16, \quad k_{2}=9, \quad c_{1}=4, \quad c_{2}=3 \tag{3.2.1}
\end{equation*}
$$

Only one mass, m_{1}, is driven. The simulation as well as the sampling fitervals are 0.05 sec . The number of samples used for estimation is 2000, which is equivalent to an identification period of 100 secs. The random excitation function is of the form

$$
f_{l}\left(t_{j}\right)=\sum_{i=1}^{10} a_{i} \bar{w}_{j-i}
$$

where the $\left\{\bar{W}_{j}\right\}$ is a sequence of independent zero mean Gaussian random variables (white noise) and

$$
\begin{aligned}
& a_{1}=.1, \quad a_{2}=.2, \quad a_{3}=.3, \quad a_{4}=.4 \\
& a_{5}=\ldots=a_{10}=.5
\end{aligned}
$$

The standard deviation of the white noise was chosen to be 30 .
The simulation was initiated and observations were taken for a period of 100 seconds commencing at 50 secs, 150 secs, etc. for five successive observation periods. The parameters were estimated on the basis of the observations in the periods $50-150,150-250, \ldots, 450-550$. The estimates are given in the following table.

Transient Interval Observation Starting At

Estimate 50 sec 150 sec 250 sec 350 sec 450 sec True
\hat{m}_{1}
\hat{k}_{1}
\hat{c}_{1}
\hat{m}_{2}
\hat{k}_{2}

\hat{c}_{2} | 1.0034 | 1.0176 | .9865 | 1.002 | 1.003 | 1.0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1.0037 | 26.3280 | 15.80 | 16.08 | 15.945 | 16.0 |
| 9.022 | 9.1 .0219 | 3.89 | 4.039 | 3.954 | 4.0 |
| 3.0079 | 3.1093 | 2.924 | 3.034 | 2.945 | 3.0 |

Clearly, the estima, ad parameters are exceilent. The variations are merely random variations and are not a function of the transient interval. This, of course, is due to the fact that after a period of 50 seconds, the system is already in the steady state because of relatively high ratio of critical damping.

It would appear that after the transients have died out, observation can be started at an arbitrary time to yield satisfactory estimates.

It is interesting to note that the average of these five runs gives
$\overline{m_{1}}=1.0025 \quad \overline{k_{1}}=16.0381 \quad \overline{c_{1}}=4.0039$
$\overline{m_{2}}=1.0001 \quad \overline{k_{2}}=9.0213 \quad \overline{c_{2}}=3.041$
which are very close to the true parameters.

Experiment II. The object of this experiment is to demonstrate the variation in the parameter estimates when passIng from transient state into steady state conditions. For this experiment a two mass chainlike oscillato was used. Hence, the system equaticns are identical to wose of experiment I. The system parameters we hosen as,

$$
m=m_{1}=m_{2}=.707, \quad c=C_{1}=c_{2}=50, \quad k=k_{1}=k_{2}=1.5 \times 10^{5}
$$

For this system we have calculated all of its characteristic numbers which are given by the roots of the polynomial,

$$
\begin{equation*}
\left(m s^{2}+\frac{3}{2} c s+\frac{3}{2} k\right)^{2}-\frac{5}{4}(c s+k)^{2}=0 \tag{3.2.3}
\end{equation*}
$$

One finds the solutions to this characteristic equation to be

$$
\left.\begin{array}{l}
-\left(\frac{3-\sqrt{5}}{2}\right) c \pm \sqrt{\left(\frac{3--\sqrt{5}}{2}\right)^{2} c^{2}-2(3 \cdots \sqrt{5}) k} \\
2 m
\end{array}\right] .\left(\frac{3+\sqrt{5}}{2}\right) c \pm \sqrt{\left(\frac{3+\sqrt{5}}{2}\right)^{2} c^{2}-2(3+\sqrt{5}) k} \frac{2 m}{2} .
$$

The mode frequencies are approximately $53 \mathrm{c} . \mathrm{p} . \mathrm{s}$. and $140 \mathrm{c} . \mathrm{p} . \mathrm{s}$. with corresponding damping factors approximately 26.8 and 185.

The system was excited by a random force generated by passing white noise samples through a band pass filter
with center frequency 60 c.p.s. and effective band-width (defined by location of $1 / 2$ power frequency) 40 c.p.s. Thus, the band has a range of 40 c.p.s. to 80 c.p.s.

This is generated by a system of the form

$$
\begin{equation*}
\ddot{f}+B \dot{f}+\omega^{2} \dot{f}=B \dot{x} \tag{3.2.5}
\end{equation*}
$$

A description of the generation of these excitations is given in Chepter IV. The sampling rate is 1600 samples/sec. correspordiag to approximately 11 samples per cycle of highest mode frequency. The estimates of parameters were taken from observations on the intervals $0-0.4,0.4-0.8$, 0.8-1.2, and $0-0.8,0.8-1.6,1.6$ - 2.4. The 0-0.4 and $0-0.8$ contain the transient intervals which are relatively short with the present damping constants. The estimates are given in the following table. Run number one and run number two are excited by two different samples from the excitation process.

The major features of these estimates are that they vary in accordance with the variations of the estimates of the moments that are used in the identification formulas. Thus, the errors that are present are due, in part, to setting those moments to zero, such as, $E\left\{y_{1} \dot{y}_{1}\right\}, E\left\{y_{2} \dot{y}_{2}\right\}$ etc., when they may not actually be small. The greatest errors

occur in the interval o-0.4 since in this interval the transient period is roughly $1 / 3$ of the interval length. Thus, the errors are greatest for estimating "stationary" moments. As we have stated in Section 2.2, these errors will be reflected greatly in the damping constant estimates, and to a. much lesser extent in the spring constant estimates. This is exactly what is shown in the first column of the table above. Indeed, the spring constant estimates are uniformly good as well as the mass estimates. The greatest variation occurs in \hat{C}. In run number one, we see an obvious change in the accuracy of the estimates after the interval o-0.4 since then we are effectively in the steady state case. Due to the increased length of intervals of observation, there is a more definite change in the error of estimation from $0-0.4$ to 0.4 - 0.8 than from 0-0.8 to $0.8-1.6$ because the transient period is a much smaller part of the observation period in $0-0.8$. Thus, the variations in the estimates of run number two can be considered as truly random variations.

Experiment III. In this experiment, which was performed at an early stage of the study, a five mass chainlike system was simulated with only the first mass being excited. The input excitation is identical to the excitation used in experiment I. The interval of simulation was .05 secs with

5000 samples used for identification purposes. The transient interval was chosen as 50 secs, 300 secs, 550 secs. Thus, after the first 50 second transient interval successive runs of 250 secs were used for identification. The results of the three runs are shown in Table III (a). We denote the estimates for the three successive runs as $\hat{m}_{i}(1)$, $\hat{m}_{1}(2), \quad \hat{m}_{1}(3), \quad \hat{k}_{i}(1)$, etc.

The first and third runs are quite acceptable as estimates of the true parameters. However, the second set does possess large estimate errors, especially for $\hat{\mathrm{C}}_{1}$. of course, as we have already seen in Chapter II, we expect errors to be greater in the damping constant estimates. Part of the source of error here was traced to the way in which the excitation was being simulated. A modification in the simulation of the excitation, which was used in all future simulations, brought the new estimations given here, In Table III (b), on?y for the first run.

All estimates in Table III (b) are quite acceptable. Of course, one should expect good estimates since the damping is relatively high so that after a transient interval of 50 seconds the system is in steady state. Furthermore, the observation period is quite long. Hence, stationary moment estimates should be close to time estimates.
（q）III ${ }^{\text {（ }} \mathrm{qP}_{\mathrm{L}}$

28．2	$0^{\circ} \mathrm{E}$	94．3	0.6	$686 \cdot 0$	$0^{\circ} \mathrm{T}$
LL． \mathcal{L}	$0^{\circ} \mathrm{H}$	$59^{\circ} \mathrm{S} \tau$	0＊91	LT6＊0	$0^{\circ} \mathrm{T}$
$9 \varepsilon^{\circ}+\square$	$0 \cdot 5$	8L・ヶち	$0 \cdot 52$	OLで「	$0^{\circ} \mathrm{T}$
$0 \pi^{\circ} \mathrm{L}$	0.9	08＊$\varepsilon \varepsilon$	0＊98	OTL＊O	0＊T
$8 L^{\circ} 5$	0． 2	टع•0S	0．6\％	$960{ }^{\circ}$［	$0^{\circ} \mathrm{T}$
$\stackrel{\square}{\square}$	5_{5}	$\stackrel{7}{4}$	$F_{\text {H }}$	$\stackrel{T}{w}_{\underline{v}}$	${ }_{\text {w }}^{\text {w }}$

02ヵ＊¢	$L \nsim 6^{\circ}$ 2	$0 ヶ 6 \cdot 2$	$0 \cdot \varepsilon$	20L•8	06E•8	$9 E \tau \cdot 6$	$0 \cdot 6$	588°	000＊	020＊T	$0^{\circ} \mathrm{T}$	5
048＊	$980^{\circ} \mathrm{H}$	$488^{\circ} \mathrm{\varepsilon}$	0\％	TE8． 8°	H08 ${ }^{\circ} \mathrm{mL}$	86I＇9T	$0 \cdot 91$	\＄06 ${ }^{\circ}$	S56＊	LCO＊${ }^{\text {c }}$	$0^{\circ} \tau$	\dagger
$86 \pi \cdot 9$	пп $¢ \cdot S$	168＊カ	$0 \cdot 5$	825．S2	\＄80＊\＆	T02•S己	$0 \cdot 52$	826＊	п26＊	9ヵ6 ${ }^{\text {－}}$	$0^{\circ} \mathrm{I}$	ε
Lャ9＊	عย0＊L	$8 \mathrm{LE} \cdot 5$	$0 \cdot 9$	TL6＊ 28	とこ9＊とを	988＊9E	0＇98	$8 \pi 0^{\circ} \mathrm{T}$	tiso ${ }^{\text {c }}$	ع9！${ }^{\text {c }}$	$0^{\circ} \mathrm{T}$	2
SE0．6	$\varepsilon \varepsilon_{i 7} \cdot$ LT	92t＊6	0．2	T65．tc	SSS．9\＃	H09＊6ヶ	0．6\＃	076 ${ }^{\circ}$	SS9＊	$648^{\circ} 0$	$0^{\circ} \mathrm{T}$	τ
$(\varepsilon)^{T}{ }_{v}$	$(2)^{T} ?$	$(\tau)^{T}{ }_{v}$	${ }^{5}$	$(\varepsilon)^{T_{4}}$	（2）${ }^{\frac{T}{4}}$	（ I$)^{T_{Y}}$	${ }^{1}$	$(\varepsilon)^{\underline{T}}{ }_{\mathbf{w}}$	（2）${ }_{\text {T }}^{\text {w }}$	$(T)^{\underline{T}}$	${ }^{\text {IJI }}$	$!$

Of course, this system with high damping factors does not truly reflect actual structural systems in which the damping ratio is very iow. We, thus, considered a system with parameters that are comparable to those found in an actual structural system.

Experiment IV. In this experiment, we simulated a five mass chainlike system as shown in Figure $I(a)$ of Chapter II. The system equations, again, are given by 2.2 .28 with $N=5$. We based our estimations upon the assumption of steady state with a statistically stationary solution process so that the various moments were set to zero as given by equation 2.2.7. The spring and damping constants were supplied by NASA-Goddard as reflecting the true parameter values of a NASA-Goddard five mass experimental model. The simulated system was excited by the same function as in experiment III, as well as by randomly generated excitations as provided on a tape recording supplied by NASA-Goddard. The spectrum of the taped excitation is given by the following figure.

The sampling frequency was 1400 c.p.s., a total of 42,000 samples were used, representing 30 secs of observation time. A typical set of estimates is given in the table below to three places beyond the decimal point.

Figure III

The very striking feature of this set of estimates is that the spring constants and mass constants are extremely accurate, whereas the damping constant estimates are not even close to the true values. Of course, we recognize this to be a case where the damp:ng constant is extremely small and for all practical purposes the damping ratio is zero in view of the higt. sprine rate. As we have indicated in the analysis of Chapter II, we will expect large errors in \hat{C}_{1} and small errors in \hat{k}_{1} in this situation. As we see, the fact that $C_{1} \ll k_{1}$ gives us almost no effect on \hat{k}_{1} of an error in \hat{C}_{1}. It can only effect \hat{k}_{1} in the fifth and sixth digits which are outside any practical significance.

The question is, why do we have such a great error in $\hat{\mathrm{C}}_{1}$ in the first place? The reason is clear; $\hat{\mathrm{C}}_{1}$ is so small that it simply takes too joap for the steady state to develop. Hence, we did not observe the steady state over the intervil used for identification purposes. Furthermore, applying longer transient intervals before observations were performed on the simulated system did not appreciably help matters. Although \hat{m}_{1}, \hat{k}_{1} were al.. ways quite good, the \hat{C}_{i} were very poor.

It was at this point that we applied the time average ideas as described by equations 2.3.27 of Chapter II in order to attempt the identification of the parameters.

Experiment V. We present in this experiment, the results of 1dintification of simulated five-mass chainlike system as piven by equations 2.3.27 where the system is not in the steady state due to the extremely small damping ratio. Simulated, as well as tape force, inputs were used. Various samping rates and periods of otservations were applied; these are presented in the following tables: $V(a)$ and $V(b)$. No transient interval was used. That is, observations for identification purposes were started at $t=0$.

For this table, the force input was the taped excitation provided by NASA-Goddard with spectrum as shown in Experiment IV. The sampling frequency was 1400 c.p.s. with 10 secs, 20 secs, and 30 secs used for observation intervals all starting at $t=0 . \hat{m}_{1}(1), \hat{k}_{1}(1), \hat{c}_{i}(1)$ corresponds to 10 second observation intsrval, similarly for 20 secs and 30 secs. The most obvious feathre of Table $V(a)$ is the remarkable accuracy of the estimates. This appears to be incependent of the length of the observation interval in this case. But, we do notice, that even at 10 secs, we are taking 14,000 points for identification purposes which is a large number of observations.

Table $V(b)$ shows the results of identification for exactly the same system and same excitation as in Table V (a) except that the taped excitation was tampled as

901*	O0T*	$\varepsilon^{0 \tau} \times \varepsilon S^{\circ}$	$\varepsilon^{0 \tau} \times \varepsilon \varsigma^{\circ}$	$999{ }^{\circ}$	L99*	ζ
L68 ${ }^{\circ} \mathrm{T}$	$006 \cdot \tau$	$s^{0 \tau} \times \varepsilon_{8}$.	$\varsigma^{\text {OT } \times ~} \varepsilon_{8}$	$959{ }^{\circ}$	L99*	4
ع L6*	$006{ }^{\text { }}$	$9^{0 \tau} \times \varepsilon 6^{\circ}$	$9^{0 \tau} \times \varepsilon 6^{\circ}$	$999{ }^{\circ}$	L99*	ε
L06 ${ }^{\text {T }}$	006 ${ }^{\text {T }}$	$\varsigma^{\circ T} \times \varepsilon \varepsilon^{\circ}$	$\varsigma^{0 T} \times 8^{\circ}$	999*	L99*	2
4 \% $^{\circ}$	$006{ }^{\text { }}$	$9^{0 T} \times \varepsilon 6^{\circ}$	$9^{\text {OT } \times 26 .}$	$999{ }^{\circ}$	L99*	τ
${ }^{+}$	$\stackrel{T}{0}_{0}$	T_{4}	$\stackrel{T}{4}^{\text {H }}$	${ }^{\text {w }}$	${ }_{\text {F }}^{\text {w }}$	T

700 c.p.s. rather than the previous 1400 c.p.s. to deterrnine the significance of the sampling rates. Thus, the system was simulated at an interval of .00143 secs. Table $V(b)$ shows these results for 10 second observation time. Again, the identification observations commence at $t=0$. We notice a slight change in the accuracy of the \hat{c}_{1} : however, \hat{m}_{1} and \hat{k}_{1} do not appear to be affected by this change in sampling rate.

The following table, $V(c)$, shows the parameter identification of the linear system, all of whose parameters are taken from the five-mass NASA-Goddard system. The spring and damping constants are the same as in Tables $V(a)$ and $V(b)$. The only change is the mass parameter, which is .052 instead of .667 . Thus, the natural frequencies of this system are somewhat higher than in the previous cases. Upon simulation at 1400 samples per second, quite a bit of error in the estimates were present. It was felt that the simulation rate was not large enough to account for the frequency range of this new system which had gone up about 3.5 times. Thus, it was decided to raise the simulation rate to $5000 \mathrm{c} . \mathrm{p} . \mathrm{s}$. and make a time scale change on the taped input excitation to account for this new sampling rate. Therefore, effectively, the excitation was at a higher frequency range than in real time.

The two sets of estimates are accomplished by the taped input force with the time scale change for 1 second and 2 seconds observation intervals starting at $t=0$.

We see in Table $V(c)$ that the 2 second estimates of C_{1} are bettcr than the 1 second estimates. Longer observation times will undoubtedly yield extremely accurate \hat{C}_{1}. Again, \hat{m}_{1} and \hat{k}_{1} are uniformly excellent.

We can summarize all of the results in this section by stating that if it is reasonably established that the system is in steady state operation, then Equation 2.2.7 may be applied to reduce the number of constants in the identification equations. However, if there is any doubt or merely in order to be somewhat more confirent of the estimates, it appears that the time average equations 2.3.27 will always give good estimates without waiting for the transients to die out. Of course, if transients have effectively disappeared, the moments that should reduce to zero will be effectively zero upon estimation. The frequency range of the excitation does not appear to be a factor. However, the time of observation is certainly a factor as well as the sampling rate. A rough figure that can probably be adhered to is 5-10 samples per cycle of the highest obseryed frequency of the output of the system.
(0) Λ ә $ั q e^{4}$

$880^{\circ} 0$	$\varsigma \varepsilon T \cdot 0$	001*0	$z^{0 \tau} \times \varepsilon^{\circ}$		$\Sigma^{0 \tau} \times \varepsilon \pi \cdot$	250*	250*	250*	5
L06* ${ }^{\text {T}}$	$598{ }^{\circ} \mathrm{T}$	006 ${ }^{\circ} \mathrm{T}$	$s^{0 \tau} \times \varepsilon^{\circ}$	$\varsigma^{0 \tau} \times \varepsilon^{\circ}$	$\zeta^{0 \tau} \times \varepsilon^{\circ}$.	250*	250°	250 ${ }^{\circ}$	\dagger
LE0*T	6LT ${ }^{\text {c }}$	006*0	$9^{\circ T} \times \varepsilon 6^{\circ}$	$9^{0 T} \times \varepsilon^{\circ}$	$9^{0 T} \times 86^{\circ}$	250*	250*	250*	ε
E06 ${ }^{\circ} \mathrm{T}$	006 ${ }^{\circ}$ T	006* ${ }^{\text {T}}$	$\varsigma^{\circ T} \times \varepsilon_{8}$.	$\varsigma^{\circ T} \times 88^{\circ}$	$\varsigma^{\text {OT } \times 88 .}$	250*	250*	250 ${ }^{\circ}$	2
$280^{\circ} \mathrm{T}$	тヶ0*T	006*0	$9^{0 \tau} \times \varepsilon 6^{\circ}$	$9^{0 \tau} \times \varepsilon 6^{\circ}$	$9^{0 \tau} \times \varepsilon 6^{\circ}$	250	$250{ }^{\circ}$	250*	τ
$\begin{aligned} & (Z)^{T} \stackrel{2}{V} \\ & \text { oəs } 己 \end{aligned}$	$\begin{aligned} & (\tau)^{\tau_{0}} \\ & \text { oəs } \tau \end{aligned}$	$!_{0}$ әnten ənu4	$\begin{aligned} & (Z)^{T_{Y}}{ }_{V} \\ & \text { vəs } \end{aligned}$	$\begin{aligned} & (\tau)^{T}{ }^{4} v \\ & \operatorname{sos}^{v} \tau \end{aligned}$		$(z)^{T_{w}}$ วəs ट	$\begin{aligned} & (\tau)^{\top} \underset{w}{\omega} \\ & \nu ə s{ }_{\tau} \end{aligned}$	${ }^{T}$ w әnten əndu	T

The lowest frequency should be observed for 5-10 cycles as well. These could be approximated by observation on the oscilloscope during the period that identification tests are being conducted. This was made quite clear during Experiment V where the sampling interval had to be changed due to the higher frequency range of the system with smaller mass.

In the next section, we shall see how these points are reflected in identification by sinusoidal excitations.

3.3 Identification of Simulated One Dimensional Systems by Sinusoidal Excitations

Experiment I. In this first experiment, we present the results of identification studies of the same system described in Experiment II of Section 3.2. In this case, the simulated system was excited at these distinct frequencies: 20 c.p.s., 60 c.p.s., and 160 c.p.s. with amplitude 20. The sampling rate was 1600 c.p.s. which is approxImately 11 samples per cycle of the highest mode frequency of the system which is 140 c.p.s. The low mode is approximately 53 c.p.s. Hence, we see that the three excitations lie below, in between and above the system's natural frequencies. For each excitation the observation intervals were .05 secs,
$.1 \mathrm{sec}, .2 \mathrm{sec}, .4 \mathrm{sec}, .6 \mathrm{sec}, .8 \mathrm{sec}, 1.0 \mathrm{sec}, \mathrm{all}$ starting at $t=0$. For the lowest mode, this represents 2.5 cycles, 5.3 cycles, 10.6 cycles, etc., up to 53 cycles, or 80 samples, 160 samples, etc.

The results of these estimates are given in tables VI (a), (b) and (c). The estimates are given by equation 2.3.27 for $N 2$.

Needless to say, the estimations presented in Tables VI (a), (b), and (c) are extremely monotonous. 'They are, In fact, monotonous to four and five place accuracy! Only in the sixth and seventh places does one detect significant differences.

It is obvious that the transient period is still in effect during the entire period over which we are performing the parameter identifications since the estimates are excellent for every estimation interval up to 1.0 sec . This is reflected in the estimates for the random case of Experiment II, Section 3.2, where it was clear that the extimates were better in the periods .8 sec on to 2.4 secs (except for random fluctuations which one must expect when setting various of the moments to zero).

In the next section, we illustrate an example of how the transient periods and steady state periods affect estimation with sinusoidal excitations.
71

$0 \cdot 05$	$0 \cdot 05$	$0 \cdot 05$	$0 \cdot 05$	0.05	0.05	$0 \cdot 05$	0.050.05	
$0 \cdot 05$	0.0S	$0 \cdot 05$	0.05	0.05	0.05	0.05		
(L) ${ }^{\mathrm{T}} \mathrm{V}$	(9) ${ }^{\frac{T}{2}}$	(5$)^{5}$	(r) ${ }_{\sim}^{\text {P }}$	($\varepsilon)^{T}{ }^{\text {v }}$	(c) ${ }^{\text {t }}$	(I) ${ }^{T}$	${ }_{5}$	$!$
(2$)^{\text {r }}$	(9) ${ }_{\text {T }}^{\text {Y }}$	(5) ${ }_{Y}{ }_{V}$	()$\left.^{\prime}\right)^{T_{Y}}$	$(\varepsilon)^{\frac{T}{Y}}$	(2) ${ }^{\text {T }}$		${ }_{4}$	\underline{T}
L02 ${ }^{\circ}$	LOL	L02	LOL ${ }^{\circ}$	L02	LOL ${ }^{\circ}$	LOL'	LOL ${ }^{\circ}$	z
LOL	LOL.	LOL.	LOL ${ }^{\circ}$	LOL ${ }^{\circ}$	L02 ${ }^{\circ}$	LOL*	LOL ${ }^{\circ}$	τ
(4$)^{T_{\text {m }}}$	(9) ${ }^{T_{\mathrm{w}}}$	(s) ${ }^{\frac{1}{w}}$	(r) ${ }^{\text {T }}$ w	($\varepsilon)^{\frac{T}{u}}$	(2) ${ }^{\frac{1}{w}}$	(τ) ${ }^{\text {T }}{ }_{v}$	${ }_{\text {T }}^{\text {w }}$	\uparrow
วəs 0.t	2es 8.	วəs 9 .	oas π° $\overline{\text { челдәұи }}$	$\overline{\text { un }} \frac{\text { oəs } 2 \cdot}{\text { noțyuty }}$	${ }^{\text {oas }} \mathrm{T}^{\text {- }}$	oas SO°	әптем әnx	

72

(q) In

（0）IL ∂ TqE $^{\text {L }}$

Experiment II. In Section 2.3 of Chapter II we presented an analysis of the identification technique for sinusoidal excitations when the system is in steady state. It was shown lhere that one cannot expect to identify all three unknown parameters m, k, and C in the steady state since the steady state solution under sinueoidal excitation will not yield sufficient inearly independent equations for identification purposes. We illustrate this with the present experiment. We take a system of five masses in the usual one-dimensional chain. The damping was chosen high in order to put the sys,em into the steady state condition relatively rapidiy. Both 10 c.p.s. and 100 c.p.s. sinusoidal excitations were applied. Estimations were taken over an interval of 1 sec. The first observation period was $0.0-1.0 \mathrm{sec}$, the next $1.0-2.0$ secs, then $2.0-3.0$ secs, etc. Thus, the transient period before observation was taken was $0.0 \mathrm{sec}, 1.0 \mathrm{sec}, 2.0$ secs, etc. The sampling interval for simulation and estimation purposes was . 001 second for the 10 c.p.s. excitation and .0005 second for $100 \mathrm{c} . \mathrm{p} . \mathrm{s}$. excitation. We shall show the variations in estimates of all three unknowns over $0.0-1.0 \mathrm{sec}$ and 1.0 2.0 secs for $10 \mathrm{c} . \mathrm{p} . \mathrm{s}$. and $100 \mathrm{c} . \mathrm{p} . \mathrm{s}$. excitations as well as the estimates of only spring and damping constants for given mass.

umouyun squeqsuos sutcured giutcads cumouy
(P) IIN әTQё

Tables VII (a), (b), (c) and (d) show a very dramatic difference in going from transient to steady state intervals in attempting to identify the unknown parameters. In Tables VII (a) and (c), the first transient interval produces excellent estimates, whereas in the very next interval the estimates completely fall apart. They are in no way related to the actual parameter values. Yet, with the mass known in Tables VII (b) \& (d) the \hat{c}_{i} and \hat{k}_{1} are excellent during both estimation periods. The reason, as we have developed in Chapter II, is that the equations for estimation become singular in the steady state case for three unknowns. But, they are not singular for two unknowns. Thus, the estimates will break down as shown, for three unknowns, in passing from primarily transient to primarily steady state conditions.

This experiment shows quite clearly that in order to identify all unknowns by sinusoidal excitations, it is important inat the system be in the transinnt state.

Experiment III. In this experiment we simulate the NASAGoddard five-mass system as in Experiment III of Section 3.2. The excitation is sinusoidal with frequency 70 c.p.s.

The system is sampled at 5000 c.p.s. Each run starts the observations at $t=0$. The observation period is $0.0-2.0$ secs, $0.0-4.0$ secs. The results are shown in Table VIII. These estimates are very accurate, which clearly establishes the importance of the sinusoidal excitation for identification purposes.

Experiment IV. Since it was stated in Section 2.3 of Chapter II that it appeara possible to identify with almost any "suitable" excitation function, it was decided that we should generate such an excitation for purposes of identification. It seemed reasonable that an excitation that could easily be achieved in the laboratory was the logical choice for identification. Thus, we generated a sweep sinusoidal excitation of the form

$$
f_{1}(t)=A \sin \alpha t^{2}
$$

where

$$
A=25, \quad \alpha=100 .
$$

IIIA эโqе山
IIIA วTqEय
I.
I.
I.

$006{ }^{\circ}$	006	006 ${ }^{\text { }}$		$\overbrace{}^{0 \tau} \times \varepsilon_{\text {¢ }}{ }^{\circ}$	250	250*	$250{ }^{\circ}$	5
868°	868°	$006{ }^{\text { }}$	$5^{\circ T} \times 8^{\circ} \quad \varsigma^{0 \tau} \times \varepsilon 8^{\circ}$	$5^{0 \tau} \times 88^{\circ}$	250	250*	250*	\dagger
$\varepsilon \pitchfork 8^{\circ} \mathrm{T}$	058 ${ }^{\circ}$	006* ${ }^{\text {T}}$	$9^{0 \tau} \times \varepsilon 6^{\circ} \quad 9^{0 \tau \times E 6^{\circ}} 9$	$9^{0 T \times E} \times{ }^{\circ}$	250	$250{ }^{\circ}$	250*	ε
$568{ }^{\circ}$	$968{ }^{\circ}$	$006{ }^{*}$	$\varsigma^{\circ T \times \varepsilon 8^{\circ}} s^{\text {OT } \times \varepsilon 8^{\circ}}$	$\varsigma^{0 T \times \varepsilon_{8}}$	250	こSO*	250*	2
$\varepsilon 88^{\circ} \mathrm{T}$	$568{ }^{\circ} \mathrm{T}$	006 ${ }^{\text {T }}$	$9^{\text {OT } \times \varepsilon 6^{\circ}} 9^{\text {OT } \times \varepsilon 6^{\circ}} 9$	${ }_{9} 0 \tau \times \varepsilon 6$.	250°	250*	250*	τ
(2) $\stackrel{T}{9}_{\sim}^{2}$	$(\tau)^{T}$	5_{0}		Γ_{4}	(2) ${ }^{\text {T }}$	($)^{\text {¢ }}{ }^{\text {T }}$	${ }^{T}$ w	$!$
$\begin{aligned} & 0 . \pi \\ & -0 \div 0 \end{aligned}$	$\begin{aligned} & 0 \cdot 2 \\ & -0 \cdot 0 \end{aligned}$	әптел ənxd	$0 \cdot \pi-0.0$ 0.2-0.0	әnten əndid	$0_{-0.0}^{n}$	$\begin{aligned} & 0 \cdot 2 \\ & -0^{\circ} 0 \end{aligned}$	әnten əndu	
$\begin{aligned} & \text { โenx } \\ & \text { uot } \end{aligned}$	$\begin{aligned} & \text { equI } \\ & \text { wTY } \end{aligned}$				$\begin{aligned} & \text { โEA } \\ & \text { पот7 } \end{aligned}$	$\begin{aligned} & \text { ק7uI } \\ & \text { uT7SG } \end{aligned}$		

The sampling interval for simulation and estimation was 0.0014 secs. All observations commenced at $t=0.70$ secs in order for the frequency to become reasonably large. We shall show the results of four runs of duration 3.92 secs, 9.80 secs, 13.72 secs, and 19.60 secs corresponding to 2800 samples, 7000 samples, 9800 samples, and 14,000 samples, respectively. The results are shown in Table IX.

The results of this experiment show that identification can be suitably accomplished by functions other than pure sinusoids or random excitations.

3.4 Identification of Multi-Dimensional Systems

It was found desirable to demonstrate that the proposed identification technique is not dependent upon the fact that the system to be identiried was a one-dimensional system. The system shown in Figure I (b) of Chapter II was considered. The equations of motion are given in NASA Technical Note TN D-3865 "Mechanical Impedance Analysis for Lumped Parameter Multi-Degree of Freedom/iAulti-Dimensional Systems" by F. J. On, May 1967.

These equations are as follows.

$$
\begin{align*}
& m_{1} \ddot{x}_{1}+2\left(c_{1}+c_{3}\right) \dot{x}_{1}-2 c_{3} \dot{x}_{4}+2\left(k_{1}+k_{3}\right) x_{1}-2 k_{3} x_{4}=f_{1} \\
& m_{1} \ddot{x}_{2}+2\left(c_{2}+c_{4}\right) \dot{x}_{2}-2 C_{4} \dot{x}_{5}+2\left(k_{2}+k_{4}\right) x_{2}-2 k_{4} x_{5}=f_{2} \\
& I_{1} \ddot{x}_{3}+2\left(c_{1} b^{2}+c_{2} a^{2}+c_{3} c^{2}+c_{4} e^{2}\right) \dot{x}_{3}-2\left(c_{3} c d+c_{4} e^{2}\right) \dot{x}_{6} \\
& +2\left(k_{1} b^{2}+k_{2} a^{2}+k_{3} c^{2}+k_{4} e^{2}\right) x_{3}-2\left(k_{3} c d+k_{4} e^{2}\right) x_{6}=f_{3} \tag{3.4.1}\\
& m_{2} \ddot{x}_{4}-2 C_{3} \dot{x}_{1}+2 c_{3} \dot{x}_{4}-2 k_{3} x_{1}+2 k_{3} x_{4}=f_{4} \\
& m_{2} \ddot{x}_{5}-2 C_{4} \dot{x}_{2}+2 c_{4} \dot{x}_{5}-2 k_{4} x_{2}+2 k_{4} x_{5}=f_{5} \\
& I_{2} \ddot{x}_{6}-2\left(c_{3} c d+c_{4} e^{2}\right) \dot{x}_{3}+2\left(c_{3} d^{2}+c_{4} e^{2}\right) \dot{x}_{6} \\
& -2\left(k_{3} c d+k_{4} e^{2}\right) x_{3}+2\left(k_{3} d^{2}+k_{4} e^{2}\right) x_{6}=f_{6}
\end{align*}
$$

The constants a, b, c, and d represent the various vertical and horizontal distances between the two-mass centers and the spring-damper components.

The system parameters supplied by Mr. F. On of NASAGoddard are as follows.

$$
\begin{aligned}
& m_{1}=m_{2}=.26, \quad I_{1}=I_{2}=70, k_{1}=k_{3}=10^{5}, \\
& k_{2}=k_{4}=4 \times 10^{5}, \quad c_{1}=c_{3}=10.0, c_{2}=c_{4}=20.0,
\end{aligned}
$$

$$
a=10 \text { ins, } b=20 \text { ins, } c=15 \text { ins, } d=6 \text { ins, } e=12 \text { ins }
$$

This system was simulated and driven by random excitations as well as sinusoidal excitations. The system was simulated and sampled at intervals of .0005 secs. Observations commenced at $t=0$ and were made at intervals of $0.0-1.0$ secs and $0.0-2.0$ secs. In the random case f_{4}, f_{5}, and f_{6} were independent random excitations generated as previously by passing white noise through a filter to yield a process with spectrum having center frequency 70 c.p.s. and bandwidth 20 c.p.s. Furthermore, f_{1}, f_{2}, and f_{3} were identically zero. For the sinusoidal case f_{1}, f_{2}, and f_{3} again were zero, f_{4}, f_{5}, and f_{6} were given as,
$f_{4}=25 \sin 100 \pi t, \quad f_{5}=25 \sin \left(100 \pi t+\frac{\pi}{2}\right)$
$f_{6}=25 \sin \left(100 \pi t+\frac{3}{4} \pi\right)$.

The results are presented in tables X (a) and (b)
first for random then for sinusoidal excitations.
uotzeqtoxg mopuey
uotzeftoxg wopuey
(e) x əโqe,

uoţeqtox: Teptosnuțs
(a) X әโqe山

Again, to the first few places, the estimated parameters are identical with the actual system parameters. It is only at the fifth and sixth places where deviation occurs.

Clearly, multidimensional systems give no problems for identification as long as it is merely a problem of parameter identification with known structure.

3.5 Identification Using Only Acceleration Data

It was hoped that we could present a comprehensive study of the problem of parameter identification by the proposed method when only acceleration data is available. This, in a sense, is very important to establish since, in general, acceleration data is the most commonly recorded. Velocity and displacement data are not usually present in Vibrations recordings. For the proposed scheme acceleration data alone is not sufficient for identification purposes. Thus, 1t was thought desirable to determine how well we can identify by integrating the acceleration data in order to obtain velocity as well as displacement data and accomplish identification on the basis of these calculated data. This numerical problem was not resolved during the course of the
present research project. Part of the problem that exists here is that the initial values of the velocities and displacenents are unknown so that one has to remove some typu of trend in order to satisfy, for example, that the mean values should be zero. Upon attempting two integrations and two trend removals, the estimated parameters obtained possessed large errors. As there was insufficient time remaining in order to resolve these problems as well as the many other problems that came up during the course of this research, we decided to present a simple example in which only one integration of the acceleration is required and the initial value of the velocity is known so that no trend removal is required. This example does give credance to the approach and opens doors for future investigations. The system chosen for simulation is

$$
\begin{equation*}
\ddot{x}(t)+30 \dot{x}(t)+900 x(t)=f(t) \tag{3.5.1}
\end{equation*}
$$

For this system the damp $2 g$ ratio is $1 / 2$, so that we can expect the transient to last but a few cycles. We are especially interested in the steady state here for it will allow us to identify k and C on the basis of acceleration and velocity data alone. The excitation was a random function with spectrum as shown in Experiment IV of Section 3.2.

Based upon the assumption of stationarity we can apply the following equations for identification
$E\left\{\ddot{x}^{2}\right\}+30 E\{\dot{x} \ddot{x}\}+900 E\{x \ddot{x}\}=E\{f \ddot{x}\}$
$E\{\dot{x} \ddot{x}\}+30 E\left\{\dot{x}^{2}\right\}+900 E\{x \dot{x}\}=E\{f \dot{x}\}$

Now, assuming stationarity, we can reduce these equations to
$E\left(\ddot{x}^{2}\right\} \quad-900 E\left\{\dot{x}^{2}\right\}=E(f \ddot{x}\}$ $30 E\left\{\dot{x}^{2}\right\} \quad E \quad E\{\dot{f}\}$

Therefore, identification is accomplished on the basis of velocity and acceleration data alone.

The sampling frequency was 140 c.p.s. The periods of observation were taken on successive intervals of 5.96 secs duration. This corresponds to 835 samples used for parameter estimaticn purposes.

The results of this parameter estimate are shown in the following table, XI.

Naturally, we feel quite encouraged by the success of this simple simulation experiment. It is clear, however, that

89

much remains to be accomplished before we can apply our approach to parameter estimation with acceleration data alone.

Estimation Interval

$\begin{aligned} & \text { True } \\ & \text { Vilue } \end{aligned}$			$\begin{array}{r} 5.96- \\ 11.92 \end{array}$	$\begin{aligned} & 11.92- \\ & 17.88 \end{aligned}$	$\begin{aligned} & 17.88- \\ & 23.84 \end{aligned}$	$\begin{aligned} & 23.84- \\ & 29.80 \end{aligned}$
k	900.0	$\hat{\mathrm{k}}$	860.0	860.0	886.0	900.0
C	30.0	$\hat{\mathrm{c}}$	29.1	29.1	29.8	30.2

Table XI

CHAPTER IV

COMPUTER SIMULATION AND IDENTIPICATION

4.1 Computer Techniques

In order to verify numerically the proposed identification technique, the chain-like system shown in Figure I-a and described by equation 2.2.28 is simulated, necessary moments are computed and the system parameters are estimated on an IBM 7094 computer system. The operations performed by the computer can clearly be divided into three distinct functions:
a. Simulation of the system
b. Estimation of the moments
c. Estimation of the system parameters

A description of the computing method used in each case follows.

Simulation of the System

When a computer is used to simulate a system, it is actually programmed to integrate, with respect to time, the set of differential equations describing that system. In this case, equation 2.2 .28 is rewritten into a set of firstorder differential equations by change of variables. That is, let

$$
\begin{array}{ccc}
x_{1}=y_{1} ; & \dot{x}_{1}=y_{2} \\
x_{2}=y_{3} ; & \dot{x}_{2}=y_{4} \tag{4.1.1}\\
& \vdots \\
& & \\
x_{n}=y_{2 n-1} ; & \dot{x}_{n}=y_{2 n}
\end{array}
$$

$$
\frac{d y_{1}}{d t}=\dot{y}_{1}=y_{2}
$$

$$
\frac{d y_{2}}{d t}=\dot{y}_{2}=-\frac{c_{1}}{m_{1}}\left(y_{2}-y_{4}\right)-\frac{k_{1}}{m_{1}}\left(y_{1}-y_{3}\right)+\frac{f_{1}}{m_{1}}
$$

$$
\frac{d y_{2 i-1}}{d t}=\dot{y}_{2 i-1}=y_{21}
$$

$$
\frac{d y_{2 i}}{d t}=\dot{y}_{2 i}=-\frac{c_{1}}{m_{i}}\left(y_{2 i}-y_{21+2}\right)-\frac{k_{1}}{m_{i}}\left(y_{21-1}-y_{2 i+1}\right)
$$

$$
+\frac{c_{1-1}}{m_{1}}\left(y_{21-2^{-y_{2 i}}}\right)+\frac{k_{1-1}}{m_{i}}\left(y_{21-3^{-y_{21-1}}}\right)+\frac{f_{1}}{m_{i}}
$$

$$
\begin{aligned}
\frac{d y_{2 n-1}}{d y} & =\dot{y}_{2 n-1}=y_{2 n} \\
\frac{d y_{2 n}}{d t} & =\dot{y}_{2 n}=-\frac{c_{n}}{m_{n}} y_{2 n}-\frac{k_{n}}{m_{n}} y_{2 n-1}+\frac{c_{n-1}}{m_{n}}\left(y_{2 n-2}-y_{2 n}\right) \\
& +\frac{k_{n-1}}{m_{n}}\left(y_{2 n-3}-y_{2 n-1}\right)+\frac{f_{n}}{m_{n}}
\end{aligned}
$$

or in a more compact notation

$$
\begin{equation*}
\frac{d \bar{y}}{d t}=g(\bar{y}, \bar{F}) \tag{4.1.3}
\end{equation*}
$$

where g in this case is a linear function of \bar{y} and F.
The operation performed by the computer in the antegration of the set of differential equations consists of two parts, the generation of the derivative functions, namely $g(\bar{y}, F)$ and the integration with respect to time. The flow of information is shown in Figure IV.

A fourth-order Runge-Kutta technique of integration

 is used to produce tabulated values of the computer integral at equal time interval H. This is a single-step method in which the value of \bar{y}_{n} and F_{n} at $t_{n}=n H$ is used to compate \bar{y}_{n+1} at $t_{n+1}=(n+1) H$. The relevant formulas are:$$
\begin{equation*}
\bar{y}_{n+1}=\bar{y}_{n}+\frac{1}{6}\left(s_{0}+2 s_{1}+2 s_{2}+s_{3}\right) \tag{4.1.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& S_{0}=H g\left(\bar{y}_{n}, \bar{F}_{n}, t_{n}\right) \\
& S_{1}=H g\left(\bar{y}_{n}+\frac{s_{0}}{2}, \frac{\bar{F}_{n}+\bar{F}_{n+1}}{2}, t_{n}+\frac{H}{2}\right) \\
& S_{2}=H\left(\bar{y}_{n}+\frac{S_{1}}{2}, \frac{F_{n}+F_{n+1}}{2}, t_{n}+\frac{H}{2}\right) \\
& S_{3}=H\left(\bar{y}_{n}+S_{2}, F_{n+1}, t_{n+1}\right)
\end{aligned}
$$

Estimation of the Moments

The moments as coefficients of the simultaneous equations in equation 2.2.29 for solving the system parameters $m_{1}, C_{1}, k_{1}, i=1$ to 5 are estimated from equally-spaced samples of the system response functions generated in the. process of simulating the system.

The least square estimate of a moment such as $\mu_{x z}=E[x z]$ from N duplets $\left\{x_{1}, z_{1}\right\}, i=1,2, \ldots N$ is simply

$$
\begin{equation*}
\hat{\mu}_{x z}=\frac{1}{N} \sum_{i=1}^{N} x_{1} z_{1} \tag{4.1.5}
\end{equation*}
$$

Estimation of the System Parameters

The set of simultaneous equations for estimating the system parameters is given by equation 2.2.29. They can be expressed in matrix notation sequentially for each ith mass, spring, and dashpot section from $i=1$ to 5 as follows

$$
\begin{equation*}
A_{1} \quad P_{1}=B_{1} \tag{4.1.6}
\end{equation*}
$$

Where P_{i} is the unknown system parameior vector of the ith mass, spring, and dashpot section

$$
P_{1}=\left[\begin{array}{l}
m_{1} \tag{4.1.7}\\
c_{1} \\
k_{1}
\end{array}\right]
$$

The coefficient matrix A_{1} for $1=1$ to 4 is
$A_{1}=\left[\begin{array}{l}\left.\overline{y_{21-1} \dot{y}_{21}}, \overline{\left(y_{21-1} y_{21-1} y_{21-1} y_{21+2}\right),\left(y_{21-1}^{2-y_{21-1} y_{21}}\right.}\right] \\ \overline{y_{21} \dot{y}_{21}}, \overline{\left(y_{21}^{2}-y_{21} y_{21+2}\right)}, \overline{\left(y_{21-1} y_{21}-y_{21} y_{21+1}\right)} \\ \overline{\dot{y}_{21}^{2}}, \overline{\left(y_{21} \dot{y}_{21}-\dot{y}_{21} y_{21+2}\right)}, \overline{\left(y_{21-1} \dot{y}_{21}-\dot{y}_{21} y_{21+1}\right)}\end{array}\right]$
and for $1=5$

$$
A_{5}=\left[\begin{array}{lll}
\overline{y_{9} \dot{y}_{10}}, \overline{y_{9} y_{10}}, & \overline{y_{9}{ }^{2}} \tag{4.1.9}\\
\overline{y_{10} \dot{y}_{10}}, \overline{y_{10}^{2}}, \overline{y_{9} y_{10}} \\
\overline{\dot{y}_{10}{ }^{2}}, \overline{y_{10} \dot{y}_{10}}, & \overline{\dot{y}_{10} y_{9}}
\end{array}\right]
$$

The constant vector B_{i} for $1=1$ is

$$
B_{1}=\left[\begin{array}{l}
\overline{y_{1} f_{1}} \tag{4.1.10}\\
\overline{y_{2} f_{1}} \\
\overline{\dot{y}_{2} f_{1}}
\end{array}\right]
$$

$$
B_{1}=\left[\begin{array}{l}
\left.\overline{\left(y_{21-2} y_{21-1}-y_{21-1} y\right.}\right) c_{1-1}+\overline{\left(y_{21-3} y_{21-1}-y_{21-1}^{2}\right)} k_{1-1}+\overline{y_{21-1} f_{1}} \\
\overline{\left(y_{21-2} y_{21}-y_{21}^{2}\right)} c_{1-1}+\overline{\left(y_{21-3} y_{21}-y_{21-1} y_{21}\right) k_{1-1}+\overline{y_{21} r_{1}}} \\
\left.\overline{\left(y_{21-2} \dot{y}_{21}-y_{21} \dot{y}_{21}\right)} c_{1-1}+\overline{\left(y_{21-3} \dot{y}_{21}\right.} \overline{-y_{21-1} \dot{y}_{21}}\right) k_{1-1}+\dot{y}_{21} r_{1}
\end{array}\right]
$$

Notice that the vectors B_{1} for $1=2$ to 5 are runctions only of the previous (i-1)th system parameters. Instead of solving 15 equations simultaneously, each $A_{1} \quad P_{1}=B_{1}$ is used to solve for the unknown vector P_{i} sequentially from $1=1$ to $1=5$.

4.2 Computer Program Abstract I

a) This program simulates the one-dimensional chainlike lumped parameter spring-mass-dashpot system whose equations of motion are given by equation 4.1.2. From the simulated equally-spaced samples of the system dynamical outputs y_{j},
$\dot{y}_{j}, j=1$ to $2 N$ and the system inputs F_{i}, $1=1$ to NF, the second moments or time averages of $\overline{y_{j} y_{k}}, \bar{y}_{j} y_{k}, \overline{y_{j}{ }^{2}}, \overline{F_{1} y_{21-1}}$, $\overline{F_{1} y_{21}}$, and $\overline{F_{1} \dot{y}_{21}}$ are computed and the system parameter triplets $\left(m_{1}, k_{1}, C_{1}\right), 1=1$ to N are estimated.
b) Outputs from this program include:

1) Sample moments or time averages of $\overline{y_{j} y_{k}} ; j=1$ to $2 N$, $k=j, \ldots(j+3)$ or $2 N$; $\quad \overline{\dot{y}_{j} y_{k}} ; j=1$ to $2 N, k=(j-3)$ or $1, \ldots(j+3)$ or $2 N$; $\quad \dot{\dot{y}}_{j}{ }^{2} ; j=1$ to $2 N$; $\overline{F_{1} y}{ }_{21-1}, \overline{F_{1} y}{ }_{21}$ and $F_{1} \dot{y}_{21} ; 1=1, \ldots N F$.
2) Sets of simultaneous equations for solving each system parameter triplet $\left(\hat{m}_{1}, \hat{k}_{1}, \hat{c}_{1}\right)$ and simultaneous equations for solving each duplet ($k_{1}{ }^{*}, C_{1}{ }^{*}$) with m_{1} given for $1=1$ to N.
3) Tabulation of the true parameters $\left(m_{1}, k_{1}, c_{1}\right)$ against the corresponding estimated parameters $\left(\hat{m}_{1}, \hat{k}_{1}, \hat{c}_{1}\right)$ and $\left(k_{1}{ }^{*}, C_{1}{ }^{*}\right)$ for $1=1$ to N.
c) Imitation of this program"
4) N, the number of mass, is limited to $10(N \leq 10)$.
5) NF, the number of input forcing functions, is ilmited to $N(N F \leq N)$.

[^0]d) Required supporting subprograms

1) $R K D$
2) DERSUB
3) $F \emptyset R S U B$
4) PAMSQT
5) $X S Q$
6) $\mathrm{XM} \not \mathrm{NT}_{3}$
7) LøC2
8) LøC 3
9) CDEF
10) RLMTX
11) GAURN (if random input is desired)

The descriptions for these subroutines are given in section 3.

Input Cards

a) Degree of Freedom Card

Col. 1-2 N - Number of mass for the chainlike system ($N \leq 10$)
b) System Parameter Card(s)

A card is used to specify each system parameter triplet $\left(m_{i}, k_{i}, C_{i}\right)$. N cards are then needed, and they should be arranged consecutively from $1=1$ to N.

Col. 1-10 CM(I) - Floating point constant for the ith mass coefficient

Col. 11-20 CK(I) - Floating point constant for the 1 th spring coeffici at

Col. 21-30 CC(I) - Floating point constant for the ith damper coefficient
c) Number of Input Card

Col. 1-2 NF - Number of input forcing functions
d) Input Forcing Characteristics Card(s)

A card is used to specify each input forcing function characteristics. NF cards are needed and they should be arranged consecutively from $I=1$ to $N F$.

Col. 1-5 FOST(I) - Amplitude of the sinusoid input to ith mass, or standard deviation of the white noise input to a band-pass filter whose output is the input to ith mass of the system.

Col. 6-10 FW(I) - Frequency (cps) of the sinusoid input to ith mass, or center frequency (cps) of the band-pass filter for the ith input

Col. 11-15 $\mathrm{FB}(\mathrm{I})$ - Phase shift (in degrees) with respect to $t=0$ of the sinusoid inpuit to ith mass, or bandwidth of the band-pass filter.
e) Simulation Specification Card

Col. 1-5 FREQ - Sampling frequency for simulation of the system. The simulation interval is then 1/FREQ.
201. 6-5 NI - Number of samples to be simulated before samples are taken for estimation of the moments and the system parameters.

Col. 1l-15 NO - Number of samples (after initial NI samples) to be used for estimation of the moments and the system parameters.

Col. 16-20 K - Only every kth sample (after initial NI samples) of the equally-spaced samples are to be used for estimation of the moments and the system parameters.

Col. 21-25 NORUN - Number of successive times the moments and the system parameters are to be estimated.

Col. 26-30 INIT - Control index for how the samples are taken for each successive estimation of the momerts and parameters.

If INIT < 0 , successive NO samples (after the initial NI samples) taken at every kth sample are to be used for estimation of the moments and the parameters. If INIT $=0$, system is reinitialized each time, NO samples (after initial NI samples) taken at every kth sample are used for estimation of the moments and parameters.

If INIT > O, (after initial NI samples) NO samples are used commulatively each time; that is, NO, then $2 \times N O, . . .$, then NORVN x NO samples are successively used for estimation of the moments and parameters
f) Repeat a to e for a difierent choice of system parameters as many times as desired. A blank card after e will cause a stop.

Description of Supporting Subprograms

a) RKD (DERSUB, FORSUB, M, NF, H, TI, YI, FOS, K, N, F, VAL, DTAL, Y)

This Fortran subroutine generates the solution to a set of M simultaneous first-order, ordinary differential equations by the classical fourth-order Ruage-Kutta method of integration. Where

DERSUB - Name of the external subroutine used to compute the derivatives.

FORSUB - Name of the external subroutine used to generate the input forcing functions.

M - Number of equations for expressing the system.
NF - Number of input forcing functions
H - Step size for integration
TI - Initial value of T

YI - Initial values of Y, an array of M
FOS - Initiai values of F, an array of NF. Destroyed in the process and replaced by the final value of F.

K - The desired number of stops of size H between values of the integrals to be stored in VAL, values of the dcrivatives to be stored in DVAL and the values of the input forcings to be stored in F.
$\mathrm{N} \quad$-- The number of values to be stored in VAL, DVAL and F. The final value of T will be $T I+(N * K H)$.
ir - A matrix of $N F$ by N containing the values of input forcing functions generated by the external subroutine FORSUB.

VAL - A matrix of M by N containing the integrated values of the M derivatives generated by DERSUB.

DVAL - A matrix of M by N containing the derivatives gonerated by the external subroutine DERSUB.

Y -. The final integrated values of the M derivatives, an array of M.
b) DERSUD (T, VAR, FS, M, NF, DER)

This Fortran subroutine computes the derivatives given by equation 4.1 .2 for the integration subroutine RKD, where $\operatorname{DER}(I) ; I=1, M$ are derivatives of $\operatorname{VAR}(I), I=1, M$ with respect to T, and are functions of $T, V A R$ and $F S$ (input forcing
vector of length NF). This subroutine describes the dynamics of the system; therefore, a different system can be simulated by simply using a corresponding subroutine DERSUB that describes the system dynamics by a set of first-order crdinary differential equations.
c) $\operatorname{FORSUB}(T, F O S, N F)$

This Fortran subrcutine generates the input forcing functions to the system for the integration subroutine RKD, where $\operatorname{FOS}(I), I=1, N F$ are the values of the input forcing functions at time T. A subprogram for sinusoidal input and another subprogram for random input are included. The user can use either one as desired, and only one is to be used at a time.

The random forcing function $\quad f_{i}$ is generated by passing a white noise sequence (simulated by subprogram RANDPK) through a bandpass digital filter with center frequency w_{i} and bandwidth B_{i}. The corresponding continuous filter can be described by the differential equation

$$
\begin{equation*}
\ddot{r}_{i}+B_{i} \dot{f}_{i}+w_{i}{ }^{2} f_{i}=B_{i} \dot{x} \tag{4.2.1}
\end{equation*}
$$

which will yield the following recurrence formula for the digital simulation

$$
\begin{equation*}
F_{i}(N+2)=A_{1} F_{i}(N+1)+A_{2} F_{i}(N)+B_{i} H(x(N+1)-x(N) \tag{4.2.2}
\end{equation*}
$$

where

$$
A_{1}=2 e^{-\frac{B_{i} H}{2}} \cos w_{d} H
$$

$$
A_{2}=-e^{\cdot B_{1} H}
$$

$w_{d}=\sqrt{w_{i}{ }^{2}-B_{i}{ }^{2} / 4}$
and H is the simulation interval
d) $\operatorname{PAMSQT}\left(A, N V, N O, M, S Q, S_{M}^{(M, ~ I D)}\right.$

This Fortran subroutine computes either sums and sums of products of two variables or averages and averages of products of two variables from a set of sample vectors. Where

A - Sample matrix NV by NO of a set of vectors.
NV - Number of variables or length of vector
NO - Number of samples

```
M - Number of adjacent variables (M \(\leq N V-1\) ) for computing products of two variables. \(Y(J) * Y(L)\) where \(|L-J| \leq M\).
SQ - Sums or averages of products of two variables \(Y(J)\) * \(Y(L)\), \(J=1, N V ; L=J, \dot{( } J+M)\) or \(N V\), a matrix of \((M+1)\) * NV ( \(M\) * \((M+1)) / 2\).
SUM - Sums or averages, a vector of length NV
ID - Control index
\(I D=0\) computing sums and sums of products
ID \(\neq 0\) computing averages and averages of products
```

e) Subroutine XSQ (A, B, NV, NO, M, ASQ, AB, IFLAG)

This Fortran subroutine computes either sums or averages of products of variables between two sets of vectors and squares of one set of vector. Where

A - Sample matrix of NV by NO of one set of vectors
B - Sample matrix of NV by NO of another set of vectors
NV - Number of variables or length of vector
NO - Number of samples
M - Number of adjacent variables ($M \leq N V-1$) for computing products of variables from the two sets of vectors $Y(J) * Z(L), l$ or $(J-M) \leq L \leq(J+M)$ or NV.

ASQ - Sums or averages of squares of variable of the vectors stored in sample matrix A, a vector of length NV.

```
AB - Sums or averages of products of one variable of
    vectors stored in A and another variable of vectors
    stored in B. Y(J) * Z(L), J=l,NV. A matrix of
    (2 * M + 1) * NV - M * (M + 1).
IFLAG - Control Index IFLAG = 0, compute sums
    IFLAG }\not=0, compute average
```

f) Subroutine XMONT3 (A, NA, B, C, NBC, NO, XM, ID)

This Fortran subroutine computes sums or averages of products between variable of one vector and variable of two other vectors. Where

A - Sample matrix of NA by NO of one set of vectors NA - Number of variable or length of vector stored in A B - Sample matrix of NBC by NO of another set of vectors C - Sample matrix of NBC by NO of the third set of vectors NBC - Number of variables or length of vector stored in B and C NO - Number of samples

XM - Sums or averages of products of variables $A(J) * B(2 J-1) ; A(J) * B(2 J)$ and $A(J) * C(2 J)$, $J=1$, NA

ID - Control index $I D=0$ computing sums ID $\neq 0$ computing averages
g) Subroutine LOC2 (L, J, LJ, NV, M)

This Fortran subroutine computes a vector subscript for an element in a symmetric matrix where only M elements from the diagonal elements of the upper (or lower) triangular matrix are stored in a vector. To illustrate the storage mode, Figure V shows the vectors subscripts for elements in a 6×6 matrix where only 2 elements from the diagonal elements are stored.

$$
\left[\begin{array}{rrrrrr}
1 & 2 & 3 & 0 & 0 & 0 \\
2 & 4 & 5 & 6 & 0 & 0 \\
3 & 5 & 7 & 8 & 9 & 0 \\
0 & 6 & 8 & 10 & 11 & 12 \\
0 & 0 & 9 & 11 & 13 & 14 \\
0 & 0 & 0 & 12 & 14 & 15
\end{array}\right]
$$

Figure V
Storage Mode
L - Row number of element or $(J-M) \leq L \leq(J+M)$ or $N V$
J - Column number of element
LJ - Resultant vector subscript
NV - Number of columns in matrix
M - Number of adjacent elements from the diagonal elements $M \leq(N V-1)$
h) Subroutine LOC3 (L, J, LJ, NV, M)

This Fortran subroutine computes a vector subscript for an element in a matrix where only M adjacent elements from the diagonal elements are stored in a vector. To illustrate the storage mode, Figure VI shows the vector subscripts for elements in a 6×6 matrix where only two adjacent elements from the diagonal elements are stored.

$$
\left[\begin{array}{rrrrrr}
1 & 4 & 8 & 0 & 0 & 0 \\
2 & 5 & 9 & 13 & 0 & 0 \\
3 & 6 & 10 & 14 & 18 & 0 \\
0 & 7 & 11 & 15 & 19 & 22 \\
0 & 0 & 12 & 16 & 20 & 23 \\
0 & 0 & 0 & 17 & 21 & 24
\end{array}\right]
$$

Figure VI
L - Row number of element 1 or $(J-M) \leq L \leq(J+M)$ or NV
J - Column number of element
LJ - Resultant vector subscript
NV - Number of column
M - Number of adjacent elements from the diagonal elements that are stored

i) $\operatorname{COEF}(J, N, N F, S Q, D Y S Q, Y D Y, X M, E C, E K, A, B)$

This Fortran subroutine computes the coefficients for the three simultaneous equations in solving the jth system parameter triplet $\left(m_{j}, k_{j}, C_{j}\right)$. Where

J - Number of the system parameter triplet to be solved
$\mathrm{N} \quad$ - Number of mass (or degree of freedom) of the onedimensional chainlike system

NF - Number of input forcing functions
SQ - Averages of products of the system dynamical outputs
DYSQ - Averages of squares of the derivatives
YDY - Averages of products of the system dynamical cutputs and the derivatives

XM - Averages of products of the system input and the dynamic outputs

EC - Previously estimated damping coefficient of the (J-l)th system parameter triplet

EK - Previously estimated spring coefficient of the (J-1)th system parameter triplet

A - A 3×3 matrix containing the left-hand side coefficients of the equations.

B - A vector of length 3 containing right-hand sides constants
j) RLMTX (A, NR, NSYS, MARK, DET, INOPT)

This Fortran subprogram evalutes the determinant of a matrix A with real elements and at the user's option finds the inverse or solves one or more simultaneous systems. Where

NR - Jrder of matrix A
NSYS - Number of simultaneous systems to be solved if the system solving option is chosen. Otherwise, NSYS is irrelevant.

MARK - Singularity indicator. If Mark $=1$ on return to calling program, the matrix A is singular.

DET - Determinant of A
INOPT Option flag
$=0$ for determinant evaluation only
$=-1$ for system solving option
$=+1$ for inverse option
A - Array name of the augmented matrix C/B. The subroutine is compiled with the dimension $A(3,4)$. This dimension must be changed if it is inconsistent with the dimension of A in the calling program. A must be at least dimension

1) (N by ($N+N S Y S)$) for the system solving option 2) (N by $2 N$) for the inverse option If the system option is chosen, the known vectors b of ($C x=b$) must be stored in the $(N+1)$ st through
($N+N S Y S$) column of A (i.e., must constitute the (N by NSYS) matrix B). The solution vectors will be returned in these same columns.

If the inverse option is chosen c^{-1} will be returned in B. The original matrix C is destroyed (on return C will contain the triangularized matrix).
k) RANDPK (Entry names GAURN, EXPRN, and FLRAN)

This MAP function subprogram generates pseudo-random numbers and includes three entry points for three different distributors, Gaussian (normal), Exponential or Rectangular (uniform). The function names are GAURN, EXPRN, and FLRAN corresponding to Gaussian, exponential, and rectangular, respectively. An example of the generation of a Gaussiandistribution pseudo-random number which is to be assigned to the variable Y is as follows:

$$
\mathbf{Y}=\operatorname{GAURN}(X)
$$

where X is a dummy variable and has no effect on the random number generation.

This package of routines has the characteristics that each separate run of the program produces the same sequence
of numbers. If a different set of numbers is desired, it is possible to preset the routinc at a different value by presetting the initializing regulatory variable inside the routine. One possible way to generate a different sequence each run is to get the value of this special variable after all the random numbers for that particular run have been obtained. Then this value could be stored in the routine in the next program to continue the old sequence. To implement this capability, included in the package are two subroutines. The one to get the number from the routine may be executed by

CALL GETNM (NUM)
where NUM is the integer variable into which the special number is stored. The other. to store an integer (NUM) into this special location may be executed as

CALL STORNM (NUM).

Block Diagram

Read number of mass - N

Read System Constants $\mathrm{CM}(\mathrm{I}), \mathrm{CK}(\mathrm{I}), \mathrm{CC}(\mathrm{I})$ $I=1$ to N

READ force magnitude, center frequency phase shift or bandwidth for each force $\operatorname{FOST}(I), \operatorname{FW}(I), F B(I), I=1, N F$

Read Sampling frequency for simulation - FREQ Number of initial samples - NI
Number of samples used for calculating moments - NO Every kth sample simulated is used - K
Number of times NO samples are to be simulated and coefficients estimated - NORUN
Flag index for how previously generated samples should be used - INIT

If INIT < \because, system is simulated continuously and and each successive NO samples are used ror estimation
If $\operatorname{INIT}=0$, system is reinitialized for each successive estimation
If INIT > 0, system is simulated continuously and NO, then $2^{*} N C, \ldots$, then NORUN*NO samples are used for estimation.

Listing of the Main Program and Associated Subprograms

PREGRAM TO SIMULATE N DEGREE FREEDOM，ONE DIMFNSIONAL，SPRING MASS

 AND DAMPER SYSTEM AND ESTIMATE THE COEFFICIENTS LF（2500），EC（10），EK（10），EM（10），FW（IC），FG（20），DIS（3，10），Y（120） 2FOST（10），SO（8n），SUM（20），XM（3n），A（3，3），B（3），R（3，4） 3．DYSO（20），YOY（140），SOT（80），SUMT（20），XMT（30），DYSOT（27），YOYT（140） $4, E F K(10), F F C(10), S U M S(20), X M S(30), S Q S(8 \cap), D Y S Q S(20), Y D Y S(140)$ DOUBLE PRECISION SOS，SUMS，XMS，DYSQS，YDYS
EQUIVALENCE（R（1，1），A（1，1）），（R（1，41，B（1））
COMMON CC，CK，CM，FOST，FW，FB，OIS
EXTERNAL DERSUB，FORSUB
C
5 REAO（5，500）N
IF（N） $400,400.8$
8 READ（5，501）（CM（I），CK（I），CC（I），I＝1，N）
READ（5，502）NF，（FOST（I），FW（I），FB（I），I＝1，NF）
READ（5，506）FREQ，NI，NO，K ，NORUN ，INIT
INIT GT．O ALL SAMPLES USED FCR SUCCESIVE FSTINATION OF MOMENTS
INIT EQ．O EACH SUCCESIVE RUN IS REINITIALIZED
INIT－LT．O NO SAMPLES USED FOR SUCCESIVE ESTIMATION OF MOMENTS
INITIALIZATION

```
    H=1.O/FREQ
    N2=2*N
    MX=3
    IF(N2.LE.3) MX=N2-1
    NSQ=(MX+1)*N2-(MX*(MX+1))/2
    NXN=3*NF
    NXG=(2*MX+1)*N2-(MX+1)*MX
    DO. 10 1=1,NF
    BH=6.283185*FB(I)*H
    WD=FW(I)*FW(I)-0.25*FB(I)*FB(I)
    IF(WD.LT.O.O) WDa-WD
    WD=6.283185*H*SQRT (WD)
    DIS(1.{I)=2.0*COS(WD)*EXP(-0.5*BH)
    DIS(2,I)=-1.0*EXP (-1.0*BH)
    DIS(3,1)=BH
10 CONTINUE
1500 30 I=1,N2
30 Y (1)}=0.
TI=0.0
```


'REPRODUCIBILIIY OF THE ORIGINAL•PACE IS POOR

CALL FBRSUI(TI,FI,NF)
IFINI.LE.N) COTO 41
CAL.L RKD(DERSUB,FORSUB,N2,NF,H, C,C,YI,FI,NI,I,F,Y,DY,YFI
กП $4 \Gamma \quad I=1, N 2$
$4 C \quad Y I(I)=Y E(I)$
TI= FIOAT(NI)*H
41 DO $42 \mathrm{~J}=1, N \mathrm{NM}$
$42 \times \sin (J)=0.0$
กO $43 \mathrm{~J}=1, N S Q$
43 SOS (J) $=1.0$
DO 44 J=1,N2
DYSOS (J) $=0.0$
$44 \operatorname{SUMS}(J)=0.0$
DO $45 \mathrm{~J}=1, N \times O$
45 YOYS(J)=0.0
NON $=$?
TIS=TI
455 IF((NO*NF).LE.2500) GO TO 49
MNF $=250 \cap / N F$
IF((NO*N2).LE. 50001 GO TO 40
MN2 $=50 \cap 0 / N 2$
IF(NNF-MN2) 46,46,48
46 NIS $=$ MNF
GO TO 50
48 NIS $=M N 2$
GOTO 50
49 IF($(N O * N 2) . L E \cdot 50 n 0)$ GO TO 140
NIS= $5000 / \mathrm{N} 2$
GO TO 50
140 NIS $=$ NO
50 NCS $=$ NO
51 CALL RKD(OERSUB,FORSUB,N2,NF,H,TI,YI,FI,K,NIS,F,Y,OY,YES
CALL PAMSQTIY,N2,NIS,MX,SQT,SUMT,OI
CALL XSQ(OY,Y,N2,NIS,MX,DYSQT,YDYY,O)
CALL XMONT $3(F, N F, Y, D Y, N 2, N I S, X M T, O)$
NCS $=$ NOS -NIS
DO $52 \mathrm{~J}=1$,NSQ
$52 \operatorname{SQS}(J)=\operatorname{SQS}(J)+\operatorname{SQT}(J)$
DC $54 \mathrm{~J}=1, N 2$
DYSOS(J)=DYSOS(J)+DYSQT(J)-
$54 \operatorname{SUMS}(J)=\operatorname{SUMS}(J)+S U M T(J)$
DO $55 \mathrm{~J}=1$, NXQ
$55 \operatorname{YOYS}(J)=Y O Y S(J)+Y D Y T(J)$
$0056 J=1, N X M$
56 XMS(J) $=$ XMS(J) +XMT(J)
DO $58 \mathrm{~J}=1, \mathrm{~N} 2$
$58 \mathrm{VI}(\mathrm{J})=\mathrm{YE}(\mathrm{J})$
NON = NON+NIS
TN=NIS*K
$60 T I=T I+T N * H$
IF(NOS) $100,100,65$
65 !F(NOS-NIS) $70.51,51$
70 NIS $=$ NOS
GO TO 51
$10000110 \mathrm{~J}=1, \mathrm{NSQ}$
$110 S Q(J)=S Q S(J) / F L O A T(N O N)$

FIFPROIIICIBIIITV OF THE ORIGINAI PAGF IS POOR

c
200 CONTINUE
${ }^{P C=E C(I)}$
$R(2,2)=A(2,3)$
$R(2,3)=n(2)$
WRITE(6.632)
DO 18, J=1,2
180 WRITE(6.6.33) (R(J,L),L=2,3)
CALL RLMTX(R,2,1,MARK,DET,-1)
WRITE(6,631) DET
FEK (I) $=R(1,3)$
$E E C(1)=R(2,3)$
PK=EK(I)

WRITE(6.600) N
WRITE(6,601) NF, (I,FOST(I),FW(I),FB(I),I=1,NF)
HK=FLOAT(K)*H
TIE =H*FLOAT(NON)
WRITE(6,603) FREO,H,TIS,HK,NON,TIE
WRITE 6,604$)$
DO $330 \quad[=1, N$
330 WRITE $(6,605)$
CMI:), EMIII,CK(I), EK(I), CC(I), EC(I)
WRITE 6,634$)$
DO $335 \quad I=1, N$
335 WRITE(6,635) CK(I), EEK(I),CC(I),FEC(I)
NORUN=NORUN-1
IF(NORUN) 5,5,340
340 [F(INIT) $41.15,455$
500 FORMAT(I2)
501 FORMAT (3F10.1)
502 FQPMAT(I2/(3F5.1)
504 FCRMATIBF10.4.1
506 FORMAT(F5.3.5I5)
600 FCRMATI4IHL ESTIMATEO COEFFICIENTS OF THE SIMULATED,I2.
6001 L1HMASS SYSTEM I
601 FORMATGIHIS, 18 HNO OF EXCITATION $=, 13 / 1$ IHO, $10 X, 14 H F O R$ EXCITATION.
6011 [3.5X, 11 HAMPLITUDE $=, F 10.2,5 X, 18 H C E N T E R$ FREQUENCY $=, F 10.1,5 X$,
601226 HPHASE SHIFT OR BANDWIDTH $=, F 10.21$)
693 FORMAT 121 HOSAMPLING FREQUENCY =,F10.1. 3HCPS/
6031 LHO, 3NHSAMPLING INT. FOR SIMULATION $=, F 8.58$
60311HO.16HTRANSIENT INT. $=$.FIO.21
$60321 \mathrm{HO}, 39 \mathrm{HSAMPLING}$ INT. FOR CALCULATING MOMENTS $=$,F8. $5 /$
$60331 \mathrm{HO}, 42 \mathrm{HTOTAL}$ NO. OF SAMPLES USED FOR FSTIMATION $=.16 /$
$603431 H D T I M E$ INTERVAL FOR ESTIMATION $=, F 10.2,3 H S E C)$
604 FORMAT(IHO, $16 \mathrm{X}, 4 \mathrm{HM}(I), 34 \mathrm{X}, 4 \mathrm{HK}(I), 34 \mathrm{X}, 4 \mathrm{HCII} / 3(14 \mathrm{X}, 4 \mathrm{HTRUE,8X}$.
60419 HE STIMATED, 3X)I
605 FCRMATIIHN, $3(4 X, 2 E 17.81)$
606 FORMATI4EHIESTIMATION OF MOMENTS FOR THE IDENTIFICATION OF.
6061 12.11HMASS SYSTEM)
607 FORMAT 1524 ;SETS OF EQUATIONS FOR SOLVING THE SYSTEM PARAMETERS)
620 FORMAT (1HD, $4 \cap H 2 N D ~ M O M E N T S ~ Y(J) Y(L), ~ L 玉 . J ~ T O ~ J+3 ~(O R ~ 2 N) I ~$
621 FORMAT (1HO, 8X, 2HY(, I2, 1H),5E14.4)
622 FORMAT (29HOFIRST MOMENTS OF Y(J).J=1,2N//(5E2N.8))
623 FORMAT (43HOSECOND MOMENTS OF DERIVATIVES DY(J), J=1, 2N//(5E2n.8))
624 FORMATILHO, 2OHEQUATION FOR SOLVING,I3,27HTH MASS SYSTEM COEFFICIE
"REPROUOUCIBIIIIY (OF YHF CHIGINAL PACF IS POOR".

```
6.44:TS)
```



```
626.11)
0.7 FR,RMAT(!H⿱, 3X,12,M|TH FORCF,?Y, 3F!4.4)
```



```
6?9 FCRMAT(4HRDY(,!2,4,リ)*Y(,12,1H),7F14.4)
630 FCRVAT(IH!,12C)
631 FCRMAT(14HOCETFWMINAIANT=,FOC.B)
632 FORMATI3IH? FOUATIGNS WHEN CM IS KNTWNS
623 FOGMAT(IHN, 24X,F15.B,GHAK + (,F15.8,5H)*C=,E2O.R)
634 FCRMAT(26H)FSTIMATES WITH MASS GIVEN)
635 ECRNAT(IHC,38X,2(4X,2E17.8))
4CO STOP
ENC
```


REPRODUCIBIIITY OF IHE (弓RIGINAI PA(;F IS P()()R

```
            SUBRCUTINE RKD(CERSUA,FORSUB, M,NF,H,TI,YI,FOS,K,N,F,VAL, RVAL, Y)
            OIMFNSION Y(20),SI(2N),S2(20),S3(20),S4(20),OY(20),FOS(1),YI(1).
            LVAL(1),F(I),A(20),OVAL(1),FOSP(2C),FOSA(20)
    H2=Hi/2.
    T=TI
    L=0
    LF=1
    DC IP. I=1,M
10Y(I)=YI(I)
    CALL DERSURPT,Y,FOS,M,NF,DY'
    DO gO LL=I,N
    \capO 65 JJ=1,K
    TP=T+H
    CALL FORSUB(TP,FOSP,NF)
    DO 12 I= 1,NF
    12 FOSA(I)=(FOS(I)+FOSP(I))/E.0
C
C
    25 DC 30,I=1,M
    SI(I)=H*DY(I)
    30 A(I)=Y(I)+S:(I)/2.
    TA=T+H2
C
    COMPUTE K SUB 1
    CALL DERSUB(TA,A,FOSA,M,NF;DY)
    DO 40 I= 1,M
    S2(I)=H*[OY(I)
        40A(I)xY(I)+S2(I)/2.
C
C CONPUTEK SUB 2
    CALL DERSUB(TA,A,FOSA,M,NF,OYI
    DO 50 I=1,M
    S3(I) = H*OY(I)
        50 A(I)=Y(I)+S3(I)
    TA=T+H
C
C COMPUTE K SUB 3
    CALL DERSUB(TA,A,FOSP,M,NF,DY)
    DO 60 I=1,M
        60 S4(I)=H*DY(I)
    T=T +H
    DO 62 I= I,NF
        62 FOS(I)=FOSP(I)
C
C
    compute NEW values of INtegrals
    DO 63 I=1,M
        63 Y(I)=Y(I)+{SI(I)+2.*S2(I)+2.*S3(I)+S4(I) / /6.0
        65 CALL DERSUB(T,Y,FOS,M,NF,OY)
    DO 70 I = 1,M
    L=L+1
    DVAL(L)=DY(I)
```

```
In VAL(I)=Y(!)
        CO. 7h I= I,NF
    L!=LF+1
7与 F(LF)=FCS(I)
80 CONT:NUE
    2ETURN
    ENO
```

 SURPIUTINE DERSUB(T,VAR,FS,M,NF, DER)
 PURPRSE
 AUXILIARY SUBROUTINE WHICH COMPUTES THE DERIVATIVES FOR THF
 INTEGRATION SURROUTINF RKD
 SUERCUTINE CERSUR(T,VAR,FS,N,NF,DERI
 TINEASICN VAR(2C), DER(2O),CC(IC),CK(IC),CM(IC),FS(19)
 CONMCN CC,CK,CM
 \(\mathrm{n}=\mathrm{N} / 7\)
 nc \(10 \quad 1=!+N\)

(F(N-2) 5~.15.15
$15 \operatorname{DER}(2)=(C K(1) / \operatorname{CN}(1)) *(\operatorname{VAR}(3)-\operatorname{VAR}(1))+(C C(1) / C M(1)) *(\operatorname{VAR}(4)-\operatorname{VAR}(2))$
$1+F S(1) / C M(1)$
IF(N.FQ.2) GC TO 30
$N 1=N-1$
CC $25 \quad I=2, N!$
$\operatorname{DER}(2 * I)=(C K(I) / C M(I)) *(\operatorname{VAR}(2 * I+1)-\operatorname{VAR}(2 * I-1))$
$!\quad+(C C(I) / C M(1)) *(V A R(2 *!+2)-V A R(2 *!))$
$i-(C K(I-1) /$ CM(I) $) *(\operatorname{VAR}(2 * I-1)-\operatorname{VAR}(2 * 1-3))$
1 -(Cr.(I-1)/CM(I))*(VAR(2*I)-VAR(2*I-2))
IF(NF.LT.I) GO TO 25
$\operatorname{DER}(2 * I)=\operatorname{CER}(2 \star I)+F S(I) / C M(I)$
25 CCATINUE
$30 \operatorname{DER}(2 * N)=-(C K(N) / C M(N)) * V A R(2 * N-:)-(C C(N) / C M(N)) * V A R(2 * N)$
$1-(C K(N-1) / C M(N)) *(\operatorname{VAR}(2 * N-1)-\operatorname{VAR}(2 * N-3))$
$1-(C C(N-1) / C M(N)) *(V A R(2 * N)-V A R(2 * N-2))$
IF(NF.LT.N) GC TO 100
$\operatorname{DER}(2 * N)=\operatorname{CER}(2 * N)+F S(N) / C M(N)$
GOTO 100
5n $\operatorname{DER}(2)=-(\operatorname{CK}(1) / C M(1)) * V A R(1)-(C C(1) / C M(1)) * V A R(2)+F S(1) / C M(:)$
100 RETUPN
ENC

CONMA CC,C*,CM, FOST, Fm,FA
$\therefore \therefore \quad \mathrm{Or}=1, \mathrm{AF}$

F(!)=COST(I)*S!N(THETA)
50 GCAT:MUE
RETUFN
ENC.

SLERCUTINE FORSUR(T,FOS,NFI
 1CC(IC), CK(!N), CM(1) -XR(1C)
CCNVON CC,CK,CM,FOST,FW,FR,OIS
DO 5S $\quad 1=1$.NF
TEVPaFCST(I)*GAUPN(F)
FCS(I)=DIS!1.I)*XF(I,I)+DIS(2,I)*XF(2,I)+DIS(3,I)*(TEMP-XR(I);
$X F(2, I)=X F(1, I)$
$X F(1, I)=F C S(I)$
$X R(I)=T E M P$
50 CCNTINUE RETURN
ENC


```
    SURROUTINF PANSOT(A,NV,NC,M,SQ,SLIN,IO)
    PURPGSE
        TO CALCULATF FITHER PARTIAL FIRST AND SFCOND NCMENTS
        CR SUM OF SCUARES AND SLM
            A - catA mATRIX, NV aY NO
            NV - NO MF VARIABLES
            NO - MO CF ORSFRVATICNS
            N - NO OF ACJACFNT VARIABLES FQR CROSS MOENNTS,M LESS THAN N
            SQ - SUM I:F SOUARES WFFN ID=?
                SECCNO MIMENTS hHEN ID CTHER THAN O
                NATRIX \capF (M+1)*NV-(M*(M+1))/2
            SUM - ARRAY OF NV
            SUQRCUTIRIE PAMSOT (A,NV,NO,M,SO,SUM,INI
            OINENSICN A(I),SO(I), SUM(1)
            LJ=^
            KJ=9
            nC 2r J=i,NV
            |F(NV-J-M) 4,4,6
            4 JM=NV
            GC TO 8
            \epsilon JN=J+M
            8 DC 1C L=J,JM
            L.J=LJ+l
    Ir SO(LJ)=0.!
20 SUN(J)=0.?
C
    CAlCulate sum of SQUARES AND SUM
    DO 4C I=1,NO
    LJ=0
    DC 40 J=1,NV
    IF(NV-J-M) 24,24,26
    24 JM=NV
    GC TO 28
    2.6 JM=J+M
    28 IJ=(I-1)*NV.J
    DC 30 L*J.JM
    IL=(I-I)*NV+L
        LJ=LJJ+1
    3c SQ(LJ)=SQ(LJ)+A(IJ)*A(IL)
    40 SUN(J)= SUM(J)+A(IJ)
のロロ
    CALCULATE MOMENTS IF ID NOT O
    IF(IC) 60,100,60
    60JN=(M+1)*NV-(M*(M+1))/2
    CNC=NO
    DO 70 J=1,JN
    70 SQ(J)=SQ(J)/CNO
    DO 80 K=1,NV
    80 SUM(K)=SUM(K)/CNO
10N RETURN
    END
```

```
    SUBROUTINE XSQ(A,Y,NV,NO,N,AEQ,AB,IFLAG)
    A - CATA MDTRIX CF NV BY NO
    B - DATA NATR!X OF NV BY NC
    NV - NO OF VARIABIES
    NO - NC OF CESERVATIONS
    M - NO OF VARIABLES FOR THE CROSS MOMFNTS
        ASO - IFLAG FOR SIMM OF SQUARES OF A
                IFLAG NE O SECOND NCNENTS OF A
        AB - IFLAG EQ O SUM OF SQUARES OF A(I)*R(J).J=Jl.JM
                IFLAG NE O SECONO MOMENTS OF A(I)*B(J),J=Jl,JM
        DINENSION A(1),B(1),ASQ.(1),AB(1)
        DO Lf I= !,NV
        10 ASC(I)=0.n
        NN=(2*M+1)*NV-M*(M+1)
        DC 2C I=1,NM
        2C AB(I)=0.0
        IN=?
        DO 80 N=1,NO
        IJ=n
        DC 8C I=1,NV
        IN=IN+1
        ASQ(I)=ASQ(I)+A(IN)*A(IN)
        IF(I-M) 25,25,30
        25 11=1
        GO TO 35
        30 II=I-M
        35 IF(NV-I-M) 40,40,50
        4N IM=NV
        GO TO 55
        50 IM=I+M
        55 OC 60 J=II,IM
        JN=(N-1)*NV+J
        IJ=\J+!
        60 AB(IJ)=AR(IJ)+A(IN)*B(JN)
        80 CONTINUE
        IF(IFLAG) 90,100,90
    90 CNO=NO
        OC 94 I=I,NV
    94 ASQ(I)=ASQ(I)/CNO
        DC 96 I=1,NM
    96 AB(I)=AB(I)/CNO
100 RETURN
    ENC
```


SURREITIME LOC. $(1 ., J, L J, N V, N)$
Y -THE NO.CF RGWS FGOM THE CIAGONAL
C
C
PURDRSE
To ralculate the storage lccaticn cf a partial loner half matri
L -FCW NO.
J-CCLLANAO.
LJ -STCAAGE LCCATION
NV -RANGF DF THE YATRIX
SURRCUTINF LOC2(L,J,LJ,NV,N)
IF(L.LT. (J-N)) GO TO 50
IF(L.GT. (J+M)) GO TO 5n
!F(L.GF.J) GU TO li

$$
\text { I. } \mathrm{r}=\mathrm{J}
$$

$$
J T=L
$$

GC TC 15
$10 L T=L$

$$
J T=J
$$

15 If($(J T+M-1) \cdot L \varepsilon . N V) \quad G 07020$

$$
N=(J T+M-1)-N V
$$

$$
N=(N *(N+1)) / 2
$$

$$
L J=(M+2) *(J T-1)+L T=J T-N+1
$$

60 TO 60 .
20 $L J=(M+1) *(J T-1)+L T-J T+1$
GC TA 6O
50 WRITE(6,601)
60. FORMAT (IHO. 49 HL AND J ARE NOT IN THE RANGE OF THE STORED MATRIXI LJ=?
60 RETURN END


```
    SU&RCUTINE LOC3(L,J,LJ,NV,M)
    PURPCSE
        TC CALCULATF THE STORAGE LCCATION OF A PARTIAL MATRIX
    L - NO. GF RDW OF THE MATRIX
    J - NO OF COLUMN OF THE MATRIX
    LJ - STCRAGE LOCATICN
    NV - RANGE CF THF SCUARF MATRIX
    M - CNLY M ROW FROM THE CIAGONAL ARE' STORFO,LESS THAN NV
    SUBRCUTINE LOC3(L,N,L.J,NV,N.)
    IF(L.LT.(J-M)) GO TO 100
    IF(L.GT.(J+M)) GO YO 1:C
    IF(J-1-N) 1^,10,50
10 If((J-l+M).LE.NV) GO TO 20
    NT=M+2-J
    NL=J-l+N-NV
    LJ=(2*M+1)* (J-1)-((M+NT)*(M-NT+1))/2-(NL*(NL+1))/2+L
    GO TO 110
20 NT=M+2-J
    LJ=(2*M+1)*(J-1)-((M+NT)*(M-NT+1))/2+L
    G0 ro 110
50 1N((J-I+M).LE.NV) GO TO 7C
    NL=J-I+N-NV
    LM=L-J+M+I
    LJ=(2*M+1)*(J-1)-(M*(M+1))/2-(NL*(NL+1))/2+LM
    GC TO 110
70LM=L-J+M+L
    LJ=(2*M+1)*(J-1)-(M*(M+1))/2+LM
    GC TO 110
100 WRITE(6.601)
601 FCRMAT(IHQ,49HL AND J ARE OUT OF THE RANGE OF THE STORED MATRIXI
110 RETURN
    ENC
```


SUBRCITTINE COFF(J,N,NF,SQ,OYSG,VDY, KM,EC,EK,A,B)

 PURPOSETO DBTAIN THE COEFFICIENTS DF THE 3 BY 3 EQUATIONS FOR SOLYING THE JTH SET OF SYSTEM CONSTANTS OF THE ONE OIMENSIOMAL N DEGREE FREEDOM,SPRING,MASS AND DAMPER SYSTEM EXCITED BY
AF SEQUENTIAL FDRCES
\$O -SECOND MOMENTS OF THE SYSTEM OUTPUTS
OYSQ - 2ND MOMENTS OF DY YDY - 2NO MOMENTS OF DY Y

XM -CROSS MOMENTS OF THE SVSTEM INPUTS AND OUTPUTS
SUBROUTINE COEF(J,N,NF,SO,OYSC,YDY,XM,EC,EK,A,G)
DIMENSION A(3,3), B(3),SO(1), DYSQ(1), YDY(1), XM(3)
NV=2*N
$M X=3$
IF(NV.LE.3) MX=NV-I
A(3,1)=-DVSO(2*J)
JR=2*」
$J C=J R-1$
CALL LOC3(JR,JR,KI,NV,MX)
A(2,1)=-YDY(K1)
CALL LCC3 (JC, JR, KI,NV,MX)
A(1,1)=-YDY(K1)
CALL LOC2(JR,JC,K3,NV,MX)
CALL LOC2(JC,JC,K2,NV,MX)
$J R=J R+1$
IFIJEEQ.NI GO TO 20
c
CALL LOC2(JR,JC,KI.NV,MX)
AT1,2) $=50(K 1)-S O(K 2)$
JRe.JR+1
CALL LOC2 (JR,JC,KL,NV,MX)
$A(1,3)=S O(K 1)-S Q(K 3)$
$J R=2 * J+1$
$J C=2 * ป$
CALL LOC2(JR,JC,KL,NV,MX)
A(2,2) =SQ(KL)-SQ(K3)
CALL LDC3 (JR,JC,KI,NV,MX)
JJEJC-1
CALL LOC3(JJ,JC,K2.NV,MX)
$A(3,2)=Y D Y(K 1)-Y D Y(K 2)$
$J R=J R+1$
CALL LOCZ (JR,JC,KL,NV,MX)
CALL LOC2 (JC,JC.K2,NV,MX)
$A(2,3)=S Q(K 1)-S Q(K 2)$
CALL LOC3 (JR,JC,K1,NV,MX)
$A(3,3)=Y \operatorname{CY}(K 1)+A(2,1)$
GO TO 30

COMPUTE CQEFFICIENTS WHEN J=N

$20 A(1,2)=-S Q(K 2)$
$A(1,3)=-S Q(K 3)$
$A(2,2)=-S Q(K 3)$

```
    jc=?*J
    JR=JC -1
    CALL LOCZ(JC,JC,K2,NV,MX)
    A(2,3)=-50(k2)
    CALL LOC3(JR,JC,K2,NV,MX)
    A(3,2)=-YDY(K2)
    A(3,3)=A{2,1)
C COMPUTE B(1),8(2) B(3)
C EC -ESTIMATED (J-1)TH OAMPER CONSTANT
C EK -ESTIMATED (J-1)TH SPRING CONSTANT
30 1F(J.FO.1) GO TO 50
    JR=2*J-1
    JC=2*J-3
    CALL LOC2(JR,JR,K1,NV,MX)
    CALL LOC2(JR,JC,K2,NV,MX)
    JC=JC+1
    CALL LOC2(JR,JC,K3,NV,MX)
    JJ=2*J
    CALL LOC2(JJ,JR,K4,NV,MX)
    B(1)=(SQ(Kl)-SQ(K2))*EK + (SQ(K4)-SQ(K3))*EC
    JR=JR+1
    CALL LOC2(JR,JC,K3,NV,MX)
    CALL LCC2(JR,JR,K2,NV,MX)
    JC=JC-1
    CALL LOC2(JR,JC,KI,NV,MX)
    B(2)=(SG(K4)-SQ(K1))*EK + (SQ(K2)-SQ(K3))*EC
    JC=2*J
    JREJC-1
    CALL LOC3(JR,JC,KI,NV,MX)
    JR=JR-2
    CALL LOC3(JR,JC,K2,NV,MX)
    CALL LOC3(JC,JC,K3,NV,MX)
    JR=JR+1
    CALL LOC3(JR,JC,K4,NV,NX)
    B(3)=(YOY(::1)-YDY(K2))*EK+(YDY(K3)-YDY(K4))*EC
45 IF(J.GT.NF) GO TO 100
    B(1)=8(1)-XM(3*J-2)
    B(2)=B(2)-XM(3*J-1)
    B(3)=B(3)-XM(3*J)
    GO TO 100
50 B(1)=-XM(1)
    B(2)=-XM(2)
    B(3) =-XM(3)
100 RETURN
    END
```

c

```
C NR= C:OPS EFA
C A = INPUT MATRIX
C MARK = SINGULARITY INRICATOR (NARK=I FOR SIIGLLAR A)
C DET = DFT(A)
C INCPT = -1 FCR SYSTFM SOLA. AND DET
                                    O FOK DET ONL.Y
                            +1 FOR INVERSE ANC CET
OIMENSICN STMNT. MUST AGREE WITH OIM. STMNT. IN MAIN PROGRAM
DINENSICN A(3,4;,X(4)
C
PRESET PARANETERS
SIGN = I.
MARK = O
IFLAG = INOPT
N = NR
NPL =N+1
NMT =N-1
NN=N+N
NPLSY = N+NSYS
IF (IFLAG) 40,40,10
C
10 DO 2C I= I,N
DO 2% J=NPL,NN
20 A(I,J)=0.
DO 30 I=2,N
J=I+N
30 A(I,J)=1.
    NPLSY = NN
C
C TRIANGULARI2E A
40 DO 120 I=2,NMI
IPL=I+1
C DETERMINE PIVOT ELEMENT
    MAX = I
    AMAX = ABS(A(I,I))
    DO 60 K=IPL,N
    IF (AMAX-ABS(A(K,I|)) 50,60,60
    50 MAX =K
    ANAX = ABS(A(K,I))
    60 CONTINUE
            IF (MAX-I) 70,90,70
C PIVOTING NECESSARY - INTERCHANGE ROWS
    70 DO 80 L=I,NPLSY
    TENP=A(I,L)
    A(I,L) = A(MAX,L)
    80. A(MAX,LY = TEMP
    SIGN = -SIGN
C ELIMINATE A(I+I,I)-m-A\N,I)
90 DO 120 J=YPL,N
TEMP=A(J.II
IF (TEMP) 100.120,100
```


Irput Cards and Output Tabulations for a Sample Problem

The sample problem is to simulate a five-mass system whose parameters are

$$
\begin{aligned}
& m_{1}=m_{2}=\ldots=m_{5}=0.052 \\
& k_{1}=k_{3}=9.3 \times 10^{5}, \quad k_{2}=k_{4}=8.3 \times 10^{4}, k_{5}=43 \\
& c_{1}=c_{3}=1.9, c_{2}=c_{4}=c_{5}=0.9
\end{aligned}
$$

The system is to be driven at mass No. 1 by a random force which is generated by a white noise of standard deviation 30 being passed through a bandpass filter with center frequency 70 cps and a bandwidth of 20 cps . The sampling frequency for simulation is chosen to be 5000 samples per sec. 10,000 samples are to be simulated and used for estimation of the parameters.
a) Input Cards

FIGSt wCHEATS LF VIJI：JBI．2N

－d．94 165 2 2t－5	$-1.11423 t 36 t-C$	$-n \cdot 3+13545 A f=35$	$-10.116694576-03$	$-n .503982 j 6 \mathrm{~F}=-5$
－0．1s97e $357 \mathrm{t}=03$		$-7.129987836-33$	$-14.567513535-r 5$	$-n .12637553 \mathrm{E}-01$

2AD HCPEAIS VIJIVIID．LEJTC J4！ITHEA！

SECCAC MCMFAIS CF CRRIVATIVES CYIJIDJ＝I， $2 N$

D． $28623444 \mathrm{E-C2}$	C．303590714 C4	C．26titasoc－72	0.276810428 n4	0.15237 Cc 3 fm
$0.74332425 E$ c	C．17446624E－C2	0.91664041603	$0.52641622 E-n 2$	$0.43113224 E 04$

2AD．MCMEATS CF CYIJBYYLIOL＝J－2．CRIII IC JO3ACR 2N！

DVI	11＊V1	11	$0.1305 \mathrm{E}-\mathrm{C7}$	C．2FEit－ct	0．1851E－0日	0．2748E－02			
OYI	2B＊V	11	－$)^{\text {2，90F－C？}}$	0．2175f－02	－0．27556－02	－6．1791E01	$0.12666-A 3$		
DYI	210y1	11	1）．2477－C7	0．274PF－02	$0.13676-r 7$	$0.2662 E=02$	－0．9239E－07	－0．3467－04	
OVI	4）¢ri	11	－1） $27515-\mathrm{C} 2$	c．1713f－01	－0． $26676-02$	0．1557E－92	C．2017E－04	$-0.1016 E-00$	n．2306e－03
DV1	Etby	21	－0．1359f－r3	0．1127E－4t	－0．34ETE－04	C．1604F－07	0.15245002	0．9619f－0t	$0.1621 E-02$
ovi	ctevi	31	0．3c46t－c4	C．1C25E－3C	-2.152 ef－02	$0.4126 E-n 3$	－0．1626E－N2	－0．717AE－02	－ $0.22445 \sim$ N
DV1	716\％	41	－0．2310E－6．	－ 2412 C － 7	0．16216－02	C．1690E－07	0．1145E－n？	－0．6982f－nt	0．2554F－02
024	ajevi	31	－0．1620t－r2	$0.1717 \mathrm{C}=6$	－0．175fE－C2	C．4346E－03	－ $0.2559 \mathrm{E}=02$	$-0.7977 E-01$	
OrI		$6)$	3．224ご－Ct	C．1C25F－Ct	$0.2554 \mathrm{E}-02$	0．1598E－07	3．5264E－C7		
DVIt	CIPYI	71	－0．2555t－r	C．7495E－01	－0．52e5t－02	0．4139E－04			

EGUAIICA HA SGLVIAG ITH MASS SVEIEN CIFFFICIEAIS

DETERMIANANTE $\quad 2.5467 t 125 F-16$
EGUATILAS WFEA CM IS MNTHA

$$
\begin{aligned}
& \text { C.45485351E-11*K (} 4.117217474-C 71 * C=0.46252064 F-05
\end{aligned}
$$

OETEANIANART: , - C. $53577143 F-15$
EGUAIICA fin SCLVIAG 2 IH MASS SYSIEM CCEFFICIEAIS

DETERNIANANTE G.AG512931E-EE
EGUATICAS WHEA CN IS MNCHA

$$
\begin{aligned}
& -C .139829 C 3 E-C 8 * K+1 C .99036615 E-C 71+C=-0.11596145 E-03 \\
& -0.96961140 E-C 70 K+1-0.26963624 E-021+C=-0.19400841 E-01
\end{aligned}
$$

DETENMIANANI= $\quad \therefore .3779 R 112 F-11$
EGUATICA FCR SGLVIAG ZTH MASS SYSTEN CCEFFICIENTS
$-C .74332625 E 03 * \mu+(-C .9765 C C 44 E-04) * K+(-0.75915815 E-021 * C=-10.12948482 E \cap 3$
OETEKMIANAAI: -C.79591747F-12

EqUATICAS WHEN GN IS KNLIWA

$$
\begin{array}{rrr}
(.2123 E G E T E-C S * K+(0.72742405 F-C A) * C & 0.19749673 E-03 \\
-C .722420 E 7 E-C O * K & -0.97638374 F-04) * C & -0.6315912 F-02
\end{array}
$$

DETERMIANAAT = C.2C7879PCF-13
EGUAIICA HE SGLVING $4 T H$ MASS SYSTEM CREFFICIENTS

 EGUAIICAS htFA CM IS KNCKA

DETEGMIANAAT* G.17671927E-11

EGUAIICA GR SCLVIAG SIF MASS SVSIEM CLEFFICIEATS

CETERMIANANI: -C.17A77524E-CS

 EGUATICAS WHEN CH IS KNOHA

DETEFNIANANT: C.44644605F-CS

4. 3 Computer Program Abstract II

Generel Description

a) This program is basically the same as I except for changes made to enable the input force to be read from a bape unit instead of being simulated. The tape with the desired input force samples is to be mounted on the tape unit with logical address 21 and consists of binary records. The first record should have 21 words with the 5 th word being the number of input force samples per second. All succeeding records should have 1003 words with the first word being the record number and followed by 167 blocks of six words. The first words of each six word block should be the input force samples.
b) Output from this program includes the same output as I.
c) Limitation of this program:

1) N, the number of mass, is limited to 10
2) NF, the number of input forcing function, is limited to 1 and is the driving force at the first mass.
d) Required supporting subprogram
3) RKFOR
4) DERF
5) PAMSQT
6) XSQ
7) XMONT3
8) LOC2
9) LOC3
10) COEF
11) RLMTX

Input Cards

a) Degree of Freedom Card

Col. 1-2 N - Number of mass for the chainlike system
b) System Parameter Card(s)

A card is used to specify each system parameter triplet $\left(m_{1}, k_{i}, C_{1}\right) . N$ cards are then needed and should be arranged consecutively from $1=1$ to N.

Col. 1-10 CM(I) - Floating point constant for the ith mass coefficient

Co1. 11-20 CK(I) - Floating point constant for the ith spring coefficient

Col. 21-30 CC(I) - Floating point constant for the ith damper coefficient
c) Simulation Specification Card

Col. 1-10 NI - Number of samples to be simulated before samples are taken for estimation of the moments and the system parameters

Col. 11-20 NO - Number of samples to be used for estimation of moments and system parameters

Col. 21-30 K - Only every kth samples of the equallyspaced samples are to be used for estimation of the moments and system parameters.

Col. 31-40 NORUN - Number of successive times the moments and the system parameters are to be estimated

Col. 41-50 INIT - Control index for how the samples are taken for each successive estimation of the moments and parameters If INIT < O, successive NO samples (after the initial NI samples) taken at every kth sample are to be used for the estimation process.

If INIT = 0, system is reinitialized each time. NO samples (after initial NI samples) taken at every kth sample are used for the estimation process. If INIT > 0 , (after initial NI samples) NO samples are used cummulatively each time; that is, NO, then $2 \times N O, \ldots$ then MORUN x NO are successively used for the estimation process.

Col. 51-60 IH - Index to change sampling rate of the random force recorded on digital tape by edanging the time scale which will also change the bandwidth of frequency spectrum.

IH $=0$, the sampling rate of the input force recorded on tape is to be used.

IH $\neq 0$, the sampling interval is given by HTEP

Col. 61-70 HTEP - Floating point constant for samping interval, ignored when $I H=0$.
d) Repeat a to c for a different choice of system as many times as desired. A blank card after a will cause a stop.

Description of Supporting Subprograms

a) RKFOR (DERF, $M, H, T I, Y I, F I, K, N, F, V A L, D V A L, Y$, FOSP)

This Fortran subprogram generates the solution to a set of M simultaneous first-order, ordinary differential equations by the classical fourth-order Runge-Kutta method of integration. Where

DERF - Name of the external subroutine used to compute the derivatives

M - Number of equations for expressing the system
H - Step size for integration
$T I$ - Initial value of T
YI - Initial value of Y

PI - Initial value of F
K - The desired number of steps of size H between values of the integrals to be stored in VAL and the derivatives to be stored in DVAL
$N \quad$ - The number of values to be stored in VAL and DVAL
F - Input forcing function values read from tape. On the return, only every kth value will remain in the array

VAL - A matrix of M by N containing the integrated value of the M derivatives generated by DERF

DVAL - A matrix of M by N containing the derivatives generated by the external subroutine DERF
X - The final integrated value of M derivatives. An array of M

FOSP - The last value of F
b) DERF (T, VAR, FS, M, DER)

This Fortran subroutine computes the derivatives for the integration subroutine RKFOR where DER(I), $I=1, M$ are the derivatives of $\operatorname{VAR}(I), I=1, M$ with respect to T, and are functions of T, VAR and $F S$ (input forcing function value).
c) The descriptions for subprograms PAMSQT, XSQ, XMONT3, LOC2, LOC3, COEF and RLMTX are given in Section 4.2.

Listing of the Main Program and the Subprograms

The main program and only the subprograms RKFOR and DERF will be listed as follows since the other subprograms have already been listed in Section 4.2.

```
G. POOGKAN TO SIMULATE N DEGPFE FPEFCOM,TAF DINFNSICNAL, SPRING MASS
            AND DAMPER SYSTEM AND ESTIMATF THE COEFFICIENTS
        KEAO FORCE FROM TAPF UNIT 2l
        DINEASION CC(10),GK(10),CM(1C), Y(50n9),DY(50.O),YF(20).
        1F(25%9),FC(10), EK(1), OM(10),YI(2C).
        2REC(6,167),SO(40),SUM(10),NM(15),A(3,2),B(3),R(3,4) ,10(2r)
        3.DYS(1,1\cap),YDY( 7C),SOT(4N),SLMT(IN), XNT(15),DYSOT(1^),YOYT(70)
        4,EEK(10),FEC(1)),SQS(4n),SUMS(10),XMS(15),DYSQS(10),YDYS(72)
        DCUMLEF PRECISION SOS,SUMS,XMS,OYSOS,YRYS
        ECUIVALFNCE (R(1,1),A(1,1)),(R(1,4),R(1))
        COMMON CC,CK,CM
        EXTERNAL DERF
    C
        5 REWIND 21
        READ(5,500) N
        IF(N) 4nC,40n,8
        8 REAC(5,501) (CM(I),CK(I),CC(I),I=1,N)
        READ(5,5N6) NI,NO,K,NIRUN,INIT,IH,HTEP
    REAC(21) IO
    INITIALIZATION
    (F(IH) 10.12.10
        10 H=HTEP
        GC TO 14
        12H=1.O/FLOAT(ID(5):
        14 N2=?*N
        NF=1
        MX=?
        IF(N2.LE.3) MX=N2-1
        NSG=(MX+1)*N2-(MX*(MX+1))/2
        NX:V=3*NF:
        NXG=(2*:MX+1)*N2-(MX+1)*MX
        JTEST = 168
        15 DO 3O I=1,N2
            30 YI(I)=0.0
        TI= n.r
        READ(21) COUNT,((REC(L,J),L=1,6),J=1,167)
        FI=REC(1,167)
        IF(NI) 41,41,31
        31LF=O
        3 2 \text { READ(21) COUNT, ((REC(L,J),L=1,6),J=1,167)}
```

```
            00 34 j=1.167
            LF%LF+L
            F(LF)=PFC(!,J)
            IF(LF.EG.NI) GO T! 35
            34 CONTIN|IE
            GC TC 3?
    35 JTEST=J+1
    CALL RKFOO(NFRF,N2,H,TI,YI,FI,NI,I,F,Y,DY,YF,FE)
    nO 4C I=L,N2
    40 YI(1)=YF(1)
    T!=n.n+FLGAT(NI)*H
    F!=FF
        41 \capก 42 J=1,NXM
        42 XNS (J)=0.م
    Mก 43 J=1,NSO
    43 SOS (J)=ח.?
    DC 44 J=!,N?
        OYSOS(J)=0.0
        44 SINNS(J)=R.0
    DO 45 J=1,NXQ
        45 YDYS(J)=0.0
        NDN=?
        TIS=TI
        455 IF((NO* K).LE.25NO) GO TO 4S
        MNF=2590/K
        IF((NO*N2).LE.5009) GO TO 4E
        MN2= 50OO/N2
        IF(MNF-NN2) 46,46,48
        46 NIS =MNF
        GC TO 50
        48 NIS=MN2
        GC TO 5,
        49 IF((NO*N2).LE. 50NO) GO TO 140
        NIS=5000/N?
        GO TO 50
        14r, NIS=NO
        50 NCS=NO
        51 LF=0
            IF(JTEST.GE.168) GO TO 2055
            DD 1052 J=JTEST,167
            LF=LF+l
1052 F(LF)=REC(1,J)
1055 READ(21) COUNT,((REC(L,J),L=1,6),J=1,167)
    DO 1057 J=1,167
            LF=LF+1
            F(LF)=REC(1,J)
            IF(LF.EQ.(NIS*K)) GO TO 1059
    1057 CONTINUE
    GOTO 1055
    1059 JTEST=J+1
C
    SIMULATE SAMPLES AND CALCULATE MOMENTS
    CALL RKFOR(OERF,NZ,H,TI,YI,FI,K,NIS,F,Y,OY,YE,FE)
```

```
    \thereforeC ICN J=1,NF
    165 {रITE(6,627) J.XM(3*J-2),XV(3*J-1), X:(3*J)
    PC=`.?
    PK=?."
C
C
    IF(I.FQ.1) GO TO 175
    PK=FFK(I-I)
    PC=EEC(I-1)
    175 CALL COEF(I,N,NF,SO,DYSQ,YCY,XM,PC,PK,A,B)
    B(1)=B(1)-CM(I)*A(1,I)
    R(1,1)=A(1,2)
    R(1,2)=A(1,3)
    Q(1,3)=0(1)
    R(2)=B(2)-CN(I)*A(2,1)
    R(2,1)=A(2,2)
    R(2,2)=A(2,3)
    R(2,3)=E(2)
    HRITE(6,632)
    OO 1RO J=1,2.
    180 WRITE(6,6333) (R(J,L),L=1,3)
    CALL RLNTX(R,2,1,MARK,DET,-1)
    WRITE(6,631) DET
    FFK(I)=R(1,3)
    EEC(I)=R(2,3)
    OK=FK(I)
    PC=EC(I)
    2On CONTINUF
C
    WRI, |1) (ID(I),I=1,8)
    HK=FL.AT(K)24H
    TIE=H*FLOAT (NON)
    WRITE{6,6O3) H,TIS,HK,NON ,TIE
    WRITE(6,6\cap4)
    OO 337 [ = 2,N
330 WFITF(O.075) CM(I),EM(I),CK(I),FK(I),CC(I),EC(I)
    WRITF(6,634)
    DO 335 I= 1,N
335 WRITE(6,635) CK(I),EEK(I),CC(I),EEC(I)
    NORUN=NORUN-1
    IC(NORUN) 5,5,34C
340 IF(INIT) 41,15,455
```

```
4*" FOP"AT(TP)
```



```
G0:22HN,*OFSAMOLING IST. FOR CALCUINTING MOVENTS =,F8.5/
60.331H,42HTOTAL NO. OS SAMPLES USED FOR ESTIMATICN =,IK/
```



```
6^419HFST(MATEO,3XJ)
6^5 HORMAT(1HN,3(4X,2E17.8))
62^ FCRYAT(1H1,43H2ND MOMENTS Y(J)Y(L.), L=J TO J+3 (OR 2N) OF.I3.
62^112H MASS SYSTEM)
621 FCRMAT(IHC,BX,2HY(, I2,1H),5F14.4)
62.? FORMAT(1H9.13HFIFST MOMENTS//(5F2O.8))
62% FORUAT (34HOSECOND MOMENTS DF 2NO DERIVATIVES//(GE?^.&))
624 FRRMAT(IHO, 2RHFOUATION FOR SOLVING,I3,27HTH MASS SYSTFM COEFFICTE
624!TS1
625 FOFVAT(1H2,3X,F15.,.6H*M + (,F15.8,7H)*K + (, E15.9,5H)*C=,515.8)
626 FOR*AT\IH`,53HCROSS MOMENTS OF INPUT FORCE AND Y(2J-I),Y(2J),DY(?
62611)
627 FCPMAT\!Hר, 3X, I2, BHTH FORCE,3X,3F14,4)
628 FOKMAT (1H^,51H2ND MOMENTS OF OY(J)*Y(L),L=J-3,OR 1) TO J+3(DR 2N))
629 FORMAT(4HOOY(,I2,4H)※Y(,I2,IH),7E14.4)
631 FCRVAT(14HOCFTERMINNANT=,F2O.8)
622 FOPMAT(3IH) EQUATIONS LHEN CM IS KNCWN)
633 FCRMAT(1HD, 24X,E15.8,6H*K + (,E15.8,5H)*C=,F20.8)
634 FORMAT(26HNESTIMATES WITH MASS GIVEN)
635 FCRMAT(LHO,38X,2(4X,?E17.8))
4CO STCP
    ENO
```



```
    IVAI.(1),F(1),A(2C), EVAL(1)
        NK=7
        !2*).5*F
        T}T\textrm{T
        L*
        NS IN l=1,M
    10 Y(I)=YI(I)
        FCS*FI
        CAIL. DERF(T,Y,FOS,M,DY)
        DC 2r i=1,M
2C S1(I)=H*DY(I)
        DO 4C LL=!,N
        DC क' JJ=1,K
        NK=NK+1
        FCSP=F(NK)
        FCSA=(FCS+FOSP)/2.^
C
        25 DO 3C I=1,i4
        30 A(I)=Y(1)+51(I)/2.
        TA=T+H2
    CONPUTE K SUB 1
    GALL OERF(TA,A,FOSA,M,DY)
    DC 4% I=1,M
    S2(1)=mक0Y(I)
    4C A(I)=Y(I)+S2(I)/2.
    CCNPUTE K SUB 2
    CALL OERF(TA,A,FOSA,M,DY)
    OC 50 I=1,M
    S3(i)=H*DY(I)
50 A(I)=Y(I)+S3(I)
    TA=T+H
    cCNPUTE K SUB 3
    CALL DERF(TA,A,FOSP,M,OY)
    DO 60 I=1,M
6C S4(I)*H*DY(I)
    T=T+H
    FCS=FOSP
C
    CONPUTF NEW VALUES OF INTEGRALS
    D0 63 I= 1,M
        63Y(I)=Y(I)+(SI(I)+2.*S2(I)+2.*S3(I)+S4(I))/6.0
    CALL DERF(T,Y,FOS, M,DY)
    DO 65 I =1,M
65S1(1)=H*DY(I)
    DO }70I=1,
```

```
        L=L+!
        IVAL(L) mYY(I)
7% YAL(I) =Y(I)
    F(LI.)=FCSP
BO CCNTINUE
    ETUPN
    ENC
```

 SUARTITYINE CFRF(T,VAR,FS,N, DERS
 PUR PCSF
 AUXILIARY SUAROUTYNE WHICH CT:VPUTFS THF DERIVATIVES FOR THF
 INTEGRATIGN SUPRDUTINE RK:
 CF CNT DINENSICN, N DFGREF FRFFCOM, SPRINO, MASS, DAMPFR SYSTEM,
 EXCITFD SY NF FORGES FROM NASS 1 TO MASS MF WHERE NF LLEON
 ПINENSICN VAR(2C), DER(20),CC(1C),CK(1C),CM(1O)
 CONAKN CC,CK,CM
 \(\mathrm{N}=\mathrm{N} /\) ?
 OC IC \(i=1, N\)
 $10 \operatorname{DEF}(2: 1-1)=\operatorname{VAR}(2 * I)$
IF (N-2) $50,15,15$
$15 \operatorname{DER}(2)=(\operatorname{CK}(1) / \operatorname{CM}(1)) *(\operatorname{VAR}(2)-\operatorname{VAR}(1))+(\operatorname{CC}(1) / \operatorname{CM}(1)) *(\operatorname{VAR}(4)-\operatorname{VaR}(2))$
$1 \quad+F S / C M(1)$
IF(N.EQ.2) GOTO 30
$\mathrm{Ni}=\mathrm{N}-\mathrm{l}$
DC 25 I=2,N:
$\operatorname{DER}(2 * 1)=(\operatorname{CK}(1) / C M(1)) *(\operatorname{VAR}(2 * 1+1)-\operatorname{VAR}(2 * I-1))$
1 + (CC(I)/CM(I))*(VAR(2*I+2)-VAR(2*I))
$1-(C K(I-1) / C M(I) *(\operatorname{VAR}(2 * I-1)-\operatorname{VAR}(2 * 1-3))$
$-(C C(I-1) / C M(I)) *(V A R(2 * I)-\operatorname{VAR}(2 * 1-2))$
25 CONTINUE
30 DER $(2 * N)=-(C K(N) / C M(N)) * V A R(2 * N-1)-(C C(N) / C M(N)) * V A R(2 * N)$
$1-(C K(N-1) / C M(N)) *(V A R(2 * N-1)-\operatorname{VAR}(2 * N-3))$
$1-(C C(N-1) / C M(N)) *(\operatorname{VAR}(2 * N)-\operatorname{VAR}(2 * N-2))$
GC TO 100
$50 \operatorname{DER}(2)=-(\operatorname{CK}(1) / \operatorname{CM}(1)) * \operatorname{VAR}(1)-(\operatorname{CC}(1) / \operatorname{CN}(1)) * \operatorname{VAR}(2)+F S / C M(1)$
$10 \cap$ RETURN
ENC

Input Cards and Output Tabuletions for a Sample Problem

The sample problem is to simulate a five-mass system whose parameters are

$$
\begin{aligned}
& m_{1}=m_{2}=\ldots=m_{5}=0.66667 \\
& k_{1}=k_{3}=9.3 \times 10^{5}, k_{2}=k_{4}=8.3 \times 10^{4}, k_{5}=530 \\
& c_{1}=c_{3}=0.9, c_{2}=c_{4}=1.9, c_{5}=0.1
\end{aligned}
$$

The system is to be driven at mass No. 1 by a random force that häs been digitally recorded on a magnetic digital tape. 3500 samples are to be simulated and used for estimation of the moments and the system parameters.
a) Input Cards

b) Sample Output

FIAST MOFENTS

$\begin{array}{r} -0.11794510 \mathrm{E}-03 \\ 0.18132111 \mathrm{E}-04 \end{array}$	$\begin{array}{r} 0.11294794 F-04 \\ -0.17669534 E-03 \end{array}$	$\begin{array}{r} -0.17114372 E-03 \\ 0.17010012 E-04 \end{array}$	$\begin{array}{r} \text { n. } 11732835 E-04 \\ -0.17564707 E-03 \end{array}$	$\begin{array}{r} -n \cdot 17671886 F-03 \\ 0.42849763 E-05 \end{array}$
ECONC mCMENTS OF	cenivalives			
$\begin{aligned} & 0.143073096-02 \\ & 0.10925123 F 03 \end{aligned}$	$\begin{aligned} & C .13035915 E 03 \\ & \mathrm{C.66660日91E-03} \end{aligned}$	$\begin{aligned} & 0.1276044 \mathrm{BE}-\mathrm{n}_{2} \\ & 0.108909 \mathrm{CKE} \text { A3 } \end{aligned}$	$0.11301515 E 03$ 0．2566314E－02	$\begin{aligned} & 0.61112568 \mathrm{~F}-03 \\ & 0.30 \mathrm{~S} 21934 \mathrm{O} \end{aligned}$

ovi	11071	11	0．1293E－09	0．1439E－02	－0．1330E－07	C．1354E－02			
ori	21891	11	$=0.14425=02$	0．1254E＝02	－0．1358E－02	－C．1284E＝02	C．5396F－03		
－0vi	310 y	11	0．1461E－07	0．1354E－02	0．1239E－08	0．1276E－02	－0．1083E－06	－0．50765－03	
ovi	alay	11	－0．1354E－02	0．233日E－02	－0．1276E－02	c．2967E－S4	0．5066E－03	－0．18nne－01	0．61842－03
ovi	sjevi	21	－0．5606E－C3	0．1ctot－c6	－7．9016E－03	0．1739E－08	0．6111F－03	－0．5421E－08	0．03276－03
OVI	bity	31	0．3077E－03	0．1924F－01	－0．6112E－03	C．1562E－nt	－0．638nE－03	－0．11471－02	－0．2928E－05
ovi	710v1	41	－0．6193E－03	0．8791E－00	0．632 1E－03	$0.1630 \mathrm{~F}=06$	0．6667E－03	－0．0529E－07	0．17208－73
OVI	tlevt	31	－0．6321E－03	0．1494E－02	－0．6067E－03	0．1930F－03	－0．172日E－03	－0．1019E－01	
DVI	ctert	61	$0.29625-05$	0．6403f－07	0．1720E－03	0．1804E－08	0．2567E－02		
DVil	101071	71	－0．1719E－03	0．97E5E－0？	－ $3.2567 E-02$	0．53718－03			

CROSS MONENTS DF INPUI FORCE ANO V（2J－1）．Y（2J），DV（2J1
ITHFORCE $-0.2719 E-04 \quad 0.134 C E-01$ C．B64LECI
equation fer solviag ith mass systigm coefficients
DETEAWINAMRTM $-0.78690767 E-12$
EQUATICNS WHEN CM 15 KNOUN

-C.10C4611sE-Cnok	-10.16474C14F-n7tec	-	-0.93425793E-n3
-r.13426046E-976n		-	-0.125s3098E-61

DETEAMIMAANI = $0.0 .516744 C E-13$
EDUAIIDN FCA SOLVING 2TH MASS SVSTEM COEFFICIENTS

EOUATIGNS WHEN CU IS KNOWH

-0.20809391E-074K (0.1^735772E-0614C	-	
-f.109569¢7E-C6*K (-0.17830130E-02 \#C	E	-0.124.3154E-01

DETEAMINAANT = $0.3712766 G E-1 C$
EQUATION FER SULVING 3TM MASS SVSTEM GOEFFICIENTS

$$
\begin{aligned}
& -0.15018455 \in-034 m \cdot(-C .71601526 E-061 * K+10.21573403 E-041+C-0.6737226 C E-02
\end{aligned}
$$

$$
\begin{aligned}
& \text { DETERMINAANY = } \quad 0.43641966 E-12
\end{aligned}
$$

EOUATIONS WHEN CM IS KNOWN

$$
\begin{aligned}
& -C .71601526 E-00+K+10.21573403 F-C 41 * C=-0.663928 B 4 E-02
\end{aligned}
$$

DETERMIANANT = $0.15344165 F-12$

EQUATIOM FUR SOLVING STM MASS SVSTEM CGEFFICIENTS

$$
\begin{aligned}
& \text { DETEAMINNANT: } \quad-0.2005 \text { PAIOF-06 }
\end{aligned}
$$

equations mhen cm is known

$$
\begin{aligned}
& -C .28213149 E-06 * K \cdot(-0.18038338 F-O H) * C=-0.14994060 E-03 \\
& -C .1803033 E E-C 8 \% K+(-0.25668076 E-02)=C=-0.25087469 E-03
\end{aligned}
$$

determinnante

$$
0.12419984 E-05
$$

-telatment mut	Ciassificaliom	$\boldsymbol{3}$ WY =	N0.10\%	
IMANSIPN' INT. C.				
SAMPIING ImI. FOn talculailmg momfnts - 0.00143				
fotal mo. dif samples listo fith estimations 1500				
IIME Imituval fim Estimatitm 5.0054 C				
mil	K111		C11)	
0.66666656E 00 C.66650171 00	0.9209490406		$0.980000 n 0$ \% 00	$0.44135029 \% 00$
$0.666666645000 .66625 B 95600$	$0.0299999+0$ d	$0.0296330 n e ~ 0 s ~$	0.10000000 el	0.1092226Tt 01
$0.46666666 E 00$ 0.6463605ce 00	0.42999949108	0.92464120806	0.00000050 00	-.1076494t 0t
	0.62999944f 04	0.0241121505	3.17000000\% 01	0.1480nstater
0.6864666tE 00 C.64643504t co	0.5 3MOOnODE 03	0.52912040603	0.09949498E-00	$0.111110245-00$
Esilmares milm mass civen				
	0.92999999506	0.92998238606	0.9nootocet 00	0.9n207PD2E 00
	0.02999499E 05	0.0299869505	0.19090000 B 1	0.19900790
	$0.92999999 \% 00$	0.97994484E 06	0.70000 gnec 00	Q.m431174t CE
	0.82999994505	0.A2971232t 05	9.17000non¢ 01	- 14n23629L 01
	0.530000 COE 03	0.53145542003	-.09409494t-nn	$0.0730150 \mathrm{c}=01$

4.4 Computer Program Abstract III

General Description

This Fortran program simulates the two-dimensional, six degrees of freedom system shown in Figure I b and whose equation of motion, after change of variable, is given as

$$
\dot{y}_{21-1}=y_{21}
$$

$$
\dot{y}_{2}=-\frac{2 C_{1}}{m_{1}} y_{2}-\frac{2 k_{1}}{m_{1}} y_{1}+\frac{2 C_{3}}{m_{1}}\left(y_{8}-y_{2}\right)+\frac{2 k_{3}}{m_{1}}\left(y_{7}-y_{1}\right)+\frac{f_{1}}{m_{1}}
$$

$$
\dot{y}_{4}=-\frac{2 C_{2}}{m_{1}} y_{4}-\frac{2 k_{2}}{m_{1}} y_{3}+\frac{2 C_{4}}{m_{1}}\left(y_{10}-y_{4}\right)+\frac{2 k_{4}}{m_{1}}\left(y_{9}-y_{3}\right)+\frac{f_{2}}{m_{1}}
$$

$$
\dot{y}_{6}=-\frac{2\left(c_{1} b^{2}+c_{2} a^{2}+c_{3} c^{2}+c_{4} e^{2}\right)}{I_{1}} y_{6}-\frac{2\left(k_{1} b^{2}+k_{2} a^{2}+k_{3} c^{2}+k_{4} e^{2}\right)}{I_{1}} y_{5}
$$

$$
+\frac{2\left(C_{3} e \dot{e}+c_{4} \mathrm{e} 2\right)}{I_{1}} Y_{12}+\frac{2\left(K_{3} e d+K_{4} e 2\right)}{I_{1}} Y_{11}+\frac{f_{3}}{I_{1}}
$$

$$
\dot{y}_{8}=-\frac{2 c_{3}}{m_{2}}\left(y_{8}-y_{2}\right)-\frac{2 k_{3}}{m_{2}}\left(y_{7}-y_{1}\right)+\frac{f_{4}}{m_{2}}
$$

$$
\dot{y}_{10}=-\frac{2 c_{4}}{m_{2}}\left(y_{10}-y_{4}\right)-\frac{2 k_{4}}{m_{2}}\left(y_{9}-y_{3}\right)+\frac{f_{5}}{m_{2}}
$$

$$
\dot{y}_{12}=-\frac{2\left(c_{3} \mathrm{~d}^{2}+c_{4} e^{2}\right)}{I_{2}} y_{12}-\frac{2\left(k_{3} \mathrm{~d}^{2}+k_{4} e^{2}\right)}{I_{2}} y_{11}
$$

$$
+\frac{2\left(C_{3} c d+c_{4} e^{2}\right)}{I_{2}} y_{6}+\frac{2\left(k_{3} c d+k_{4} e^{2}\right)}{I_{2}} y_{5}+\frac{f_{6}}{I_{2}}
$$

From the simulated equally-spaced samples of the system dynamical outputs $y_{j}, \dot{y}_{j}, j=1$ to 12 and the system inputs $f_{1}, 1=1$ to 6 , the second moments or time averages of $\overline{y_{j} y_{k}}, \overline{\dot{y}_{j} y_{k}}, \overline{\dot{y}_{j}{ }^{2}}, \overline{f_{1} y_{21-1}}, \overline{f_{1} y_{21}}$, and $\overline{f_{1} \dot{y}_{21}}$ are computed and the system parameters $m_{1}, I_{1}, k_{21-1}, k_{21}, C_{21-1}, C_{21}$ for $1=1$ and 2 are estimated.
b) Outputs from this program include:

1) Sample moments or time averages of
$\overline{y_{j} y_{k}} ; j=1$ to $6 I N ; k=j, \ldots,(j+7)$ or 12
$\overline{\dot{y}_{j} y_{k}} ; j=1$ to $6 \mathrm{~N} ; k=(j-3)$ or $1, \ldots,(j+7)$ or 12
$\overline{\dot{y}_{j}{ }^{2}} ; j=1$ to 12
$\overline{f_{i} y_{21-1}}, \overline{r_{1} y_{21}}$ and $\overline{f_{1} \dot{y}_{21}} ; i=1$ to 6
2) Sets of simultaneous equations for solving each set of system parameters.
3) Tabulation of true parameters against the estimated parameters.
c) Required Supporting Subprograms
4) RKD
5) MULDEV
6) MULFOS
7) PAMSQT
8) $X S Q$
9) XFOT
10) LOC2
11) LOC3
12) RLMTX

Input Cards
a) Number of Mass Card

Col. l-2 N - Number of mass for the two-dimensional system ($N=2$).
b) System Paramecer Card(s)

A card is used to specify each set of system param-
eter $\left(m_{i}, I_{i}, k_{2 i-1}, k_{2 i}, C_{2 i-1}, C_{2 i}\right)$. Therefore, $N(=2)$ cards are needed.

Col. 1-10 CM(I) - Floating point constant for the ith mass coefficient

Col. ll-20 CI(I) - Floating point constant for the ith moment of inertia

Col. 2l-30 CK(2I-1) - Floating point constant for the spring coefficient in one direction

Col. 31-40 CK(2I) - Floating point constant for the spring coeflicient in the other direction

Col. 41-50 CC(2I-1) - Floating point constant for the damper coefficient in one direction

Col. 5l-60 CC(2I) - Floating point constant for the damper coefficient in the other direction
c) System Dimension Card

Col. 1-10 A - Floating poirt constant for the distance between C. G. of Mass 1 and the springdashpot unit (k_{2}, C_{2}).

Col. ll-20 B - Floating point constant for the distance between C. G. of Mass 1 and the springdashpot unit (k_{1}, C_{1}).
Col. 21-30 C - Floating point constant for the distance between C. G. of Mass 1 and the springdashpot unit (k_{3}, C_{3}).
Col. 31-40 D - Floating point constant for the distance between C. G. of Mass 2 and the springdashpot unit (k_{3}, c_{3}).
Col. 41-50 E - Floating point constant for the distance between C. G. of Mass 2 and the springdashpot unit (k_{4}, C_{4}).
d) Number of Input Card

Col. l-2 NF - Number of input forcing functions (N F=6)
e) Input Forcing Characteristics Card (s)

A card is used to specify each input forcing function characteristics. $N F(=6)$ cards are needed and they should be arranged consecutively from $I=1$ to $N F(6)$.

f) Simulation Specification CardCol. l-5 FREQ - Sampling frequency for simulation of thesystem. The simulation interval is then1/FREQ.Col. 6-10 NI - Number of initial samples to be simulatedbefore samples are taken for estimationof the moments and the system parameters.
Col. 11-15 NO - Number of samples (after initial NI samples) to be used for estimation.
Col. 16-20 K - Only every kth sample (after the initial NI samples) of the equally-spaced (of interval 1/FREQ) samples are to be used for estimation.
Col. 21-25 NORUN - Number of successive times the moments and the system parameters are to be estimated.
Col. 26-30 INIT - Control index for how the samples are taken for each successive estimation. If INIT < O, successive NO samples (after the initial NI samples) taken at every kth sample are to be used for estimation. If INIT $=0$, system is reinitialized each time, NO samples (after initial NI samples) are used for estimation.

> If INIT >0, (after initial NI samples)
> NO samples are used cummulatively each time; that 1 s , NO, then $2 \times \mathrm{NO}, \ldots$, then NORUN x NO samples are successively used for estimation.
> g) Repeat a to f for a different choice of system parameters as many times as desired. A blank card after f will cause a stop.

Description of Supporting Subprograms

a) $\operatorname{MULDEV}(T, Y, F, N, N F, D Y)$

This Fortran subroutine computes the derivatives as given by equation 4.4 .1 for the integration subroutine RKD where $D Y(I), I=1, N$ are the derivatives of $Y(I)$, $I=1, N$ with respect to T, and are functions of T, Y, and F where $F(I), I=1, N F$ are the input forcing values at T.
b) MULFOS (T, FOS, NF)

This Fortran subroutine generates the input forcing functions to the system for the integration subroutine RKD, where $\operatorname{FOS}(I), I=1, N F$ are the values of the input forcing values at time T. A subprogram for sinusoid input and
another for random input are included. The user can use either one as desired, and only one is to be used at a time.
d) XFOT (A, NA, NVEC, B, C, NBC, NO, XM, ID)

This Fortran subroutine computes sums or averages of product between variables of one vector and variables of two other vectors, where

A - Sample matrix of NA by NO of one set of vectors
NA - Number of variables or length of vectors stored in A
NVEC - If NVEC(I) >0, then the ith variable of vector stored in A is greater than 0.
$B \quad$ - Sample matrix of $N B C$ by $N O$ of the second set of vectors

C - Sample matrix of NBC by NO of the third set of vectors

NBC - Number of variables or length of vectors stored in B and C

No - Number of vectors
XM - Sums or averages of products of variables $A(J) *$ $B(2 J-1) ; A(J) * B(2 J)$; and $A(J) * C(2 J) ; J=1, N A$

ID - Control index
ID $=0$, computing sums
ID $\neq 0$, computing averages
e) The descriptions for subprograms RKD, PAMSQT, XSQ, LOC2, LOC3, and RLMTX are given in Section 4.2.

Listing of the Main Program and the Subprogram

The main program and only the subprograms MULDEV, MULFOS, and XFOT are listed since the other subprograms have already been listed in Section 4.2.

whitt trf menents

10C CC $16 \mathrm{~J}=1, \mathrm{NSO}$
1／CSG（J）＝SCS（J）／FLCAT（NCN）
CC $1: 2 \mathrm{~J}=1 \mathrm{Na}$
CYSC（J）＝iYSGS（J）／FLOAT（ACN）
112 SUN（J）sSUNS（J）／FLCAT（NON）
CO $114 \mathrm{~J}=\mathrm{d}, \mathrm{NXN}$
$114 \times M(J)=X N S(J) / F L C A T(N C N)$
CC 11E J＝！，NXG
$126 \operatorname{YCY}(J)=Y C Y S(J) / F L C A T(N C N)$
nR！Iff（e，sine）N
nRITE（G，622）（SUM（J），J＝1，Nट）
WRITE（E，E2F）
CG $1552=1$ Nö
CALL LCCZ（J，J，KL，N2，MX）
J3 $=J+N X$
（F（ل3．CT．Nで）Jごさへて
CALL LCC2（J3，J，K2，N2，MX ）
155 WKITE（E，も2l）J，（SC（JJ），JJ＝Kl，Kも）
hRITE（c，©23）（CYSQ（J），J＝1，Ne）
WRITE（0，626）
OO $160 \mathrm{~J}=1, \mathrm{Na}$
$J 3=j+N x$
1F（J3．GT．NZ）Jこ＝N2
CALI LCC3（J3，J，K2，N2，MX）
$J 3=J-M X$
IF（J3．LT．L）J3＝1
CALL LCC3（J3，J，K1，N2，MX）
$16 C$ WKITE（E，625）J，Jこ，（YDY（JJ），JJ＝Kl，Kて）
WRITE（E，E2t）
CO $165 \mathrm{~J}=1, N F$

C
C
C
estinate the ccefficients
IF（NVEC（4））173．173．175
173 IF（NVEC（5）） 175.175 .185
C
C
C
175 CALL LCC2（8，7，K1，N2，MX）
CALL LCC2（7，2，K2，N2，MX）
R（1，1）$=$ SC（K1）－SC（K2）
CALL LCC2（8，1，K2，N2，MX）
$R(\hat{2}, 2)=S Q(K 1)-S G(K 2)$
CALL LCC $2(7,7, K 1, N 2, M X)$
CALL LCC2（7，I，K2，N2，MX）．
R（2，2）$=S G(K 1)-S G(K 2)$
CALL LCC2（A， $8, K 1, N 2, M X)$
CALL LCCZ $(8,2, K 2, N 2, M X)$
$R(2,1)=S Q(K 1)-S Q(K 2)$
CALL LCC $3(7, E, K 1, N 2, M X)$

```
            CALL LCCZ(E,E,KZ,N2,MX)
            IF(NVE:(4).LE.E) GO TO 18O
    C
    C.FOR F(4) GT.G.ESTIMATE C(3),K(3) ANC M(Z) FIRST
    C
        R(1, 3) = (. 5*YCY(K1)
        R(2,3)=0.5*YCY(K2)
        CALL LCC3(1,&,K3,N2,MX)
        R(2,2)=YCY(K1)-YCY(K3)
        CALL L.CC3(2,E,K?,N2,NX)
        R(3,1)=YCY(K2)-YOY(K3)
        R(3,3)=0.5*DYSC(8)
        R(1,4)=0.5*XN(10)
        R(2,4)=0.5*XN(11)
        R(3.4)=0.5*XN(12)
        J=3
        I=2
        WRITE(6,624) J.J,I
        WRITE(6,625) (|R(L,J),J=1,4),L=1,3)
            CALL RLNTXTR,E,I,MARK,OET,-1)
            WRITE(6,631) CET
            EC(3)=R(1,4)
            EK(3)=R(2,4)
            EM(2)=R(2,4)
            GOTC 185
    C
    C F(4: ANC F(5) ARE BUTH C, ESTIMATE CNLY C(3) ANO K(3) KITH M(2)
            GIVEN
    180R(1,3)=-0.5*CM(2)*YDY(K1)
        R(2,3)=-0.5*CM(2)*YDY(KE)
        J=3
        WRITE(6.610) J.J
        WRITE(6,633) ((R(L,J),J=1, E),L=1,2)
        CALL RLMTX\R,2,1,MARK,CETP-1)
        WRITE(O,631) DET
            EC(3)=R(2,3)
            EK(2)=R(2,3)
        C
        185 CALL LCC2(10,9,K1,N2,MX)
            CALL LCC2( 9,4,K2,N2,M%)
            R(1,1)=SC(K1)-SC(K2)
            CALL LCCZ(10,3,K2,N2,MX)
            R(2,2)=SG(KI)-SG(K2)
            CALL LCC2( S,9,K1,N2,MX)
            CALL LCC2! 9;3,K2,N2,MX)
            R(1,2)=SG1::1-SG(K2)
            CALL LCCZ(10,10,K1,N2,MX)
            CALL LCCE(10, 4,KZ,N2,NX)
            R(2,:)=SG(K1)-SC(K2)
            CALL LCC3(5,10,K1,N2,MX)
            CALL LCC3(10,1C,K2,N2,MX)
            IF(NVEC(4).LE.OS GO TO 150
        C
```


'REPROIJUCIBIIITY OF THE ORIGINAI PAGE IS POOR

```
C F(4) .CT. GESTIMATE C(4) PNGK(4)
272
c
    R(1.3)=0.5*(XN(13)-YDY(K1)*EN(2))
        R(2,3)=0.5*(XN(14)-YDY(K2)*EM(2))
        J=4
        WRITE(G,ElO) J,J
        WKITE゙(6,{33) ((K(L,J),J=1,3),L=1,2)
        CALL KLMTX(K,z,d,MARK;DET,-1)
        LRITE(O,63!) DET
        EC(4)=R(!,j)
        EK(4)=R(2,2)
        GC TO 250
    ioc lf(Avec(E).gT.C l go rc 21C
C
C
C
    R(1,3)=-1.5*CN(2)*YOY(K1)
    R(z.3)=-0.5*Cr(2)*YOY(K2)
    J=4
    WRITE(C,ELC) J,J
    WRITE(0,633) ((R(L,J),J=1,E),L=1,2)
    CALI RLNTX(R,2,1,MARK,CET,-1)
    WRITE(O.t3l) CET
    EC(4)=R(1,3)
    EK(4)=R( (2,3)
    GO IC 25C
C
210
    =0.5#YCY(K1)
    R(2,3) = U.5#YCY(K2)
    CALL LCC3(4,IC,KZ,N2,MX)
    R(3,1)=YCY(K2)-YCY(K3)
    CALL LCC3(3,10,K2,N2,MX)
    R(3,2)=YCY(K1)-YCY(K3)
    R(3,3)=0.5*OYSG(10)
    R(1,4)=C.5*XN(13)
    R(2,4)=0.5*XN(14)
    R(3,4)=C.5*XN(15)
    I=2
    J=4
    WRITE(G,624) J,J,I
    WRITE(6,(25) ((R(L,J),J=1,4),L=1,3)
    CALL RLNTX(R,3,1,MARK,CET,-1)
    hRITE(o.631) CET
    EC(4)=R(1,4)
    EK(4)=R(2,4)
    EM(2)=R(2,4)
```

ESTIMATE C(3) ANC K(3)

```
ESTIMATE C(3) ANC K(3)
CALL LCC2(8,7,K1,N2,MX)
CALL LCC2(7,2,K2,N2,MX)
```

$R(1,1)=S C(K 1)-S C(K<)$
CALL LCC2(r, b, K2,N2,NX)
Q(2.2) $=$ S(i (K1)-SG(K2)
CALL LCC2(7,7,K1,N2,NX)
CALL LC(2(7,l,K2,N?,NX)
$K(1,2)=50(K 1)-S O(K 2)$
CALL LCC2(*, 8,KL, N2,NX)
CALL LCCZ(a, $2, K 2, N 2, M X)$
R(2,1) =SW(K1)-SC(K2)
CALL LCC3(7,G,K1,N2,MX)
CALL LCC3($3,8, K 2, N 2, N X)$
$K(1,3)=-0.5 \pm E M(2) * \operatorname{YOY}(K 1)$
$R(2,3)=-0.5 * E N(2) \neq Y C Y(K 2)$
$J=$?
WRITE(E, ElC) J, J
WRITE(0,633) ((R(L,J),J=1, $\vdots), L=1,2)$
CALL RLNTX(K,2,1,NARK,CET,-1)
WRITE(6,631) DET
EC(3) $=R(1,3)$
EK(3)=A(2,3)
C
C
C
estinate l(2)
$250 \mathrm{EC}(3)=(C * C) * E C(3)+(E * E) * E C(4)$
$\operatorname{EO}(4)=(C * D) * E K(3)+(E \neq E) * E K(4)$
$E D(5)=(C * 0) * E C(3)+(E * E) * E C(4)$
$E D(E)=(C * D) * E K(3)+(E * E) * E K(4)$
CALL LCC2(12,11,K1,N2,NX)
CALL LCC2(11, E,K2,N2,NX)
CALL LCC2(11,11,K3,N2,MX)
CALL LCCZ(11, 5,K4,N2,MX)
CALL LCC3(11,12,K5,N2,NX)
$E I(\bar{c})=(2.0 *(E C(3) * S Q(K 2)+E C(4) * S G(K 4)-E C(5) * S Q(K 1)-E D(6) * S C(K 3))$ +
$1 \mathrm{XN}(16) / \operatorname{YCY}(K 5)$
ESTIMATE C(1),K(1) AND M(1)
CALL LCC2(2,1,K1,N2,MX)
$R(1,1)=S G(K 1)$
$\therefore: \because, 2)=S G(K 1)$
CAL, LCC2(1,1,K1,N2,MX)
$R(1,2)=S C(K 1)$
CALL LCC2 $(2,2, K 1, N 2, M X)$
R(2,1)=SG(K1)
CALL LCC3(1, $2, K d, N 2, M X)$
$R(1,3)=0.5 * Y C Y(K 1)$
$R(3,2)=Y C Y(K 1)$
CALL LCC $3(2,2, K 1, N 2, M X)$
$R(2,3)=0.5 * Y C Y(K 1)$
$R(2,1)=Y C Y(K 1)$
$R(3,3)=C .5 * D Y S 6(2)$
CALL LCC2(8,1,KI,N2,MX)
CALL LCC2(2, 1, K2,N2,MX)
CALL LCC2(7,1,KZ,N2,MX)
CALL LCC2(1,1,K4,N2,MX)

REPRODUCIBIIITY OF THE GRIGINAL PAGE IS POOR

```
                ,4)=F(12)*(SG(K:)-SG(K2))+EK(3)*(SG(K3)-SG(K4))4E.5*XN(1)
6 :L LCCZ(a,z,K1,N2,:'X)
CALL LC(2(2,2,k4,N?,NX)
CNLL LCG2(7,2,K2,Na,NX)
R(2,4)=EC(3)*(SW(KL)-SC(K4)) +EK(Z)*(SG(K3)-SG(K2))+0.5#XN(2)
CALL LCC3(&, 己,N!,N2,N*)
CALL LCC?(?,Z.,K2,N2,NX)
CALL L:CZ(7,2,Ka,N2,NX)
CALL LCC3(1,2,K4,N2,NX)
R(2,4)=EC(3)*(YCY(K1)-YOY(KZ )) +EK(2)*(YOY(K3)-YOY(K4))+0.5#XM(3)
I=1
WRITE(E,E24) I,l,I
WRITE(0,H25) ((H(L,J),J=1,4),l=1,3)
CALL FLNTX(R,3,I,NARK,CET,=1)
WRITE(G,E31) CET
EC(1)=R(1,4)
EK(1)=R(2,4)
EM(1)=R(3,4)
ESTINATE C(2),K(2)
CAlL LCC2(4,Z,K1,N2,MX)
R(1,1)=SG(KL)
R(Z,2)=SG(K1)
CALL LCC2(3,3,Kl,N2,MX)
R(1,2)=SG(K1)
CALL LCC2(4,4,K1,N2,NX)
R(2,1)=SC(K1)
CALL LCC3(3,4,K5,N2,MX)
CALL LCC2(10,3,K2,N2,MX)
CALL LCC2( 4,3,K2,N2,MX)
CALL LCC2( 9,3,K3,N2,MX)
CALL LCC2( 3,3,K4,N2,MX)
R(1,3) = EC(4)*(SQ(K1)-SG(K2))+EK(4)*(SQ(K3)-SG(K4)) +0.5*XM(4)
1-0.5#EN(1)*YCY(K5)
CALL LCC2(10,4,K1,N2,MX)
CALL LCC2( 4,4,K4,N2,MX)
CALL LCC2( G,4,K2,N2,MX)
CALL LCC3(4,4,K5,N2,MX)
R(2,3)=EC(4)*(SG(K2)-SG(K4))+EK(4)*(SQ(K3)-SG(K2))+0.5*XM(4)
1-0.5*EN(1)*YCY(K5)
J=2
WRITE(t,t20) J.J
WRITE(0,633) ((R(L,J),J=l, \),L=1,2)
CALL RLNTX(R,2,1,MARK,CET,-1)
WRITF(6,E31) DET
EC(2)=R(1,3)
EK(2)=R(2,3)
EStIMATE I(2)
```

EC(1)=(8*甘)*EC(1)+(A*A)*EC(2)+(C*C)*EC(3)+(E*E)*EC(4)

```
EC(1)=(8*甘)*EC(1)+(A*A)*EC(2)+(C*C)*EC(3)+(E*E)*EC(4)
ED(Z)=(&*B)*EK(I)+(A*A)*EK(2)+(C*C)*EK(3)+(E*E)*EK(4)
ED(Z)=(&*B)*EK(I)+(A*A)*EK(2)+(C*C)*EK(3)+(E*E)*EK(4)
CALL LCCE( 6,5,K1,N2,MX)
```

CALL LCCE(6,5,K1,N2,MX)

```


\section*{177}




```

 OC2, 1=1,AF
 IF(NV:C(1).LI.C) Cis TO 1:
 TFNF=fCST(1):GOUFN(E)
    ```

```

 XF(2,1)=XF(1,1)
 X+(!,|)=f(S)(1)
 XR(I)=TENP
 GL TC 2%
 10 FOS(I)=\.!
 CCNTINLIE
 RETLRN
 SNC
    ```

        PURPCSE
        TC CCMPUTE CKCSS MCMENT CF A(J)*E(2*J-1), A(J)*E(え゙*J)
        ANC A(J)*C(2*J)
        a - BASE CATA MATFIX,NA BY NC
        NA - NC.CF VARIAELES OF A
        NVEC - IF AVEC(I) -GT. O.TREN A(I) -GT. O
        e -CRCSS VARIAELE DATA MATRIX
        C - CRCSS VARIABLE CATA MATRIX
        N3C-NO.CF VARIABLES OF B ANC C, NB .GE. (2*NA)
        NO - NC.CF CBSERVATIUNS
        XM - CFOSS NONENTSIMATRIX OF Z\#NA
        IC - ID NCT ZERC, COMPUTE THE MCMENTS
        IC ZERC, CCNPUTE THE SLMS
            SUEROUTINE XFOTIA,NA,NVEC,E,C,NBC,NC,XN,IDI
            CIMENSICN A(1), E(1), XM(3) ,C(1), AVEC(1)
            N3= 3 \#NA
            CO \(10 \mathrm{~J}=1, \mathrm{~N}_{3}\)
        \(10 \mathrm{XM}(J)=0.0\)
        \(1 j \Delta=0\)
        DO \(30 \quad 1=1, \mathrm{NO}\)
        \(C O 30 \mathrm{~J}=1, N A\)
        \(I J A=I J A+1\)
        IF (NVEC(J).LE.O) GO TO 30
        IJटE=(I-1)*NBC+2*J
        : ل1E=IJ2E-1
        \(X M(3 * J-2)=X M(3 * J-2)+A(I J A) * E(I J 1 E)\)
        \(X M(3 * J-1)=X M(3 x J-1)+A(I J A) \neq E(I J 2 E)\)
        \(X M(3 * J)=X^{M}(3 * J)+A(I J A) * C(I J Z E)\)
        CONTINUE
        \(C\)
\(C\)
\(C\)
    CONFUTE NOMENTS IF IO NOT ZERC
    IFIIC) \(40,5 \mathrm{C}, 4 \mathrm{C}\)
    40 CNC=NC
    CD \(45 \mathrm{~J}=1\), N3
    45 XM(J) \(=X M(J) / C N O\)
    50
        RETURN
    ENC

\section*{Input Cards and Output Tabulations for a Sample Problem}

The sample problem is to simulate a two-dimensional, six degrees of freedom system snown in Figure I \(b\) whose parameters are
\[
\begin{aligned}
& m_{1}=m_{2}=0.26, \quad I_{1}=I_{2}=70 \\
& k_{1}=k_{3}=10^{5}, \quad k_{2}=k_{4}=4 \times 10^{5} \\
& c_{1}=c_{3}=10, \quad c_{2}=c_{4}=20 \\
& a=10, \quad b=20, \quad c=15, \quad d=6, \quad e=12
\end{aligned}
\]

The system is to be driven by three independent random forces \(f_{4}, f_{5}\), and \(f_{6}\) applied onto mass 2. Each random force is generated by passing a white noise of standard deviation 30 through a bandpass filter with center frequency 70 cps and bandwidth 20 cps . The sampling frequency is to be 2000 cps and 2000 samples are to be generated and used for estimation of the moments and system parameters.a) Input Cards

    2
\begin{tabular}{llllll}
0.26 & 70.0 & 100000.0 & 400000.0 & 10.0 & 20.0 \\
0.26 & 70.0 & 100000.0 & 400000.0 & 10.0 & 20.0 \\
10.0 & 20.0 & 15.0 & 6.0 & 12.0 &
\end{tabular}
6
-1
\(-2\)
\(-3\)
4 30.70. 20.
5 30.70. 20.
6 30.70. 20.
2000. 2000111
b) Sample Output


\begin{tabular}{|c|c|c|c|c|}
\hline (.114.4471-11 & * 443 atet & C.2351034, & C.24149673 & 7. \(540483721-n\) \\
\hline C.4nclazt It-02 & toztestr*) &  & 0, 0 2431993f- 1 & 1.7nynazy 53 \\
\hline  & . 1 & & & \\
\hline
\end{tabular}




\section*{Equaticn ict scivinc ciidiol}
\[
\begin{aligned}
& \text { A.47452:51F-R2 }
\end{aligned}
\]

OETERPIANARIS \(\quad-10: 4,41,711-1\) :


\section*{CHAPTER V}

SUMTARY AND CONCLUSIONS

We have developed analytically and presented numerical examples of a parameter identification approach when the dynamical structure of the system is known. We have also constructed the program for system simulation and identification of chainlike systems in Chapter IV. Equivalently, we have studied systems of known differential equations with unknown parameters. We have seen in Chapter II that these parameters can be theoretically identified by random as well as sinusoidal excitations. The identification procedure makes use of displacement and velocity as well as acceleration information. The method is very straightforward, it does not make use of subtle theoretical points. Even more, on the basis of the simulation experiments of Chapter III, we see that the technique works and works well. The technique does not appear to be sensitive to the type of excitation used. Random excitations of various spectral properties as well as sinusoidal excitations with frequency in a wide range all yield very good parameter estimates.

The procedure that is to be applied when identifying a real system that can be described by linear differential
equations is reasonably simple. If the identification is to be done digitally, then the displacement, velocity, and acceleration data as well as the excitation data should be roughly digitized at a rate 5-10 times greater than the highest frequency present. This is rough, but it is sufficient to obtain some estimate of the highest frequency through oscilloscope observations. A record of sufficient length to cover 5-10 cycles at the lowest frequency present will then suffice for Identification purposes. If steady-state conditions have been achieved for a random excitation, then various noments will be zero making the estimation equations simpler. However, if all moments are kept regarding them merely as time averages, one does not need to reflect upon whether the system is in steady state. In the event the system is being excited by sinusoidal oscillations and is in the steady state, then not all parameters can be estimated. Identification by sinusoidal excitations is best achieved during the transient stage of the dynamics of the system.

One very significant point that must be re-iterated is that this is a direct method, it is not a search technique. Hence, the relative magnitudes of the parameters do not present the problem common to all search techniques. The problem involved is the size of the step that must be taken for searching parameters. When parameters are large, a small step will get one to the correct value; wifa is arater is small, one can easily exceed the paramer

This is evident in many of the examples we presented in Chapter III where the parameter values are many orders of magnitude apart. Yet, as we have seen the parameter estimates are amazingly accurate., by the proposed technique.

Although we have not developed the details during the period of the present contract, it is clear that the same approach will be applicable to non-linear systems whose dynamics are describable by differen乞ial equations with polynomial non-linearities and unknown constant coefficients. It could be of significant interest and applicability to study the present parameter identification approach for non-linear systems.

The major point to be settled relative to the present study is the practicability of the present approach with acceleration and excitation data only. If this can be affirmatively resolved then parameter estimation by the present technique should become a useful and commonly used procedure.

We shall close this report by stating emphatically that our motivation was to bring forth what appears to be a useful idea, not a deep idea nor an idea for which one can only feel a desire to study theoretically. Our analysis of the idea as well as the great number of simulation experiments reflects the attitude with which we have performed this study. Thus, we did not look at this idea in all generality
or from the purely fundamental theoretical point of view. We were interested most of all in how well the idea works. We sincerely hope that the present study can be looked upon as having practical significance as it relates especially to present-day engineering problems.

\section*{APPENDIX}

THE CONCEPT OF THE GAUSSIAN WHITE NOISE PROCESS

It has been stated throughout the development and study of the present parameter estimation technique that the Gaussian white noise is an unsuitable excitation for a system that is undergoing investigation by the proposed identification technique. This point has been brought out in Chapter II of this final report.

The detailed reasons behind this statement shall be developed and discussed in this appendix.

The Wiener process is a Gaussian process with stationary independent increments. It satisfies,

Prob \(\{B(0)=0\}=1\)
\(E\{B(t)\}=0\)
(b)
\(E\left\{(B(t)-B(s))^{2}\right\}=\sigma^{2}|t-s|\)
(c)
\(E\left\{\left(B\left(t_{4}\right)-B\left(t_{3}\right)\right)\left(B\left(t_{2}\right)-B(t)\right)\right\}=0\)
for any \(t_{4}>t_{3} \geq t_{2}>t_{1}\)

Condition I.1 (c) yielois the statistical stationarity of the increment \([B(t)-B(s)]\), and condition I.l (d) yields the independence of the increments. The joint density function for the B-process at times \(0<t_{1}<\ldots<t_{n}\) is given by the Gaussian density function.
\[
f\left(x_{1}, t_{1} ; x_{2}, t_{i} ; \ldots x_{n}, t_{n}\right)=\frac{1}{(2 \pi)^{n / 2} \sigma^{n}\left[t_{1}\left(t_{2}-t_{1}\right) \ldots\left(t_{n}-t_{n-1}\right)\right]^{1 / 2}}
\]
\[
\begin{equation*}
\exp \left[-\frac{1}{2 \sigma^{2}}\left(\frac{x_{1}^{2}}{t_{1}^{2}}+\sum_{i=1}^{n-1} \frac{\left(x_{i+1}-x_{i}\right)^{2}}{t_{i+1}-t_{i}}\right)\right] \tag{I.2}
\end{equation*}
\]

It is known that the sample functions of the B-process are continuous and nowhere differentiable. These classical results were obtained by Norbert Wiener and are the primary reason that the process bears his name. We note that the non-differentiability of the sample functions make this process somewhat unacceptaile as a model of displacements of actual physical particles in which velocities and accelerations are present because the process does not possess velocitics and accelerations.

The pathological properties of the Gaussian white noise are primarily due to the non-differentiability of the Wiener Process as we shall see.

A white noise refers to any noise for which the spectral density function
\[
\begin{equation*}
f(\lambda)=\frac{1}{2 \pi} \quad \int_{-\infty}^{\infty} \Gamma(\tau) e^{-1 \lambda \tau} d \tau \tag{I.3}
\end{equation*}
\]
is supposed to exist and be constant for all \(\lambda \varepsilon(-\infty, \infty)\). Thus, the term "white" means that the noise contains all frequencies of the same average power.

The Gaussian white noise is a white noise for which the distribution functions are Gaussian.

We recall that the power spectral density and the covariance are Fourier transform pairs. This is referred to commonly as the Wiener-Kinintchin relation. Thus, from I. 3 we have
\[
\begin{equation*}
\Gamma(\tau)=\int_{-\infty}^{\infty} f(\lambda) e^{i \lambda \tau} d \lambda \tag{I.4}
\end{equation*}
\]

Strictly speaking, a white noise process can never occur in nature since its second moment is given by
\[
\begin{equation*}
\sigma^{2}=\Gamma(0)=\int_{-\infty}^{\infty} f(\lambda) d \lambda \tag{I.5}
\end{equation*}
\]
which is not a convergent integral for \(f(\lambda)\) constant.
It follows that the covariance of the \(W\)-process (white noise) is given as,
\[
\begin{equation*}
E\{W(s) W(t)\}=\sigma^{2} s(t-3) \tag{I.6}
\end{equation*}
\]
where \(\delta\) represents the impulse function. That is,
\[
\begin{equation*}
\delta(\tau)=0, \quad \tau \neq 0 \tag{a}
\end{equation*}
\]
\[
\begin{equation*}
\int_{-\infty}^{\infty} \delta(\tau) d \tau=1 \tag{b}
\end{equation*}
\]

Hence, no matter how near \(t_{1}\), \(t_{2}\) are, if \(t_{1} \neq t_{2}\), then \(W\left(t_{1}\right), W\left(t_{2}\right)\) are uncorrelated. But even more, since the process is Gaussian, then \(W\left(t_{1}\right), W\left(t_{2}\right)\) are not only uncorrelated, but they are actually independent of one another.

If one first stops a moment and reflects upon what the preceding statements imply for the sample functions, the pathological nature of Gaussian White Noise becomes apparent. Indeed If we may quote Doob on page 78 of his treatise, "These processes (independent or purely random) are discussed only in the discrete parameter case, since the sample functions in the continuous parameter case are too irregular to arise in practice."

We recall that all of the regularity properties of analysis (such as continuity, differentiability, etc.) depend upon the relative values of a function for argument values that are close to one another.

However, as we have seen above, the values of the Gaussian White Noise samples are completely independent no matter how close the arguments \(t_{1}\), \(t_{2}\) are to one another. We must expect therefore, that the sample functions for the Gaussian White Noise to be quite pathological and unnatural. In fact, as we have seen, the Gaussian White Noise is only a mathematical abstraction that cannot be represented in nature. We shall continue our discussion with an approach to the White Noise process that brings these points clearly to the surface.

One rather useful way in which one can think of a White Noise is to consider initially a process with a covariance of the form,
\[
\begin{equation*}
c e^{-\alpha|\tau|}, \quad c>0, u>0 . \tag{1.8}
\end{equation*}
\]

The spectral density corresponding to the covariance I. 8 is
\[
\begin{aligned}
r(\lambda) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} c e^{-\alpha|\tau|} e^{-1 \lambda \tau} d \tau=\frac{C}{\pi} \frac{\alpha}{\alpha^{2}+\lambda^{2}} \\
& =\frac{A}{a^{2}+\lambda^{2}}, A=\frac{C \alpha}{\pi} .
\end{aligned}
\]

If we let \(C, \alpha+\infty\) so that \(\frac{A}{\alpha^{2}}\left(=\frac{C}{\pi \alpha}\right)\) is constant, tuen one obtains the constant spectral density.

We notice that for \(C, a \rightarrow \infty\) such that \(\frac{C}{\pi a}\) is constant we must have
\[
\begin{equation*}
\lim _{c, \alpha \rightarrow \infty} c e^{-\alpha|\tau|} \rightarrow 0 \quad \text { for all } \tau \neq 0 \tag{1.10}
\end{equation*}
\]

The limit 1.10 comes from the fact that the exponential beats any power and \(C, \alpha\) approach infinity at the same rate. We have, furthermore,
\[
\begin{equation*}
C \int_{-\infty}^{\infty} e^{-\alpha|\tau|} d \tau=C\left(\frac{2}{\alpha}\right)=2 \pi\left(\frac{C}{\pi \alpha}\right) \rightarrow \text { constant } \tag{I.11}
\end{equation*}
\]

All of the results above may be summarized and put into order as follows.

We consider the Gaussian White Noise \(W(t), t \varepsilon(-\infty, \infty)\). We have re-established by limiting operations
a) the covariance function must be an impulse function. This follows from I.10, I. 11. Thus, \(W(t)\) is uncorrelated at any two distinct times. That is, \(t_{1} \neq t_{2}\)
\[
\begin{aligned}
& \text { implies } \\
& \qquad E\left\{W\left(t_{1}\right) W\left(t_{2}\right)\right\}=0
\end{aligned}
\]
b) Since \(W(t)\) is Gaussian, then a) implies it is completely random. Thus, \(t_{1} \neq t_{2}\) implies \(W\left(t_{1}\right)\) is statistically independent of \(W\left(t_{2}\right)\).

Now let us consider \(\left\{\xi_{C, \alpha}(t), t \varepsilon[0, \infty]\right\}\), a Gaussian process -or which \(E\left\{\xi_{C, \alpha}(t)\right\}=0\) and
\[
\begin{equation*}
E\left\{\xi_{C, \alpha}(t) \xi_{C, \alpha}(t+\tau)\right\}=C e^{-a|\tau|} \tag{1.12}
\end{equation*}
\]

From the mean square calculus theorem we know that
\[
\begin{equation*}
y_{C, \alpha}(t)=\int_{0}^{t} E_{C, \alpha}(\tau) d \tau \tag{I.13}
\end{equation*}
\]
exists as an integral in the mean square sense. Furthermore, \(\left\{y_{C, \alpha}(t), t \in[0, \infty]\right\}\) is a Gaussian process for which \(P\left\{y_{C, \alpha}(0)=0\right\}=1\) and \(E\left\{y_{C, \alpha}(t)\right\}=0\).

Now, we are interested in what happens to \(y_{C, \alpha}(t)\) as the covariance of \({ }^{5} C_{, \alpha}(t)\) goes to the impulse function limit that we described above. The random variables \({ }^{E_{C, \alpha}}(t)\) will approach \(w(t)\).

What can we say concerning the second moments of the \(y_{C, a^{-}}\) process? Clearly,
\[
\begin{align*}
E\left\{y_{C, \alpha}^{2}(t)\right\} & =E\left\{\int_{0}^{t} d \tau_{1} \int_{0}^{t} d \tau_{2} \xi_{C, a}\left(\tau_{1}\right) \xi_{C, \alpha}\left(\tau_{2}\right)\right\} \\
& =\int_{0}^{t} d \tau_{1} \int_{0}^{t} d \tau_{2} E\left(\xi_{C, \alpha}\left(\tau_{1}\right) \xi_{C, \alpha}\left(\tau_{2}\right)\right\} \tag{I.14}
\end{align*}
\]
(because \({ }^{\xi_{C, \alpha}}\left(\tau_{1}\right) \xi_{C, \alpha}\left(\tau_{2}\right)\) are absolutely integrable and their absolute average exists by the Schwarz inequality.)
\[
\begin{aligned}
& E\left\{y_{C, \alpha}^{?}(t)\right\}=\int_{0}^{t} d \tau 1 \int_{0}^{t} d \tau 2 C e^{-\alpha / \tau} 1^{-\tau} 2^{\prime} \\
& =\int_{0}^{t} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2} C e^{-\alpha\left(\tau_{1} 1^{-\tau} 2\right)}+\int_{0}^{t} d \tau_{2} \int_{0}^{\tau_{2}} d \tau_{1} C e^{-\alpha\left(\tau_{2}-\tau_{1}\right)} \\
& =2 \int_{0}^{t} d \tau_{1} \int_{0}^{\tau} 1 d \tau_{2} C e^{-\alpha\left(\tau_{1}-\tau_{2}\right)} \\
& =\left.\frac{2 C}{\alpha}\left[\tau_{1}+\frac{1}{\alpha} e^{-\alpha \tau} 1\right]\right|_{0} ^{t} \\
& \rightarrow \sigma^{2} t \text { as } C, \alpha \rightarrow \infty \text { in such a way that } \frac{C}{\pi \alpha} \\
& \text { is constant. }
\end{aligned}
\]

We now have that \(y_{C, \alpha}(t) \rightarrow B(t)\) as \(\xi_{C, \alpha}(t) \rightarrow W(t)\) through covariances, where
\[
\begin{equation*}
E\left\{B^{2}(t)\right\}=\sigma^{2} t \tag{I.15}
\end{equation*}
\]

Furthermore, for any \(\left(t_{1}, t_{2}\right)\), we obtain in the same fashion as above that
\[
\begin{equation*}
E\left\{\left|B\left(t_{2}\right)-B\left(t_{1}\right)\right|^{2}\right\}=\sigma^{2}\left|t_{2}-t_{1}\right| \tag{1.16}
\end{equation*}
\]

Now suppose that \(t_{1}<t_{2}<t_{3}\) then
\[
\begin{align*}
E\left\{\left[B\left(t_{3}\right)-B\left(t_{1}\right)\right]^{2}\right\}= & E\left\{\left[B\left(t_{3}\right)-B\left(t_{2}\right)+B\left(t_{2}\right)-B\left(t_{1}\right)\right]^{2}\right\} \\
= & E\left\{\left[B\left(t_{3}\right)-B\left(t_{2}\right)\right]^{2}\right\} \\
& +2 E\left\{\left[B\left(t_{3}\right)-B\left(t_{2}\right)\right]\left[B\left(t_{2}\right)-B\left(t_{1}\right)\right]\right\} \\
& +E\left\{\left[B\left(t_{2}\right)-B\left(t_{1}\right)\right]^{2}\right\} \tag{I.17}
\end{align*}
\]
or
\[
\begin{equation*}
\sigma^{2}\left(t_{3}-t_{1}\right)=\sigma^{2}\left(t_{3}-t_{2}\right)+2 E\left\{\left[B\left(t_{3}\right)-B\left(t_{2}\right)\right]\left[B\left(t_{2}\right)-B\left(t_{1}\right)\right]\right\}+\sigma^{2}\left(t_{2}-t_{1}\right) . \tag{I.18}
\end{equation*}
\]

Therefore, we must have
\[
\begin{equation*}
E\left\{\left[B\left(t_{3}\right)-B\left(t_{2}\right)\right]\left[B\left(t_{2}\right)-B\left(t_{1}\right)\right]\right\}=0 \tag{I.19}
\end{equation*}
\]

The last expression, (I.19) says that the B-process possesses independent increments. Furthermore, the B-process is Gaussian, since the \(y_{C, \alpha}\)-process is Gaussian for every \(C, \alpha\). The covariances of the \(y_{C, \alpha}\)-process converge to the covariance of the \(B-p r o c e s s\). Hence, the process \(\{B(t), t \varepsilon[0, \infty]\}\) is a Gaussian process with stationary independent increments for which we have
\[
\begin{align*}
& E\{B(t)\}=0 \\
& E\left\{B^{2}(t)\right\}=\sigma^{2} t  \tag{I.20}\\
& \operatorname{Prob}\{B(0)=0\}=1 .
\end{align*}
\]

But, this is the definition of the Wienes Process! Hence, it would follow that
\[
\begin{equation*}
B(t)=\int_{0}^{t} W(\tau) d \tau . \tag{I.21}
\end{equation*}
\]

Therefore, one would obtain from 1.21)
\[
\begin{equation*}
\frac{d B(t)}{d t}=W(t) . \tag{I.22}
\end{equation*}
\]

That is, the Gaussian White Noise is formally the derivative of the Wiener process. However, as we recall from our earlier discussions, the Wiener process does not possess a derivative. Hence, the pathological nature of the Gaussian White Noise is explicitly brought out by the formal relation 1.22 . The relation I. 22 simply states that the Gaussian White Noise is a mathematical fiction.

Hence, when we write an equation such as
\[
\begin{equation*}
\frac{d x(t)}{d t}+\beta x(t)=W(t)\left(\equiv \frac{d B(t)}{d t}\right) \tag{I.23}
\end{equation*}
\]
we must understand that it does not exist as an ordinary differential equation of elementary calculus since the White Noise ins is a fiction.

The question we must ask ourselves is can one make analytical sense of the Equation I.23. The answer is yes, and this was first accomplished by K. Ito (*1).

The idea is simply that, instead of treating 1.23 as a differential equation, one should instead study an equation in differentials
\[
\begin{equation*}
d x(t)+\beta x(t) d t=d B(t) \tag{I.24}
\end{equation*}
\]

The equation I. 24 is given content and meaning by the stochastic integral which is a well defined operation introduced by Ito. Hence, the meaning of I. 24 is
\[
\begin{equation*}
x(t)-x\left(t_{0}\right)+B \int_{t_{0}}^{t} x(\tau) d \tau=\int_{t_{0}}^{t} d B(\tau)=B(t)-B\left(t_{0}\right) \tag{I.25}
\end{equation*}
\]

For the most general first order equation,
\[
\begin{equation*}
\frac{d x(t)}{d t} \equiv m(x(t), t)+\sigma(x(t), t) \frac{d B(t)}{d t}, \tag{土.26}
\end{equation*}
\]
the meaning of this is given by the stochastic integral equation,
\[
\begin{equation*}
x(t)-x\left(t_{0}\right)=\int_{t_{0}}^{t} m(x(\tau), \tau) d \tau+\int_{t_{0}}^{t} \sigma(x(\tau), \tau) d B(\tau), \tag{I.27}
\end{equation*}
\]
where the integrals are well defined.

\footnotetext{
(*1) K. Ito. Memoirs of American Mathematical Society No. 4, 1951.
}

On the basis of this definition, the solution processes of I. 26 , or I .27 are well defined and have been the subject of a great deal of research in the past ten years. [For a description of the properties of these processes, see the treatise by Dynkin (2) on Markov processes.]

We are now in a position to indicate the reason why the Gaussian White Noise is unsuitable as an input process for the purposes of identification by the technique we have proposed.

Since the derivative \(\frac{d B(t)}{d t}\) in equation \(I .23\) does not exist, 1t follows that the derivative \(\frac{d x(t)}{d t}\) in I.23, also, does not exist. Therefore, we do not have the equality
\[
\begin{equation*}
\frac{d}{d t} E\left\{x^{2}(t)\right\}=E\left\{x(t) \frac{d x(t)}{d t}\right\}, \tag{I.28}
\end{equation*}
\]
that is required in our identification procedure.
Indeed, we can say even more. In particular,
\[
\begin{equation*}
E\left\{x(t) \frac{d x(t)}{d t}\right\} \neq 0 \tag{I.29}
\end{equation*}
\]
for the process defined by equation 1.23 , or more correctly, by equation I. 24 .

We recall that the B-process possesses independent increments, thus
\[
\begin{equation*}
d B(t) \equiv B(t+d t)-B(t) \tag{I.30}
\end{equation*}
\]
is independent of all prior increments of \(B(s)\) for \(s \leq t\).
(*2)Dynkin. Markov Processes, Springer-Verlag. Berlin, 1965.

Finally, in the procedure of identification, one's initial reaction is to ask for a wide band-width excitation in order to assure that enough frequencies are sufficientiy excited so that the parameters of the system can be correctly estimated. But, as we have already seen in Chapters II and III, not only is this not required but a pure sinusoidal excitation with a single frequency is enough to allow identification. Thus, the fact that we do not want "white noise" is no weakness in the present approach. Indeed, it is even to our advantage. The reader may recall that many of the easy identification techniques made use of the Gaussian white noise for their theoretical development. But such noise is impossible to achieve in the laboratory. On the other hand, the excitations we use in our theoretical development are exactly those that can and are commonly used in laboratory testing.```


[^0]:    Maximum number of masses is arbitrary and is specified by dimension statement.

