INTERIM REPORT

June 1968
MRI Project No. 3162-P
Contract No. NAS 9-7641

For
NASA Manned Spacecraft Center
General Research Procurement Branch
Houston, Texas 77058
Attn: J.W. Carlson/BG731(48)

```
RATIONAL APPROXIMATIONS TO IRICOMI'S \Psi FUNCIION
by
Jerry Fields
Jet Wimp
```

INTERIM REPORT
June 1968

MRI Project No. 3162-P

Contract No. NAS 9-7641

For

NASA Manned Spacecraft Center General Research Procurement Branch
Houston, Texas 77058

Attn: J.W. Carlson/BG731(48)

This report, written by Jerry Fields and Jet Wimp, Mathematics Branch, Midwest Research Institute, covers work performed from 20 March through 19 June 1968 on Contract No. NAS 9~7641.

Approved for:

MIDWEST RESEARCH INSTITUTe

Sheldon L. Levy, Director
Mathematics and Physics Division

1 July 1968

In this paper we derive closed form rational approximations to the Tricomi Ψ function ([I]),

$$
\begin{equation*}
\Psi(a, c ; v)=\frac{1}{\Gamma(a)} \int_{0}^{\infty e^{i \varphi}} e^{-v t} t^{a-1}(I+t)^{c-a-1} d t \tag{I}
\end{equation*}
$$

$$
\operatorname{Re} a>0,\left|\arg \left(e^{i \varphi_{v}}\right)\right|<\pi / 2,-\pi<\varphi<\pi,
$$

Which converge uniformly on compact subsets of the sector $|\arg v|<\pi / 2$, $v \neq 0$. As Tricomi's Ψ function can be written in terms of the Meijer G-function ([I])

$$
\Psi(a, c ; v)=\frac{v^{-a}}{\Gamma(a) \Gamma(1+a-c)} G_{2,1}^{1,2}\left(v^{-1} \left\lvert\, \begin{array}{c}
1-a, c-a \tag{2}\\
0
\end{array}\right.\right)
$$

we actually develop rational approximations to the G-function

$$
\left.\begin{array}{rl}
E(v) & =G_{2, I}^{1,2}\left(\left.v^{-1}\right|_{1-\alpha_{1}, 1-\alpha_{2}} ^{0}\right.
\end{array}\right), ~ \begin{aligned}
2 \pi i & \Gamma(-s) \Gamma\left(s+\alpha_{I}\right) \Gamma\left(s+\alpha_{2}\right) v^{-s} d s,|\arg v|<3 \pi / 2
\end{aligned}
$$

Where the contour I runs from $-i \infty$ to $+i \infty$, and separates the poles of $\Gamma(-s)$ from those of $\Gamma\left(s+\alpha_{1}\right) \Gamma\left(s+\alpha_{2}\right)$, see $[I]$. If $\alpha_{1}-\alpha_{2}$ is not an integer, it follows from the residue theorem that

$$
\begin{align*}
\mathrm{E}(\mathrm{v})= & \Gamma\left(\alpha_{2}-\alpha_{1}\right) \Gamma\left(\alpha_{1}\right) v{ }_{1}^{\alpha_{1}}{ }_{1} F_{1}\left(\left.\begin{array}{c}
\alpha_{1} \\
I+\alpha_{1}-\alpha_{2}
\end{array} \right\rvert\, v\right) \\
& +\Gamma\left(\alpha_{1}-\alpha_{2}\right) \Gamma\left(\alpha_{2}\right) v^{\alpha_{2}}{ }_{1} F_{1}\left(\left.\begin{array}{c}
\alpha_{2} \\
1+\alpha_{2}-\alpha_{1}
\end{array} \right\rvert\, v\right) \tag{4}
\end{align*}
$$

Our rational approximations for $E(v)$ are obtained as follows. If the contour I in (3) is moved k units to the right, we obtain

$$
\begin{gather*}
E(v)=\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \sum_{j=0}^{k-I}\left(\alpha_{1}\right)_{j}\left(\alpha_{2}\right)_{j} \frac{(-v)^{-j}}{j!}+R_{k}(v), \\
R_{k}(v)=\frac{(-v)^{-n}}{2 \pi i} \int_{L} \frac{\Gamma(-s) \Gamma(s+I) \Gamma\left(s+n+\alpha_{1}\right) \Gamma\left(s+n+\alpha_{2}\right)}{\Gamma(s+1+n)} v^{-s} d s \tag{5}\\
(\sigma)_{\mu}=\frac{\Gamma(\sigma+\mu)}{\Gamma(\sigma)}
\end{gather*}
$$

As it can be shown that $R_{k}(v)=\boldsymbol{\theta}\left(v^{-k}\right)$ as $v \rightarrow \infty$ and $|\arg v|<3 \pi / 2$, (5) is a paraphrase of the statement

$$
\begin{gather*}
E(v) \sim \Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)_{2} F_{0}\left(\alpha_{1}, \alpha_{2} \left\lvert\,-\frac{1}{\mathrm{v}}\right.\right) \\
\mathrm{v} \rightarrow \infty,|\arg \mathrm{v}|<3 \pi / 2 \tag{6}
\end{gather*}
$$

Multiplying the first line of (5) by arbitrary $A_{n,} k^{\gamma^{k}}$, and summing from $k=0$ to a fixed integer n, we obtain the equations

$$
\begin{gather*}
h_{n}(\gamma) E(v)=\psi_{n}(v, \gamma)+F_{n}(v, \gamma) \\
h_{n}(\gamma)=\sum_{k=0}^{n} \gamma^{k} A_{n}, k, F_{n}(v, \gamma)=\sum_{k=0}^{n} \gamma^{k} A_{n, k^{R}}(v) \tag{7}\\
\psi_{n}(v, \gamma)=\sum_{k=0}^{n} \gamma^{k} A_{n, k} \Gamma\left(\alpha_{I}\right) \Gamma\left(\alpha_{2}\right) \sum_{j=0}^{k-1}\left(\alpha_{1}\right)_{j}\left(\alpha_{2}\right)_{j} \frac{(-v)^{-j}}{j!}
\end{gather*}
$$

Then we see that $\psi_{n}(v, \gamma) / h_{n}(\gamma)$ is a formal rational approximation to $E(v)$ and $F_{n}(v, Y) / h_{n}(Y)$ is its corresponding error. The triangular form $\psi_{n}(v, \gamma)$ can also be written as

$$
\begin{equation*}
\psi_{n}(v, \gamma)=\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \sum_{k=0}^{n} \sum_{j=0}^{n-k} A_{n, j+k} \frac{\left(\alpha_{1}\right)_{j}\left(\alpha_{2}\right)_{j}(\gamma)^{k}(-\gamma / v)^{j}}{j!} . \tag{8}
\end{equation*}
$$

In Fields [2], the above formulation was shown to be equivalent to the Lanczos T-method, see [3], and the following theorem was proved.

Theorem 1. If $|\arg v|<\pi / 2, v \neq 0$, and

$$
h_{n}(\gamma)=2_{2}{ }_{2}\left(\left.\begin{array}{l}
-n, n+\lambda \tag{9}\\
1+\alpha_{1}, 1+\alpha_{2}
\end{array} \right\rvert\,-\gamma\right), \lambda>0,
$$

then

$$
\begin{equation*}
\operatorname{limit}_{n \rightarrow \infty} \frac{\psi_{n}(v, v)}{h_{n}(v)}=E(v), \operatorname{limit}_{n \rightarrow \infty} \frac{F_{n}(v, v)}{h_{n}(v)}=0 \tag{10}
\end{equation*}
$$

As the asymptotic estimate

$$
\begin{align*}
& 2^{F_{2}}\left(\left.\begin{array}{l}
-n, n+\lambda \\
I+\alpha_{1}, I+\alpha_{2}
\end{array} \right\rvert\,-v\right) \sim \frac{\Gamma\left(I+\alpha_{1}\right) \Gamma\left(I+\alpha_{2}\right)}{2 \pi \sqrt{3}}\left(n^{2} v\right)^{\top} \exp \left(3\left(n^{2} v\right)^{\frac{1}{3}}-\frac{v}{3}\right) \\
& X\left\{1+\sigma\left(n^{-\frac{2}{3}}\right)\right\}, \\
& \tau=-\left(1+\alpha_{1}+\alpha_{2}\right) / 3 ; \mathrm{n} \rightarrow \infty,|\arg \mathrm{v}|<\pi, \tag{II}
\end{align*}
$$

was already known, see [4], the proof of Theorem I reduced to obtaining a proper estimate for $F_{n}(v, v)$. This was effected by showing that the differential operator which annibilates $E(v)$,

$$
\begin{equation*}
T \psi=\left(\delta-\alpha_{1}\right)\left(\delta-\alpha_{2}\right)-v \delta, \delta=v \frac{\alpha}{d v}, \tag{12}
\end{equation*}
$$

when applied to $F_{n}(v, \gamma)$ yields

$$
\begin{equation*}
\psi\left\{F_{n}(v, \gamma)\right\}=-\sum_{k=0}^{n} A_{n, k} \frac{\Gamma\left(k+1+\alpha_{1}\right) \Gamma\left(k+I+\alpha_{2}\right)}{k!}\left(-\frac{\gamma}{v}\right)^{k} . \tag{13}
\end{equation*}
$$

Thus, if the $A_{n, k}$ are chosen as indicated in (9), the right-hand side of (13) is essentially a Jacobi polynomial which has a uniform algebraic rate of growth in $n, \theta\left(n^{\sigma}\right)$, for $0 \leq \gamma / v \leq 1$. A variation of parameters' technique then implies

$$
\begin{equation*}
F_{n}(v, v)=\theta\left(n^{\sigma}\right), n \rightarrow \infty, v \text { fixed } \tag{1.4}
\end{equation*}
$$

Note that in Theorem 1, the parameter λ is essentially unspecified. By specializing λ and considering difference instead of differential operators, we obtain, among other benefits, a more convenient formulation of the error $F_{n}(v, v)$.

Let

$$
\begin{align*}
& U(\mu, n, \lambda)=\frac{(n+\lambda-1)(n+\mu)}{2 n+\lambda-1} \mathbb{E}^{0}-\frac{n(n+\lambda-1-\mu)}{2 n+\lambda-1} \mathbb{E}^{-1}, \\
& U^{*}(n, \lambda)=\operatorname{limit}_{\mu \rightarrow \infty} \frac{U(\mu, n, \lambda)}{\mu}, \tag{15}
\end{align*}
$$

where E^{-j} is the shift operator on n, i.e., $E^{-j}\{f(n)\}=f(n-j)$, and

$$
\begin{aligned}
M(\gamma) & =U(0, n, \lambda-2) U\left(\alpha_{1}, n, \lambda-1\right) U\left(\alpha_{2}, n, \lambda\right)-n(n+\lambda-3) \gamma E^{-1} U^{*}(n, \lambda) \\
& =A_{0}\left[E^{0}+\sum_{j=1}^{3}\left[A_{j}+\gamma B_{j}\right] E^{-j}\right], A_{0}=\frac{n\left(n+\alpha_{1}\right)\left(n+\alpha_{2}\right)(n+\lambda-3)_{3}}{(2 n+\lambda-3)_{3}} \\
A_{1} & =\frac{(n-1)(2 n+\lambda-2)_{2}\left(n+\alpha_{1}-1\right)\left(n+\alpha_{2}-1\right)}{(n+\lambda-1)(2 n+\lambda-4)\left(n+\alpha_{1}\right)\left(n+\alpha_{2}\right)}-\frac{n(2 n+\lambda-2)}{(n+\lambda-1)}
\end{aligned}
$$

Equation (16) concluded next page.
$A_{2}=\frac{(n-1)(2 n+\lambda-1)\left(n+\lambda-\alpha_{1}-2\right)\left(n+\lambda-\alpha_{2}-2\right)}{(n+\lambda-1)\left(n+\alpha_{1}\right)\left(n+\alpha_{2}\right)}$

$$
-\frac{(n-1)(n+\lambda-3)(2 n+\lambda-2)_{2}\left(n+\lambda-\alpha_{1}-3\right)\left(n+\lambda-\alpha_{2}-3\right)}{(n+\lambda-2)_{2}(2 n+\lambda-5)\left(n+\alpha_{1}\right)\left(n+\alpha_{2}\right)}
$$

$A_{3}=\frac{(n-2)_{2}(2 n+\lambda-2)_{2}\left(n+\lambda-\alpha_{1}-3\right)\left(n+\lambda-\alpha_{2}-3\right)}{(2 n+\lambda-5)_{2}(n+\lambda-2)_{2}\left(n+\alpha_{1}\right)\left(n+\alpha_{2}\right)}$,
$B_{1}=-\frac{(2 n+\lambda-2)_{2}}{(n+\lambda-1)\left(n+\alpha_{1}\right)\left(n+\alpha_{2}\right)}, B_{2}=-\frac{(n-1)(2 n+\lambda-2)_{2}}{(n+\lambda-2)_{2}\left(n+\alpha_{1}\right)\left(n+\alpha_{2}\right)}, B_{3}=0$.

We then have

Theorem 2. If the $A_{n, k}$ are chosen so that

$$
\begin{align*}
h_{n}(\gamma) & =2^{F_{2}}\left(\left.\begin{array}{l}
-n, n+\lambda \\
1+\alpha_{1}, l+\alpha_{2}
\end{array} \right\rvert\,-\gamma\right) \\
\psi_{n}(v, \gamma) & =\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \sum_{k=0}^{n} \sum_{j=0}^{n-k} \frac{(-n)_{k+j}(n+\lambda)_{k+j}\left(\alpha_{1}\right)_{j}\left(\alpha_{2}\right)_{j}(-\gamma)^{k}(\gamma / v)^{j}}{\left(1+\alpha_{I}\right)_{k+j}\left(I+\alpha_{2}\right)_{k+j}(k+j)!j!} \tag{17}
\end{align*}
$$

then
$M(\gamma)\left\{h_{n}(\gamma)\right\}=0$
$M(\gamma)\left\{\psi_{n}(v, \gamma)\right\}=-n(n+\lambda-3) \Gamma\left(1+\alpha_{1}\right) \Gamma\left(1+\alpha_{2}\right)(\gamma / v){ }_{2} F_{1}\left(\begin{array}{c}-n+1, n+\lambda-2 \\ 2\end{array} \frac{\gamma}{v}\right)$,
$M(v)\left\{\psi_{n}(v, v)\right\}=(-1)^{n} \frac{\Gamma(n+\lambda-2) \Gamma\left(1+\alpha_{I}\right) \Gamma\left(1+\alpha_{2}\right)}{\Gamma(n) \Gamma(\lambda-2)}$

Proof. All these results follow directly by computation from the operator equations

$$
\begin{align*}
& U(\mu, n, \lambda)\left\{(-n)_{S}(n+\lambda)_{S}\right\}=(-n)_{S}(n+\lambda-1)_{S}(S+\mu) \\
& U *(n, \lambda)\left\{(-n)_{S}(n+\lambda)_{S}\right\}=(-n)_{S}(n+\lambda-1)_{S} \tag{19}
\end{align*}
$$

Corollary 2.1. If in Theorem 2, $\lambda-3$ is a negative integer, then

$$
\begin{equation*}
M(v)\left\{F_{n}(v, v)\right\}=0 \tag{20}
\end{equation*}
$$

Hence, to analyze the error $F_{n}(v, v)$, in this case, it is sufficient to analyze the equation

$$
\begin{equation*}
M(v)\left\{g_{n}(v)\right\}=0 \tag{21}
\end{equation*}
$$

To do this, we introduce some recent results of Wimp, [5]. Let

$$
\begin{align*}
g_{n}(w) & =\frac{\Gamma(n+1)}{\Gamma(n+\lambda)} G_{2}^{3,}, \frac{1}{3}\left(w \left\lvert\, \begin{array}{c}
1-n-\lambda, n+1 \\
0,-\alpha_{1},-\alpha_{2}
\end{array}\right.\right) \tag{22}\\
& =\frac{1}{2 \pi i} \int_{I} \frac{\Gamma(-s) \Gamma\left(-s-\alpha_{1}\right) \Gamma\left(-s-\alpha_{2}\right)(n+\lambda)_{S}}{(n+1)_{-s}} w{ }^{s} d s
\end{align*}
$$

then Wimp's work* shows that

[^0]\[

$$
\begin{align*}
g_{n}(w) & \sim \frac{(2 \pi)}{\sqrt{3}}\left[n^{2} w\right]^{\tau} \exp \left(-3\left[n^{2} w\right]^{\frac{1}{3}}+\frac{w}{3}\right)\left\{1+\sigma\left(n^{-\frac{1}{3}}\right)\right\}, \tag{23}\\
\tau & =-\left(1+\alpha_{1}+\alpha_{2}\right) / 3 ; n \rightarrow+\infty,|\arg w|<3 \pi / 2
\end{align*}
$$
\]

This leads to our main result,
Theorem 3. If $|\arg v|<\pi / 2, v \neq 0$, then $g_{n}\left(v e^{\pi i}\right), g_{n}\left(v e^{-\pi i}\right)$ and $h_{n}(v)$ as defined by (17) form a basis of solutions for the difference equation (21).

Proof. It follows from (11) and (23) that the three functions are linearly independent as functions of n in the right half plane. A direct computation using the integral representation in (22) and an analog of (19) shows that $g_{n}\left(v e^{ \pm \pi i}\right)$ satisfy (21).

Corollary 3.1. If
$h_{n}(v)={ }_{2} F_{2}\left(\left.\begin{array}{l}-n, n+\lambda \\ I+\alpha_{1}, l+\alpha_{2}\end{array} \right\rvert\,-v\right), \lambda=1$ or 2,
$\psi_{n}(v, v)=\Gamma\left(\alpha_{I}\right) \Gamma\left(\alpha_{2}\right) \sum_{k=0}^{n} \sum_{j=0}^{n-k} \frac{(-n)_{k+j}(n+\lambda)_{k+j}\left(\alpha_{1}\right)_{j}\left(\alpha_{2}\right)_{j}(-v)^{k}}{\left(1+\alpha_{I}\right)_{k+j}\left(1+\alpha_{2}\right)_{k+j}(k+j)!j!}$
and $|\arg v|<\pi / 2, v \neq 0$, then there exist well defined analytic functions $C^{-}(v), C^{+}(v)$ independent of n such that

$$
\begin{align*}
& G_{2,1}^{1,2}\left(\left.v^{-1}\right|_{0} ^{1-\alpha_{1}, 1-\alpha_{2}}\right)-\frac{\Psi_{n}(v, v)}{h_{n}(v)} \\
& \quad=C^{-}(v) \frac{g_{n}\left(v e^{-\pi i}\right)}{h_{n}(v)}+C^{+}(v) \frac{g_{n}\left(v e^{+\pi i}\right)}{h_{n}(v)} \tag{25}\\
& \sim \sum_{\epsilon=+,-} \frac{C^{\epsilon}(v) 4 \pi^{2}}{\Gamma\left(1+\alpha_{1}\right) \Gamma\left(1+\alpha_{2}\right)} \exp \left(-3 \sqrt{3}\left(n^{2} v e^{i \varepsilon \pi / 2}\right)^{\frac{1}{3}}+i \pi \epsilon \tau\right)\left\{1+\sigma\left(n^{-\frac{1}{3}}\right)\right\}, n \rightarrow \infty
\end{align*}
$$

Proof. Clearly, the left-hand side of (25) is just the error $F_{n}(v, v) / h_{n}(v)$. From Corollary 2.1 and Theorem 3 it follows that there exist functions $C^{\varepsilon}(v), \varepsilon=+,-, 0$, in $|\arg v|<\pi / 2$, such that

$$
\begin{equation*}
F_{n}(v, v)=C^{+}(v) g_{n}\left(v e^{+\pi i}\right)+C^{-}(v) g_{n}\left(v e^{-\pi i}\right)+C^{0}(v) h_{n}(v) \tag{26}
\end{equation*}
$$

The functions $C^{\varepsilon}(v)$ can be found in theory by setting n equal to zero, one and then two in the first line of (25) and then solving the resulting equations. The linear independence of $g_{n}\left(v e^{-\pi i}\right), g_{n}\left(v e^{+\pi i}\right)$ and $h_{n}(v)$ implies the analytic character of the $C^{\varepsilon}(v)$ in $|\arg v|<\pi / 2, v \neq 0$. From Theorem 1 , we deduce that $C^{\circ}(v)$ is identically zero in $|\arg v|<\pi / 2$. Equation (26) then reduces to the first line of (25). The last line of (25) follows from the preceding asymptotic estimates and the simple fact, $\sqrt{3} e^{i \varepsilon \pi / 6}=1+e^{\varepsilon \pi i / 3}, \varepsilon= \pm 1$.

Corollary 3.2. The sequence of rational approximations in
Corollary 3.1 converges uniformly to $G_{2}^{1,2}\left(\left.v^{-1}\right|_{0} ^{1-\alpha_{1}, 1-\alpha_{2}} 0\right)$ on compact subsets of $|\arg v|<\pi / 2, v \neq 0$.

Finally, we reiterate the main advantages of the rational approximations in Corollary 3.1. First, they are explicit, as opposed to mini-max rational approximations which, in general, can only be given numerically. Second, they can be computed fairly easily, due to the fact that both numerator and denominator polynomials, $\psi_{n}(v, v)$ and $h_{n}(v)$, satisfy the same third order recursion relation. And last, an explicit form for the error is known.

BIBLITOGRAPHY

1. A. Erdélyi, et al., Higher Transcendental Functions, Vol. I, McGraw-Hill, New York, 1953.
2. J.L. Fields, "Rational Approximations to Generalized Hypergeometric Functions," Math. Comp., 19 (1965), 606-624.
3. C. Lanczos, Applied Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1956.
4. J.L. Fields and Y.L. Luke, "Asymptotic Expansions of a Class of Hypergeometric Polynomials with Respect to the Order, II," J. Math. Anal. App1., 7 (1963), 440-451.
5. J. Wimp, "The Asymptotic Representation of a Class of G-Functions for Large Parameter," Math. Comp., 21 (1967), 639-646.

MIDWEST RESEARCH INSTITUTE/425 VOLKER BOULEVARD/KANSAS CITY, MISSOURI G4110

[^0]: * This is not quite the function that Wimp treated in [5]. But a close inspection of that work shows that his analysis is actually applicable. The identification process with Wimp's work is made by replacing his λ, n and γ by $w, n+\lambda$ and $-\lambda$, respectively. Also, the application of Lemma 3 in this reference is made easier by employing the fact $2 d_{1}-d_{2}=1+\gamma$.

