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ABSTRACT

We are told that an object is hidden in one of m(m < =)
boxes and we are given prior probabilities p? that the
object is in the itﬁ\box. A search of box i costs c; and
finds the object with probability o if the object is in
the box. Also, we suppose that a reward Ri is earned if

th box. A strategy is any rule

the object is found in the i
for determining when to search and if so which box. The
7 majorlfesult is that an optimal strategy either searches a
itﬁ box with maximal value of aipi/ci or else it never searches
those boxes. Also, if rewards are equal, then aﬁ optimal

strategy either searches a box with maximal a‘}pi/ci or else

. it stops.

\
W

g




1.

A PROBLEM IN OPTIMAL SEARCH AND STOP
Sheldon M. Ross
University of California, Berkeley

Introduction and Summary

The following model has been considered in the literature: We are told

that an object is hidden in one of m boxes and we are given prior prob-

abilities p? i=1, 2, ..., m (Zp) = 1) that the object is in the i""

box. A search of gox i costs c (ci > 0), and finds the object with

probability o, If the object is in the box (i.e. 1 - a. is the over-

th

look probability for the i~ box). At the beginning of each time

period t = 1, 2, ... a box is searched; and the process ends when the

object is found.

Blackwell (see [5]) has shown that the strategy which at time t searches

a box with the largest present value of aipi/ci minimizes the expecféd
searching cost; (where P; is the posterior probability at time t that
the object is in box i). Chéw [3] and Kadane [4] have shown that if

c; = 1 then this strategy also maximizes the probability that the

searching cost will be less than A for every A > 0.

In this paper in.order to motivate the search we suppose that a reward

th

R, i=l, ..., m fis earned if the object is found in the i  box. We

also suppose that the searcher may decide to stop searching:.at any time

1

(for example he may feel that the rewards are not large endﬁéh to jusyify
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the searching costs). |f the searcher decides to stop before finding the
object then from that point on he incurs no further costs and of course

receives no reward.

In the second section of this paper we show that an optimal strategy
exists and is defined by a functional equation. The optimal strategy
is exhibited in a special case. The third section deals with the op-
timal n-stage return function. The fourth sec:ion presents some
counterexamples, and in the fifth section we present the major results.
Speaking loosely we show that the optimal strategy‘éither searches the
box with maximal value of dipi/ci or else it never searches that box.
Also, if rewards are equal, Ri Z R, then the optimal strategy either
searches the box with maximal aipi/ci or else it stops. In the final
section we assume that Ri = R and present a sequence of strategies

converging to the optimal.




Optimal Strategy

LY

A strategy is any sequence (or partial sequence) § = (61, cer 65) where
Gi e {1, 2, «.., m} for i=l, ..., s and s {0, 1, 2, ...}, The policy
§ instructs the searcher to search box §; at the ith period and to stop
searching if the object hasn't been found after the sth search. (s =0

means that the searcher stops immediately and s = ® means that he doesn't

stop until he finds the object).

For any strategy § and any P = (p], cen pm), p; 20, Zpi =1, let f(P,9)
be the risk (expected searching cost minus expected reward) incurred when
P is the vector of prior probabilities and strategy § is employed. Also

let f(P) = inf f(P,8). Then it follows from standard arguments (see for
§

instance [1] P. 83) that

(1) F(P) = minl0, min lc. -a.p.R, + (1 -a.p )f(T.P)!
i=1,..,m | i T i iy
where T.P = <(Tip)l’ . (Tip)m) i=1, 2, ..., m, and where
-1 L
(2) (;P), =

(‘ = ai)pi(l - aipi)-' j

Thus (Tip)j is just the posterior probability that the object is in box
J given that a search of i has not uncovered it. We shall say that the
process is in state P at time t if P denotes the posterior probability

vector at time t.
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in order to show the existence of an optimal strategy let R = max Ri and

i
[}
Ciy O = 0oy but

i

consider a related process (the prime process) with c;
with R; = Ri - R. However for this new process we suppose that a penalty
cost of R units is imposed if the searcher decides to stop search{ng be-
fore finding the object. Now it is easy to see that for any strategy §
which terminates (either by finding the object or by stopping) in finite
expected time we have f(P,8) = fl(P,G) - R, and since these are the only
strategies we need consider, (any strategy which doesn't terminate in
finite expected time has f(P) = £'(P) = ») it follows that any strategy
optimai for the prime process is optimal for the original one.” However,
the prime process is a dynamic programming process with a finite number
of possible actions available at each’stage and with non-positive returns
at each stage (since R; <O0Vi). It then follows from Strauch [6] that
an optimal strategy exists and also that therbptimal straté;ies may be
characterized as those strategles which when the process is in state P

chooses one of the actions which minimize the right side of (l), i.e. for

such a 6%, £(P, &%) = f£(P) for all P.

The impoftance of rigorously proving that an optimal policy exists and ig
determined by a functional equation cannot be overemphasized. For example o
in the ébove suppose we relax the condi%?on that c, > 0 and let ¢, = 0. N
Then if o p, > 0 it is clear that for any strategy § = (Gl,...,GS) #

(1, 1, o), £, (1, 8y «evy 80) < £(B, (8), ..., 6)) (since a

search of 1 is free) and thus the only possible optimal strategy would be

*The above argument also shows that there is no additional generality
gained in assuming that a penalty cost ¢ is incurred when the searcher stops
without fundung the object, as this process would just be equivalent to the
original one with rewards R + ¢ instead of R :




s

i
§, = (1, 1, 1, ...). However f(P,8,) = p\R; and it is clear that this

need not be maximal. For example if ¢, =0, o = 1/2, py = 1710, R, =10

and c, = h,o,=1,p, = 9/10, R, = 10 then f(P, 6') = | while

] ]
FP, (1, 0, «ouy 1, 2,0, 0,0, ...)) = TB-[IO(!~(I/2)") + 9(]/2)”] + f%~' 4 %6
Also the strategy determined by the functional equation turps out to be the
(non-optimal) strategy 6]. (The reason that the existence proof given above

breaks down is that since c, = 0 it no longer follows that all strategies §

with infinite expected termination time have f(P,8) = «).

Now consider the class A of strategies § = (6], cosy 65) for which s = =,
Any policy § € A which finds the object with probability 1 will hav.

f(rP,8) = E6L - g piRi where L is the searching cost incurred; any 6 € A
which has posit;ve probability of never finding the object has f(P,§) = o,
Thus among the class of policies witich never stop searching until the object
is found the one with minimal expected searching cost is best. Thus by
Blackwell's result the strategy S which when in state P searches the box

(or. one of the boxes) with the maximal value of aipi/ci is optimal among

the policies in A.

Lemma 2.1: |If aipiRi > ¢, for some i then no optimal strategy stops

searching at P = (pl, ceey ph). If'aipiRi > c; for some i then there is

an optimal strategy which doesn't stop at P. <




N

Proof: From (1) we have that

f(P) 26 - opR + (- aipi)f(TiP)
<0+ (1 -ap)f(TP)

<0

and so f(P) < 0 and thus no optimal policy stops at P. If ap.Ry > ¢

then fi(P) = c,

; 0piRy + (1 - op )F(T,P) < 0. Now if f(P) = O then

f(P) = fi(P) and so searching i is optimal; if f(P) < O then stopping

is not optimal. 0.E.D.
m

Theorem 2.2: |If

c;/0.R, <1 then §, is optimal, i.e. f(p,8,.) = f(P)
i=1 ,

for all P.

Proof: For any P, if max(ot;piRi - ¢;) > 0 then there exists an optimal

strategy which doesn't stop at P. So a necessary condition for every

optimal strategy to stop at P is for
a.p;R; < ¢ for all i
=> p; < ci/aiﬁi for all i
= ] < Zci/aiRi
So if Zc.i/aiRi < 1 then for every P there is an optimgL strategy whicH

doesn't stop at P. Thus an optimal strategy exists ih A which implies

that §_ is optimal. ‘ “ B o Q.E.D.
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The Optimal Return f{(P) q\
. R \\}‘\\
Theorem 3.1: f(P) is a concave function of P, 3
3
\

Proof: Let fi(G) be the conditional risk given that tﬁ§ object is in i

R \
and strategy & is employed, i=l, ..., m. Then f(p,8) = ‘@Pifi(a). Now

FR
let P = AP! + (1 = A)P%, then \,
\s\\\
\
f(P) = inf f(P,6) N
8 \
= inf FOP & (1 - NP2, §) \
§ * \\Q:Q\
=inf 2 O+ (1 - NP2 .F.(8) BN
6 i [ ] ! \\\‘;‘\\
> A inf £ PYE(8) + (1 - A) inf 3 P2F.(8) *
- § j t! 8 i 11

o)

A fY) + O - MF (%)

Q.E.D.
I

Cerollary 3.2: The optimal stop region S = {P : f(P) = 0} is convex.

Proof: Suppose P = P!+ (- A)P2 and f(P]) = f(Pz)

= 0. Then

f(P) < 0 by (1) and f(P) > 0 by the above.

Q.E.D. |
Let

{ | ’
(3) fl(P) = min {O, T%g}ci’- aipiRii
/ \_\,\, ‘\‘ . ll - -
'fn(P) = m?n {0, m;niek - opiRy ¥ Sl-aipi)fn-l(TiP)ss n>1

Thus f"(P) is just the minimal risk incurred if the searcher is allowed at

most n ?eércheg. Clearly fn(P) 3-f6+](P)¢3ﬁf(P) for all n, all P, and it

o

Ly O

P
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~conditional on the prior probability vector P). Thus

/”’"‘;

seems reasonable that fn(P) ¥ f(P) as n + ®. This is shown in the

following.

Letting ¢ =min c,, D = max (Ri - ci)
i i

DZ

Theorem 3.3: fn(P) - f(P) < v all n, a!l P.

Proof: Let 8 be an optimal strategy, let T be the random number of times

S~ searches before terminating, and let 6; be 8" terminated at n, i.e.

Gn = (8f~... GSAn)‘ Then

(4) F(P) = F(P,6) = E IX | T<nlP [T<n] +E,IX|T> n]Pr[QT”> n]
8 §

and

(5) £ (P) < £(P,6%) = E ,[X | TanlP it <nl +E,IX|T>nlpP[T>n]
n — n 6}' -- o 6 v r

n
N

where X denotes the total cost incurred (and everything is understoiid to be

{6) f(P) - £(P) < EG*[X | T>nl - EG*[XJI T>n]|PIT>n]
n

<D Pr[T > n]

9}

To get a bound on Pr[T > n] we use (4) to get

(7) 02 f(r) 2 -0 Pr[T 5."1 + (“Dd; nc)Pr[T’> n]

" | & £
=-D+ncP [T>n] .. ! !
or
(8)P [T > n] < D/nc -
’;Be‘resuit %o]1§w§ from (6) and (8). - : } )beQB’Q
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Corollary 3.4: |If oziRi <ec, for all i=1, 2, ..., m then f(P) = 0, i.e.

the policy which never searches is optimal.

Proof: It follows from (3) that fl(P) = 0, and by induction that

fn(P) = 0 for all n, and thus by the above f(P) = 0. Q.E.D.
The above Corollary may also be proven directly by létting e' be the
m-vector of all zeroes except for a one in the ith spot. |If aiRi < ¢

for all i then by (1) it follows that fle') =0, i=1, ..., m; and thus

by concavity f(P) = 0.

5

N/
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- 4, Counter-Examples

-Consider the following three conjectures:
1. |If c, > R] then an optimal strategy will never search box 1.
2. If an optimal strategy doesn't stop at P then it searches a box
with maxi%al aipi/ci.
3. If m is the number of boxes then an m-gtage look ahead strategy is
optimal; where an m-stage look ahead strategy is defined as any

‘- th

strategy which stops at P if fm(P) = 0, and searches the i~ box

at P if fm(P) = c,

i PRy (- agpy) £ (TLP).

e T e

We shall now give examples showing that each of these conjectures need

Sl o e

not hold.
% Example 1: a, =1 o, = |
%f B P, = 3/4 Py = 1/h
- € =° =1
I8
5 - N = -
o R] 0 Rz 210 -’,{A /
; If the searcher first searches 2 and then acts optimally his risk is
. 10 - 210 = -170/4; while if he first searches | and then acts opti-
| mally his risk is 5 - ;200 = -45 < -170/4. Thus the optimal strategy
starts by searching 1. / /
. Example 2: | al(; 1 L e, = !
 %i Py =3/ Py WA S
:; ¢y =1 P c, = 10




e

y

R
If the searcher first searches 1 then his minimal risk is 10 = %-200 = -40;
while if he first searches 2 his minimal risk is 10 - %-210 < =40, Thus

. . . =3 1.
the optimal strategy starts by searching 2. However alp'/c] . ﬂ5'> 5 =

azpzlcz.

Example 3: o, = ] o, 65
Pl = .4 P, = 6
c‘ = 50 c, = 50
R] = 100 R2 = 100

It can be checked directly that fz(.h, .6) = 0 and so the two-stage look

ahead strategy stops. However

(.4, .6) = .4(-50) + .6[100 - (.65)100 + .35(50 - 100(.65))] < 0

3(

and so the two-stage look ahead strategy is not optimal.

Thus none of the conjectures need be true. We will later show, however,

that in a Special case (Ri = R) conjectures 1 and 2 are in fact true.

- "‘bﬁ"‘a?“, Ty “”;"A B




5. Main Theorems

For any strategy‘ﬁ let (i, j, 6) be the strategy which first searches i

)\\‘\‘

then j and then follows strategy &.
We shall! need the following
Lemma 5.1: For any strategy & such that f(P,8) <

f(P(i,j,8)) > f(r(j,i,8))
<
iff aipi/ci

a.p./C.
iP/¢;

vV I A

—

o.p. 1 -a.p. ‘
Proof: f(P(i,j,8)) = c, a;pR. + (l-a.pi) c. - R, —LdL—--P( -i;L—-)fKTjTiP,G)

i i J Jj l-otipi l-ocipi |
FP(i.1.8)) = R+ (1 ) *iPi [ - %Py 1
(,i, = ¢ ap R, a;p;) fe; - R, T:EEEE-+ ]_ajpj f(TiTjP,G) .

now since TjTiP TiTjP it follows that

3 | f(",(i:jva)) = f(P,(j,i:G)) = a,j‘pjci = aipicj

Q.E.D.

Notation: For any policy § = (Gl, cees 65) and t <'s, let

. T6 P.

t t-l ]

é Thus g‘t

%
L
'

is just the posterior probability vector given that § is employed

and the item has not been found after t searches.
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Theorem 5.2: |If a.p?/c. = max dapQ/C. then
T [ A

* -
= ' L4
]

(a) If otip?Ri > c; then there is an optimal strategy §" having &

(b} If there does not exist an optimal strategy with 6; = { then no

optimél strategy ever searches i.

Proof: (a) We first show that there is an optimal strategy 8° having

Gk = i for some k < s. For suppose that no optimal strategy ever searched

i; then for.any optimal strategy 5*, <p0+ )i z_p? for all t and so by
s, t

Lemma 2.1 the optimal strategy need not stop. But then §_ is optimal

oa

"
-
=

and so there would be an optimal strategy with 6] i. Thus there is an

L

optimal strategy 8" which searches i. Let k be the first time §" searches

il lf
o ._.
| cp;  J=i
k # 1 then since pQ* . = 0 where c, < ¢
§ k-2 CP; J#i J

it follows that a.(p0¢ )./c.
i o] 17

X max o, p0¢ ./c.; and so by Lemma
8 k- 2/ ] "

J 6",k-
5.1 there is an optimal strategy with 6:_‘ = i, By induction we see that
there is an optimal strategy with 5? = i.

(b) We have shown by the above that if an optimal strategy 6*
has 6: = | for some k then there is an optimal strategy with GT = 1i.

Q.E.D.

Corolfary 5.3:& If'aip?/ci > ajp?/cj for j # i then

: %
(a) every optimal. strategy has §, = i
or ‘

(b) no optimal strategy every searches i.
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Proof: Follows in the same manner as in the previous Theorem.

Note that if the state of the procegs at time t is P then from that point
on we can consider the process as starting anew with prior probability
vector P. Thus at time t it is optimal to search the box with thé
largest present value of ap/c or else that box is never searched from
that point on.’ We are able to prove a stronger fesult in the special

case where all rewards are equal.

Theorem 5.4: Suppose Ri =R for all i. |If uip?/ci = max ch.p_?/cj then
J

either
(2) there is an optimal strategy with GT = i
or
(b) the qgly optimal strategy is the one which does not search, i.e.

s = 0.

Proof: Let 6* = (6?, ceny 6:$ be an optimal strategy. |If 6* ever searches

i then we can show by successive permutations (as in Theorem 5.2) that there
is an optimal strategy with GT = i. |If 6* never searches i then s < o, for
if 6* didn't sto§ and never searched i then it would have infinite risk and
so wouldn't be optimal. Suppose now that s # 0 and let k = 6:. Since k will
be the last search made it follows that ak(po+ )k R >cp, (or else it

¢5f,5-'
N *
would be better not to make the last search). But since § never searches

i it follows that(pO* )i (po* )k and thus
3 ,s )

8,5~
0o = 0o
P; | Pk
0 0 0
al(p o )l %P (p * )i kpz po' k
6 ’s = 6 ,S 6 ’s-.l > ]/R
i % p?‘ - % p0 -
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But then by Lemma 2.1 it would be optimal to search i at time s + 1, and

so by the above there would be an optimal strategy with 6; = i,

Q.E.D.

In a similar manner we may prove the following

Corollary 5.5: |If Ri =R and if aip?/ci # max ajp?/cj, then any strategy

i is not optimal.

§ with 61

0, _ 0 .
Proof: Let £ be such that azpﬁ/cz = max quj/cj. If § searches j at some
time then by successively permuting and using Lemma5.! it follows that we
may (strictly) improve upon 8. If 8 never searches j then by the same
reasoning as used in the above Theorem it follows that & can't be optimal.

0.E.D.

Thus when all rewards are equal it is either optimal to search a box with
the. maximal value of aipi/ci or else it is optimal to stop.

In [3] Chew considered the problem where there is no reward given for
finding the object but where there is a penalty cost C incurred if the
searcher stops without findiﬁg the object. He also supposed that a, = 0
and p? > 0. (Thus there.is positive probability that the object is in

*
the first box but with probability one a search would overlook it.)

*Actually Chew suppdsed that-gp? < 1. However this is clearly ,
' equivalent to having Zp? = 1 and having a box with an overlook probability

‘of one.
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He showed that if c, E 1 then the optimal strategy either searches the

box with maximal ocipi/ci or else stops. However, as was previously pointed
out, this problem is equivalent to the one we've considered with Ri = C.
Thus Theorem 5.4 may be considered és an extension of Chew's result to

3

non-constant costs and to general overlook probabilities.
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Approximations to Optimal Strategy

In this section we suppose that Ri = R, and exhibit a sequence of

strategies which converge to an optimal strategy.

Let § = (GT, ceey 6:) be an opt{mal strategy which either when in state

P stops if f(P) = 0 or else searches a box with maximal value of aipi/ci.
- y

Let T be the random number of stages §" searches before terminating, and

recall that ¢ = min i We shall need the following:
i

n
(o}
Lemma 6.1: PI'(T > n) _<__(| -g—é——i/-&-i—) for all n
:
Proof:

The minimal value of max aipi/ci is achieved by that vector P having

i
\ ’ — - N ——3 4
(2} alP]/c] B ?¢p2/c2 = ..., ampm/cm
and thus
(10) min max o.p./c; = 5 ! !
P i : ci/ai

Now each time 6* searches a box with maximal value of aipi/ci. Thus each
time 8° searches a box (say box j) the probability o;P; the item will be
found is such that

i /9

' C.
C
(D oppy 25— 2 o7
i

The result Tollows immediately. - Q.E.D.

J gl D e s e ST T
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Now let 8" = (6], ceey 65 ) be ghe strategy which when in state P stops
n

if fn(P) = 0 or else searches a box with maximal value of dipi/ci’ i.e.
s =minqk: f (po_L >== 0%..Since f_(P) + £(P) it follovis that
n n\s* k n

’

Sh 4+ s as n 4 o,
Recalling that D = max (R - Ci) = R - ¢ we have

nts
Theorem 6.2: f(P,8") < f(P) + D(1 - ¢/Zc;/a;) " for all P, all n.

-f(Pa* S )Pr(T >s.)

Proof: f(P,8") - f(P)
n

=|f [P, - f[P P (T >s)
n( § ’Sn) ( 8 »Sh ) r n

< bP(T>n) P (T>s)

n
R

where the last inequality follows from (6). The result then follows from

Lemma 6.1.
Q.E.D.

In order to effectively apply the policies §", n > 1, we need to be able

to characterize the continuation sets An = {P: fn(P) < 0{ . These sets

can be constructed as follows:

(12) ' Ay lP.:i it e, = a.pR< Q!}
A, =AU B

where




¢
i
]
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(13) 8, ={ P iJi e - ek + Oeagpy)e; - o (TP R] < o

_ bis
Noting that (T.P). = (1-0.8..)p.(1-0.p.)") where 8., =

we can write
(o | 2 l
B = :L : s a. v . - ao . - up . . + a.a.. o IN <
(14) 'P Hi,j: ¢ lle + cJU‘ JpJR PiC; i .IJPJP 0’

Similarly

where

(15) By = {P:Hi,J»k’ ¢ - %GpR ¥ ("“ipi)[‘:j'aj TPk +

(-0 (TP ) (e, (T, TP 0 | < o}

- - - Q
i OtipiR + cj Otjij + S kka

= %P:E}i,j,k: c,

- - J(S:,
Clipicj (mipi + <:¢.jpj)<:k + 5% 5P (R + ck)

2 - o3 <
o PR+ 8) - o 8 O pR °§

Similarly the other An's = An-l U Bn may be obtained.f Also we may let

}

|
(16) B, = A
Bl=$P"3i#j'c -OLth+c - ap.R = 0p.c. <0
2 ! T ini J JT] i"i7j

‘ 3 L] H H - - - - )

B, = {P:d i#j#£k: c. - C.p.R+ c; ajij"" . = AP R

- - <
%4PiC; (ep; + ajpj\)-ck 0}

. . . s . n
'Then B"‘C Bn and we may approximate An by U B:. We also note that

al ]
B, = A, and B, = AZ'
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