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ABSTRACT

We are told that an object is hidden in one of m(m < ^)

boxes and we are given prior probabilities p0 that the,

object is in the i t ., box. A search of box i costs c i ayid

finds the object with probability a ,i	 if the object is in

the box. Also, we suppose that a reward R 	 is earned if

the object is found in the 
ith 

box. A strategy is any rule

for determining when to search and if so which box. The

major ,result is that an optimal strategy either searches a

box with maximal value of a i p i /c i or else it never searches

those boxes. Also, if rewards are equal, then an optimal

strategy either searches a box with maximal a"'p i /c i or else

it stops.

s

a	 -s{

i

t,.

,..,r	`..	 ...._.	 ... ^	 _ .	 ...... ..	 ..-:..-_	
S. ,.. ., ,,-	 '^.,

	 .......-., ».
	 p,, _	 cam'	 •v. 	 _	 k^.tro: m+:tA^' 	

, 	
-

1



A PROBLEM IN OPTIMAL SEARCH AND STOP

Sheldon M. Ross

University of California, Berkeley

1.	 Introduction and Summary

The following model	 has been considered	 in the literature:	 We are told

"	 that an object	 is hidden	 in one of m boxes and we are given prior prob-

abilities	 p i	i=1,	 2,	 ...,	 m	 (Ep? =	 1)	 that	 the object	 is	 in	 the	
ith

box.	 A search of box i	 costs c 	 (c i	> 0), and finds the object with

probability oc i	if	 the object	 is	 in	 the	 box	 (i.e.	 1	 - a i	is	 the over-

look probability for the i th box).	 At the beginning of each time
period t = 1,	 2,	 ...	 a box	 is searched; and the process ends when the

object	 is found.

Blackwell	 (see [51) has shown that the strategy which at time t searches

a box with the largest present value of a i p i /c i minimizes the expected

searching cost;	 (where 
pi	

is the posterior probability at time t that

the object	 is	 in box i).	 Chew [3]	 and Kadane	 [4]	 have shown that	 if

c i	1	 then this strategy also maximizes the probability that the

searching cost will	 be less than A for every A .> 0.

In this paper in.order to motivate the search we suppose that a reward

R.	 i=1,	 ..., m	 ids earned	 if the object	 is found	 in the it h box.	 We
n

also suppose that the searcher may decide to stop searching;:at any time

(for example he. may feel	 that the rewards are not large enougin to jusJ,ify
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the searching costs).	 If the searcher decides to stop before finding the

object then from that point on he incurs no further costs and of course

receives no reward.

In the second section of this paper we show that an optimal strategy

exists and is defined by a functional equation. The optimal strategy

is exhibited in a special case. The third suction deals with the op-

timal n-3tage return function. The fourth sec ion presents some

counterexamples, and in the fifth section we present the major results.

Speaking loosely we show that the optimal strategy either searches the

box with maximal value of 
aipi/ci 

or else it never searches that box.

Also, if rewards are equal, R i - R, then the optimal strategy either

searches the box with maximal a i p i /c i or else it stops.	 In the final

section we assume that R i - R and present a sequence of strategies

converging to the optimal.
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2. Optimal stratec

A strategy is any sequence (or partial sequence) d = (d l , ..., d s ) where

di	
e 0, 2, ....,m} for i=1, ..., sand s e{0, 1, 2, .. . 00}.	 The policy

S instructs the searcher to search box 
di 

at the i th period and to stop

searching if the object hasn't been found after the s th search.	 (s = 0

means that the searcher stops immediately and s = °D means that he doesn't

stop until , he finds the object).

For any strategy 6 and any P = (p l , ..., p m ) ' P i ? 01 Epi ' 1, let f(P,6)

be the risk (expected searching cost minus expected reward) incurred when

P is the vector of prior probabilities and strategy 6 is employed. Also

let f(P) = inf f(P,6). Then it follows from standard arguments (see for
8

instance (11 P. 83) that

(1) f (P) = min 0 ^ -min	 IC i - a iPi R i + 0 - et i p i )f (TiP)I

!i

where T i P = ((T i P) l ,	 (TiP)m)	 i = 11 2, ..., m, and where

	

P.(1 - a i p i ) -1	 j # i
J

(2) (T i 
P)J

(1 - a i ) P i (1 - a i p i ) -1	j = i

Thus (T
i 
P) is just the posterior probability that the object is in box

j given that a search of i has not uncovered it. We shall say that the

;process is in state P at time t if P denotes the posterior probability

vector at time t.

IiY113
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1

In order to show the existence of an optimal 6trategy let R = max R. and
i

consider a related process (the prime process) with ci = c i , a	 a i , but

with R = R i - R. However for this new process we suppose that a penalty

cost of R units is imposed if the searcher decides to stop searching be-

fore finding the object. Now it is easy to see that for any strategy S

which terminates (either by finding	 the object or by stopping) in	 finite

expected time we have f (P,S) ,=	 f I (P,d) -	 R,	 and s inc(^ these are the only

strategies we need consider, (any strategy which doesn't terminate in

finite expected time has f(P) = f'(P) = co ) it follows that any strategy

optimal for the prime process is optimal for the original one.

the prime process is a dynamic programming process with a finite number

of possible actions available at each stage and with non-positive returns

at each stage (since R i < 0 b i).	 It then follows from Strauch [61 that

an optimal strategy exists and also that the optimal strategies may be

characterized as those strategies,_,which when the process is in state P

chooses one of the actions which minimize the right side of (1), i.e. for

such a 6*1 f(P, b") = f(P) for all P.

The importance of rigorously proving that an optimal policy exists and is

determined by a functional equation cannot be overemphasized. For example

in the above suppose we relax the condition that c  > 0 and let cl 	
0

Then if a l p l > 0 it is clear that for any strategy 6 	 (d 11 .... 8 s ) #

(1, 1 ) i t ...), f ( P P (1, d l , ..., d s )) < f(P, ( d l ,	 6s)) (since a

search of 1 is free) and thus the only possible optimal strategy would be

The above argument also shows that there is-no additional generality

gained in assuming ;,hat a penalty cost c is incurred when the searcher stops
without finding the object, as this process would just be equivalent to the

original one'with rewards R 1 + t instead of R 1 . A

i
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d l	(1, i t 1, ...).	 However f(P,a l ) = p l R l and it is clear that this

need not be maximal. For example if c l = 0 0 a l = 1/2, P, = 1/10, R l = 10

and c2 = 1, a2 = 1
1 P 2

 = 9/10, R2 = 10 then f(P, a l ) = 1 while

f(P, (1, 1 1 ..., I t 2, 1 1 1, 1, ...	 = 10	 10(1-(1/2)n) + 9(l/2)n
	

+ 10 '9 	
10

Also the strategy determined by the functional equation turns out to be the

(non-optimal) strategy a l t (The reason that the existence proof given above

breaks down is that since c  = 0 it no longer follows that all strategies a

with infinite expected termination time have f(P,d)

Now consider the class A of strategies a = ( S 1 , Set t a s ) for which s = oo.

Any policy a e A which finds the object with probability 1 will have

f(P,a) = E 
a 
L - E p i R i where L is the searching cost incurred; any d e A

i
which has positive probability of never finding the object has f(P,a) = 00.

Thus among the class of policies which never stop searching until the object

is found the one with minimal expected searching cost is best. Thus by

Blackwell's result the strategy 6.0 which when in state P searches the box

(or, one of the boxes) with the maximal value of a i p i /c i is optimal among

the policies in A...

Lemma 2.1: If a i p i R i > c i for some i then no optimal strategy stops

searching at P = (p l ,	 pm). If a i p i R i > ci for some i then there is

an optimal strategy which doesn't stop at P.
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Proof:	 From	 (1) we have that

f (P)	 < c i 	- (X i p i R i 	+	 0	 - a i p i )f (TiP)

< 0 +	 0	 - aipi )f (TiP)

< 0

and so	 f(P)	 < 0 and thus no optimal	 policy stops at P.	 If a
i p i R i	 > c 

then	 f 	 (P)	
= 

c 	 aipiRi	 +	 (l	 - a i p i )f(T i P)	 < 0.	 Now if	 f(P)	 = 0 then

f(P)	 =	 f i (P)	 and so searching	 i	 is optimal;	 if	 f(P)	 < 0 then	 stopping

is	 not	 optimal.	 Q.E.D.

,i
m

Theorem 2.2: If	 E c i /a i R i < 1	 then 8.0 is optimal, i.e. f(P,600) = f(P)

i-1

for all P.

Proof: For any P, if max(oc i p i R i - c.) > 0 then there exists an optimal

strategy which doesn't stop at P. So a necessary condition for every

optimal strategy to stop at P is for

a i piR i < 
C 	 for all i

=> p i < c i /a i R i	for all i

=> 1 < Eci/aiRi It

So if Ec. i /a i Ri < 1 then for every P there is an optimal strategy which

doesn't stop at P. Thus an optimal strategy exists i'^ A which implies

that, 6.0 is optimal.	 Q.E.D.
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3. The Optimal Return C(P)

Theorem 3.1: f(P) is a concave function of P.

Proof: Let f i (S) be the conditional risk giver

and strategy d is employed, i-1, ..., M
.
 Then

let P = XP  + (1 - W 2 , then

f(P) Lx inf f(P,S)
S

inf f(XP 1 + (1 - X)P 2 , S)

iSf Z (XP 1 + .(1 - X)P 2 ) i f i (^

> X inf E P f . (S) + (1 - X) i r

X f(P I ) + (l - a)f(P2)

Q.E.D.

Ccollary 3.2: The optimal stop region S - {P : f(P) = O) is convex.

Proof: Suppose P = XP  + (l 	 X) p2 and f(P I 	 f(P2) = 0. Then

f(P) < 0 by (l) and f(P) > 0 by the above.

Q.E.D.

Let

(3)	 f (P) = min 0, min 'c. - aip.Ri)
	 t

A
fn(P) = min 0, min o, - a i p i R i + (1-a i p i )f n _ 1 (T i 

P) 	 n > 1

Thus fn (P) is just the minimal risk incurred if the searcher is allowed'at

most n searches. Clearly f^(P)-> fn+l(P) >`'`(P) for all n, all P, and it

 f

e	 _
LS 'r....A	 w	 is}VT'm T• sMFI.q '	

^i
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seems reasonable that f n(P) + f(P) as n t co . This is shown in the

following.

Letting c = min c i , D = max (R i - c 
i	 i

2
Theorem 3.3: f n (P) - f(P) < nc
	

all n, all P.

a
Proof: Let S be an optimal strategy, let T be the random number of times

6 searches before terminating, and let Sn be S terminated at n, i.e.

Then

(4) f(P) = f (P, V) = E S ;; [X , T < n] P }. [T < n) + E [X	 T > n] P r [T „> n]
S

and

a
(5) f n (P)< f (P , S n ) = E Ss; [X ( T ` .E^]P'^"^' < n] + 

Ea^-[X 
I T > n]Pr

[T
 > n]

n

where X denotes the total cost incurred (and everything is understc`d to `be

conditional on the prior probability vector P). Thus

(6) f (P) - f(P) < E JJX	 T > n]	 E [X	 T > n] P [T > n]n—	 S.,	
b,	

r
n

<D Pr[T>n]

To get a bound on P r [T > n] we use (4) to get

(7) 0 > f(P) > -D P r [T < n] + (•-D + nc) P r [T > n]

_ -D + nc P r [T > n]
or

r

The result follows from (6) and (8).

7.. ̂ •-e	 ter. -^ v.	 .ry,
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Corollary 3.4:	 If a i R i < c i for all i-1, 2, ..., m then f(P)	 0, i.e.

the policy whidh never searches is optimal.

Proof: It follows from (3) that f l (P) = 0, and by induction that

f n (P) = 0 for all ' n, and thus by the above f(P) = 0.	 Q.E.D.

The above Corollary may also be proven directly by letting e^ be the

m-vector of all zeroes except for a one in the i th spot. If a
i R i < ci

;o
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4. Counter-Examples

Consider the following three conjectures:

1. If c  > R 1 then an optimal strategy will never search box 1.

Jr

2. If an optimal strategy doesn't stop at P then it searches a box

with maximal aipi/ci'

3. If m is the number of boxes then an m-stage look ahead strategy is

optimal; where an m-stage look ahead strategy is defined as any

strategy which stops at P if fm (P) = 0, and searches the i th box

at P if fm (P) = c i - a i p i R i + 0 - a i p i ) fm_1(TiP).

We shall now give examples showing that each of these conjectures need

not hold.

Example 1:	 a1 = 1	 a2 = 1
}

P)	
3/4	 P2 - 1/4

c 1	 5	 c2	 10

	

`	 R 1 = 0	 R^	 210

Y

If the searcher first searches ,2 and then acts optimally his risk is

10 -	 210	 -170/4; while if he first searches 1 and then acts opti-

mally his risk is 5 - T 200 = -45 < -170/4. Thus the optimal strategy

starts by searching 1.

Example 2:	 al	 1	 a2	 1

	

3= .	P s 3/4	 P	 1/41	 2
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if the searcher first searches 1 then'his minimal risk is 10 = 	 200 = -40;

while if he first searches 2 his minimal risk is 10 - 1 210 < -40. Thus

the optimal strategy starts by searching 2. However 
a
1 p1/c1 = 3> 0 =

a2p2/c2.

Example 3;	 a 
1

= 1	 a2 -- . 65

P 1 = .4	 P2 = .6

c 1 = 50	 c2 = 50

R 1 = 100	 R2 = 100

It can be checked directly that f 2 (.4, .6) = 0 and so the two-stage look

ahead strategy stops. However

f (. 4 0 .6) = .4(-50)  + .6[ 100 - {.65} 100 + .35(50 - 100 (.65))) < 0
3

and so The two-stage look ahead strategy- is nc^t optimal.

4	
Thus none of the conjectures need be true. We will later show, however,

that in a special case (R i - R) conjectures l and 2 are in fact true.
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5. Main Theorems

For any strategy 6 let (i, j, S) be the strategy which first searches i

^f
then j and then follows strategy S.

We shall need the following

Lemma 5.1: For any strategy d such that f (P,S) < co

f(PIOIj,S))	 >	 f(P,(jIi,a))

iff	 a i p i /c l 	<	 ajpj/cj

Proof:	 f(P,(i,j,S))	 = c i 	- a i p i R i 	+ 0-a i p i ) cj - Rj P^ + 1-a p f(TjTiP,6)

f(P,(J,i,d))	 = c.	 -	 ap.R.	 +
J	 J	 J	 J

(1-ajpj)
J	 J

c	 - R ii

aipi	
+	 1t-ajpj

app'	
f(T.T.P,S )1-ajpj	 J

now since , 	T,T i P = T 
i 

T 
j 

P	 it follows that

f(P(i,j,S))	 -	 f(P^(j,i,S))	 - aj pj c i - aipicj

Q.E.D.

Notation: For any policy S = ( S 1 , ..., Ss ) and t < s, let

PS't = Tat Ta t -1 ... TS1 P.

Thus Pa ^ t\ is just the posterior probability vector given that a is employed 	
4k

and the item has not been found after t searches.

A



z

13

Theorem 5.2:	 If a i p?/c i = max 
aj`'^0/c j 

then

0
(a) If a i p i R i > c  then there is an optimal strategy S" having 6 1 _ i.

J.
(b) if there does not exist an optimal strategy with S" = i then no

optimal strategy ever searches i.

Proof:	 (a) We first show that there is an optimal strategy S' having

.4

6"
k

	i for some k < s. For suppose that no optimal strategy ever searched

i; then for any optimal strategy S', p 0 p0 for all t and so by
,t

Lemma 2.1 the optimal strategy need not stop. But then 6.0 is optimal

J.

and so there would be an optimal strategy with S^ = i. Thus there is an

optimal strategy 6* which searches i. Let k be the first time S' searches,

i.	 If
0cp
i

	J=i

k# 1 then s i.nce p0
	

j	 0	 where c. < c
d=R*k,-2	 cjpj	 i

it follows that a
i 

p0 ^,	 i /c i = max a
j 

ps	 /c ; and so by Lemma
S ,k

_ 2	

, k

_2jj	
`^

5.1 " there is an optimal strategy with 6k
-1

 = i,^ By induction we see that

there is an optimal strategy with S
I 

= is

(b) We have shown by the above that if an optimal strategy S

has Sk = i for some k then there is an optimal strategy with S^ = i.

Q.E.D.
•

^U

4

t:

^ jf.,

Corollary 5.3:;; If cxip0/Ci > aj p0/cj for j # i then

(a) every optimal- strategy has S 1 	 i

or

(b) no optimal strategy every searches i

it

n+^-^•a..-.-. .. ^.. _	 .._.._....	 ...	 _.. ...	 'r e " . .yey.e.. ..-	 ^	 .^.rT	 ..,	 ....	 nod.	 .rv.F'"	 "	 h ^	 °[..s	 ,^^4a+,	 _	 ,.'
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Proof: Follows in the same manner as in the previous Theorem.

Note that if the state of the process at time t is P then from that point

on we can consider the process as starting anew with prior probability

vector P. Thus at time t it is optimal to search the box with the

largest present value of ap/c or else that box is never searched from

that point on. We are able to prove a stronger result in the special

case where all rewards are equal.

Theorem 5.4: Suppose R.	 R for all i. If a i p0/c i = max a^p0/c^ then

J
either

J.
(a) there is an optimal strategy with 6 '

,
' = i

. 3.

s

or

(b) the only optimal strategy is the one which does not search, i.e.

S = 0.

Proof: Let S _ (Si, 	 85) be an optimal strategy. If S^ aver searches

i then we can show by successive permutations (as in Theorem 5.2) that there

is an optimal strategy with Si = i. If S" never searches i then s < oo, for

if 8Y didn't stop and never searched i then it would have infinite risk and

so wouldn't be optimal. Suppose now that s ^ 0 and let k = 6*	 Since k will

be the last search made it follows that ak p 0 ^	 k R > c  (or else it

would be better not to make the last search). But since d never searches

i it follows that p0 	
i	 PO	 k	

and thus

s	 >	 d s-] )_
0	 —	 0

P i	 Pk

	

ai Q0	 ai p?	 p0.^	 akpk	 p0,.

	

a	 __	 8 ,s >  	 d ,s	 k > /R

t

	

C.
	 ci	 PO	

ck	 A	 —
Pk

;;w
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But then by Lemma 2.1 it would be optimal to search i at time s + 1, and

J.

so by the above there would be an optimal strategy with d" = i.

Q.E.D.

In a similar manner we may prove the following

Corollary 5.5:	 If R i = R and if a i p i /c i i max aj pj /cj , then any strategy

S with S 1 = i is not optimal.

Proof:	 Let	 be such that a^p^/ce = max aj p./cj .	 If S searches j at some

time then by successively permuting and using lemma 5.1 it follows that we

may	 (strictly)	 improve upon S.	 If d never searches j then by the same

reasoning as used	 in the above Theorem	 it follows that S can't be optimal.

Q.E.D.

Thus when all	 rewards are equal	 it	 is either optimal to search a box with

the.maximal	 value of a i p i /c i or else it	 is optimal	 to stop.

In [3] Chew considered the problem where there is no reward given for

finding the object but where there is a penalty cost C 	 incurred if the

searcher stops without finding the object. 	 He also supposed that a 1 = 0

and p0 > 0.	 (Thus there is positive probability that the object	 is in

the first box but with probability one a search would overlook it.)

w
3.

*,Actually Chew supposed that Ep. < 1.	 However this is clearly

equivalent to having Ep i = l and having a box with an overlook probabili ty Q,

of one'.

r'
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He showed that if c  = 1 then the optimal strategy either searches the

box with maximal a i p i /c i or else stops. However, as was previously pointed

out, this problem is equivalent to the one we've considered with R i - C.

Thus Theorem 5.4 may be considered as an extension of Chew's result to

non-constant costs and to general overlook probabilities.
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6. Approximations to Optimal Strategy

In this section we suppose that R i - R, and exhibit a sequence of

strategies which converge to an optimal strategy.

Let 6 _ (6^, ..., 65) be an optimal strategy which either when in state

P stops if f(P) = 0 or else searches a box with maximal value of aipi/ci'

Let T be the random number of stages 6 * searches before terminating, and

recall that c = min c i . We shall need the following:
i

n
Lemma 6.1: Pr	 i /a.(T > n) < 1 "	

c	
for all n

i.	 i

Proof:

The minimal value of max a i p i /c i is achieved by that vector P having

	

.	 1

(;)	 ai p l/cl'= a ;Zp 2/c2 = ....	 ampm/cm

and thus

(10)	 min max a i p i /c i = E 1E

	

P	 i	
i Ci/ai

Now each time 6
*
 searches a box with maximal value of a i p i /e i . Thus each

time 6* searches a box (say box j) the probability a . p . the item will be
J J

found is such that

C.
(l l) a  p j >- 1-- >	 C

E c. a.

i 
C i
/a i	 i	

i	 i

The result `follows immediately. 	 Q.E.D.

,j

^i

7 777'}'if?i"
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Now let 6 n = (6 10	 6s ) be the strategy which when in state P stops
n

if f n (P) = 0 or else searches a box with maximal value of a, i p i /c i , i.e.

sn = min k: fn 
p 6 '^ 

k = 0 . , Since f n (P) + f (P) it fol lo/Os that

s+ s as n+ co.n

Recalling that D = max (R - c i )	 R - c we have

n+s
Theorem 6.2: f(P,6 n ) < f(P) + D(1 -- c/Ec i /a i )	 n for all P, all n.

Proof: f (P,6 n) - f (P) = -f P *
'S

 

)Pr (T > sn)
6	 n

= fn p	 - f P ti	 Pr(T > sn)
6 ,sn	 6 ,sn

< D P r (T > n) P r (T > sn)
iAV

where the last inequality follows from (6). The result then follows from

Lemma 6.1.

Q.E.D.

In order to effectively apply the policies 6 n , n > 1, we need to be able

to characterize the continuation sets An - JP: f n (P) < 0 1 	These sets

can be constructed as follows:

(12)	 Al —' P:	 i : c i - a i /p i R < Q
l
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(13) Bz _ P: 21	 i,j:	 c i 	- a i p i R +	 (I-aipi)[cJ	 - aJ (TiP) J R ] < 0

-1	
1	 i =j

Noting that where	
6 	 -

(T i P) j 	=	 (l-ai6ij)pj(l-aipi) i	
0	 i#j

we can write

(14) B2 -	 P:9 i,j:	 c i	 -	 a i p i R + c.	 a,p
J
.R -	 a i p i c.	 + 

a?6 i J
.p.R	 < 0

J	 J	 J	 J	 J	 I

Similarly

A 3 = A 2 U B3

where

(15) B3 --	 P:3 i,j,k:	 c i	 -	 a i p i R +	 (l-aipi)[cJ-a. (Y i p)
j R +

() - a. (T P) j ) (c k- ak (T j T i P) kR)]	 <	 0

=	 P:21 i,j,k:	 c i	 -	 a i p i R + c	 -	 Jp j R + ck -	 akpkR

+ a,p,) ck +	 0?6 ^-.jPj (R + ck)-	 Oti p i c
i
	-	 (aipi	

JJ 

+ ak pkR(6
jk

 + 6,	 a3- ak 
6 ik 6jk p kR < 0

Similarly the other A
n 

I s = An -1 U Bn may be obtained.	 Also we may let

lj/J (16)
l

B 1	 -
,

A 1

Bl	 -2 ^P:	 i0j:	 c.	 _	 aip,.R + c.	 -	 a,p.R -	 aipic.	 < 0
i	 J	 J	 J	 J

B3 = P:	 i^j#k:	 c i	 -	 a i p i R + cj	 -	 Ot.pj R + c;k -	 a 
k 
p 

k 
R

-	 ai p i c.	 -	 (aip i 	+ a.p.)ck 	< 0
J	 J	 J	

a

Then

n
B ) C B	 and we may approximate A	 by	 .0 B..	 We also note that
n	 n	 n

r,

Al and BZ	
A2•

M	
'"

-101111=W
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