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ABSTRACT

This report documents the design, performance, fabrication

and flight acceptance tests of the GLOS-B antenna system. Measured data

is included for the VHF-Mff wideband hemispherical spiralo nine-port multi-

plexer, S-band conical spiral and C-band cavity helices. Simple theoretical

models are included to yield an intuitive insight to the theory of the

systemf a bibliography aids those seeking detailed information.
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I. INTRODU"TTON

GEOS-B, designed by APL and operated by NASA, is to be injected into

a near-earth orbit with a 600 nautical mile perigee, 800 nm apogee and 74

degree (retrograde) inclination. ( ' ) The satellite is gravity gradient sta-

bilized so that the bottom surface of the satellite is always oriented toward

the center of the earth.

Five separate antennas make up the antenna subsystem: A VIA'-UBF wide-

band hemispherical log spiral with a nine port multiplexer; an S-band conical

log spiral; two C-band cavity helices; and a C-band Van Atta array. The

location of the antennas on the satellite is recorded on Drawing #7211-0005.*

The satellite subsystems feeding each antenna and the frequencies used are

detailed below. Each of the antennas will then be discussed separately.

Hemispheric Log Spiral

136.32 mcs - Telemetry and minitrack beacon transmitter

148.98 Ines - Command Receiver

162 1
324 k mcs - Doppler Beacons. The doppler subsystem is to be
972 J

used in conjunction with the U. S. Navy TRANET doppler network for gravi-

metric measurements to define the structure of the earth's gravitational

field, to refine the location and magnitude of large gravity anomalies,

and to improve positional accuracies of the fixed and portable TRANET track-

ing stations

224.5
421	 mcs - Range (SECOR) transponder subsystem. The range
449 J

transponder is to be used in conjunction with the SECOR system ground stations

for ranging to the spacecraft transponder. Trilateration techniques permit

determining the unknown position of one of four SECOR stations accurately.

S-Band Antanna

17052270 1 mcs - Range and Rate Rate transponder subsystem. The

RARR transponder subsystem is to be used to perform accurate measurements of

This work supported by NASA under Task I of the Navy Contract NOw 62- 0604-c.

*Drawings listed are APL documents obtainable from AM - not a part of this
report.
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the slant range and rate of change of slant range to the spacecraft.

C-Band Antennas

56901 mcs - C-Band transponder. The C-band transponder is to
5765J

be used for range radar calibration and for experimentation to'determine

the accuracy of the system for geometric and giavimetric geodesy investigations.

Van Atta Array - The radar reflector will passively increase

the C-band effective radar cross section of the spacecraft. The effects of

long-term variations in the C-band transponder system can be studied if both
skin and beacon track are accomplished within the same pass.

II. THE BINISPHERICAL LOGARITHMIC SPIRAL

Introduction

Many of the properties of the planar log spiral are preserved when it

is projected onto a hemisphere. The planar spiral is discussed first to

yield an intuitive insight to the operation of this type of antenna.

The Frequency Independent Planar Log Spiral - The design of this

class of antenna is based on the principle as stated by Ramsey: If the shape

of an antenna can be specified entirely by angles, its performance is independ-

ent of frequency. (2)

The infinite planar log spiral described by r s k eao satisfies

this criteria exactly (Fig.la). The balanced two arm log spiral (Fig.lb)

is more easily excited and has become more popular than the one arm spiral.

Physical model - The "current band theory" (3) provides a very approximate

but intuitively sRtisfying model of the spiral antenna.

The arms of the balanced log spiral can be thought of as the

conductors of a balanced two wire transmission line that are distorted into

a radiating structure (Fig. 2).

z

i
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Fig. 2 ARMS OF BALANCED LOG SPIRAL DISTORTED

INTO RADIATING STRUCTURE
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Consider two points at equal distances along the wire, A and B

(oA = oB , where the currents have equal amplitudes and opposite phase. In

traveling the additional distance AB' the current is shifted in phase 2 ^

Near the origin-; the shift in phase from A to B' will be smalls the currents

at B and B' in opposition and radiation from the two points LrLll cancel.

At a point further along the spiral where the distance from A to B' is one

half wa alength (phase shift 180 * ) the currents at B and B' will be in the

same direction and efficient radiation will take place. The distance AB'

is approximately lq^• so radiation occurs at the point on the spiral where

the diameter = ^ /1'. The remainder of the spiral acts as a load to absorb

the power that is not radiated.

The currents at C and B are orthogonal in space and phase to

those at A and B causing the radiation to be circularly polarized.

The Fir^te Planar Log Spiral

The introduction of a length, the length of the finite spiral arm,

imposes a lower frequency limit on the operation of the antenna. If the

last turn is not large enough to allow power dissipation by the efficient

radiation noted above to occur, current will be reflected from the end of

the spiral. This current will traverse the spiral in the reverse direction

causing radiation in the opposite circular polarity. This provides a con-

venient definition; the lower frequency limit of the antenna is the

frequency where the radiation is linearly polarized.

The upper frequency limit of the antenna is determined by the mechanical

tolerance or fineness of the small end of the spiral. As will be discussed,

convenient methods of exciting the spiral contribute to lowering the upper

limit.

Exciting The Balanced Log Spiral

Realization of the wide band potentialities of the log spiral requires

• feed network with equally wide bandwidth. The infinite ba,lun (4) is such

• feed (Fig-3). A coax cable is bonded to one arm of the spiral. At the

t



..	 ;. r, n

THE JOHN$ HO►KIN9 UNIMSITY
APPLIED PHYSICS LABORATORY

RI► VRR SPOM6 MAMAND

Fig. 3 INFINITE BALUN SHOWING FEED NETWORK WITH
EQUALLY WIDE BANDWIDTH

,

}

a

,. 5
a

f



W..

THL JOHNS HOPKINS YNIV9091TY

APPLIED PHYSICS LABORATORY
14LV2ft NMNS. MARYLAND

feed point the center conductor is connected to the opposite arm causing

the equal and opposite currents inside the coax to become antenna currents.

The antenna currents on the outside of the coax are dissipated by radiation,

preventing radiation of the feed line past the end of the spiral. The

size of the coax used in the feed limits the fineness of the small end of

the spiral and therefore the upper frequency limit of the antenna.

III.	 THE GEOS HEMISPHERICAL LOG SPIRAL SLOT ANTENNA

A balanced spiral antenna is painted on a two-foot diameter, one-

sixteenth inch thick fiberglas hemisphere to form the GEOS-B antenna. The

J
l
7
i
1
l
lslot image of the thin wire spiral is used. The slot is described by the

two spirals r = ke 
ao 

and r'= kea(o-`L) where c)l is the lag angle between
equal radius vectors, (5) (Fig. 4). The area remaining is painted with
silver loaded paint. To simplify construction of the antenna. the distances

r and r' are measured along the surface of the hemisphere rather than

measured on a plane and projected onto the hemisphere. Drawing 7211-1302

details the radii at various stations for the GE08-B hemisphere.

Formulas for the radiation patterns of the hemisphere on a limited

ground plane have been calculated but complexity limits their usefulness.(6)

Locally Periodic St ructures (7)

A model for the operation of the hemispherical spiral can be obtained

by comparison with the cylindrical helix. Figure 5 compares one turn of

the hemispherical spiral with one turn of the cylindrical helix with the

same pitch. The ratio (s) of pitch to turn length is the ratio of the

propagation constant (k) along the arms to the propagation constant (p)

along the cylindrical surface. Since this ratio is nearly the same for

one turn on the helix or on the hemisphere, there should be good correlation

between the operation of this portion of the hemispherical spiral and the

corresponding bifilar helical cylinder.

ii
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The Brillouin or k/,$ diagram displays the variation of the propagation

constant on periodic antenna structures. (8)(9)

A diagram for the bifilar helix is given in Figure 6. The vertical

axis is the pitch distance in free space wavelengths, the horizontal axis

is the pitch distance in guide wavelengths on the surface of the antenna.

For a given helix (a( and a constant) the only variable involved is the

frequency of operation.

As frequency is increased there is first a region of closely bound

surface waves, then strong coupling to a space wave traveling in the opposite

direction. The propagation constant becomes complex as the structure

radiates a backfire wave toward the point of excitation(10) . At a still

higher frequency ene rgy is radiated at an angle to the axis of the structureg	 q Y	 gY	 g

and then in an end fire beam in the opposite direction. (11)

 distanceFor the hemispherical antenna the radius f increaseswith ist nce

from the feedpoint. At a given frequency the propagation constant might be

expected to behave in the same manner as the cylindrical helix behaves with

increasing frequency. That is, the portion of the helix too small to

radiate acts as low loss wave guide carrying energy to the larger region

that radiates back toward the feedpoint. This mode of operation causes

the hemispherical spiral to radiate in a uni-directional pattern as opposed

to the bi-directional pattern of the planar spiral.
^	 k

Bandwidth of the GEOS Hemisphere

The diameter of the largest turn is 24 inches, placing the calculated

lower frequency limit at 158 mcs. Examination of the measured axial ratio

(Fig. 13) indicates nearly linear polarization in this frequency range. The

fineness of the small end of the spiral limits the upper frequency at about

1200 mcs. I
1

- 8-
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Feed

The hemisphere feed is an infinite balun utilizing Uniform Tubes, Inc.,

UT-141-C ram extruded coaxitube with copper center conductor. This coax is

.141 inches in diameter, limiting the fineness of the feed region as

indicated on Drawing #7211-1302, and Figure No. 7e The epoxy across the

feedpoint prevents teflon creep during thermal cycling. The coaxitube is

bound to the arms 1,*ith twisted copper wire and silver loaded epoxy. The

wires for the solar attitude detector are held in place under the coax

by the epoxy.

Measured Parameters

Measured Radiation Patterns - Radiation patterns of the GEOS-B hemis-

pheric antenna mounted on the sheet metal RF mockup of the satellite body

were recorded on the S2T-4 antenna range. Figure 8 details the range,

Figure 9 the coordinate system used. The measured patterns are grouper

as Figure 10. The pattern number i'or a particular frequency can be found

in Table I. Since the patterns are nearly symmetric about the Z axis, only

0 = 0 and 90 0 are given for each frequency.

TABLE I - Pattern Numbers

f mcs

136

148.98

162

224.5

324

421

449

972

0 =0

Polarization

Cir. Lin.

1 2

5 6

9 10

13 14

17 18

21 22

25 26

29 30

0 :a 90

Polarization

Cir. Lin.

3 4

7 8

11 12

15 16

19 20

23 24

27 28

31 32
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Measured Beamwidth - Figure 11 plots the measured 3 db beamwidth as

a function of frequency.

Measured Gain - The gain of the GEOS-B hemisphere is plotted in

Figure 12. The matching network loss is included to make this effective

antenna gain of the spacecraft.

Measured Axial Ratio - Figure 13 details the axial ratio of the antenna.

The axial ratio has been calculated from the radiation patterns by the formula

AX Ratio a= EREL
ER I 

EL

Measured Impedance - The input impedance at the feed point of the

hemisphere or the RF mockup as a function of frequency is plotted in

Figure 14.

IV- MULTIPLEXER AND ANTENNA MATCHING NETWORK

Introduction

This device multiplexes the signals from the spacecraft's six

transmitters and two receivers onto tLe wide band antenna feed cable. It

provides isolation between the signal sources and presents a nominally 50•-

input impedance to each at its operating frequency.

Principle of Operation

Figure 15 is a schematic of the multiplexer. The operation of the

directional filter is explained in the next section. It has no effect on the

circuit for frequencies other than 972 mcs.

Resonant short circuits and quarter wavelength coaxial lines are

used to accomplish frequency selective power division at the branch points.

Series tuned circuits are used to shcw IL64 circuit a point on a transmission

line to ground at their resonant frequency. The distance from the resonant

short circuit to the branch point is adjusted to ^/4 0 making the input

impedance very high any preventing power flow into the line. The effect of

the circuits off resonance will be ignored in the first approximation since

their Q is high.
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Referring to Figure 15, signals at 449, 421, and 324 mesp are prevented

from flowing in path A by the tuned circuits at 6 and 7. The distance

5 - 6 is one quarter wavelength

wavelength at 324 mcs. The tune

to flow in the path E, the stub

The stub and A/4 line in path E

wher( 7 it is matched at 449 mcs.

little effected by an imperfect

at 449 mcs, the distance 7 - 5 is one quarter

sd circuit in path F forces t._-1 324 mcs signal

(8) and line(9)match the impedance to 50.%.

stop 421 and 449 mcs and Force it into line F

The 421 mcs signal feeds a receiver and is

match. Signals at 136, 148, 162 and 224 mcs

are forced into the A path by the tuned circuits in path D. 224 mcs flows

into path B where it is matched to 50-%; 136, 148 and 162 mcs flow into

path C where they are divided and separt-tely matched.

The 972 mcs directional f-AULer is a four port

response of Figure 16. 12 Arm 4 is isolated from the

97P mcs doppler signal is coupled to the antenna ari

of the matching network. Any other frequency traver

1 2 or 2 - 1 path and is isolated from the 972 mcs

2 are perfectly matched at all frequencies.

device with the frequency

other three arms. The

isolated from the remainder

ses the filter along the

transmitter. Arms 1 and

Principle of Operation - If the coupled and isolated arms of a

directional coupler are connected with a ring N wavelengths Jong, a signal

incident at the primary arm of the coupler will cause a resonance in the

secondary in the form of a traveling wave circulating about the 'loop

(Figure 17). The process of buildup to resonance is similar to standing

wave buildup in a microwave cavity. If two directional couplers are connecb.ted

in the loop, energy incident at port l at the resonant frequency of the loop

will be coupled tr, port 3. Energy et any other frequwic, Ill riot excite

the loop and so will be coupled to port 2. The device . -° ; es as a band pass

filter with unloaded Q equal to the Q of the transmisc. Jrle and loaded Q

dependent on the coupling coefficient of the directional couplers.

Multiplexer Mechanical Realization' - The tuned circuits and inter-
r^	 -r 	 II	 r r -_ 	 I_r Irrlwrrr^rr.

connecting lines within a set of dotted lines on t 1— sche:,atic are contained

in one filter box. The interconnection cables are nonmagnetic RG 142 U

(Times Wire and Calbe Company special cable 141 5199). The mechanical

51..-



1-21-2

0	 972 mcs^ III

Fig. 16 FREQUENCY RESPONSE OF
872 mcs DIRECTIONAL FILTER

SDIRECTIONAL
	 4

COUPLER 2

DIRECTIONAL
COUPLER 1	 2

Fig. 17 DIRECTIONAL FILTER SCHEMATIC

W,

THE JOHNS MOPKIN{ UNIVERSITY
APPLIED " NSICS LABORATORY

sli.va I NDINO. mannAND

I-2
I	 I-3	 III	 i-3

u

INSERTION
LOSS

52 -

i

i

l

I)

j

(1



TH[ JOW1N "OPKIN9 NNIVRMITY
APPLIED PHYSICS LABORATORY

ftV6* On". MAMA"

constructions are called out on the Assembly Drawing 7211-5500.

Stripline is used to package the GEOS directional filter in a
411 x 3.5" x 3/8" envelope.

The filters are ordered from Hylectronics Corporation to the following

specifications:

Mechanical - the dielectric material is teflon fibreglas. The connector

pins are soldered to the strip line. The dimensions of the filter will be

as called out on Hylectronics Drs.....ng #B 1e14t"Model AL-12T Directional

Filter".

Electrical

Port 1 to Port 2 Insertion loss - .25 db max. from 130 to 450 mcs

VSWR	 1.1:1 11	 11	 it	 11	 II	 it

Port 3 to Port 1 Insertion loss - 1 db max. at 972 mcs.

3 db max. at 972 ±2%

VSWR	 1.2:1 max. at 972 mcs.

Port 3 to Port 2 Isolation 	 20 db min. at 972 mcs.

Thermal - the electrical requirements must be met over the temperature range

-7°C to +550C.

s

ra

r

i
S

* Not a part of this report
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Multinlexer Pe;brication and Test Procedure

S2T

Cable Fabrication

Filter,Pre-pot Tuneup

irectional Filter Tes

tiplexer Assembl

Filter Tuneup

.tch to Flight Antenn

solation and VSWR Tes

Vibration Test

solation and VSWR Chec

hermal Vacuum Test

solation and VSWR Chec

tenna Patterns

nstallation in Flight Body

VSWR Check on Flight Body

;ht Satellite Environmental Tests

VSWR Check on Flight Body

, 54
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Filter Fabrication

Filter Pot

FABRICATION AND TEST
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Event Description and Typical Results

Ca_ ble Fabrication - Drawing No. 7"11-5500 details the electrical lengths

of the interconnecting cables.

Filter Pre-pot Tuneup - With the test setup of Figure 18, tune the

filter section through its entire range. The filter section must resonate

at nearly minimum capacity. Capacitors that have been overheated in soldering

often short circuit before reaching the end of travel or are intermittent as

they are tuned.

Directional Filtar Test - The filter is temperature tested at -7°C

and +55 °C. Evidence of severe detuning (decreased isolation or increased

insertion loss) at low temperature indicates inadegiate tension in the screws

holding the stripline boards together.

Match to Flight Antenna - Match each port to 50•% at its resonant

frequency.

Isolation and VSWR Test - The test setup of Figure 19 is used to

measure isolation, the PRD impedance bridge is used to measure VSWR. Measured

VSWR and isolations on GEOS-B:

Relative Power Out of Port db

? -,put	 1449
Port &

F-rr^mionntr 1^6 148 1162 1 224 1 324 421 972	 VSWR

136 --- 4o 43 47 4o 49 53 1.18

148 32 -- 40 36 40 52 47 1.22

162 35 32 -- 44 37 48 45 1.26

224 42 48 45 -- 43 48 48 1.12

324 55 47 41 42 -- 6o 60 1.o6

421 6o 60 56 6o 27 -- 52 2.2

449 49 51 48 58
1

36 -- 48 1.05

972 4o 52 50 4o 4o 46 1	 -- 1.30

^55^•
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Measurement During Vibration Test - During the test the generator in

Figure 20 is varied -to the frequency of each port in turn. The uutput of the

port is monitored for evidence of intermittent operation.

Measurement During Thermal Vacuum Tests - The VSWR is me'.s .!Xed with e

50-ft termination in place of the antenna. Little change occurred with

temperature variations.

Post Environmental Checks - Little change in VSWR or isolation was

observed after environment&l tests.

Checks on the Flight Satellite - Little change was observed in the

VS%1R when installed on the flight satellite or after satellite level environ-

mental tests.

V. S-BAND ANTENNA

A balanced equiangular spiral projected onto a cone provides an

antenna for the Range transponder. This antenna is discussed extensively

in the literature, for the sake of brevity, this bibliography is preser_ted

in place of a technical discussion:

DYSON, I. D. (1959). The unidirectional  equiangular spiral a:. --nna.

IRE Trans. Antennas Propagations AP-7t 329-334.
DYSON, J. D. and MAYES, P. E. (1961). New Circularly Polarized

Frequency-Independent Antennas with Conical Beam Patterns.

IRE Trans. Antennas Propagation AP-9 334-342•
DYSON, J. D. (1965). The Characteristics and Design of the Conical

Log-Spiral Antenna. IEEE Trans. Antennas Propagation A.P-13.

Measured Radiation Patterns

S-band radiation , p&tterns were recorded using the S2T antenna range and

the coordinate system already discussed and are included as Figure 21.

Table II lists the pattern numbers for the various angl;ss and frequencies.

Omnidirectional Level
Frequency	 on the Charts

1705	 15 db

2270	 18 db

- 57 -
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T'AbLE i:•.

Frequency°

1705 me	 2270 mc:

0 1 9

22.5 2 10

45 :3 li

67.5 4 12

90 5 13

112.5 6 14

135 7 15

157.5 8 16

Measured VSWR

The VSWRs of the Swband antennas mounted on the RF mockup are

	

Frequency	 VSWR.

1705 mcs

	

2270 mcs	 1.30:1

Flight Qualifications Tests

The tests performed to flight qualify the S-band antennas are

exactly similar to those used for the C-band antennas.

V.T Z.	 C - BAND CAV. TZ MOUNTED HEL Z AL ANTEIMNAS

Each C-band transponder feeds a right hand circular helix mounted in

a dielectrically loaded cavity. The antennas are mounted on the bcdy as

shown in Drawing No. 7211-0005. Litton Systems, Inc., Amecon Division of

Silver Sprang, Maryland developed and manufactures the antenna.

Mechanical DetailE,

The antennas as received from Litton are modified by milling the upper

flange and drilling mounting holes according to Drawing No. 7211-1300. The

J	 3
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face of the quartz, window is painted with two coats of 1 GEOS" faint for
thermal protection. The construction of the antenna is best descr.bed by

its x-ray (Figure 22).

Principle of Operation

The name "cavity mounted helix" is a misnomer that suggests

association wtth the axial mode helical antenna. Several 2haracteristics

of the cavity mounted helix, for example the independence of beamwidth and

axial .length, make it more coherent to consider 'it an open ended circular

waveguide. The following sections Justify this model for the operation of

the antenna.

The cutoff wavelengths for circular electric modes in a dielectrically

loaded pipe (13) are given by

fc k c
^ TT /—e a	 where k •za roots of J! (2n a%X )

Ji- derivative of the first order
Bessel function

a " pipe radius
e w velocity of light in vaeuam

For the silver plated quartz cylinder of the antenna,

- • 1.94, a " -5" .-1.27 cm

For the dominant mode (TEl11), k = 1.841 and

fc = 3600 mcs

For the next higher modes TM01 fe W 4650 mcs

TE21 fc = 5900 mcs

At the GEOS C-band frequencies, the quartz loaded cavity -will support
the dominant TES mode and the higher order TM01 mode.

Mode Generation

A helical antenna operating in the axial mode will generate a circularly

polarized TE11 m+ode wave when placed in a circular guide
(14)

The TMol mode

will not be excited to any significant degree. The dimensions of the helix

imbedded in the quartz dielectric (D w 1.01X) cause it to operate in the

Wr
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axial mode.

Characteristics of the Cavity Mounted_ Helix

The radiation pattern of the cavity helix is independent of the

number of turns provided it is greater than 2. The input impedance is

nominally 50^ over its range of operation. The cavity helix has nearly a

decade bandwidth corresponding to axial mode operation of the helix.

GEOS-B C-Band Antenna Measured Data

Measured VSWR - The VSWft of the antennas when mounted on the RF mockup

was less than 113:1 at both frequencies.

Measured Radiation Patterns - The tadiation patterns (Figure 23)

of the antennas mounted on the RF mockup were taken on the S2T-4 antenna

range (Figure 8), using the standard spherical coordinate system (Figure 9).

Table 11I lists the pattern nrmbers for a particular antenna, frequency and

angle. The isotropic level falls at 10db on the charts.

TABLE III. Antenna Serial Number

1153 (Inboard) 1237 (Outboard)

Fr-- quency Frequency

5690 mcs 5765 mcs 5690 mcs	 5765 mcs

=0 1 9 17	 25

22.5 2 10 18	 26

45 3 11 19	 27

67.5 4 12 20	 28

90 5 13 21	 29

112.5 6 14 22	 30

135 7 15 23	 31

157.5 8 16 24	 32
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Fig. 23-16
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GEOS-B C-Band Antenna Test Procedure

TEST FLOW DIAGRAM

Tests Performed and T, Mical Data

Mechanical Inspection and X-Ray - Causes for rejection in the past

have been sprung center pins in the RF connector and cracks in the quartz

window. Chips out of the surface of the quartz have no Effect on the

performance of the antenna and are acceptable. The X-ray (Figure 22) is

used for visual checks and is a means of detecting damage after environmental

testing.

VSWR on iuckup

The VSWR is measured at both frequencies on the RF mockup.

113,
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Vibration Test

The detected output of

during vibration. An intermit

rejection of the antenna.

Thermal Vacuum Test

A sudden change in the

test is cause for rejection.

a slotted line is monitored with an oscilloscope

".tent or change in amplitude is cause for

VSWR measured with a slotted line during the

Typical VSWR vs. temperature data:

	

-950F
	

1.2:1

	

+55°F
	

1.35:1

	

+155OF
	

1.x+:1

Post Environmental Tests

VSWR, mechanical inspection and X-ray tests are repeated and the

data compared with pre-environmental tests. Radiation patterns are measured

as already discussed.

l
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