One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Department of Statistics

Southern Methodist University Dallas, Texas 75222

SAMPLE SIZES FOR APPROXIMATE INDEPENDENCE OF LARGEST AND SMALLEST ORDER STATISTICS

by
JOHN E. WALSH

Technical Report No. 3 Department of Statistics THEMIS Contract

September 3, 1968

Research sponsored by the Office of Naval Research Contract NOOU14-68-A-0515

Project NR 042-260

Reproduction in whole or in part is permitted for any purpose of the United States Government.

SAMPLE SIZES FOR APPROXIMATE INDEPENDENCE OF LARGEST

and smallest order statistics
John E. Walsh
Southern Methodist University*

ABSTRACT

Let X_{n} and X_{1} be the largest and smallest order statistics, respectively, of a random sample of size n. Quite generally, X_{n} and X_{1} are approximately independent for n sufficiently large。 Minimum n for attaining at least specified levels of independence are developed. Level of independence is measured by the maximum difference between the true values of $P\left(X_{1} \leq x_{1}, X_{n} \leq x_{n}\right)$ and the corresponding values assuming independence of X_{n} and X_{1}. The results are for small maximum differences (say, at most .02) and apply to all possible distributions for the population sampled. The value of minimum n is the smallest allowable n for the continuous case but can be too large otherwise. Minimum n is finite for all nonzero differences.

INTRODUCTION AND RESULTS

The largest and smallest order statistics of a random sample tend to statistical independence as the sample size increases. That is, consider a random sample of size n and let X_{n} and X_{1} be the largest and smallest order statistics, respectively. Also consider

[^0]\[

$$
\begin{equation*}
P\left(X_{1} \leq x_{1}, X_{n} \leq x_{n}\right)-P\left(X_{1} \leq x_{1}\right) P\left(X_{n} \leq x_{n}\right) \tag{1}
\end{equation*}
$$

\]

which is nonnegative. As $n \rightarrow \infty$, the maximum of this difference (over x_{1} and x_{n}) tends to zero.

Since any n used is finite, there can be interest in how the maximum difference of (1) is affected by n. More specifically, for a given value of the maximum difference, what is the minimum n such that this value is not exceeded? For example, what is the minimum n such that the maximum difference is at most . 001 ? When the maximum difference is small, there is little error in using $P\left(X_{1} \leq X_{1}\right) P\left(X_{n} \leq X_{n}\right)$ as the joint cumulative distribution function (cdf) for X_{n} and X_{1}.

The expression developed for minimum n is based on approximations but is very accurate when the stated maximum difference is small (say, at most .02). This expression provides the smallest permissible value of n when the population sampled is continuous. A smaller value of n could possibly be allowable when the population cdf $F(x)$ is discontinuous, since $F\left(x_{1}\right)$ and/or $F\left(x_{n}\right)$ might not be able to have the values that maximize (1).

Let δ be the specified value for the maximum difference. At most this value occurs if

$$
\begin{aligned}
n \geq \frac{-1}{2 \log _{e}\left(1-\delta e^{2}\right)} & \left\{1+\left[1-4 \log _{e}\left(1-\delta e^{2}\right)\right]^{1 / 2}\right\} \\
& =(1 / \delta) e^{-2}+1 / 2 \doteq .1353 / \delta+.5,(\delta \leq .01)
\end{aligned}
$$

For example, the maximum difference is at most . 005 if $n \geq 28$.
These results, which are applicable for all possible $F(x)$, again show that X_{n} and X_{1} tend to independence as $n \rightarrow \infty_{0}$. That is, no
matter how small δ is, there are values of n such that the maximum difference is less than δ (say, at most $\delta / 2$).

DERIVATIONS

Let $a=a\left(x_{n}\right)$ and $b=b\left(x_{1}\right)$ be defined by $p\left(x_{n} \leq x_{n}\right)=e^{-a}$, $P\left(X_{1} \leq x_{1}\right)=1-e^{-b}$. In the derivations, all values of \underline{a} and \underline{b} in the range zero to infinity are considered to be possible (corresponds to the continuous case). Then,

$$
F\left(x_{n}\right)=e^{-a / n}, \quad 1-F\left(x_{1}\right)=e^{-b / n},
$$

so that, in general,

$$
\begin{aligned}
P\left(X_{1} \leqslant x_{1}, X_{n} \leqslant x_{n}\right) & =F\left(x_{n}\right)^{n}-\left[F\left(x_{n}\right)-F\left(x_{1}\right)\right]^{n} \\
& =e^{-a}-\left(e^{-a / n}-1+e^{-b / n}\right)^{n}
\end{aligned}
$$

If X_{n} and X_{1} are independent,

$$
\begin{aligned}
P\left(X_{1} \leq x_{1}, X_{n} \leq x_{n}\right) & =F\left(x_{n}\right)^{n}-F\left(x_{n}\right)^{n}\left[1-F\left(x_{1}\right)\right]^{n} \\
& =e^{-a} \cdots e^{-(a+b)}
\end{aligned}
$$

Thus, the value of (1), the difference of these two probabilities, can be expressed as

$$
e^{-(a+b)}-e^{-a[1}-e^{a / n}+e^{(a-b) / n]^{n}}
$$

which, by some expansions in terms of l / n, equals

$$
\begin{gathered}
e^{-(a+b)}-e^{-a} \exp \left[-b-a b / n-a b(a+b) / 2 n^{2}+0\left(1 / n^{3}\right)\right] \\
=e^{-(a+b)}\left\{1-\exp \left[-a b / n-a b(a+b) / 2 n^{2}\right]\right\}
\end{gathered}
$$

for n sufficiently large ($s a y, n \geq 8$) and $a+b$ not large. It is to be noted that $a+b \leq-\log _{e} \delta$ in all cases where the difference is to be at most δ.

This expression is set equal to $\delta,(\delta \leq .02)$, and the n (not necessarily an integer) yielding this value is determined. Then, this expression for n is maximized with respect to \mathfrak{a} and \underline{b}.

First, consider the more crude approximation where terms of order $1 / n^{2}$ are neglected. Then,

$$
e^{-(a+b)}\left(1-e^{-a b / n}\right)=\delta
$$

so that

$$
\begin{aligned}
n= & -a b / \log _{e}\left(1-\delta e^{a+b}\right) \\
& \doteq(1 / \delta) a b e^{-(a+b)} .
\end{aligned}
$$

Thus, to this order of approximation, $a=b=1$ are the maximizing values. That is, the true maximizing values for \underline{a} and \underline{b} should be near unity.

Now consider the approximation where terms of order $1 / \mathrm{n}^{3}$ are neglected. This yields the quadratic equation

$$
n^{2}+n a b / \log _{e}\left(1-\delta e^{a+b}\right)+a b(a+b) / 2 \log _{e}\left(1-\delta e^{a+b}\right)=0,
$$

with solution

$$
\begin{aligned}
& 2 n=-\left[a b / \log _{e}\left(1-\delta e^{a+b}\right)\right] \\
& x\left\{1+\left[1-2(a+b)(a b)^{-1} \log _{e}\left(1-\delta e^{a+b}\right)\right]^{1 / 2}\right\} .
\end{aligned}
$$

Expansion with respect to δ yields

$$
\mathrm{n} \delta=a b e^{-(a+b)}\left[1+(1 / 2) \delta \mathrm{e}^{\mathrm{a}+\mathrm{b}}\right]^{-1}\left[1+(\mathrm{a}+\mathrm{b})(2 \mathrm{ab})^{-1} \delta \mathrm{e}^{\mathrm{a}+\mathrm{b}}\right]+o\left(\delta^{2}\right),
$$

so that $\log _{e} n \delta$ equals

$$
\log _{e} a+\log _{e} b-a-b-(1 / 2) \delta e^{a+b}+(a+b)(2 a b)^{-1} \delta e^{a+b}+0\left(\delta^{2}\right)
$$

This montonically increasing function of n is maximized with respect to a by setting $\partial \log _{\mathrm{e}} \mathrm{n} \delta / \partial a$ equal to zero, yielding

$$
\begin{aligned}
& 1 / a-1-(1 / 2) 6 e^{a+b}[1-(a+b) / a b-1 / a b \\
&\left.+(a+b) / a^{2} b\right]+0\left(\delta^{2}\right)=0 .
\end{aligned}
$$

Let the terms of order δ^{2} be neglected. Also, since δ is small, the solution for the case where terms of order $1 / n^{2}$ are neglected should be usable in the coefficient of δ. This yields the solution $\mathrm{a}=1$, and a similar analysis yields the solution $\mathrm{b}=1$. Thus, $\mathrm{a}=\mathrm{b}=1$ is the maximazing choice (to a good approximation) even when terms of order $1 / \mathrm{n}^{2}$ are included. Use of $\mathrm{a}=\mathrm{b}=\mathrm{l}$, combined with n being an integer, yields the expression stated for determining minimum n for given δ.

[^0]: \# Research partially supported by NASA Grant NGR 44-007-028
 Also associated with ONR Contract NO0014-68-A-0515.

