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ABSTRACT

Let Xn and Xl be the largest and smallest order statistics,

respectively, of a random sample of size n, Quite generally,

xn and X1 are approximately independent for n sufficiently large,

Minimum n for attaining at least specified levels of independence
are developed. Level of independence is measured by the maximum

difference hetween the true values of P(X1 < xl,xn < xn) and the

corresponding values assuming independence of Xn ana Xl. The results
are for small maximum differences (say, at most ,02) and apply to

all possible distributions for the population sampled., The value of
minimum n is the smallest allowable n for the continuous case

but can be too large otherwise. Minimum n is finite for all

nonzero differences.

INTRODUCTION AND RESULTS

The largest and smallest order statistics of a random sample tend
to statistical independence as the sample size increases, That is,

consider a random sample of size n and let X and X; be the largest

and smallest order statistics, respectively. Also consider

¥ Research partially supported by NASA Grant NGR 44-007-028
Also associated with ONR Contract NOO014-68-A-0515.




P(X; s x;, X, Sx) - P(X; s x )X = Xy (1)
which is nonnegative. As n = «, the maximum of this difference

(over Xy and xn) tends to zero.

Since any n used is finite, there can be interest in how the
maximum difference of (1) is affected by n. More specifically, for
a given value of the maximum difference, what is the minimum n
such that this value is not exceeded? For example, what is the
minimum n such that the maximum difference is at most ,001? When the
maximum difference is small, there is little error in using

KX, s x JP(X = xn) as the joint cumulative distribution function
(cdf) for X, and X,.

The expression developed for minimum n is based on approximations
but is very accurate when the stated maximum difference is small
(say, at most .02), This expression provides the smallest permissible
value of n when the population sampled is continuous. A smaller
value of n could possibly be allowable when the population cdf
F(x) is discontinuous, since F(xl) and/or F(xn) might not be able
to have the values that maximize (1),

Let 8§ be the specified value for the maximum difference. At most

this value occcurs if

N> 1 {1+ [1 - 4log (1 - se2) ] 1/2 }
2 loge(l - 6e2)

2(1/g)e™2 + 1/2 = .1353/6 + .5, (6 < .01).

For example, the maximum differenfe is at most 005 if n = 28,
These results, which are applicable for all possible F(x),

again show that Xn and X1 tend to independence as n - o, That is, no




matter how small & is, there are values of n such that the maximum

difference is less than § (say, at most &/2).

DERIVATIONS

et a = a(xn) and b = b(xl) be defined by KX = xn) = e”9,

FKXl = xl) =1 - e"b, In the derivations, all values of a and b

in the range zero to infinity are considered to be possible (corresponds

to the continuous case). Then,

F(xn) = e-a/n' 1 - F(xl) = e'b/n.

so that, in general,

ne F(x )" = [FGx ) - F(x))]"

P(Xl < xX.,X < xn)
= e™@ o (/M _p 4 ¢"P/myn,

If Xn and Xl are independent,

P(X, = %, X = x) = FGx )" - Fx )1 - F(xp)]"

il

e~ .. o ~lath)

a—
—

Thus, the value of (1), the difference of these two probabilities,

can be expressed as

e—(a—i—b) _ e—a[l - ea/n + e(a-b)/n]q
which, by some expansions in terms of 1/n, equals
e~(arb)_ -a exp[-b - ab/n - ab(a+b)/2n2 + 0(1/n3)]

te"(a+b){l - exp[ -ab/n - ab(a+b)/2n2]}
for n sufficiently large (say, n = 8)and a + b not large. It is to be

noted that a + b < - logeé in all cases where the difference is to

be at most §.




This expression is set equal to 6,(8 s ,02), and the n
(not necessarily an integer) yielding this value is determined,
Then, this expression for n is maximized with respect to a and b,
First, consider the more crude approximation where terms of

order 1/n2 are neglected, Then,
e"(a+b)(l - e'ab/") = §

s0 that
n - ab/log,(Ll - 6eP)

= (1/8)abe™ &P
Thus, to this order of approximation, a = b = 1 are the maximizing
values, That is, the true maximizing values for a and b should be
near unity,
Now consider the approximation where terms of order l/n3 are

neglected. This yields the quadratic equation

n® 4 nab/log (1 - 6e*P) + ab(a+b)/210g (1 - e®P) =0,

with solution

2n = —[ab/loge(l - 6ea+b)]

x{1+ [1 - 2(atb)(ab) " log (1 - se®0) 1/ 2y,
Expansion with respect to § yields

ns = abe TP 11(1/2) 663111 + (arb) (2ab) " 15e¥PT 4 0(52),
so that .log né equals
log,a + log,b - a - b - (1/2)<f‘>ea+b + (a+b)(2ab)_16ea+b + 0(62).

This-‘montonically increasing function of n is maximized with respect

to a by setting 3log,ns/da equal to zero, yielding




- e e bt et s e o acpe o s

1/a = 1 = (1/2)6e®P[x = (ath)/ab - 1/ab

+(a+b)/azb] + 0(62) = 0,

2 be neglected, Also, since § is

Let the terms of order §
small, the solution for the case where terms of order 1/n2 are
neglected should be usable in the coefficient of 6. This yields
the solution a = 1, and a similar analysis yields the solution
b =1. Thus, a=b = 1 is the maximizing choice (to a good
approximation) even when terms of order 1/n2 are included. Use of
a=b=1, combined with n being an integex, yields the expression

stated for determining minimum n for given §.
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