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FOREWORD

Research related to advanced nuclear rocket propulsion is
described herein. This work was performed under NASA Grant NsG=694
with Mr. Maynard F. Taylor, Nuclear Systems Division, NASA Lewis

Research Center as Technical Manager.
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ABSTRACT

Confined laminar mixing of dissimilar circular axisymmetric jets
was studied. A binary isothermal system of non-reacting gases was4
considered. The central jet consisted of a slow moving heévy gas and
the coflowing annular stream was a fast moving light gas. This
investigation provides valuable information about the hydrodynamics

of the coaxial flow gas=core nuclear reactor.

The boundary layer equations in cylindrical coordinates were
used to formulate the mathematical model. These equations were trans-
formed to the von Mises plane for numerical stability, and further to
the @=-z plane to obtain a better representation of the flow problem
in the central region. The solution was obtained by an explicit
finite difference scheme. Karplus' as well as von Neumann's methods
were used to determine the numerical stability conditions for the
finite difference equations. Typical running time on the IBM 360/40
computer was about 10 minutes for obtaining results for the complete
entrance region., The numerical method developed was also used to
generate the solution for the classical entrance flow problem and the
agreement of this solution with the available solutions provided a
verificétion of the method. TFor the results of the confined jet mix=-
ing problem, partial check was also obtained by comparing the numeri-

cal values of the fully developed flow parameters with the corresponding



asymptotic values computed independently from simple theoretical

considerations.

A detailed parametric investigation of the present problem

was carried out and consisted of studying the effects of the para-

Uz P1 R
meters - velocity ratio T density ratio 5— , radius ratio r
1 2

Reynolds number N of outer stream, Schmidt number N based
Re,2 " Sc,2
2

on outer stream and viscosity ratio ;— - on the length of the mass
1

fraction potential core ED > length of the velocity potential core
1

I, , the centerline velocity v s, the wall mas fraction o
v z,1 l’W

and the index of the effect of mixing T . The numerical method

Uz P1 Ry
permitted large initial variations of o 5_ and - Results
1 2

were obtained in the form of velocity and mass fraction fields and

are valid in the near jet region as well as in the developing region
downstream. Of the 57 cases investigated, the results of some selected
runs are presented in order to show only typical effects of the para-

meters of the problem. (These 57 cases are tabulated in Appendix D.)

The prinéipal results of the parametric study show that, for

Uz
confined jet mixing, as o increases, ED decreases but Lv in=-
1
pr t
creases, and as 5— increases, ED increases but LV decreases.
2 1
This behavior of Lv is in direct contrast to the results available
Uz
for unconfined mixing where LV decreases as T increases and Lv
1
P1
increases as - 1increases. The present study shows also that an in-
U2 Pz
crease in’ T - results in rapid change of the centerline values, i.e.,
1

rapid mixing, and a narrower jet as well as a shorter developing length.



P

Further, an increase in o reduces the centerline velocity in the
2
mixing region and increases the developing length., Finally, 1]
Uz e,
decreases as o increases and T increases as E—° increases, thus
1 2
showing rapid mixing,
Uz Py
The effects of o and . on the laminar mixing compare with
1 2

those available for turbulent jet mixing. Hence, the present study

provides trends which are useful in understanding turbulent jet mixing.

P Ry
At high welocity ratios, increase in BL and reduction of =—
2
were found to be the main factors for stabilizing the numerical solu=
tions. TFor some of the cases investigated, a positive pressure gradi=

ent or an oscillatory negative pressure gradient was observed; a

suitable explanation for this behavior was not found.

The analysis presented gives useful insight into the complex

problem of incompressible laminar confined jet mixing.
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CHAPTER 1

INTRODUCT ION

Circular confined jet mixing takes place between two streams
in concentric ducts, downstream of the poéition where the inner duct
is discontinued, allowing the jet stream from the inner duct to mix
with the confined outer stream, Mixing and diffusion take place in
the entrance region which is composed of an initial mixing region
directly downstream from the jet exit, followed by a developing regionm.
The jet and the annulus streams mix primarily in the initial mixihg
region. In the developing region, the velocity profiles become more

and more of a "similar" shape as the flow becomes fully developed.

In several practical applications, jet mixing occurs in a
confined outer stream as in the case of jet pumps, ejectors, jet en=-
gine combustion chambers and also in gaseous core reactors for nuclear
rocket engines. The feasibility of the last application has been

studied in detail by Ragsdale and his assoéiatesl’2’3*

The present
study has also been motivated by the recent interest in the gas-core
rocket engines where a low velocity fissionable gas is ejected co-
axially into a high velocity hydrogen propellant stream. The primary
goal of such an advanced nuclear rocket engine is to produce a sub-
stantially higher specific impulse than the 850 seconds available

from a solid core reactor. It is also necessary to reduce the loss

of uranium to a minimum; such loss results from the mixing of the

* Superscript numerals refer to similarly numbered references at
end of report.



fluid streams. Hence, for optimum performance, it is desired to make
both the specific impulse and the hydrogen to uranium flow rate ratio
a2 maximum, For this reason it is necessary to understand the behavior
of a confined fluid jet system, The work presented is carried out to
promote such understanding. Though only the initial mixing region
is of interest for the gas-core nuclear rocket studies, the entire
mixing and developing regions are investigated so that the results
may be checked against the known behavior of the fully developed flow.
Also, the complete study has applications beyond gas-core reactor

problems.

Several investigations by the Nuclear Systems Division,
NASA Lewis Research Center, show that the flow in a gas=core
nuclear reactor is turbulent and that compressibility effects are
negligible. However, as an intermediate step to the turbulent
mixing problem, the corresponding laminar problem is analyzed;
this study provides useful information about the confined mixing
of coaxial jets. A literature survey of pertinent studies was
carried out and it shows that laminar jet mixing has been inves~
tigated for both incompressible and compressible cases but that
most of the work is limited to the unconfined, i.e., free jet
mixing; the more complex confined jet mixing has not been studied

in sufficient detail.



1.1 Literature Survey

1.1.1 Unconfined Jet Mixing

Free jet mixing of fluids has been extensively studied by
several investigators, experimentally as well as analytically. The
case of laminar incompressible jet mixing was first analyzed by
Schlichting4 in 1933, Schlichting solved the problems of the plane
as well as the circular jet issuing into a medium at rest, Schlicht-
ing's analyses were confirmed experimentally by Andrade and Tsien5
in 1937, and were found not to hold in the near jet region. 1In 1951,
Squire6 obtained exact solution of the Navier Stokes equations;
this turned out to be the solution for an axially symmetric laminar

jet which had been earlier analyzed by Schlichting.

*

In 1949, Pai7 studied the flow of a two-dimensional jet of
compressible fluid issuing from a finite opening, exhausting into a
uniform stream, and further investigated the mixing of two uniform
streams of a compressible fluid. This investigation was for léminar
as well as turbulent flows. In 1952, Pai8 extended the previous
analysis to the case of an axially symmetric jet. The von Mises
transformation was applied to the flow equations and numerical in-
tegration was used for computing the velocity and the temperature

fields.

9 . L.
In 1953, Torda” used the von Karman integral principle to
analyze the laminar incompressible mixing of two parallel streams
having equal velocities. This case was referred to as "symmetric

mixing". 1In 1955, Torda et al10 analyzed the laminar incompressible



mixing of two~dimensional and axisymmetric jets. The analyses were
for the region downstream of the potential core and indicated that
the bouﬁdaries of the mixing region are curved, a fact which had
been observed experimentally but not confirmed analytically by
previous investigators. Further, in 1956 Torda and Stillwell11
presented a comprehensive report of their analytical and experimental

investigations of laminar as well as turbulent mixing of jets for in~

compressible and compressible cases.

In 1962, Kleinstein12 investigated the mixing of an axisym-
metric laminar jet of a conpressible fluid with a constant external
flow. The von Mises transformation was used for the flow equations
with a subsequent linearization of the viscous term. This facilitated
the determination of the velocity field in the von Mises plane without
use of the energy equation. The results obtained indicate close agree-

. , . .8
ment with the exact numerical calculations of Pai

In 1963, Weinstein and Todd13 studied the problem of mixing of
laminar isothermal coaxial streams of greatly different densities.,
The analysis is based on the boundary layer assumptions with counstant
pressure in the entire flow field and the solution was obtained by
numerical techniques. It was shown that the velocity potential core
length increases with increasing ratio of densities of inner to outer
streams and decreases with increasing ratio of velocities of outer to
inner streams. The influence of the initial boundary layers in the
velocity profiles considerably increases the length of the velocity

potential core.



In 1964, Sherman and Grey14 carried out analytical as well as
experimental investigations of the laminar mixing of a high temperature
partially ionized subsonic argon plasma jet with a surrounding helium
atmosphere, The boundary layer approximations were used in the analy-
sis which involved the simultaneous solution of three nonlinear para-
bolic partial differential equations by finite difference techniques.
The transport properties were computed by an improved version of the
Chapman=-Enskog method. The results indicated a rapid diffusion of
the helium into the argon jet; diffusion of the helium upstream of
the jet exit section was also shown by the experiment. The axial

gradients of the temperatures and the velocities were small,

1.1,2 Confined Jet Mixing

Laminar mixing of confined jets has been experimentally shown
to occur for suitable inlet conditions. In 1964, Wood15 conducted
experiments for the confined mixing of jets of air containing tracer
quantities of HCl or NH3 and determingd the extent of the region of
laminar flow for various entrance conditions. However, only little
analytical or experimental work has been done on the fluid mechanics

of confined laminar jet mixing.

Mass transfer in confined laminar jet mixing has been invesg=-
tigated to some extent during the last several years. Two recent
studies pertinent to the present work are discussed here. The range
of applicability of the model used by Burke and Schumann16 (1928) was

extended by Savage17 in 1962, Enclosed laminar diffusion flames were



studied and the flame shape was predicted with surprising success in
spite of several assumptions such as spontaneous combustion, plug flow
throughout the entrance region, constant diffusion coefficient, and
absence of all forms of mixing other than radial diffusion. Diffusion
in a laminar, circular, confined jet reactor was studied by Wood15 ex=-
perimentally as well as analytically. 1In his experimental studies,
Wood used ethylene and nitrogen for the primary and the secondary
streams, respectively. The concentration of ethylene in nitrogen was
measured for the entire field for this non~reacting system. In the
mathematical model for mass transfer, Wood assumed the existence of
either plug flow or parabolic flow in the mixing region. Another
major assumption was that no radial convection exist, implying a
diffusion controlled process. For nearly equal entrance velocities,
the calculated concentration profiles compared well with the experi-
mental data. The agreement deteriorated for velocity ratios largely
different from unity when the effect of radial convection was no

longer negligible,

In 1966, Seider18 performed analytical studies of laminar,
incompressible homogeneous jet mixing with chemical reaction. Seider
transformed the Navier Stokes equations to the vorticity and the
stream function equations which were solved numerical ly to determine
the velocity profiles. The implicit alternating directions scheme
was used to obtain the numerical solution. The specific solutions
obtained provide a quantitative description of the mixing region of

the laminar confined jet. These results were confirmed semi-



quantitatively by his dye=-tracer experiments. The concentration
profiles were obtained by solving the coupled partial differential
equations describing mass transfer with chemical reaction in the en-
trance region. WNegligible axial diffusion was assumed and a modified
Crank Nicholson method was used for these calculations. Although
these computational schemes are claimed to yield unconditionally
stable numerical solutions, large instabilities were encountered in
the near jet region for entrance flow conditions which are known to
yield laminar flow. The instability was attributed mainly to the
discontinuity in the flow at the jet boundary. Similar instabilities
were encountered also in the present investigation and will be dis-
cussed later, For the non-reacting case, the results obtained by
Seider are in good agreement with the concentration measurements of

Wood.,

Confined jet mixing has been investigated at Illinois Institute
of Technology also. Fejer et al19 carried out experimental as well as
analytical studies of the confined mixing of coaxial streams. 1In
their analytical study, it was pointed out that the results obtained
by using the boundary layer equations show good agreement with Wood's15
results for wall concentration. Unsteady as well as steady homogeneous

mixing of confined laminar jets were studied by Agarwal and Tordazo°

In these studies, comparisons were also obtained for solutions of the
boundary layér equations with solutions of the Navier Stokes equations

for the steady flow configurations of Seider; the agreement with Seider's

2
results was satisfactory. Also, Mehta and Lavan t have obtained results



for laminar incompressible homogeneous jet mixing using the Navier
Stokes equations for ratio of velocities of outer to inner streams

as high as 30. These results have not yet been verified,

1.2 Present Study

The literature survey presented shows that the confined laminar
mixing of streams of highly differing fluid properties has not been
studied thus far., In view of this, the present investigation of
mixing of laminar axisymmetric confined circular jets of dissimilar
fluids was undertaken. 1In this study, an isothermal and non-reacting
flow field is considered. The flow problem is formulated as a boundary
value problem and is solved numerically by an explicit finite difference
scheme. The flow equations are approximated by their finite difference
forms such that flow parameters at any point may be expressed explicitly
in terms of known parameters only. Numerical stability is ensured by
satisfying Karplus'22 stability criterion. Numerical stability con-
ditions for these equations were obtained also be using von Neumann's
method, first given by O'Brien, Hyman and Kaplan, and were found to
be similar to Karplus' conditions. Whereas for the linear problem,
convergence of the obtained numerical solution to the exact solution
of the boundary value problem is established under the hypothesis due
to Lax%4 for the nonlinear problem, convergence can be proved by a
method due to Strangzs. The flow equations are programmed in Fortran

IV and are solved using the IBM 360/40 computer.



The three main contributions of this investigation are:

10

3.

The study enables an initial assessment of the gas-core
nuclear reactor and predicts mixing for confined jet flow
configurations which are difficult to investigate experi-

mentally,

The results provide detailed information of laminar,
incompressible, coaxial confined jet mixing for most

of the parameters of practical interest, The range of
these parameters over which the boundary layer equations

are unquestionably valid is established.

A finite difference method is developed for the solution
of the coupled nonlinear parabolic partial differential
equations. This method can be extended to study the

effects of compressibility and turbulence.



CHAPTER 2

ANALYSIS

2.1 Objective

The laminar coaxial confined heterogeneous mixing of in~
compressible jets is studied analytically in the present work.
The aims of the investigation are:

1. to obtain the velocity and concentration fields

in .the entire mixing and developing regions,

2. to determine the parameters of importance and to

study their effects on mixing, and

3. to find the range of applicability of the numerical
method developed for the jet mixing problem.using the

boundary layer equations,

2.2 Mathematical Model

The jet mixing problem to be studied is represented math-
ematically by the boundary layer equations with appropriate boundary
conditions. Auxiliary expressions are used to determine the thermo=-
dynamic and transport properties of the. fluid medium. The use of
boundary layer equations may be supported by the success with which
they have been applied in investigations of unconfined mixing
(References 8, 12, 13, 14 and 26). Their application to the con~
fined jet problem is further justified in Chapter 4. Also, the
effects of compressibility and turbulence can be more easily studied
with the use of the boundary layer equations than with the Navier
Stokes equations. Thus, the present mathematical model is based

on the following assumptions:

10
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1. The boundary layer assumptions.

2, Steady state, isothermal flow without body

forces and chemical reaction.

3, Cylindrical duct of constant cross-section.
4. Incompressible component fluids.
5. Invariance of binary diffusivity D with concentration.

12
A typical geometry of the problem is shown in Figure 1.

The mathematical model is designed to predict the mixing of
two streams as it progresses in the entrance region of the outer pipe.
The solution is obtained by a finite difference method which will be
discussed in Chapter 3. Any types of entrance velocity and density
profiles can be used with only minor modification of the numerical
scheme developed. The equations and boundary conditions describing

the mathematical model in the physical plane can now be written.

2.3 Formulation of Problem in Physical Plane (r,2)

2.3.1 Governing Differential Equations

Continuity Equation

,OJ

%l: (prv,) + (prv,) = 0 8

Q/

z

Momentum Equation

ov ov

d 1
A i Aad X @
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Diffusion Equation

a‘”l awl 19 aD:l.
Ve S YR T ror [r‘mlz 5?'] @)
where
D12 binary diffusivity for gas mixture
P static pressure |
v, mass average radial velocity
v, mass average axial velocity
T radial space coordinate
z axial space coordinate
" viscosity of mixture
o) mass average density
Wy mass fraction of species 1

2.3.2 Auxiliary Expressions

The auxiliary expressions relating thermodynamic and transport
properties mamely density, viscosity and binary diffusivity are given
below. Except for the expression for density, the other two equations

may be found in References 27,28 and 29.

Expression for Density

The expression for density is derived in Appendix A.

Y]
M
- — - + 4
P &1 W {ppil pP,E] pP,e ( )

TR
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where

M, molecular weight of fluid component i

Pp density of pure fluid

Expression for Viscosity

Viscosities of monatomic or polyatomic non-polar gases and gas

mixtures at low density can be computed from the following formulas.

For a monatomic or polyatomic gas,

2.6693 x 10™° \MT

pooo= 3 (5)
P cﬂu
where
Mo viscosity of pure component
T temperature
o} collision diameter
Qu collision integral for viscosity
For a binary gaseous mixture,
2 .
X, M,
b= EE -;Jijb&k‘"- (6)
i=1
PR
=
where
v viscosity of component i

p,>i

-1/2 1/2 1/4 4 2
i Hy

M M
- 1 i i d
Qij ng'[l + Mj ] 1+ (uj) (Mi) N



Expression for Binary Diffusivity

1/2
3/2 {Ma +uy) Y
BT ~
. D12 = = (1} : (8)

POy, Wiy (1-8)

where 2
%2 - 2 ®)
{M1 + Mz}l/z "

B = 10.7 - 2.46 | ————o x 10 10
‘ MM, (10)

P static pressure of mixture in atm.

ng collision integral for mass diffusivity

Xy mole fraction of species i

A correction factor

Equations (1), (2), (3), (4), (6) and (8) involve the seven

d .

unknowns vr(r,z), v, (r,2), EE(Z), wy(rs2), pln), H,) and
Dlzﬁbl). For a unique solution, the pressure gradient %E must be

either prescribed or computed for any flow problem governed by the
boundary layer equations. In the present study, %E is calculated
by imposing a valid and a unique constraint on the problem. The
constraint essential to make the equation set complete is the con~-
servation of mass flow rate across any cross section in the flow
region. Expressed mathematically, this leads to the integral con=-

tinuity equation; further m@thematical operations on this gives the

equation which will be hereafter referred to as the "Equation of



Constraint". It should be noted here that for the isothermal flow
under study, D12 is assumed to be independent of concentration and,
hence, is a constant. However, for the sake of generality, D

12 is

retained in the functional form.

2.3.3 Equation of Constraint

The mass rate of flow is conserved across every axial cross

section of a confined jet mixing flow. Thus

R
I 2nrpvzdr = m for any z (1)
)
where
R outer radius of the confining pipe
m mass rate of flow

Differentiating with respect to z, Equation (11) becomes

R
j“ 2rrpv dr = 0 (12)
o Z

O/IO/
N

It is assumed that the integrand of the above equation is an

integrable function of r for each value of =z, and that the partial
d(pv, )
z

derivative Sz exists and is a continuous function of r and =z

in the region of interest. Then Equation (12) can be written as

R o(v)
2 L r—Fdr = 0 (13)

16
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Apv )
Substituting for ~—§;5~ from the momentum equation (2), the axial

d . . . .
pressure gradient EB can be written, after some simplification, as

z

R dv dv
r 2 z, 19 z
J r[vza B ;'a‘;[“r'a?”df
L . 2 =2- — — (14)

The term %% in the above equation can be replaced by the

derivative of Equation (4).

Oy

%% = oz 2 [pp’l ) pp:z] (13)
Wy, w2
MM ﬁ:’+’ﬁ;

Then Equation (14) can be written as

Suy
Vi oz 2 [ppsl B Dp’a]
dp _ 1 jR I w0
dz der o vz MM [E—-'—ﬁ;]
oV,
ov ov
19 'z
Wf$”+¥$[”ar]

(16)

Equation (16) is the required "Equation of Constraint" and a

unique solution of the problem can be obtained after prescribing

appropriate boundary conditions,




2.3.4 Boundary Conditions

1. At the initial section z

=

0

A (r)
v, (xr,0) =

Ag (x)
v (£,0) = 0

h3(r)
w (r,0) =

Ay (x)

In this problem A (r),

to be constants.

2. At the centerline r = 0

v. (0,z) = O

Aa (1),

0<r <R

.18

(17a)

(17p)

(17¢)

and MA4(r) were chosen

(18a)

(18b)

(18¢)
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3. At the wall r = R

v, ®,2) = 0O (19a)
v, R,z) = 0 (19b)
y

-5-;— = 0 (19C)

Equations (1), (2), (3), (4), (6), (8) and (16), together with
the boundary conditions given by the equations (17), (18) and (19)

complete the formulation of the jet mixing problem.

The problem is thus governed by a system of coupled nou-linear
partial différential equafions which are very complex to solve. Also
several previous investigators have reported severe numerical in-
stabilities while attempting to solve similar equations for frée
jet mixing problems. One of the means used in the past to overcome
these difficulties was to transform the problem into the von Mises
plane in which the independent variables are the stream function

and the axial distance =z.

Indeed, von Mises plane is used to solve the present confined
jet mixing problem. The advantages and disadvantages of this trans-

formation will be discussed later.
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2.4 Formulation of Problem in von Mises Plane ({,z)

2.4.1 Definitions

The stream function is defined by the following two relations.

%% = pV,r (20a)
%g ==pv r (20b)
Thus,
r
¥ o= [ evrd (21)

The inverse transformation is given by

¥
2 oy
2 = 2 L o (22)

-The differential operators in the transform plane become

%}— = pvzr ’g“}' (23)
%; = «pvrr %$-+ %; (24)
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The Jacobian of the transformation is given by

- Az
J a(r , Z) pvzr (25)
Equation (25) shows that the Jacobian vanishes at the centerline
and at the wall, i,e., the transformation is singular at these boundar-
ies. Hence, at the centerline and at the wall, the mapping is not one-

to-one, and therefore, the inverse transformation does not exist at
]
¥

0 and ¢ = ¥, where ¥ 1is the wall stream function. However,

0O corresponds to r =0, and { = ¥ corresponds to r = R. Thus,
this information makes it possible to transfer uniquely the calculated
values of flow parameters from the von Mises plane to the physical

plane in the entire flow field.

The equations and the boundary conditions describing the flow

problem are transformed to the von Mises plane using Equations (20)

through (24).

2.4.2 Governing Differential Equations

Continuity Equation

The continuity equation (1) is satisfied identically by the

definition of the stream function given by Equation (20).

Momentum Equation

The transformed momentum equation corresponding to Equation

(2) is obtained as



ov dv
._z_.,_ngé..[z_..z_
oz pv, dz + oy hMr PV. Sy } (26)

Diffusion Equation

The diffusion equation, Equation (3), transforms as

g

R 5“1}

7 rp DlZVz 8;“ (27)
Equation of Constraint
_ a”l —
oy T a(pvz) + V2 dz
PV oy 2
@ W
MlMa ﬁ;" + 1\"4;"
Y
dp _ L J‘ | 4y
dz ¥ 1 o . pv
i z
J, =z o
o
PV,
. ov
[pp,l p,z] oY z oY
(28)

2.4.,3 Auxiliary Expressions

The auxiliary expressions (4), (6) and (8) remain unchanged,

but will be repeated here for the sake of completeness of the flow

equation set,

Expression for Density

Wy
M .
S {pp,l pp,z] + Pp,a (29)
W N,
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Expression for Viscosity

X
u=z — 1 p,i (30)

Expression for Binary Diffusivity

1/2
BT3/2{“1+M~,;}
ki 31
e PG W) (1-4) eh
12 ¥(y)

Appropriate mathematical operations on the continuity equation

make it possible to obtain v, in the ¢-z plane as follows.

2.4.4 Equation for Determining v

A(xrv.) v ov ov
r’ _ _r z _|_1 z 1 o0
v~ v, T3y LD 7 Bz} (32)

The boundary conditions given by Equations (17), (18) and (19)

for the physical plane, must be transformed also to the von Mises plane.

2.4,5 Boundary Conditions

At =z = 0, the dependent variables are prescribed as functioms

of r and can be directly transformed to functions of .

At r = 0, the boundary condition given by Equation (18) shows

_that the first order radial derivatives of vz and w, vanish.
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These are transformed as follows. .

By definition

sz v .sz

S = ovg g (33)
or avz

PV ¥y © T

In view of Equation (18), at r = 0, Equation (34) has the indeterminate

form

sz 0
PV ST =9 (35)
r=0
Using L'Hospital's rule, Equation (34) may be written as
3%y
z
Lim ov, Lim o 2
-0 PV, §$— = -0 -1 (36)
3%, dv
A finite 5 therefore implies that g;i is bounded. Similarly

ar 50)1

it can be shown that 'SE— and all other first derivatives with respect

to { are bounded at r = O,

Equations (26) and (27) show that the first order ¢ derivatives
always appear accompanied by the factor r2. ‘Hence, the boundary con-
dition at the centerline can be written as

0 rz'?z-é - oo rzéu:-l— = 0 (37)
oy -
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Finally, at r = R, only the part of the boundary condition

involving the radial derivative of ,; needs transformatiomn.

Again, by definition

el A S T 38)

or Ay
or

pr = = (39)
z
Using Equation (19) in the above equation shows that at r = R,
Equation (39) has the indeterminate form
Aoy 0
T Sy ° (40)
r=R
Using L'Hospital's rule, Equation (40) can be written as
5%»1
Lim Ay Lim 2
r-R pr SE— = TR *égg—-— (41)
-2z
or
ov B%ml

Now, at r = R, 5;5' is finite and 7~ can be estimated as follows.

dor

The diffusion equation in the physical plane is

Ay gy [ duy
PV, 5 P, 5 T TaE | TPl 5 (42)
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Substitution of Equation (19) yields

5 = 0 (43)

Using Equation (43) in Equation (41) above gives the boundary condition

at the wall as

Lim B(bl
r-R pr SE- = 0 (44)
or
Sy
ST = 0 (45)
=

All the boundary conditions can now be summarized as follows.

‘1. At the Initial Section z = 0

( A (9) U
v, (§,0) = (462)
Az (1) Y, <y <Y
v (4,0) = O O<y<¥ (46b)
{
| A3 0O<t<y
w (,0 = (46c)
Ay () ¥, <y ¥
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In this problem X (4), Az({), A3(y), A4(¥) were chosen to be

constant.

2. At the centerline r =0 §=20

v, (0,z) = 0 (472)
Lim 2 avz
-0 r g&- = 0 (47b)
Lim  , dw,
0 r 86— = 0 (47c)

3. At the wall T

=R Y=Y

v, ($,2) = 0 (48a)
v .(%z) = 0 (48b)
Qy

S ° 0 (48c)

The wall boundary condition is used to determine @, at the
wall. But at the centerline, instead of using the boundary condition
to determine the solution function, it is preferred for higher numerical
accuracy to uée the 1imiting forms of the governing differential equa-
tions. These equations may be obtained by substituting the centerline

boundary conditions in the general differential equations.
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\
2.4.6 (Centerline Equations

Momentum Equation

The momentum equation was given by Equation (26) as

—2 . .1

oz oV

sle

v
% [ urzpvz 'a—q;z'} (49)

4

On expanding, Equation (49) gives

ov B v ov ov

-2 = --"---R+u v*--—--ivurz —= +ur2v Lz

dz pv, dz P sz R, z 3y OV

dv Bv
or 'z 2 op
From Equation (20),
x

pv, I v 1. (5L
Using Equation (51) and the earlier derived fact that the first
order derivatives with respect to { are bounded, Equation (50)
reduces to

sz _ p Bzvz BVZ

The second term on the right hand side of this equation is

examined in the following manner.



| SR

3%y T ov
ur pv 2 = pr & —— 2
, B¢2 Brifnvzr or
or
? 3%y Bzv
pr pv zz = 22 - -k S
% 3y PY2 3c” PV R OF
ov
.z
.+ 29r or
v,0
Now by L'Hospital's rule
v )
Lim S—E Lim 0O v,
-0 §4 = -0 5

or

Using Equations (18) and (55) in Equation (54) gives

Bzvz
wrpv, —5* = 0
oy

Therefore, Equation (52) reduces to

ov ov
-2 o .- dp ., _z
oz ov_ dz oY

Diffusion Equation

29

(53)

(54)

(55)

(56)

(37)

Similarly, at the centerline, the diffusion Equation (27)

reduces to
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Ay Ay
g—z—“ = 2pD125“\F“ (58)

The flow Equations (26) through (32) along with the boundary
conditions (46) through (48) and the centerline Equations (57) and
(58) complete the formulation of the problem in the von Mises plane

for a unique solution,

One point is of major concern at this stage, since the problem
is solved by finite difference methods. The boundary condition at
z = 0 determines the mass flux of the outer and inner streams. As
the ratio of the mass fluxes of the outer to the inner streams
approaches the total number of steps of uniform size along the trans-
verse direction, the number of grid points representing the inner
stream decreases. The latter number becomes undesirably small for
certain cases with large mass flux ratios investigated in the pre~-
sent work, Hence, to obtain a proper finite difference representa-
tion of the inner stream for these large mass flux ratios without
unréasonably increasing the number of steps in the ¢ direction,
a suitable transformation is used to stretch the { coordinate
in the region of the inner stream, This transformation, termed
the "o transformation" and the corresponding transformed equations

and boundary conditions are presented next,



*
2.5 Formulation of Problem in ¢-Transform Plane (v,z)

The @=transform is used to obtain a proper finite difference
representation of the inner stream for jet mixing systems with large
ratios of the mass flow rates of the outer to the inner streams.
Basically, this involves a '"stretching” of the {-coordinate in the
region of the inner stream. To achieve the desired purpose, a

simple transformation in the form of a square-root function is used,

2.5.1 Definition of @-Transformation

o = ay (59

where o= 1l or 2 and a is a suitably selected constant. For the
cases investigated, a is chosen to be equal to unity and o is
chosen to be 2, These are the values used in further discussion of
the transformation. Sincé the z-coordinate remains unaffected by
this transformation, only the ¢ derivatives need to be transformed

from {=z to the ¢-z plane,

o _ X
3¢ - oy 9 (60)

2 2 .2

9 1" 9 3%

[T P i e o or (61)
aq’2 [aq;] o2 awzacp

*

The details of this transformation were obtained by Miss Urmila

Agarwal, Research Fellow in the Mechanical and Aerospace Engineering
Department, Illinois Institute of Technology.
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Using the definition given by Equation (59), Equations (60) and (61)

may be written as

o _ 1o
of 2y 62
2 2
o 1 9 1 9
e e T T Y (63)
392 4?3 4 S
The inverse gp-transformation is defined by
T2 P2 Pz
I rdr = -—993— = I _Z%_ dep (64)
5 PV, E% , P
The Jacobian of the transformation is given by
v ez | L
- TC R S (65)

Clearly, J' becomes infinite at ¢ = 0, i.e., at the centerline,

so that special care must be taken while using the transformation

at the centerline. Essentially, this éonsists of using the informa-
tion that ¢ = 0 occurs at r = 0; also at the centerline, L'Hospital's

rule is used in evaluating the transverse derivatives.

The equatioﬁsvand the boundary conditions describing the problem

in the ¢-z plane are next transformed to the ¢-z plane,
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2.5.2° Goveruning Differential Equations

Momentum Equation

v ' ov
2 1 d 90 2 .z

Diffusion Equation

Ay 3 [22 dg ™
5 = %%a[rpnlzvzﬁga—} (67)

Equation of Constraint

pv,r 25 (ov,)
4 Y
J dy | e -p

%P- = T—l._ v, 57 Rad Ba2 5[ dwg_:g
z I "’%L i Mty | o + o P¥z dy

° 'sz % { 1M8 M Mg J

| dv
dop 3 do _z
+°3S4?3¢[“r9v=d¢ acp]
(68)

Equation (68) may also be derived directly from Equation (11) of the

physical plane. This derivation is shown in Appendix A.



Equation for Determining v,

g% %5 (rvr) = T

- L& (69)

2.5.3 Auxiliary Exﬁressions

The auxiliary expressions (28), (29) and (30) for p, u,

respectively, remain unaffected by the transformation but are

repeated here for the sake of completeness of the flow equation set,

Expression for Density

®,
My

- + 0
Uy g [pp,l pP:B] pp9a (7 )

Expression for Viscosity

X M
. - 12 e a7
=1
) *3%1, 3
j=

Expression for Binary Diffusivity

1/2

3/2 M, + My ]
BT [ "‘igié;—

> ,
POz w?ig (1-4)

12 (72)

34
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2.5.4 Boundary Conditions

At z = 0, Equation (46) gives the boundary conditions as
prescribed functions of {. Since the gp-transformation defines a
"one~to-one correspondence between ¢ and ¢, the variables v,

and @, can be readily computed as functioms of ¢.

At ¢ = 0, the first order {-derivatives were shown to be

bounded., The corresponding transformed boundary condition becomes

& %z
Tl = a bounded quantity (73)
) P=0
Equation (59) shows that %% is unbounded, hence
=0
v
55— must necessarily wvanish, i.e.,
p=0

ov

—z = 0 (74)

% | 4e0
Similarly,

2 0 (75)

=

Ay
The only boundary condition that remains to be considered is SE—
=Y
and this transforms as
dy
S = 0 (76)

ai Bq) =0
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Since %%ﬁ is finite,
Oy
-a? = 0 (77
=&

The boundary conditions in the -2z plane are presented below.

1. 'At the initial section z = 0

A (o) 0<gp<¥
v, (ps0) = (78a)
Az (ep) & <gp<g?
v_ (90 = 0 0O<op<a (78b)
i A3 () O<opcx<t
oy (9,0 = ¢ (78¢c)
l Ay () 5, <@ <?d
BRVACS 1 <9<

In this problem X\ (q), Aa(ep), "A3(p)> M4(p) were chosen to be

constants.,

2. At the centerline ¢ = 0

v, 0,z) = 0O (79a)
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szi

-&F: = 0 (79b)
e

ay

55— = 0 (79c)
q)=0

3. At the wall o = &

vz(é,z) = 0 (80a)

v (2,2) = 0 (80b)

oy

5—({;— = 0 (80c)
=2

It only remains to transform the centerline equations to the corre-

sponding equations in the ¢-z plane.

2.5.5 Centerline Equatious

Since the @-transformation has an unbounded Jacobian at
¢ = 0, suitable mathematical operations are necessary for transforming
the {-derivative appearing in the centerline Equations (57) and (58).

By definition
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sz avz do
¢ T dp dy
or av
z
.a.‘_'_z_ - (81)
oy dy
do

The right-hand member of the above equation has the indeterminate

form % at the centerline, i.e., at ¢ = 0. Using L'Hospital's rule

Bzvz
Lim avz Lim 3 2
§0 == = -—gL-— (82)
R
2
dp

Using Equation (59) with a = 1, Equation (82) becomes

Lim Ov Bzv
Sl s (83)
o
q7=0
Similarly,
Lim o 82,
0 ek o 17 84
AT BN R
o |
=0

Therefore, the centerline equations in the ¢-z plane are obtained

in the following form.
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Momentum Equation

; (85)

Diffusion Equation

o 3%,
Sz = PP T3 (86)
O

Thus, the flow problem is completely represented by Equations
(66) through (72) (together with Equations (85) and (86) for the
centerline) and the boundary conditions (78) through (80). The numer-

ical method employed for the solution of this system is presented next.



CHAPTER 3

NUMERICAL METHOD OF SOLUTION

3.1 Introduction

At present, the solution of the parabélic system of coupled
non-linear partial differential equations (PDEs) which describe the
confined jet mixing problem, is not possible by analytical methods.

A forward marching numerical technique is used to solve the present
problem governed by Equations (66) through (69), (85), (86), to=-
gether with the auxiliary equations and the boundary conditionms
stated in the previous chapter. Similar procedures have been em=~
ployed by several authors (References 13 and 30) in numerical studies
of the boundary layer equations using semimexplicit methods. However,
an all-explicit numerical method is used in the present study. Rea=
sons for selection of the all-explicit method are explained in

Appendix B,

In order to use finite difference techniques, first it is
necessary to establish a system of grid points in the entire flow
field. The discretized rectangular grid and the coordinate system
used to solve the problem are shown in Fig, 2., The values of the
dependent variables correspond to these discrete grid points which
are designated by appropriate subscripts., The differential equations
and boundary conditions of the flow problem are replaced By their cor=-
responding finite difference forms, For the transverse derivatives,

central differences are used in the interior of the duct and backward

40
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differences are used at the duct wall., Forward differences are used
for the axial derivatives everywhere except in the continuity equation;

the reason for this will be explained later.

The substitution of these finite difference approximations
(FDAs) leads to linear explicit finite difference equations (FDEs)
that are stable under certain conditions. These stability conditions
are obtained by using the criterion which was developed by Karplu322
based on an electric circuit theory. These conditions are realizable
for non-negative axial velocities, Karplus' criterion has been suc=-
cessfully used by Wu31 for a two~dimensional laminar incompressible
flow problem, by Schuyler and Torda32 for a two-dimensional laminar
compressible flow problem, and by Fejer et a117 and Agarwal and Torda;8
for confined coaxial axisymmetric laminar jet mixing. The numerical
stability of the present problem is also studied by using von Neumann's
method23 and the correspoﬁding stability conditions are compared with
those obtained by Karplus' method. The von Neumann and the Karplus
methods, and the derivation of the stability conditions for the flow
problem using both these methods are presented in Appendix C. Besides
stability, consistency and convergence must also be satisfied so that
the numerical solution is meaningful., For the present problem, con=

sistency and convergence are shown to be ensured in Appendix B.

The FDEs corresponding to the flow equations and the boundary
conditions are now presented, The stability conditions for the basic

equations are also given.,



3.2 Finite Difference Equations and Stabilityv Conditions

3.2.1 Governing Difference Equations

Momentum Equation

Using the above scheme, Equation (66) can be written at the

general grid point (m,n) as

vz(m,n+l) - vz(m,n) ) {_}_ QB}
Az

2 v_(m+l,n) = 2v_(m,n) + v_(m=1,n)
+ {upvzrz {%ﬁ‘f} } { 2 - 2 - }

m,n Bep

2 v (mtl,n) =~ v _(m=1,n)
2d% gﬂ { 2 2 }
¥ {p.pvzr du;z i dy | 2 xp

2 v_(m+l,n) = v (m=1,n)
274d
o] [n] [2ER]

where

FM = Up '55-2- + Wy, %+ PV, %QEP (87b)

43
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Solving explicitly for vz(m,n+1), Equation (87a) yields

vz(m,n+l) = vz(m,n) +

z m,n
+ |upv r? [99]2 v, (mtl,n) - 2v (m,n) + Yz(mwl,n) ]
z 4 Jm,n AI‘:P.'Z
Az < >
2 v_(m+l,n) - v_(m-1,n)
2dg dp [ z . }
-+{¢pvzr d¢2 + 2 3y } 35

vz(m+1,n) - vz(m=1,n)}

+[r2 [%ﬂ%ﬂ [FM]m,n[ 20

m,n

(88)

The numerical stability conditions for Equation (88) are
derived in Appendix B using Karplus' and von Neumann's methods.

These conditions are



1. Ap 1is not limited from stability comsiderations and is
thus selected from the required resolution and the

accuracy of the flow problem.

' 2
2y 2.2 7 A (89)

Centerline Momentum Equation

Equation (85) is only valid at the centerline and can be

written as

vz(m,n+1) - vz(m,n) [
Az

2

vz(m+l,n) - 2vz(m,n) + vz(m-l,n)
+ Hm,n Ao

(90)

Here, m = 1, and from the assumption of axial symmetry,
vz(m+1,n) = vz(m-l,n). Substituting this value and solving

explicitly for vz(m,n+l), Equation (90) gields

vz(m,n+l) = vz(m,n)

(1 a vz(nwl,n) - vz(m,n)
o] el

m,n

(91)

45
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The stability conditions for this equation are derived in

Appendix B and are

1. no restriction on Ay

2. <Hﬂ A (92)

m,n

It may be shown that the centerline momentum equation is
unconditionally stable if the expoment in the @-transformation is

unity.

For a given value of m, condition (89) is more restrictive
than condition (92) and, hencé, the step size computed from condition
(89) was used throughout the flow field. Also, one may be concerned
about the effect on the stability criterion of the pressure gradient
term appearing in both Equations (88) and (91). Since the momentum
equation is used to compute vz(m,n+1) by an explicit scheme, the
values of all other quantities appearing in Equations (88) or (91)
are either specified or computed prior to this stage. 1In particular,

%5 appearing in Equations (88) and (91) is a known quantity and,

m,n
hence, cannot contribute to instability.

Diffusion Equation

Using the explicit scheme, Equation (67) can be written at the

general grid point (m,n) as
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oy (m,0+1) = ay (m,n)

Az
2% [@]2 w (ml,n) = 2 (myn) = ay (m-l,n)]
12 % Ldy m,n A(PZ
2 wy (m+l,m) =~ wp (m=1,n)
+[r2pzplavz i-ﬁ + 20Dy, g%]m n[ 75 ]
2 wy (m+l,n) = @ (m-1,n) }
2 [%o . 93
| [ ] [Fb]m’n[ - (932)
where
av 2 aDlg
Fyo= 0%D,5 -a—f + 20D, 5 %"f— e, 5 (93b)

Solving explicitly for uy (m,n+l), Equation (93) yields

wy (m,n+l) = ay (m,n)

ay 2

2 wp (m+l,n) - 2, (m,n) + a, (m=-1,n)
i ][22

) 2 wy (m+1,n) = wy (m=1,n)
2,2 do do u
+ Az +{r P DoV + 20D; 5 ] ’:
27z de dy m,n 2/p

2 oy (m+l,n) - w, (m~1,n)
P, R

’

(94)
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The numerical stability conditions, obtained in Appendix B for

Equation (94) are

1. no restriction on /p

N
Sc __1 1 2
2. Mz < |35 53 5 A (95)
rpv, [dgp]

Centerline Diffusion Equation

Equation (86) is valid only at the centerline and can be

written as

Wy (m,ntl) - Wy (m,n) Wy (m+l,n) - 20, (m,n) + W, (m=-1,n)
Az = [Pa] 2
m,n Ap
(96)

Here, m = 1 and from the assumption of axial symmetry, w,(mtl,n) =
wy (m=1,n) . Substituting this value and solving explicitly for w, (m,nt1),

Equation (96) yields

wy (mt+l,n) = @, (m,n) }

ml(m,n+1) =, (m,n) + 2AZ[?D12] { (97)
m,n

2
A

The stability conditions for this equation are derived in Appendix B.

These conditions are



1. no restriction on ip
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(98)

If the exponent in the (-transformation is unity, it can be

shown that the centerline diffusion equation is unconditionally stable.

For a given value of m, condition (95) is more restrictive than

condition (98) and, hence, the step size computed from condition (95)

is used throughout the flow field.

Equation of Constraint

'y

Using the explicit SChéme, Equation (68) can be written as

cCv
p
dp - 1
dz M
m,n z o
2 dy
m=1 [pvz dw] M
m,n
m=2
where »
cC = ppsl B pP,E
P w,  wg)?
MM, + —
12 Ml M2

(100)
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vz(m+l,n) - vz(m-—l,n)
p(m:n) { zw -

+ Vz(m,n) [p(m*'lan) s p(m_‘:l;n)] (101)

2 A
L b =

fed
1
i

(102)

wy (m,nt+1l) = w; (m,n) ]

vaz(m,n) ] e

It should be noted here that ; (m,n+1l) is known at this stage for

all m,

2 v (mtlyn) ~2v (myn)+ v (m=1,n)
[“pvzrz [Qa] } ‘> z Vz m z n }

2
m,n o

2 v _(m+l,n) - v_(m=-1,n)
2 2 d $2 [ A Z ]
= s 2
13 P(m,n) +[up vzr a + 2u d‘l’] ZA‘P

m,n

| 2 (m+1,n) ~ v_(m~1,n)
| m] [
m,n

(103)

The right hand side of Equation (99) has no terms involving the

pressure p. Therefore, Equation (99) is always stable.
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Equation for Determining V.

Equation (69) is not of the appropriate form for calculating the
radial velocity V. since no axial derivative of v, appears in this
equation., Hence, suitable finite difference forms of Equation (69)
are necessary for the explicit scheme used. The form selected for use
was based on an error analysis. The development of this form of the

continuity equation is shown in Appendix A (Equation A-26).

Equation (A=26), used for determining Vs is written at the
fictitious points (m + I%‘,n + 1) dinstead of (m,n + 1) in order to
retain the use of central differences for the transverse derivatives
and, thus, maintain the consistent accuracy of the finite difference
scheme. This enables the determination of v, for all values of m,
which would not be possible if the transverse derivatives were written
at the regular grid points ‘(m,n,+ 1). The axial derivatives in the
continuity equation are evaluated by using backward differences, since
forward differences would not yield an explicit representation at this

stage, Thus

ov v_(m+l,n+l) = v_(m,n+1)
2 z z
m+1/2, k1 2 %59
that is,
dv v_(m+l,n+l) - v_(m,n+l)
z z z
a@ = (105)
m1/2, o1 bep
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Similarly
-
dv, [y, v }
=2 = === + == (106)
9% | n1/2,041 2192 1, ntl 9z |ng,nel |
that is,
sz 1| Vv, (ml,ntl) = v _(m+l,n) Vé(m,n+1)-vz(m,n)1
Jz =2 Az + Az |
ml/2,n+1 J
(107)

Forms similar to the above FDAs may be derived for %% and

%%* Substituting these FDAs into Equation (A-26) yields

Vr (m+1,n+l) =
pv_ T
1 [ t ]nhn+l
D(m,nt+1)
+%ﬁﬂmm®+ﬂummb+ﬂdmLmD]Ai
(108a)
where
2 2(mtl,ntl) = r(m,ntl)
ars = E Sl 2 ANT (108b)
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— =

L [.!: .QSQ.] [vz(ml,n+l) - vz(m,n+1)}
2P ay o+1,n+1 be
D(m,n+1) =[Dr]
mh1l,n+l
1 do P (m¢l,ntl) - p(m,n+1)_] 2
4{2 "z d‘l’]mu n+1[ by “n
L i
(109)
l,04+1) -~ v_(m,nt+l)
.2 dp [Vz(nﬁ- z ]
,otl) =
Ty (m,n+1) [D v T a0 ]m’m-l &
O (mtl,n+l) - O(m,ntl) |
+|:erer diy ]m’n+1 [: A J
(110)
vz(m,n+1) - vz(m,n)
Mo (m,n#1) = =-p(m,nt+1) v
- vz(m,n-i-l) {p(m,n+l)A; D(m,n)} (111)

It can easily be shown that Equation (108) is unconditionally stable.
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3.2.2 Inverse Transformation

Using the explicit scheme, Equation (64) for m= 2,3,..,M

can be written as

M
2(m;n) = ri(m-l,n) + 42[5%—} AP (112)
z Jm,n
m=2
For m= 1,
r(l,n) =0 (113a)
and for m=M+ 1
rM + L,n) = R (113b)

3.2.3 Auxiliary Expressions

The auxiliary expressions (70), (71) and (72), when transformed

into FDEs, have the following form.

Expression for Density

wy (m,n)

M,
P -p_ 40 (114)
‘ W (m,n) we (m, 1) [pp’l P32] P,

+
M; Mg
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Expression for Viscosity

2
x,(m,n)p_ .
w(m,n) = Z — £ 2 (115)
i=1 ji
.(m,n) &, .
j=li(m n) i,3

Expression for Binary Diffusivity

1/2
e[t ]
M, M,
D = . (116)

PS5 ngg (1 -0

It may be recalled that in this particular problem, D,; is

assumed to be constant.

It may be shown that Equations (1l14), (115) and (116) are

unconditionally stable,

3.2.4 Boundary Conditions

The boundary conditions, given by Equations (78) through (80),

have the following finite difference representations.
l. At n=1

It was mentioned in Chapter 2 that the boundary conditions

of the ¢~z plane, A (p)> N (@), A3(p) and A,(g)s are chosen to be



constants for this particular problem,

Ug,

unity and zero respectively.

&
U lasm<—
1 ' T
VZ(m’)— U gJ—< < M+l
m
2 BP —
vr(m,l) = 0 l<m <M+l
1 %
l<m<-—
= = Ly
(Dl(mal)= 5
0 L om o< Ml
Ap =
2 At m=1 for all n >0
vr(m,l)=0

Vz(m-l-l,n) - vz(m-l,n)

209

o, (m+l,n) = oy (m=1,n)

ZAqJ

0

0

where m

where m

These constants are Uy,
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(117a)

(117b)

(117¢)

(118a)

(118b)

(118¢)
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3. At m=Mtl for all n >0

v_(#1,m) = 0 (119a)
v_(tl,n) = 0 (119b)
w, M+1,n) = ay (M,n)

5 =0 (119c)

Thus, the governing equations and boundary conditions of the
flow problem have been transformed to finite difference equations
using the explicit scheme., 1In order to solve the problem, Equations
(88), (91), (94), (97), (99), (108) and (112) through (1l19) were pro-
grammed for the IBM 360/40 computer. The numerical stability of these
finite difference equations was ensured by satisfying conditions (89)

and (95).

3.3 Sequence of Operations for Solution of FDEs

l. The set of flow parameters U;, Uy, p » Rys R

pst’ Pp,2
are specified and are assigned for the initial section of a grid sys-

tem in the r=-z plane.

2, At this initial section, the values of u,, p,, Dz are

either specified, or are computed from Equations (114), (115) and (116)
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using prescribed values of M;, My, P T, etc.

3

p s
Pl P2
3. VY is evaluated using Equation (21) with r = R,
¢ 1is then determined from Equation (59). Subsequently, Ap is
)

obtained as = .
M

4, Az is computed at n =1 for all m from the
stability conditions (89) and (95). The most restrictive of all

these values is used in further computations.

5. ;(m,nt+l) is evaluated using Equation (97) for m = 1,
Equation (94) for m= 2,3,..,M and the boundary condition (118c)

for m=M + 1.

dp
6. dz
m,n

is computed using Equation (99).

7. vz(m,n+l) is determined using Equation (91) for m = 1,
Equation (88) for m = 2,3..,M and the boundary condition (118b)

for m=M+ 1.

8. r(m,nt+l) 1is determined using Equation (112) for m = 2,3,
.+,M and the boundary conditions (113a) and (113b) for m =1 and

m=M4+ 1 respectively.

9. vr(m,n+1) is computed using the boundary condition (118a)
for m = 1, Equation (108) for m = 2,3,..,M, and the boundary con-

dition (119a) for m =M + 1.

10. The value of n 1is incremented by unity and steps 5
through 9 are repeated until a fixed distance =z is reached where

the stability conditions (89) and (95) are checked.
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11. Steps 5 through 10 are repeated until the flow is fully

developed.

12. The values of the fully developed flow parameters as
obtained from the above numerical procedure are compared with their

values computed theoretically.

This sequence of operations is summarized in the flow diagram

presented in Figure 3.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

A detailed parametric study of confined jet mixing was carried
out using the finite difference method developed in the last chapter.,
The significance of the results of this study depends, of course, on
the validity of the mathematical model used to formulate the physical
flow problem. Before presenting the results obtained, it is necessary
to give some explanation on the use of boundary layer equations de-
scribing the flow system considered. A brief discussion is also pre-
sented for some points of special interest in the von Mises transfor-
mation as well as the p~transformation, Finally, it is important to
mention the possible checks used to validate the present results which

are next discussed.

4,2 On the Use of Boundary Layer Equations

Boundary layer equations are known to be wvalid for high Reynolds
numbers in the region adjoining the wall, These equations have been

used for the entire flow region of the confining pipe and justification
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of their use is discussed here, The main assumptions in obtaining

these equations are

1, vV Kv
T z

3% %
2. 2w —57

Bzz dr

2%, ¥y
3. <<

azz Brz

As far as the axial momentum equation is concerned, only the term
2

0 v,

5 has been neglected under these assumptions. 1In the confined

dz

jet mixing, sufficiently downstream from the jet exit section, the
boundary layer assumptions hold good since the flow characteristics
there are similar to those of the developing flow in the entrance
region of a pipe. 1In this region, the axial velocity vz(r,z) is
2 2
o%v o%v

a smooth function and satisfies Z «< ; also v. < v,
aZZ ar2 r 2z

However, in the region close to the jet exit section, the assumption

v_ << v_ may not be satisfactorily justified, but the nature of
T z 2 2
v v
vz(r,z) in this region is such that 2z LT . This can be
z or

3

seen from the fact that a considerable transverse gradient of v,

exists near the‘jet exit. Therefore, the momentum exchange between

the two streams is large in this region. Further, for the present
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problem, the flow outside the boundary layer is viscous also and hence
the boundary layer equations may still be used for sufficiently large

Reynolds numbers. A similar argument holds good for neglecting the
Bzaﬁ
term ) in the diffusion equation. The use of the boundary layer

oz

equations was also supported by the success with which several inves-

tigators (References 8, 12, 13 and 14) applied them to the study of
unconfined mixing. In particular, Weinstein and Todd13 computed the
radial and axial derivatives of v, and ®, and showed that the boun=-

dary layer assumptions are valid for the unconfined jet mixing system.

4.3 On the Use of von Mises and the ¢ Transformations

Several researchers have analyzed unconfined jet mixing problems
using the von Mises transférmation in order to avoid the severe numeri-
cal instabilities encountered in the physical plane. These instabili-
ties become further enhanced in the case of confined jet mixing because
of the boundary conditions at the confining wall. The numerical stabil
ty analysis of the present flow problem in the physical plane imposes
an upper limit on the step size Ar, in the r direction; further, the
maximum step size Az, in the 2z direction, is limited by a function
of Arzi These stability conditions are very stringent. On the other

hand, in the von Mises plane, the step size Ay in the transverse

63
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direction has no stability restriction, although Az 1is still restricted
by a function of szg The von Mises transformation has been used in
the present analysis also, and certain difficulties which are associ-

ated with this transformation are mentioned here,

The order of accuracy of the finite difference method is no
longer maintained uniform throughout the flow field since in the in=-
terior of the flow field, central differences are used for the transe
verse derivatives, but either forward or backward differences are used
at the boundaries. The limiting differential equations at the center=-
line contain first order transverse derivatives which have to be re=«
presented by forward differences. Since the transverse derivative of

@y 1s prescribed at the wall, backward differences have to be used to

evaluate o, at this boundary.

The results are desired in the physical plane, therefore,
additional calculations are necessary to transform the obtained wvalues
of the flow parameters back to the physical plane. This requires ad-
ditional computer time. Also, use of the von Mises transformation be-
comes impractical as the ratio of mass flux of outer to inner streams
increases, resulting in a decrease in the number of grid points repre=

senting the inner stream. The latter number becomes undesirably small
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for certain cases, with large mass flux ratios, investigated in the
present work, Hence, to obtain a proper finite difference representa-
tion of the inner stream for these large mass flux ratios without un=~
reasonably increasing the number of steps in the ¢ direction, the
¢p~transformation was used to stretch the { coordinate in the region

of the inner stream.

In addition to representing the inner stream suitably the
¢p-transformation simultaneously removes the inconsistency in the order
of accuracy of the finite difference method at the centerline of the
von Mises plane since the flow problem in the =2z plane is axi-
symmetric, The stability conditions are comparable to those in the
von Mises plane, it is noted here that the mathematical model of the
flow problem in the von Mises plane may be considered as a special case
of the model in the ¢~z plane., Hence, the complete finite difference

formulation of the problem was presented only in the ¢-z plane.

4.4 Validation of the Results

The analysis developed is used to investigate coaxial confined
laminar mixing of jets with greatly different densities and wvariable
physical and transport properties., To the best knowledge of the

authors, this specific problem has not been treated by others, either



66

experimentally or analytically. Therefore, evaluation of the results
by direct comparison is not possible and an indirect method is used

to assess reliance on the results.

Extensive analytical and experimental results are available for
the entrance flow in a pipe. A computer program was written to solve
the classical entrance flow problem using the boundary layer equations
in the physical plane. Comparing the results with those obtained by
Lavan and Fejer33 using the Navier Stokes equations, the maximum devia=-
tion observed is 3.5 percent in the region close to the jet exit sec~
tion and the deviation decreases with distance downstream. The clas~
sical entrance flow problem was solved also in the von Mises plane
using the present program. Comparison of these results with the
solution of the Navier Stokes equations33 shows a maximum deviation
of almost 8 percent for the fully developed flow. This comparison
gives an estimate of the expected accuracy of the results obtained
by solving the problem in the von Mises plane., Further, only a small
deviation was observed between the solutions for the confined jet mix~-

ing problem in the ¢-z plane and those in the von Mises plane.

As a partial check on the results obtained by the present method,

the fully developed values of the flow parameters, namely, vz(r,z) ,



w, (r,z) and %E , are compared with the corresponding asymptotic
values that were obtained independently from simple theoretical con=-
siderations. From the invariance of mass and volume flow rates at any
section and the parabolic velocity profiles in the fully developed
flow, vz(r,z) and w,(r,z) at the end section are expressed in
terms of the inlet parameters, namely, velocities, densities and
cross~sectional areas. The axial pressure gradient %E is evaluated
also from the momentum equation after substituting appropriate values

for the fully developed flow. The agreement with these asymptotic

values gives further reliance on the numerical results.

4.5 Discussion of Results

The present method is used to study the mixing and developing
phenomena of a laminar circular jet in a confined coaxial flow. Re=-
sults are obtained in the form of velocity and mass fraction fields

and the effects of the following parameters on the mixing are studied.

Uz
1. Velocity Ratio —
U,
ey
2, Density Ratio —
Pz

3. Radius Ratio o
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4, Reynolds Number N

Re, 2

5. Schmidt Number NSc,Z
My
6. Viscosity Ratio ;—
1

(Subscripts 1 and 2 refer to the inner and the outer jets, respectively.)
The Reynolds number used for the parametric study is that of the outer
stream and the Schmidt number is based on.the viscosity of the outer
stream, In order to vary density ratio, Schmidt number and viscosity
ratio independently of one another, the numerical values of densities,
diffusivity and viscosities are assumed instead of being calculated

from the auxiliary expressions.

A total of 57 cases is investigated for the steady confined
coaxial circular jet mixing problem and the effects of the variation
of the above mentioned parameters are studied. For the cases in ves~
tigated, the values of these parameters are presented in tabular form
in Appendix D. The basis of these runs is an air-freon system; a
similar system is also being experimentally investigated by Weinstein
and his associates at the Illinois Institute of Technology. The range
of vaiues of the parameters studied includes many physical systems of

practical interest. Some combinations of these parameters lead to an
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adverse pressure gradient in the initial region of the flow field and
this behavior of the flow may be attributed to the discontinuities in
the initial profiles., If this region is very short, the computed
fully developed flow parameters still compare well with the corre~
-sponding asymptotic values calculated independently from simple theor=
etical considerations. However, if the adverse pressure gradient
persists up to a sufficient length of the initial regionm, the agree~
ment between the asymptotic flow parameters is only fair. 1In some
other cases, the pressure gradient is favorable but oscillatory;
satisfactory agreement is still obtained between the fully developed
values of the flow parameters. 1In all such cases, the initial mixing

region is most affected.

Some of the parameters to be investigated in this study demand
an unreasonably small step size Az in order to obtain a stable solu-
tion., The increased number of computations leads to inaccuracies, the
effect of which is manifested in the fully developed centerline veloc=
ity. In such a case, the centerline velocity exceeds the corresponding
asymptotic value computed independently from simple theoretical consid-

erations.

It may be recalled here that the transformation of the problem

from the physical plane to the von Mises plane, or further to the ¢-z
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plane, was performed mainly to avoid numerical instabilities at high

velocity ratios. However, it was found later that when the velocity

U,

.2 . ,
ratio o reached a value where a stable solution was not obtainable,
1

p
increase of the density ratio EL stabilized the solution. Hence,
2

uoe )
. 2 ; . 2

the mass flux ratio T.p , and not the wvelocity ratio o alone,
i1 1

is the deciding parameter for a stable convergent numerical solution.
R

Similarly, decrease of the radius ratio ﬁL further increases the

range of mass flux ratios for which a stable solution is obtainable.

U o) R,
Thus, some combination of éi s ;£ and EL must be the parameter
1 2

governing the stability of the solution., This suggests that some
grouping of all the parameters of the problem should be the deciding
criterion for the existence of a stable numerical solution. Although
this idea was explored to some extent, no suitable group could be

formed which would ensure a stable solution.

Some of the investigated cases demanded a step size considerably
smaller than those predicted by stability analysis; these cases have
been studied only for small distances downstream due to the increased

computer time requirements,

The results of the 57 cases investigated for the parametric study

,U2 Py R‘_\_ .
present the effects of the six parameters = E: s S;- R’ NRe,Z ’

K,
and =2 - on

NSc,2 ? Ma
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1, the mass fraction potential core Ebl
2, the velocity potential core Lv
3. the centerline velocity vz’1
4, the wall mass fraction wl,w
and 5. the index of the effect of mixing 1M

The results of some selected runs are presented in order to show
typical effects of the parameters of the problem. The developing pro=-
files of axial wvelocity v, and mass fraction w, are also presented

for some typical runs,.

*
4.5,1 Effects of Flow Parameters on I& _

1

Figures 4 through 8 present the effects of the various parameters

Uz
on L . Figure 4 shows that L decreases as —— increases, but
Wy wy U,
s
L increases as =— increases. The fractional increase of L due
®, Pz ®y
P 1 U2
to an increase in -— is larger for higher —— . Also, L decreases
Pz ‘ U, wy
Uz
very rapidly for o between 1 and 5. It must be mentioned here that
1
Py Uz
the case with o = 8.3 could not be investigated for T less than
2 1

5 for reasons of numerical instability.

— ) . o
Lma is the value of 2z where the mass fraction w, at the center-

line has changed by less than five percent of its origimal centerline

value,
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The effeet of change in N at two different density ratios

Re,2
Uy
is presented in Figure 5, 'These results are for the case of o= 5
1
Ry
and = 0.563, Tt is seen that Lw1 increases with increase in
Py
N as well as with increase in =-— ., The increase of L with
Re,2 Py [V
NRe 2 is almost linear. Comparison of Figure 5 with Figure 6 shows
2
R, Uz
that when . is decreased from 0,563 to 0.28 and T is increased

1

from 5 to 30, the nature of wvariation of Lwl with respect to both

p
l . 3
N Re, 2 and 5; remains unchanged. However, the value of L(Dl is

reduced approximately 80-fold in the latter case. Figure 7 shows that

L increases almost linearly with N From Figures 5, 6, and 7,

y S5c,2 °
Py

it is seen that the effect of increase in 5 is larger at higher
2

values of N and N « Figure 8 shows that the effect of

Re, 2 Sc,2
by !
change in =~= on L is rather small, At -— = 4,2, the changes in
My wy Pz
Py
Lml are almost linear, but this is not true for oo = 8.3, since a
2
)
maximum is observed in the vicinity of ey = 1,75. Also, L(D
1 1
increases in the same proportion as oo
2
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%
4,5.,2 Effects of Flow Parameters om Lv

The effects of the various parameters on _Lv are presented in

Figures 9 through 12. Figure 9 shows that Lv increases with increase

U, Uz
in T the increase in LV being larger at higher values of T
1 1
UE pl 2
For = less than 6, an increase in - increases L_, but for -—
U, Ps v U,
Py
greater than 6, higher o causes a reduction in LV. Thus, in the
2
U, Py
vicinity of e 6, LV may be insensitive to change in o
1 2

Figure 10 shows that Lv increases with increase in N

Re,2 *
U, Py

For -—— =5 and = = 0,563, IL_ decreases with reduction in — ,
U, R v Py

the effect being smaller at lower values of NR

R

is also observed for ﬁi = 30 and x = 0.28, however, the reduction
1

. Similar behavior
e,2

in LV is comparatively smaller. It is seen from Figure 11 that LV

increases with increase in N 9 the increase being larger at higher

Sc,
Py
N « An increase in — decreases L and this decrease in L
Sc,2 Py v v

*  For unconfined mixing, Lv is usually defined as that value of

z where the centerline axial velocity v, has changed by less than

»1
5 percent of its original centerline value. According to this defini-

tion, there exists no potential core for the case of confined mixing

Uy
of jets with large velocity ratio — Hence, for confined mixing,

U,
LV is defined as that value of 2z where the centerline axial velocity
has the value U, + 0.05 (U; =~ U,) . The concept of a velocity

potential core is thus retained by this definition.
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increases- with increase in N Figure 12 shows that the variation

Sc,2 °

K
of Lv with ai is entirely different from that with the other para-
1

meters discussed so far. A distinct maximum exists in the vicinity of

B , p
E?-N 1.4 . Also, an increase in Bi shows a marked decrease in Lv o
1 2

4,5,3 Effects of Flow Parameters on V.1
H

Figures 13 through 18 present the effects of the parameters on
%
the centerline axial velocity, Vo1 The effects of velocity ratio
3
for two density ratios are shown in Figure 13, It is seen that for

equal densities of the inner and outer streams, an increase in Ea
1

from 1.1 to 4 causes an increase in v, , as may be expected; but for
14

almost equal velocities of the inner and outer streams, an increase in

Py

N from 1 to 4,2 causes a small decrease in v, An inflection is
2 A

17

U
noticed in the curve for ﬁ& = 4 indicating rapid changes in the rate
1

of flow development in the initial region. The effect of an increase

P

in BL is to reduce the centerline velocity in the mixing and the
2

initial developing regions. This effect decreases with distance down-

stream so that beyond a certain value of =z, the curves for different

p

U .
5£ but same E&- will merge together. This is in accordance with the
2 1 ~ ,

known fact that, for a fixed velocity ratio, the asymptotic value of

the centerline velocity is independent of the density ratio. The effect -

* The centerline axial velocity Yy, is made non=-dimensional with
3

respect to U; .,
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. P . . i
of change in 5 on v, . is less pronounced at low velocity ratios,
2 bl

U p,
Figure 13 also shows that, for 6& = 15 and EL = 8.3, inflection
1 2

points occur in the initial region again indicating rapid changes in
Ug

the rate of flow development. For T 5 and both density ratios,
1

the details of the initial portion of the v, 1 curves are not clearly

>

visible because of the scale used.

The effects of change in R oo the centerline velocity are

presented in Figure 14, For a fixed velocity ratio, a decrease in

in the entire flow

EL from 0.563 to 0.28 causes an increase in v, 1
2

field, as may be expected. 1In the initial region, the curve for

£xd

Ry

R = 0.28 1is considerably steeper than that for L = 0,563, thus

R
indicating the rapidity with which the momentum deficiency is overcome

in the former case.

Figure 15 shows that as N increases, Vv decreases.

Re,2 z,1

However, for a fixed velocity ratio, the asymptotic values of the
centerline velocities are the same for all the cases shown in Figure

15, Also, the nature of the curves is independent of NRe 9 - Con~-
9

U

parison of Tigures 15 and 16 shows that, as -2 jis increased from 5

1
R
to 30 and El is decreased from 0.563 to 0.28, the effect of NRe 2
. 3

remains almost unaltered., However, the inflection points observed in

the initial region of Figure 15 are not seen in the cases of Figure 16
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and steeper slopes of the v, 1 curves are observed in the initial
b

region indicating rapid mixing in this region.

The effects of change in N on the centerline velocity are

Sc,2

presented in Figure 17. The centerline velocity v decreases in

z,1

the entire flow field as NSc 2 increases from 0.75 to 2.0. The
3

asymptotic values of v, 1 should be the same for the three cases
3

shown in this figure. The case for N = 0.75 was not investi-

Sc,2

gated beyond =z = 65R, since numerical stability demanded a very small

Az and, consequently, large computer time. For the case of NSc 2
b

2.0, adverse pressure gradient was observed from z = 0,16R to z =

3.12R, resulting in a trough in the v, 1 curve in the initial region.
, .

4,5.,4 Effects of Flow Parameters on

l,w

The influence of the parameters on the wall mass fraction Oy
’ -]

are presented in Figures 19 through 24, Figure 19 shows that increase

U . . U
in T decreases Wy 2 the decrease being smaller at higher == ,
1 ) : 3
o
Also, an increase in oo increases Oy as may be expected. An
2 s
U
increase in E& or a decrease in EL tends to reduce the spreading
1 2
R
of the jets. As seen from Figure 20, reduction of §L from 0,563 to

0.28 causes a reduction of inner stream mass flow rate resulting in

decrease of Wy o For the case with ;%-= 0.563, the asymptotic
>
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value of Wy is attained at 2z =~ 400R, hence, a steep slope is
3

still present at 2z = 250R for this case.

Figure 21 shows that the effect of increasing NRe 9 is to
-
decrease the value of ® in the entire field. The three curves
2
U R
presented here are for the case of 7= 5 and r= 0.563. These
1

curves are similar and show that an increase of NRe delays the

32

mixing to some extent. Also, all these curves should merge together
beyond some value of =z since the asymptotic value of wyq depends
only on the density ratio, velocity ratio and area ratio which were

maintained constant when NRe , Wwas varied. Comparison of Figures
3

U,
21 and 22 shows that, as Ei is increased from 5 to 30 and §L is
1

decreased from 0.563 to 0.28, the effect of NRe,Z remains almost
unchanged. The flow is far from being fully mixed within the axial
distance investigated and, hence, the curves in Figure 22 are diverge~
ing with steep slopes. The curves presented in Figure 22 show a
similar behavior, but mixing is relatively faster in the initial region.

Also, the asymptotic value of will be the same for all three

1w

curves of this figure.

The effects of wvariation of NSc 9 Oom are presented in
3

l,w

Figure 23, An increase in NSC 2 shows a marked decrease in Wy
2 ?
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and in the rate of mixing. Mixing is exceptionally fast for the case

of N = 0,75. This case was investigated only up to 2z = 60R

Sc,?

because the requirement of small Az resulted in large computer time,

The asymptotic value of ) will be the same for the three curves
ST,
U f
of Figure 23, since T P and g~ are constant for these cases.
1 2

4.,5.5 Effects of Flow Parameters on 1|

Figures 25 through 30 present the effects of the parameters on
T where

[mass of species 1 in a given volume (between the entrance]

section and a section downstream) of the confining duct

[mass of species 1 in the same volume had there been no ]

mixing

Expressed mathematically

IL R

21 Puy xr dr dz

N = o fo - (120)
pp’l ™R, L

Thus, 1 may be considered as some index of the effect of
mixing of the two streams. At z = 0, 1 18 indeterminate, hence,
the first point for the plotted curve is taken at a suitable smgll down~-

stream distance. Also, since the results are obtained at values of z



which are some integral multiples of Az and not of the confining
duct radius R, the last points plotted are not the same for all

the curves. Figure 25 shows that 1) decreases with increasing dis-

U

2 .
tance downstream. 1) also decreases as g, Inmcreases and T in-
1
P, Py
creases as o increases. The effect of variation in 5— is
2 ’ 2
Uy
larger at higher values of T As seen from Figure 26, 1 in=-
. 1
R.l R

creases as = increases. For the case of = 0.28, 17 decreases

<
R
very rapidly up to z = 1R beyond which point the rate of decrease

is gradual.

The effects of Npe o on T are presented in Figure 27.
3

U R
For all three curves shown in this figure, ﬁg =5 and il = 0,563 .
: 1

1t is seen that 1T decreases gradually with downstream distance and

T 1increases with increase in N
Re,2

U

2
behavior. Comparison of Figures 27 and 28 shows that as o is in-

1

R
creased from 5 to 30 and EL is decreased from 0.563 to 0.28, the
effect of NRe 5 On T remains similar but it becomes less pro-
?
nounced. However, the curves of Figure 28 show that the decrease of

N 1is extremely rapid up to z = IR.

Figure 29 shows the effect of N on M. N

Sc,2 Sc,2

by changing D;p only. Hence, as N
Sc,2

i.e,, the diffusion process is slowed down. Since the velocity in the

and the curves exhibit a similar

was varied

79

is increased, D;p 1is reduced,.
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outer stream 18 higher than in the inner stream, slower diffusion

results in an increase of T , which is clearly seen from Figure 29,

1)
It is noted here that the effect of change in -2 on the
1

centerline velocity v, the wall mass fraction 0y o and the
3 Hd
mixing index 17 are presented in Figures 18, 24, and 30 respectively.

i
The effect of change in ;5- is rather small and, hence, no definite
1

trend of the results can be established from the above figures. For
some of these cases, a positive pressure gradient or a negative os-

cillatory pressure gradient was also observed. Further investigation
Ha

18 necessary in order to determine the definite effects of ;— varia-
1

tion on the jet mixing.

4,5.6 Velocity and Mass Fraction Filelds for Typical Runs

Figures 31 through 34 show the development of the axial velocity
profiles for Run Nos. 55, 43, 6, and 49, respectivelff At the entrance,
i.e., z = Q, a discontinuity exists at r = R; due to the nature of
the. inlet velocity profile. A discontinuity exists also at x = R be-
cause of the no~slip condition at the wall, These discont;nuities are
indicated by broken lines in the figures, Since the initial region is
of part;cular interest, the velocity profiles are presented only up to

z = 10R. The fully developed velocity profiles have also been presented

* The axial velocity is made non-dimensional with respect to U; .



since they were used for partial verification of the results by
comparing them with the asymptotic velocity profiles obtained in=-

dependently from simple theoretical considerations. Figure 31 shows

p
the results for the homogeneous case, i.e., EL = 1, with ﬁ& = 1,1,
2 1

while Figures 32, 33, and 34 show the results for the heterogeneous

p
cases with El-= 4,2, The axial velocity profiles develop similarly
2

U
for all the cases. For the heterogeneous cases, an increase in ﬁg
1

from 5 to 15 causes a reduction in the developing length. A further
U, R

increase of T to 30 with a simultaneous reduction of ﬁl to 0.28.
1

results in a considerable reduction of the developing length, Extra-

polation of these results on this basis suggests that the developing

U
length for the case with Ea = 1,1 should be greater than that for
1
2 oy
the case with o= 5. However, a simultaneous reduction in 5_
1 2

from 4.2 to 1 reduces the developing length sharply.

The developing profiles of mass fraction «, are presented
Py
in Figures 35 through 37 for the heterogeneous cases with i 4,2 .
2
At the entrance section, i.e., 2z = 0, a sharp discontinuity exists
at r =R, on account of the nature of the inlet mass fraction pro-
file and has been shown by broken lines in the figures. The mass

fraction profiles are shown only for the near jet region which is of

particular interest, and are presented for the same values of 2z for

81
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which the axial velocity profiles have been discussed already.

Y

As T increases from 5 to 15, comparison of Figures 35 and 36
1

" shows an increase in the rate of mixing. Mixing is sharply enhanced

U R. ..
for the case of ﬁ£'= 30 and EL'= 0.28 . From the curves for the
1

largest value of 2z presented it is seen that the flow in all three
cases has not yet mixed fully since the mass fraction profile in the
fully mixed state should be uniform. This may be verified from the

fact that the Schmidt number NSc for the overall flow is slightly

greater than unity,.
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CHAPTER 5

CONCLUSION

The laminar heterogeneous mixing of coaxial axisymmetric
confined jets has been investigated in order to provide a better
understanding of the fluid mechanics of a coaxial flow gas=-core
nuclear reactor. The analysis is valid in the complete entrance
region of the confining duct and permits wide variations of the
inlet parameters, The flow field considered was isothermal and
non-reacting. The low-velocity and high-density central gas stream
mixes with a coflowing high-~velocity low-density annular stream,

The mathematical model of the problem was described by the boundary
layer equations in the von Mises plane. These equations were solved
by an explicit finite difference scheme, Numerical stability of the
finite difference equations was ensured by satisfying Karplus' sta-
bility criterion, The von Neumann stability analysis was found to

yield stability conditions similar to Karplus' conditions.

The results of the present analysis cannot be validated by
direct comparison since neither experimental nor analytical results

are available for such a flow problem. Hence, the numerical method
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developed was verified by using it to solve the‘classical entrance

flow problem. Also, as a partial check on the results of each case
investigated, the fully developed values of the flow parameters were
compared with the corresponding asymptotic values that were obtained
independently from simple theoretical considerations., The agreement

obtained in these comparisons establishes reliance in the numerical

results.
Ug e} 1 Rl
The effects of the parameters E; I R’ NRe,Z s
W
2 ,
NSc,Z , and ™ were studied on 1&&’ Lv s vz’l, mﬁ,w and 1.

A total of 57 flow cases, presented in Appendix D, was investigated.
Typical running time for generating the results up to fully developed
flow values was about ten minutes on the IBM 360/40 computer. The
following conclusions may be drawn from the results of the parametric

study.

The length of the mass fraction potential core, Ly
1

Ug P1
decreases as =—— increases, but L, increases as — as well as
Uy 1 P2
N increase., Also L increases with increase in N .5
Sc,2 * oy Re,2 °
Rl Ua
this variation remains similar when R is reduced and o is
1

substantially increased.
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The length LV of the velocity potential core increases with

U
2
increase in E_ as well as with increase in NSc 9 - An increase in
1 )
N causes an increase in L and, at constant N , an increase
Re,2 v Re,2
o, R
in- — increases LV; similar behavior is also observed at lower .
2
Y oy
and higher T At low velocity ratios, increase in E_ causes an
1 2
, Py
increase in Lv’ but at higher velocity ratios, higher o results
2

in smaller Lv . These conclusions must be substantiated with further

results as Lv is very sensitive to pressure gradient.

For incompressible flow, the asymptotic centerline velocity
depends only on the radius ratio and the entrance velocities, so that

the effect of the other parameters is confined to the mixing region

e
, . 1 . . .
only. An increase in o reduces the centerline velocity in the
2
R

mixing region, while an increase in EL slows down the development

of the flow. An increase of NRe 2 decreases the centerline velocity
2

[i) R
for Ei== 5 and Fl = 0.563; this behavior remains unaltered when
l A Y
U R,

ﬁi is increased to 30 and EL is reduced to 0.28. The centerline
1

velocity decreases with increase in NSc 93 the flow develops faster
b
wer .
for lo NSc,Z
U o} R
. . 2 . 1 1
An increase in == or a decrease in — or =, reduces the
Ul Ps R

spreading of the jet. The asymptotic value of the mass fraction depends

Ué 0y 31
only on the ratios — , —— and == for incompressible flow;



hence the effect of the other parameters is felt in the initial mixing

region only. The wall mass fraction decreases as NRe 2 increases
3
Ué Ri Ué
for — =5 and — = 0.563; this effect is similar when — 1is
U, R U,

R .
increased to 30 and ﬁL is reduced to 0.28, with the exception that

mixing is considerably faster in the latter case. An increase in

N causes a marked decrease on the rate of mixing.

Sc,2

. *
The effect of mixing is indicated by a mass ratio 1) .

y P
2 . . 1 .
7| decreases as U, increases and 17 increases as o increases;
1 2
B
7| decreases as R decreases, indicating a considerable reduction in
Ué Ri
the loss of mass of the jet. At T 5, 7= 0.563, increase of
1
Y
NRe 2 increases T); this effect remains similar on increasing o
s 1

R
to 30 and reducing ﬁL to 0.28, although in the latter case, mixing

is very rapid. Increase of N retards the mass diffusion process,

Sc,2

resulting in an increase in 1.

A reduction in the developing length results from an increase

U o) U
. . ) . . .
in == or a decrease in —— , An increase in -2 leads to rapid
U, Pz Uy

As defined in 4.5.5

[mass of species 1 in a given volume (between the entrance ]
1 = L section and a section downstream) of the confining duct

121

[mass of species 1 in the same volume had there been ]
no mixing
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change of the centerline values, i.e., rapid mixing and narrower

jet.

For some combinations of the flow parameters, a positive
pressure gradient or an oscillatory negative pressure gradient was
observed in the initial region. These lead to rather inexact de~-
scription of the initial region and a deterioration in the agree-
ment of the end values, depending upon the extent of the affected
initial region. This behavior is not completely understood as yet
and further investigation may be necessary. Also, for the cases in~-

)
vestigated, the effect of change in -2 was small, so that no defi-

Hy

nite trend of this effect could be established,

In the course of the investigation, numerical instability was
encountered for some combinations of the flow parameters, It is
recomnended that some grouping of these parameters be found in order
to determine its range over which a stable numerical solution may be
obtained. Also, the original aim of the von Mises transformation or
of the ¢-transformation was to obtain stable solutions for a wide
range of the flow parameters. Experience with a similar jet mixing
problem in the r=-z plane revealed that the range in the ¢~z or

the @«zv“plane was not much wider; as such, it may be worth the



attempt to solve the present flow problem in the physical plane
where non-uniform entrance profiles can also be studied more con-

veniently.

As mentioned in section 4.5, turbulent jet mixing is being
experimentally investigated by Weinstein and his associates at the
I1llinois Institute of Technology. An investigation of confined co=-

axial turbulent mixing of heterogeneous jets has been recently com~

U, P
pleted by this group. The measured effects of Ea' and EL on the
. 3 2

jet mixing agrees qualitatively with the prediction of the present

report. Thus for laminar as well as turbulent mixing,

The length of the mass fraction potential core L

U

2 . . R
decreases as o increases and an increase in

1
Py
. causes a decrease in the rate of mixing and hence
2

increases the developing length,

Hence, the present study provides trends which are useful in under-

standing turbulent jet mixing.
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APPENDIX A

DERIVATION OF EQUATIONS FOR p, AND v,

dp
dz

A.l Expression for Density

The two relations employed in the derivation of Equation (4),
the expression for demsity of a binary system, can be found in Ref-

erence 27, These are

Wy O 1 5
M, T T om (4-2)
where
M molecular weight of mixture
Mi molecular weight of fluid component i;
i=1,2
X, mole fraction of species i;
i
i=1,2
w, mass fraction species i;
i
i=1,2
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From Equations (A-1) and (A-2), it can be shown that

X = T (A-3)

In the present analysis, density is assumed to be a function of

composition only. Hence,

= p + %P A=4
e A Pl %= P2 ( )
where
o] ‘mass average density of mixture
pp i density of pure component i;
H
i=1,2
Using the relation

Equation (A-4) becomes

= x [P - }+ A-6
e 1 [ Ps1 pP:E pP,e ( )
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Substituting Equation (A-3) into Equation (A-6) gives the required

expression for density.

W
1
i + A=7)
—1 T it - p -
P ® [pp,l "p,2 Ps2 ¢
-—+-——-
M M
A2 Equation of Constraint in the g-z Plane

Details of the derivation of the Equation of Constraint,

Equation (68), which is used to evaluate QB, are given below,
q , dz

The mass rate of flow across every section of the duct is
given by Equation (11),
R
I 2irPv_dr = 1 (A-8)
o z

Differéntiating Equation (A-8) with respect to 2z and simplifying,

R B(DVZ)

———dr = 0 -
o T Sz r (A=9)

This integral relation in the physical plane can be transformed

to the von Mises plane by using the relation

R b4
[ reoa = [ repo 3oy (A-10)
o} o}
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where J. is the Jacobian of the transformation.

Using the relation (A-10), Equation (A=9) can be transformed to the

von Mises plane as

¥
: o(pv )  d(Pv)
J; [-Dvrr awz + ] i _ o (A-11)

Pv
z

Transforming Equation (A-1l) to the -z plane gives

3
o(Pv.)  O(Pv))
Io [-pvrrgs‘l‘!a &Pz e } pvdw@ =0 4-12)
dy

The momentum Equation (67) in the ¢=-z plane can be written, after

rearranging, as

(Pv,) 30 1 4 d 2 ov
== - w2 +°§5§"a;[urpvz§%afz]

(A-13)

Equation (A-13) is substituted into Equation (A-12) to give
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oPv,) ® 14
L -Dvrr%ﬁ—————&p +vz-a—z-- ;’:-&5
+Di§£-a—[prpv gggéz_z_} —d_ _ 9 (A-14)
dy S z2dydp | [ ,, do
z dy
Rearranging Equation (A~14) yields
B APV ) ]
Z op
pvrr d‘l’ ———acp + Vz -a—z—
)
dp _ 1 J” )
dz 2 dop ° pv %SQ
.fo 2 dg 5 dv z dy
v, dy +D§-59-— ME PV —=
i dy O z d§ Oy ]
(A-15)

oz

In order to obtain Equation (68) from Equation (A~15), the term
in Equation (A=-15) must be replaced by the derivative of Equation

(A-7). Differentiating Equation (A-=7) with respect to z gives

oz 2 [ppal B pP,a] (a-16)
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and substitution of Equation (A-16) into Equation (A~-15) yields

~ o(pv,) -
oy

QE 1 & VZ .TZ. !
dz = .[ + 2 [pp,l - pp,a} o

J@ 1 d(P o @ G)e Q,Vz d\lf

o pv? %% M; Mg ﬁ;-+ ﬁ;

ov
o)
vo S8l 222
(A-17)

This equation is the required equation of constraint,

A.3 Equation for Determining v

As mentioned earlier in Chapter 2, v, is determined from a
modified form of the continuity equation. This equation for v, is

derived here.

The continuity equation (1) in the physical plane

IO/

(pvrr) + %Z (pvzr) =0 (A-18)

Q/

T
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when. integrated between r and r + A,r, gives

r+A1 r r+A1 r a
[Dvrr ] = - I r & (ov )dr (A-19)
r r

Using the mean value theorem, Equation (A-19) can be written as

2
{Pvrr] = = {g—z- (pvz):l f r dr (A=-20)
T, A
where
r, = r (A-21)
T, = r+ pNT (A-22)

mean value

g

Simplifying, Equation (A-20) becomes

2 2
d Tz = n
[Dvrr] = [Ovrr] I v (pvz) 5
Ty Ty mv
(A-23)
Equation (A-23) can be transformed to the -z plane as
d(Pv )  d(Pv)" r22 - 1:12
z Teeg?
[Dvrr] =% :’[Dvrr]» -1 - pvrr 3y &P v az—a; _ 5
j o) ’ . Ty ' - ’ - mv
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where

Solving explicitly for v,

131

(A-253a)

(A-25b)

s  Equation (A=25) gives the following
T
equation which is used for the evaluation of v

(A~26)
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where -
2
no e te] [ ] (2]
1
(A-27)
3ev.) 3PV )
P. = = z _ z
2 [ oz ]rl [ dz ]‘-’a (A-28)



APPENDIX B

FINITE DIFFERENCES AND THEIR PRESENT APPLICATION

Finite difference techniques play an important role in obtaining
solutions of coupled non~linear PDEs not solvable at present by analyti-
cal methods. A brief review of the various finite difference forms,
the basic definitions of terms used in the stability analysis and the
selection of the finite difference scheme for the present study are

presented here.

B.l Approximation of De:ivatives by Finite Differences

Taylor's series expansion is the basic principle used in
establishing a finite difference approximation (FDA) to the deriva=-
tive of a variable at a point., Assuming that a sufficient number of
higher derivatives exists, three basic forms are available for FDAs
of continuous derivatives, namely, forward, backward and central
differences. Using the discretized rectangular grid shown in Figure

2, these may be written as

Forward Difference

oF _ F(mt+l,n) - F(m,n)
LI @

133
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Backward Difference

+ 0(ar) (8-2)

oF _ F(m-1,n) = F(m,n)
or m,n a AT

Central Difference

QE _ F(wtl,n) = F(m=1,n) _ 2 _

Similarly, a second derivative can be given by

2
[a 1;] . E@ln - FEn) $F@LD L o0 (g
T Ar
m,n
oF 2F
Forms similar to the above FDAs may be derived for S and =7 .
oz

The difference between a derivative and the FDA used to
represent it is known as the truncation error. The central difference
approximation given by Equation (B~3) has a truncation error of order
(Ar)2 and, hence, its use is desired so far as possible. Also, the
FDAs having truncation errors of order higher than (Ar)2 could be
obtained by introducing additional points in the neighborhood of (m,n),

such as (m,n}+2) and (m,n-2), etc. However, with these forms, special
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equations are needed for treating the points adjacent to the boundaries;
also the computations at each grid point require increased computer time.
Reference 34 has a comprehensive table for the various finite difference

representations of continuous derivatives,

B.2 Numerical Stability, :Consistency and Convergence

In order that the obtained solution of the finite difference
equations (FDEs) be meaningful, it is necessary to ensure consistency,
stability and convergence of the numerical computation scheme used.
Von Neumann'323 definitions of these terms, as interpreted by Agarwal.

and Torda,18 are included here for the sake of completeness.

An FDE is consistent with its corresponding PDE if the
truncation error in the difference equation goes to zero as the grid

steps approach zero,

An FDE is stable if its numerical solution remains bounded at
given values of the independent coordinates as the step sizes tend
to zero., 1In general, stability is a function of only the difference

equations, and has no direct connection with the differential problem.

The exact solution of an FDE converges to the exact solution of
its corresponding PDE if the truncation error of the solution goes to

zero as the grid steps approach zero,

Consistency and stability, considered individually, are only
necessary, not sufficient for convergence. For a properly posed linear

boundary value problem, consistency and stability together comstitute
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the necessary as well as sufficient conditioms for cénvergence.

Thus, it is sufficient to ensure consistency and numerical stability
of the difference equations. Convergence will then be implied., TFor
a non-linear boundary value problem, convergence can be proved by a

method due to Strang.25

The consistency requirement mentioned above is satisfied for
all the FDAs given in the previous section. A certain amount of cau«
tion, however, must be observed in a few rather exceptional cases.

. 35 36 . .
Richtmyer quotes the DuFort and Frankel ™  approximation to the
simple partial differential equation U, = U and demonstrates that
the consistency of the method depends on the way in which Ax and
At are allowed to approach zero. 1In the present work, stability is

ensured by satisfying the conditions obtained by Karplus'22 and

2
von Neumann®s 3 methods.

B.3 Selection of Finite Difference Scheme

For a given partial differential equation there are several
FDAs each having its own stability limits. Sherman and Grey]'4 gave
a detailed discussion of the presently known finite difference
schemes for the solution of parabolic partial differential equationms.
Two of the widely known and used schemes are the explicit and the im-
plicit methods. In both of these methods, the original non-linear
PDEs are reduced to a set of linear algebraic equations. However,

there is one basic difference. In the explicit scheme,:the FDEs at
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a grid point can be solved independently of each other, whereas, in
the implicit schemes, the FDEs at a new line of integration must be

solved simultaneously.

Implicit methods have gained wide favor because they are
unconditionally stable for a wide class of problems compared to simple
explicit methods which are often limited by stability consideration
to the use of a small step size. Unfortunately, for many complex
problems including the present study, implicit methods are more com-
plex since in addition to the main dependent variables, there are
subsidiary dependent variables apd the task of solving the resultant
simultaneous equations is difficult. Also, though the number of grid
points at which computations are needed is reduced, the number of com=-
putations at each grid point increases, hence in general the total
time required by the problem is still considerable. Although stability
may not restrict the step sizes, other physical considerations like

accuracy and desired resolution may often do so,

From the above paragraph, it is clear that the more complex a
problem becomes in terms of mnon-linearities, number of subsidiary de-
pendent variables or other complexities, the more necessary it becomes
to use the most simple scheme. Additional factors are ease of program-
ming and ease of checking the program. Based on these considerations,

an all-explicit numerical method is used for the present study.



APPENDIX C

NUMERICAL STABILITY ANALYSES OF THE FINITE DIFFERENCE EQUATIONS

The two criteria used in the present analysis for testing
difference equations for stability are those due to Karplus22 and
von Neumann. The latter method was first given by O0'Brien, Hyman
and Kaplan".z3 The methods as well as the derivations of the sta=

bility conditions are presented here,

c.l Karplus' Method

C.l.l Criterion for Stability

Karplus developed a criterion for the stability of finite
difference equations using an analogy with Kirchoff's laws in elec-
tric circuit theory. The general application of this circuit theory

approach to finite difference stability may be given as follows,

The FDE, whose stability at the point (m,n) is to be
considered, represents an approximation to a PDE, and in general,

it can be arranged as
a [F(m+1,n) - F(m,n)] + b {F(m—l,n) - F(m,n)}

+ ¢ [F(m,n+1) - F(m,n)] + d [F(m,n-l) - F(m,n)] =0

(c-1)

138
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where F 1is the dependent variable, and a, b, ¢, d are the
coefficients of the difference terms. Also, the coefficient a is

positive and m refers to a bounded space coordinate.

Then the FDE is stable

1. if all the coefficients are positive (C=2)

or

2, if, when all the coefficients are not positive,

the sum of all the coefficients is negative, (c-3)

The criterion is also applicable to equations in several
independent variables and to equations in which the coefficients
are not constant. Because of its simplicity, Karplus' method is

presently finding wide applicatioms.

C.1,2 Determination of Stability Conditions

The numerical stability conditions of the finite difference
equations used in determining the values of the flow parameters are

derived by the Karplus method.

Momentum Equation

Equation (88) is the finite difference form of the momentum
equation., To obtain the stability conditions for this equation, it

is rearranged in the form of Equation (C-~1l) to give
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2
2 QQ 2 QQ
L pvz[d\]r} T gy M [vz(m-l—l,n) - v'z(m,n)]
7
2 2 2
4 by
+ ur pv -—SQ + ol F
] = 2y ip [d«y} MA‘P_ o0
. P—.. zurzp\] {%]2 + 2]J. gﬂ A(P |
zldy dy ti vz(m-l,n) - Vz(m:n) ]
- 2
2 2 21
a 2(dg ?
+ prev bp + T E
s gt X [dq;:] w |
_ v, (m,n+l) - v (m,n) e =0 -4
Az p'Vz dz m,n B (c )
where 3
v
FM = up '55-2- + nv, %p'; + DVZ %’% (€-3)

To apply the Karplus criterion, it is necessary to determine
the sign of the coefficient of the first term in Equation (C=4), 'i.e.,

the sign of the quantity

2 2 2
2 (a4 2 g- 2 [d
2ur pvz[ﬁ] + 24 g-‘\ﬁ Ap + prpv, ;—%Acp +r [ﬁ] E,,lp (C=6)
'll] -

From an order of magnitude analysis and numerical experimentation,

it is found that expression (C-6) is posjitive, i.e.,
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]’ | 5, %o & 2(dg]”
[Zur Pv [d¢] + 2u R Agp + pr Pvz-;;%mp+r [‘W] FMAQP] >0
(c-7)
or
2
o)
2ur pvz a4
kp > = & 2 2 rdg ) (c-8)
zud¢+urpvz:i—;§+r [d” E,
Examining the inequality (C=8) shows that
2
2 d
| £ -
2ur pvz[dw] >0 (c-9)
d2
and though = < 0 for the present transformation, the expression
dy
do, 2 dp . 2[dg1?
0 -
2u 3y + ur sz . + r [d¢ ] EM > (C=10)
Thus, condition (C-8) becomes
p > - positive quantity (c-11)

i.e.,

Xp has no limitation from stability consideration.
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It is seen in Equation (C=4) that the coefficients are not all
of the same sign. Thus, applying Karplus' condition (C-3), Equation

(C-4) yields

2
tyur2ov {‘—19] S S Y (€-12)
z dy I ’2A¢2 Az
,0
i.e.,
1 1 1 2
Az < -2_13.. ° = > A (c~13)
rPv, [gg]
dy m,n

Thus, the stability conditions for Equation (88) are

1. 4&p has no restriction (C-14)
1 1 1 2
2. M< |55 73 7 A (c-15)
r PV [Qg]
z
S Ldy m,n

.Centerline Momentum Equation

At the centerline, the finite difference form of the momentum
equation is givén by Equation (91). Arranging it in the form corre=~

sponding to Equation (C=1) results in the equation

Vz(m+l,n) - vz(m,n) vz(m,n+l) - vz(m,n)
b || - [

- | L de _ )
[pv £ Ln_ 0 (C-16)
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Multiplying Equation (C-16) by A¢3 and rewriting,

3 vz(m,n+1) - vz(m,n)
2um’nmp [vz(m+l,n) - Vz(m,n)} - Ky | e
- P [5‘17_ .gfz.] =0 c-17)
z m,n

Examination of the coefficient of the first term reveals that

2 b >0 (C~18)

i.e.,

Ap > O (c-19)

Hence Ap has no stability restriction.

All the coefficients of Equation (C-16) are not of the same

sign, hence, using condition (C=3), Equation (C-16) yields

2 1
——-J-—mzn - Z-Z- <0 (C-20)
Ixp
i.e.,
1 2
Az < om o) (C-21)
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Summarizing, the stability conditions for Equation (91) are

1. Ap has no restriction (C=-22)
1 2

2. Az < % Acp (C-23)
m,n

Diffusion Equation

In order to determine the stability conditions of the finite
difference form of the diffusion equation, Equation (94) is rearranged

in the form of Equation (C-1) to give

— 2 9 -
2 2 2 2 d
2r p Dlzvz[%] + 1 p DoV, d_q;% ip (1,0 m,)
W, >0) = ¢y (m,n ]
2
: "
do 20 [do i

~ m,n

B 2 2 ]
2 2 2 2 d
- 2rp Dlevz[%] + T p DV, ;I% Acp

[ w, (m=1,0) = @ (m,n) ]
2

2 29
do 2

L+ zlea d¢ &P +r FD[%S‘%] Ap Jo,n

[ml(m,r&l) = (m,n) ]
- = 0

Az
(C-24)
where
2 BV 2 aDlg

- —Z ® -
FD = P D12 &P + Zlea BCP -+ 6} VZ &P (C 25)
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To apply Karplus'criterion, it is necessary to determine the sign

of the following expression

2 2
ZerZDlavz [-%] + r2p2D12vz %ﬁ A(P
do 2, [do)’

From an order of magnitude analysis and some numerical experimentation,

it was found that expression (C=26) is positive, i.e.,
2 2 do 2 2 2 d2
2r'p Dlevz[dw] + T P Dypv, ——% Ap
2 [d
+ 20D, %ﬁﬁ Ap + T FD[EQ] Ap > 0 (c-27)

i.e.,

2 2 d
~2r P Diav, [E%]
sl do 2 2 d2 2 2 (©-28)
dg do
2pD, 2 ay +rp Dlez d¢2 + r FD [d¢ ]

Examining the right hand membexr of the above inequality

2

2r2p2D12vZ [%‘5] > 0 (€-29)
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2
Also, though EJ% < 0 for the present transformation, the expression
d

in the denominator of the right hand member is positive, i.e.,

2 2
[ZDDIB' g&\% + -rzplegvz d—% + rZFD [g%] jl > 0 (c-30)
dy
Thus,
Ap > = [positive quantity] (C~31)
i.e.,

Ap has no stability limitatioms.

The coefficients in Equation (C-24) are not all of the same sign.

Therefore, using Karplus' condition (C-3), Equation (C-24) yields

2
[4IZDZD12VZE%%} } —;LE - i% < 0 (C-32)
m,n ZA@
1 - e 1 4 k]
b < | = s L A (c-33)
2D, 5 r2p2v do 2
Z [dw] m,n

Thus the stability conditions for the Equation (94) are

1. Ay has no restriction (C-34)
N
Sc 1 1 2
2, Az < 5y 53 5 Iep (C=35)
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Centerline Diffusion Equation

At the centerline, the finite difference form of the diffusion
equation is given by Equation (97). Arranging it in the form corre=-

sponding to Equation (C<1l) results in the equation

0y (m'i'lﬂn) = Wy (msn) ] {:031 (m, '[H-l) = g (m, n) i!
- = 0 (C-36)

20Dy 2 [ Apz Az

Multiplying Equation (C=36) by A¢3 and rewriting

3 agl(m,n+l) - oy (m,m)
20D, 5 A [au(m+l,n) - ma(m,n)] - Ay T = 0
(C=37)
Examining the coefficient of the first term reveals that
(2002, ] 29 >0 (C-38)
m,n
i.e,,
ko > O (C=39)
Hence, NAp has no restriction from stability consideration.
Both the coefficients in Equation (C=36) are not of the same
sign. Hence, applying Karplus' condition (C-3) to Equation (C-35)
yields
{ 2pD; 2 ]‘ .
m,n _ 1 _
5 Az < 0 (C=40)

Aep
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i.e.,

rz < Ap (C-41)

Summarizing, the stability conditions for Equation (97) are

1. Ap has no restriction (C=42)
2, Az < o 1 Ayz (C=43)
[zlez ]m’n

c.2 Von Neumann's Method

C.2.1 Criterion for Stability

The von Neumann stability analysis reported by O'Brien, Hyman
and Kaplan23 was later exfended by Lax and Richtmyer35 who have shown
various circumstances under which the wvon Neumann condition is a
sufficient as well as a necessary condition for convergence. The
Lax=Richtmyer analysis of stability is presented in detail by Richt=
myer35 and the following is a summary of the same analysis presented

here for the sake of completeness,

The difference equations are assumed to be linear and two
spatial variables m and n are used, with n denoting the axial
direction., Thus, the following system of linear difference equations

with constant coefficients is analyzed for stability.



where

¢

RON:

-0+l
a

cl

w|

™| .
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1 _otl
B_ T (p1 + Bilwrs -ens g+ Bgloy)

+z _ Binn (p + Bullpys o0 > g+ Bylpg) = O
N, B B

(C-44)

the solution function of the difference equation at the
new line, i.e., vector whose components are the values

of the dependent variables at a point of the new line.
the solution function at a point of the previous line.

the vector whose components are fB,, ... , Bd’ the

value of which indicates the point of the new line,.

a p x p matrix, where p is the number of dependent
variables., The elements of the matrix are the coeffici-
ents of the terms of the equations. The superscript
indicates the line, the subscript the point on the line,

)
(Similar definition holds for B_ ).

B

Summation over the points of the new line.

Summation over the previous line.

P1sees> @4 Denotes the coordinates of a lattice point.



150

The stability criterion for the above difference equations is
that the absolute values of the eigenvalues of the amplification

matrix G(Az, E) obey the inequality

i)\ils 1+ 0(Az) for 0 <Az <z
i=1, evev , P (C-45)
where
G = -[Hl]-l [HQq (C-46)
L -
H, = Z _ B exp i[lelAcpl + ... +kdBdAcpd):l (C-47)
x (® B .
1
and

] 1 .
H, = Z- _ B_ exp {i [ka.BlACP:_ S I kdBdAcpd}] (C=48)
No

Equation (C-45) is the von Neumann necessary condition for
stability. In the present study, ¢ is a scalar and hence Equations

(C-47) and (C-48) reduce to:

0 = Z g ol (C-49)
“® B
1
o = ) B e (c-50)
® B



151

Determination of the Stability Conditions

The numerical stability conditions of the finite difference
Equations (88) and (94) used in Aetermining the values of the flow
parameters are derived by von Neumann's method. As requirgd by this
method, Equations (88) and (94) are first linearized. The notations

. 35 . ,
of Richtmyer are used in this section.

Momentum Equation

The difference Equation (88) is rewritten, retaining only

the linear terms,

ntl n

n n n

o | (V) - 2(v,) +(v)
] ! ‘m m
m

+ [upvzr {%%] mtl 2A9 =
)n )n
. {upv _ _394_ " %Hn (v, m-le (v, el
dy m P
(C=51)
Rearranging Equation (C=51) and substituting
o = -QE—Z- (C-52)
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leads to the following equation

~ol

2 2 n
2 . dg 1 2 d
[ v, ] - {p.pvzr c[‘—;—“\ﬂ + po -d_cqe Np + upvzr -—% ol ]

sttt [ [ (8] -

m
(C=53)

The matrices H, and H; can now be calculated on suybstituting
the Fourier series for the dependent variable. It is to be noted

that superscripts n and o+l replace the superscripts O and 1.

2 In
n 2
B = {- L+ 2upv T c[%‘ﬁ] ]m (C-54)
2 2 "
n 2 |d 2 d
Bm+1 = [- wev I c[jﬁ] - uo'%% Ao = % pv, T ;;% olp ] (C=55)
m
2 n
n

o
i

2
2 d 24
L [- upvzr G[%%] + uo E% p + %’pvzr ;;% Ol ] (C=56)
m



153

o+l
Bm = 1 (C=57)
Now
_ o ikmAgp n ik (mt+1) Agp n ik(m-1) Ap _
H = B_ e +B .4 e +B 4 e (C=58)

Substituting Equations (C=-54) through (C=57) into- Equation (C-58)

yields
. 9 "
- _ dp ikmAgp
Hn i 1+ 2p.pvzr [d‘lf] ) e
i 2 2 1"
- 2.[e] - o0, - & 2dg ik (mt+1) Ap
+ i u.pvzr G[d‘k] $le) ay A 2 pvzr d¢2 olp - e
m
: 2 2 1"
- oy £ dy B oy 2 O ik (m-1) i
+ L p.pvzr G[dq;] + u a4 ohp + 5 pvzr d\pz ol _ e
m
(C=59)
On simplifying, Equation (C=-59) gives
_ ) 9 -
- 1+ Zupvzr c[%%]
2
2[dp ikAg -ik
- lJ-szr [d‘l’] (o] {e + e A‘P]
B o= et (C-60)
) ikip __-ikA
MO gy A9 [e € tP]
2 . .
- % pv r 9_% ol [elkAcP - e-lkAcP]
dy
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Using the following identities

ki | -ikip

cos kAcp = > (C~-61)
. 3 eikA@ - e-ik&p

sin kip = 51 (C=-62)

cos 232‘& =1-2 sin2 k%ﬂ (C-63)

and simplifying, Equation (C=60) gives

2

- ikmép 2
Hn = e -1+ 2upvzr c[g—(’q%] [l - cos kAcp]
p 2 d2
- |2 -g—‘P- +2vr? 9@ | (iu0ap) sin kap (G-64)
¥ 2 'z d\bz

Similarly, using Equation (C-56), H; can be written as

H,, = o Lhmip [1] (G-65)

The amplification matrix G can be obtained by substituting Equations

(C-60) and (C=-65) into Equation (C-46) and simplifying
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2
G =¢1 = 4ppvzr20 [g%] sin2 k %?

2
+ i{% + % vzr2 -‘i%} Holp sin kip (C-66)

E=8

or —

N

2 12
[1 - 4pov o [g%] sin’ kf%‘i]

e | - (C-67)

2 2
+[2 %%+ v.r’ ‘-UZR] u202 A(pz sin? kip

K4
dy

N|O

Using the von Neumann condition (C=45), Equation (C-67) yields,

after simplification,

2 2
[1 - 4ppvzr20[%%] sin2 k %?]
d 9 d2 2 2 2
+ |2 39 + & v,r ——% H 00(Az) sin kip > <1 (C-68)
v 2 dy B

The second term on the left hand side is of order (Az) and is

neglected, in comparison with the first term. Simplifying, the

above inequality becomes

2
+ {1 - 4upvzr20[%%] sin2 k~%?] <1 (C-69)

Using the positive sign,

c>0 (C-70)
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Using the negative sign,

2
i 2 [dol .2, M -
.1+4upvzro[d” sin” k82 < 1 (C-71)

Therefore

(C-72)

The minimum value of ¢ 1is obtained when sin2 E%Q = 1 and is given by

1 1
pvzr2 [%%]

Thus, substituting Equation (C-52) into Equations (C-70) and (C-73)

gives
1 1 1 2
0 < pz < 7 T3 5 Do (c-74)
T v, [Qgg]
dy .
i.e.,
n
re < | =L 1 Ko? (C-75)
2y 22 2
Rt
dy m
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Diffusion Equation

The difference Equation (94) is rewritten retaining only the

linear terms,

n n n
ok n @) - () + (@)
©) 5 = (@) p [rzpzn . [@]Z]n - D+ m_;‘

Az 127zldy 0 ﬂ¢2 J
n n
dz n ((Dl) L - ((Dl) 1
2 2. . m m=
+[r P Dlavz 'd_’q[% +'20Dlg %(%]m ZAIP (0'76)

Using the procedure as discussed in the derivation of the stability
condition for the momentum equation and using the von Neumann
conditions (C=45), Equation (C~-76) gives

) 2

- 1+ 4% Dipv 0 [%%] sin” K2 < (C-77)

After simplification Equation (C-77) becomes

N
Sc 1 1 2
Az < N ) 3 &p (C-78)
rPv, o
Z
dy m

The von Neumann conditions (C~75) and (C-78) for the momentum and
diffusion equations are identical to the Karplus conditions (C=15)

and (C-35) for the same equations.
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Thus, the present stability analysis leads to the observation
that Karplus' criterion is simpler to apply as compared to the von

Neumann criterion,



APPENDIX D

INITTIAL DATA FOR FLOW CASES INVESTIGATED

A total of 57 flow cases was investigated for the parametric
study of the confined jet mixing problem. Detailed results of all
these cases are available but are presented here for only some
selected cases. 1In all these cases, the confining duct radius R,
the outer stream density 05, and the outer stream viscosity g

had the following constant values.

1. R = 0.0833 ft.
1bm.
2, Py = 0,075 T
3. up = 0.124 x 1074 iBm-_

ft.sec.

The values of the flow parameters at the initial section are presented

here in tabular form.

159
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