General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
\# 3 \square - 4 Qit SEIECIION PROCEDURES BASED ON RANKS:

On Selection Procedures Based on Ranks:
 Counterexamples Concerning Least Favorable Configurations
 By
 M. Haseeb Rizvi ${ }^{1}$ and George G. Woodworth

TECHNICAL REPORT NO. 114

October 28, 1968

Supported by the Army, Navy and Air Force under Contract Nonr-225(53) (NR-042-002) with the Office of Naval Research

Gerald J. Liebermm, Project Director
${ }^{1}$ The research of this author was supported by the Federal Highway Administration Contract FH 11-6667 with Stanford University, and NASA Contract No. NGR36-008-040 with the Ohio State University.

Reproduction in Whole or in Part is Permitted for any Purpose of the United States Government

DEPARTMENT OF OPERATIONS RESEARCH
AND
DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

The next counterexample shows that (2.7) is false; and it seems to us that this invalidates $R\left(\delta^{*}, P^{*}\right)$ as a reasonable procedure since the infimum of $\mathrm{P}[C S]$ is not controlled even asymptotically. The expedient of the authors of the latest version of [7] of considering only that part of the parameter space where $\theta_{[k]}-\theta_{[1]}=O\left(n^{-\frac{1}{2}}\right)$ is difficult to translate into practice. Does it mean that one should use $R\left(\delta^{*}, P^{*}\right)$ only when one is cor inced that $\theta_{[k]}-\theta_{[1]}=O\left(n^{-\frac{1}{2}}\right)$?

Counterexample 2.

Consider the logistic cdf $F(x)=\left(1+e^{-x}\right)^{-1}$ and let
$\theta\left(\delta^{*}\right) \varepsilon D\left(\delta^{*}\right)$ be a sequence of θ-values depending on δ^{*} as follows:

$$
\begin{gather*}
\theta_{1}=\ldots=\theta_{k-t-1}=-\theta_{0}, \theta_{k-t}=0, \theta_{k-t+1}=\delta^{*} \tag{2.8}\\
\theta_{k-t+2}=\ldots=\theta_{k}=\theta_{0},
\end{gather*}
$$

where θ_{0} is a fixed positive constant and $\delta^{*}<\theta_{0}$.
We now prove the following assertion: For each $k \geq 3$ and each $t<k$, there exists a value of P^{*}, say $P_{0}^{*},\binom{k}{t}^{-1}<P_{0}^{*}<1$, such that

In problem II the experimenter sets only the p^{*}-value and requires that, with probability greater P^{*}, the selected subset contains the index of the largest θ-value. This problem might arise in screening drugs as cancer cures; one would want to reduce the number of drugs which are to be submitted to further tests but at the same time be reasonably sure of not eliminating any drug which is a potential cure.

In this paper we examine certain procedures which have been claimed elsewhere to be solutions to these problems. We show by means of specific examples that these procedures are in fact not solutions and should be used with caution if they are used at all.

On Selection Procedures Based on Ranks:
 Counterexamples Concerning Least Favorable Configurations

By
M. Haseeb Rizvi and George G. Woodworth

1. Introduction

Let $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$ denote $k>2$ inivariate populations differing only in location; that is, an observation X_{i} drawn from π_{i} has cumulative distribution function (cdf) $F\left(x-\theta_{i}\right.$) where F is a known continuous cdf with square integrable density f but the location parameter vector $\underset{\sim}{\theta}=\left(\theta_{1}, \ldots, \theta_{k}\right)$ is unnown. Let the ordered values of the location parameters be denoted by
$\theta_{[1]} \leq \theta_{[2]} \leq \cdots \leq \theta_{[k]}$.

Selecting the t best populations.
The decision problem here is to select the populations corresponding to the $t<k$ largest θ-values. The goal of the decision maker is to find a procedure, say R, and a sample size n such that the probebility of a correct selection using rule $R, P[C S \mid R, \underset{\sim}{\theta}]$, has the property that

$$
\begin{equation*}
\inf _{\underset{\sim}{\theta} \in D\left(\delta^{*}\right)} P[\operatorname{CS} \mid R, \theta] \geq P^{*} \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.D\left(\delta^{*}\right)=\underset{\sim}{\theta} ;{ }_{i}^{\theta} \underset{[k-t+1]}{ }-{ }^{\theta}[k-t] \geq \delta^{*}\right\}, \tag{1.2}
\end{equation*}
$$

and $\binom{k}{t}^{-1}<P^{*}<1$ and $8^{*}>0$ are preassigned constants.

Selecting a subset containing the best population.
The decision problem here is to select a subset of the k populations containing the population associated with $\theta_{[k]}$. The goal of the decision maker is to find for fixed n and preassigned $P^{*}<1$ a procedure, say R^{\prime}, such that

$$
\begin{equation*}
\underset{\theta}{\inf } P\left[C S \mid R^{\prime}, \underset{\pi}{\theta}\right] \geq P^{*} \tag{1.3}
\end{equation*}
$$

We consider two procedures (proposed elsewhere) based on rank sums and show by counterexamples in sections 2 and 3 that they do not satisfy (1.1) for (1.3)).
2. A procedure based on rank sums for selecting the t best populations.

Let $\left\{\mathbf{X}_{i j}: i=1, \ldots, k, j=1, \ldots, n\right\}$ be k sampies each of size $n\left(n\right.$ is to be determined by (1.I)), $X_{i j}$ being the j th Observation from π_{i}, and let $R_{i j}$ be the rank of $X_{i j}$ among all the observations.

Define the rank sums

$$
\begin{align*}
T_{i n} & =\frac{1}{n^{2}} \sum_{j=1}^{n} R_{i j}, i=1, \ldots, k \tag{2.1}\\
& =\frac{1}{n^{2}} \sum_{j=1}^{n} \sum_{s=1}^{n} \sum_{r=1}^{k} I\left(X_{i j}>X_{r s}\right)+\frac{1}{n},
\end{align*}
$$

Where $I(\cdot)$ is the indicator of the event in parentheses.
The proposed selection rule, call it $R(n)$, is as follows:
i) Draw samples of size n from each population and
compute $T_{\text {in }}$ for $i=1, \ldots, k$.
ii) Select the t populations having the largest $T_{i n}$-values, resclving ties by the obvious randomization.

The problem now is to find a value $n=n\left(8^{*}, P^{*} ; k, t, F\right)$ such that $R(n)$ satisfies (1.1).

In solving this problem a crucial role is played by the slippage configuration θ_{0} :

$$
\text { (2.3) } \theta_{[1]}=\cdots=\theta_{[k-t]}=\theta_{[k-t+1]}-\delta^{*}=\cdots=\theta_{[k]}-\delta^{*} .
$$

Many selection rules, for example the rule based on the sample means, have the property that the infimum in (1.1) is attained when $\underset{\sim}{\theta}$ is in the slippage configuration; in other words for many rules the slippage configuration is the least favorable configuration. For such rules it is a relatively easy task to find the appropriate value of n (see, for instance, Example 1 of [1]). The following counterexample, kindly communicated to the authors by E. L. Lehmann, shows that for the ranksum rule $R(n)$ the slippage configuration is not least favorable. Counterexample 1 (E. L. Lehmann).

Let $k=3, t=1$ and let F be a continuous cdf which places probability q and $p=1-q$ respectively on the intervals $(0, \varepsilon)$ and $(1,1+\varepsilon) ; \varepsilon<1 / 3$ is a constant. Let $\delta^{*}=\varepsilon$ and consider two parameter values:

$$
{\underset{\sim}{\theta}}_{0}=\left(0,0,8^{*}\right),{\underset{\sim}{\theta}}^{\theta}=\left(0,8^{*}, 28^{*}\right)
$$

For $n=2$, we show that

$$
\begin{equation*}
\mathrm{P}\left[\operatorname{CS} \mid \mathrm{R}(2), \theta_{-0}\right]>\mathrm{P}[\operatorname{CS} \mid \mathrm{R}(2),{\underset{\sim}{1}}] \tag{2.4}
\end{equation*}
$$

Since ${\underset{\sim}{0}}_{\theta}^{0}$ is in the slippage configuration and ${\underset{\sim}{0}}_{0}^{0}{\underset{\sim}{1}}^{\theta} \varepsilon \mathrm{D}\left(8^{*}\right)$,
defined by (1.2), this provides the required counterexample.

Proof: The supports of the distributions of the populations under the two parameter configurations can be depicted as showr in Figure 1.

\qquad

Figure 1: Supports of Distributions.

Let B_{i} be 0,1 or 2 according as 0,1 or 2 observations from π_{1} are in the upper interval of the support of its distribution, $\underset{\sim}{B}=\left(B_{1}, B_{2}, B_{3}\right)$ and $\underset{\sim}{b}=\left(b_{1}, b_{2}, b_{3}\right)$ is a realization of $\underset{\sim}{B}$. Cleariy $P[\underset{\sim}{B}=\underset{\sim}{b} \mid \underset{\sim}{\theta}]=\prod_{i=1}^{3}\binom{2}{b_{i}} p^{b_{i}} q^{2-b_{i}}$ for $\underset{\sim}{\theta}=\theta_{\sim}$ or ${\underset{\sim}{1}}^{\theta_{1}}$.
$\underset{\sim}{R}=\left\{R_{i j}: 1=1,2,3, j=1,2\right\}$ is the vector of ranks and $\underset{\sim}{r}=\left(r_{i j}\right)$ is a realization of $\underset{\sim}{R}$. Given $\underset{\sim}{R}=\underset{\sim}{r}$ a correct selection (selection of π_{3}) occurs with probability 1 if $r_{31}+r_{32}>$ $\max \left(r_{21}+r_{22}, r_{11}+r_{12}\right)$, with probability $\frac{1}{2}$ if $r_{31}+r_{32}=r_{21}$ $+r_{22}>r_{11}+r_{12}$ or $r_{31}+r_{32}=r_{11}+r_{12}>r_{21}+r_{22}$ and with probability $1 / 3$ if $r_{31}+r_{32}=r_{21}+r_{22}=r_{11}+r_{12}$. The conditional probability that $\underset{\sim}{R}=\underset{\sim}{r}$ given $\underset{\sim}{B}=\underset{\sim}{b}$ is easy to compute, for example

$$
\underset{\sim}{P}\left[R=(1,2 ; 3,4 ; 5,6) \mid \underset{\sim}{B}=(0,0,0), \underset{\sim}{\theta_{1}}\right]= \begin{cases}1 / 48 & 1=0 \\ 1 / 8 & 1=1\end{cases}
$$

Thus, for each of the 27 values of $\underset{\sim}{b}$ one can determine the conditional probability of a correct selection given $\underset{\sim}{B}=\underset{\sim}{b}$ under ${\underset{\sim}{0}}_{0}$ and ${\underset{\sim}{1}}^{\theta_{1}}$. For most of the $\underset{\sim}{b}$ the probability is the same under ${\underset{\sim}{0}}_{0}$ and θ_{1} but in the six cases listed in Table 1 there is a difference.

Table 1

$\underset{\sim}{b}$	$\mathrm{P}[\underset{\sim}{\mathrm{B}}=\mathrm{b}]$	$\begin{aligned} & \mathrm{P}[\operatorname{cs} \mid \mathrm{B}=\mathrm{b}, \\ & \left.\theta_{2}\right] \\ & \theta_{0} \\ & \hline \end{aligned}$	
$(0,1,0)$	$2 p q^{5}$	5/6	1/2
$(1,0,0)$	$2 \mathrm{pq}{ }^{5}$	5/6	1
$(1,1,0)$	$4 p^{2} q^{4}$	1/6	0
$(1,2,1)$	$4 p^{4} q^{2}$	1/2	0
$(2,1,1)$	$4 p^{4} q^{2}$	1/2	1
$(2,2,1)$	$2 p^{5} q$	$1 / 9$	0

Thus

$$
\begin{aligned}
& P\left[\operatorname{CS} \mid R(2), \theta_{\sim}^{\theta_{0}}\right]-F[C S \mid R(2),{\underset{\sim}{\theta}}] \\
& \quad=\frac{1}{3} p q^{5}+\frac{2}{3} p^{2} q^{4}+\frac{2}{9} p^{5} q>0
\end{aligned}
$$

which establishes counterexample 1.
The possibility still remains that the slippage configuration is asymptotically $\left(\delta^{*} \rightarrow 0\right)$ least favorable; an asymptotic solution based on this assumption has been claimed by various authors ([4], [7] and [8]). This solution is as follows:

Let $A\left(P^{*} ; k, t\right)$ be the solution of

$$
\begin{equation*}
\int \Phi^{k-t}(x+A) d \Phi^{t}(x)=P^{*} \tag{2.5}
\end{equation*}
$$

where is the standerd normal cdf, and define $n\left(B^{*}, P^{*} ; k, t, F\right)$ to be the smallest integer larger than

$$
\begin{equation*}
A^{2}\left(P^{*} ; k, t\right) / 12\left[\delta^{*} / f^{2}(x) d x\right]^{2}, \tag{2.6}
\end{equation*}
$$

where f is the derivative of F. The selection rule $R\left(\delta^{*}, P^{*} ; k, t, F\right)=R\left(\delta^{*}, P^{*}\right)$ is the rule $R(n)$ with n set equai to $n\left(\delta^{*}, P^{*} ; k, t, F\right)$. The natural inclination to call $R\left(\delta^{*}, P^{*}\right)$ "distribution-free" must be resisted; obviously one needs to know F to carry out this procedure.

If $\underset{\sim}{\theta}$ is in the slippage configuration (2.3), then it can be shown ([7] or (8]) that

$$
\lim _{\delta^{*} \rightarrow 0} P\left[\operatorname{cs} \mid R\left(\theta^{*}, P^{*}\right), \theta_{0}\right]=P^{*}
$$

The authors of [4] and [8] have incorrectly asserted that the slippage configuration is least favorable (this was also asserted in earlier versions of [7]) from whick it would follow that $R\left(8^{*}, P^{*}\right)$ satisifies (1.1) asymptotically as $5^{*} \rightarrow 0$; i.e. for fixed P^{*}, it has been claimed that

$$
\begin{equation*}
\lim _{8^{*} \rightarrow 0} \inf _{\theta \in D\left(8^{*}\right)} P\left[\operatorname{cs} \mid R\left(8^{*}, P^{*}\right), \theta\right]=P^{*} . \tag{2.7}
\end{equation*}
$$

The next counterexample shows that (2.7) is false; and it seems to us that this invalidates $R\left(\delta^{*}, P^{*}\right)$ as a reasonable procedure since the infimum of $P[C S]$ is not controlled even asymptotically. The expedient of the authors of the latest version of [7] of considering only that part of the parameter space where $\theta_{[k]}-\theta_{[]]}=O\left(n^{-\frac{1}{2}}\right)$ is difficult to translate into practice. Does it mean that one should use $R\left(\delta^{*}, P^{*}\right)$ only when one is cor finced that $\theta_{[k]}-\theta_{[1]}=O\left(n^{-\frac{1}{2}}\right)$?

Counterexample 2.

Consider the logistic cdf $F(x)=\left(1+e^{-x}\right)^{-1}$ and let
$\theta\left(8^{*}\right) \varepsilon \mathrm{D}\left(8^{*}\right)$ be a sequence of $\underset{\sim}{\theta}$-values depending on δ^{*} as follows:

$$
\begin{gather*}
\theta_{1}=\ldots=\theta_{k-t-1}=-\theta_{0}, \theta_{k-t}=0, \theta_{k-t+1}=\delta^{*}, \tag{2.8}\\
\theta_{k-t+2}=\ldots=\theta_{k}=\theta_{0},
\end{gather*}
$$

where θ_{0} is a fixed positive constant and $\delta^{*}<\theta_{0}$.

We now prove the following assertion: For each $k \geq 3$ and each $t<k$, there exists a value of P^{*}, say $P_{0}^{*},\binom{k}{t}^{-l}<P_{0}^{*}<1$, sush that
(2.9)

$$
\lim _{\delta^{*} \rightarrow 0} P\left[\operatorname{CS} \mid R\left(\delta^{*}, P_{0}^{*}\right), \theta^{\theta}\left(\delta^{*}\right)\right]<P_{0}^{*},
$$

which clearly contradicts (2.7).

Lemma 1.
(2.10)

$$
\begin{aligned}
& \lim _{\delta^{*} \rightarrow 0} \mathrm{P}\left[\mathrm{CS} \mid \mathrm{R}\left(\delta^{*}, \mathrm{P}^{*}\right), \theta\left(\delta^{*}\right)\right] \\
& \leq \Phi\left(2^{-\frac{1}{2}} \mathrm{~A}^{*} \rho\left(\theta_{0}\right)\right)
\end{aligned}
$$

where

$$
\begin{equation*}
A^{*}=A\left(P^{*} ; k, t\right), \tag{2.II}
\end{equation*}
$$

(2.12) $\quad \rho\left(\theta_{0}\right)=3^{\frac{1}{2}} \int H_{\theta_{0}}(2 F-1) d F /\left[\int H_{\theta_{0}}^{2} d F-\left(\int H_{\theta_{0}} d F\right)^{2}\right]^{\frac{1}{2}}$
and
(2.13) $H_{\theta_{0}}(x)=k^{-1}\left[(k-t-1) F\left(x+\theta_{0}\right)+2 F(x)+(t-1) F\left(x-\theta_{0}\right)\right]$.

Proof: Notice first that if $\theta_{1} \leq \theta_{2} \leq \cdots \leq \theta_{k}$, then
(2.14)

$$
\begin{aligned}
& P\left[C S \mid R\left(\delta^{*}, P^{*}\right), \underset{\sim}{\theta]}\right. \\
& \quad \leq P\left[\max _{1 \leq i \leq k-t} T_{i n} \leq \min _{k-t<j \leq k} T_{j n} \mid \theta \underset{\sim}{\theta]}\right. \\
& \quad \leq P\left[T_{k-t+1, n}-T_{k-t, n} \geq 0 \mid \underset{\sim}{\theta}\right]
\end{aligned}
$$

where n is the smallest integer greater than (2.6). From (2.2) one has, with probability one when $\underset{\sim}{\theta}=\underset{\sim}{\theta}\left(\delta^{*}\right)$,

$$
\begin{aligned}
& T_{k-t+1, n}-T_{k-t, n} \\
& =\frac{1}{n^{2}} \sum_{j=1}^{n} \sum_{s=1}^{n}\left\{2 I\left(x_{k-t+1, j}>x_{k-t, s}\right)-1\right. \\
& +\sum_{\substack{i \neq k-t \\
\text { or } k-t+1}}\left[I\left(X_{k-t+1, j}>X_{i s}\right)\right. \\
& \left.-I\left(\mathrm{X}_{\mathrm{k}-\mathrm{t}, \mathrm{j}}>\mathrm{X}_{\mathrm{is}}\right) \mathrm{l}\right\} \\
& (2.15)=\frac{1}{n} \sum_{j=1}^{n}-\sum_{i \neq k-t, k-t+1}\left\{F\left(X_{i j}-\delta^{*}\right)-F\left(\mathbf{x}_{i j}\right)\right\} \\
& -\frac{1}{n} \sum_{j=1}^{n}\left(2 F\left(X_{k-t, j}-\delta^{*}\right)+(k-t-1) F\left(X_{k-t, j}+\theta_{0}\right)\right. \\
& +(t-1) F\left(X_{k-t, j}-\theta_{0}\right) j \\
& +\frac{1}{n} \sum_{j=1}^{n}\left(2 F\left(X_{k-t+1, j}\right)+(k-t-1) F\left(X_{k-t+1, j}+\theta_{0}\right)\right. \\
& \left.+(t-1) F\left(X_{k-t+1, j}-\theta_{0}\right)\right\} \\
& +1-2 \int F\left(x+\delta^{*}\right) d F(x)+(k-t-1) \int F\left(x+\theta_{0}\right) d\left(F\left(x-\delta^{*}\right)-F(x)\right) \\
& +(t-1) \int F\left(x-\theta_{0}\right) d\left(F\left(x-\delta^{*}\right)-F(x)\right) \\
& +\varepsilon_{\mathrm{n}}\left(\theta_{0}, \delta^{*}\right),
\end{aligned}
$$

where $E \varepsilon_{n}^{2}\left(\theta_{0}, \delta^{*}\right) \leq C / n^{2}$ and C is an absolute constant. Note that (2.15) is obtained by U-statistic arguments in imitation of, say, the proof of Theorem 5.6, p. 229 of [3].

Let

$$
\begin{equation*}
W_{n}=n^{\frac{1}{2}}\left(T_{k-t+1, n}-T_{k-t, n}\right), \tag{2.16}
\end{equation*}
$$

routine calculation yields

$$
\begin{aligned}
& E W_{n}=n^{\frac{1}{2}}\left\{2 \int F\left(x+\delta^{*}\right) d F(x)-1\right. \\
&+(k-t-1) \int\left(F\left(x-\theta_{0}\right)-F\left(x-\theta_{0}-\delta^{*}\right)\right) d F(x) \\
&\left.+(t-1) \quad \int\left(F\left(x+\theta_{0}\right)-F\left(x+\theta_{0}-\delta^{*}\right)\right) d F(x)\right\} .
\end{aligned}
$$

By (2.6) and (2.11) one has $n^{\frac{1}{2}} \delta^{*} \rightarrow A^{*}\left[12 \int f^{2}\right]^{-\frac{1}{2}}$ as $\delta^{*} \rightarrow 0$; thus, by Olshen's Lemma (p. 1766 of [5])

$$
\begin{aligned}
& \text { (2.17) } \lim _{\delta^{*} \rightarrow 0} E N_{n}=\frac{A^{*}}{\sqrt{12} \int f^{2}}\left(2 \int f^{2}(x) d x+(k-t-1) \int f\left(x-\theta_{0}\right) f(x) d x\right. \\
& \left.+(t-1) \int f\left(x+\theta_{0}\right) f(x) d x\right\} \text {. }
\end{aligned}
$$

Also

$$
\begin{equation*}
\lim _{\delta^{*} \rightarrow 0} \operatorname{Var}\left(W_{n}\right)=2 k^{2}\left(\int H_{\theta_{0}}^{2} d F-\left(j H_{\theta_{0}} d F\right)^{2}\right\}, \tag{2.18}
\end{equation*}
$$

where $H_{\theta_{0}}$ is defined by (2.13).
If we set $F(x)=\left(1+e^{-x}\right)^{-1}$, then $f(x)=F(x)(1-F(x))$ and $f f^{2}=1 / 6$, so that (2.17) becomes, after integrating by parts,

$$
\lim _{\delta^{*} \rightarrow 0} E W_{n}=3^{\frac{1}{2}} A^{*} \mathrm{k} \int \mathrm{H}_{\theta_{0}}(2 F-1) \mathrm{dF} .
$$

Since (2.15) is asymptoticafly normal by Liapunov's theorem, it follows that

$$
\begin{aligned}
& \lim _{\delta^{*} \rightarrow 0} P\left[C S \mid R\left(\delta^{*}, P^{*}\right), \theta\left(\delta^{*}\right)\right] \\
& \quad \leq \lim _{\delta^{*} \rightarrow 0} P\left[T_{k-t+1, n}-T_{k-t, n} \geq 0 \mid \theta_{\sim}^{\left.\theta\left(8^{*}\right)\right]}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{\delta^{*} \rightarrow 0} F\left[\left.\left(W_{n}-E W_{n}\right) /\left(\operatorname{Var}\left(W_{n}\right)\right)^{\frac{1}{2}} \geq-E W_{n} /\left(\operatorname{Var}\left(W_{n}\right)\right)^{\frac{1}{2}} \right\rvert\, \theta\left(\delta^{*}\right)\right] \\
& =\Phi\left(2^{-\frac{1}{2}} A^{*} \rho\left(\theta_{0}\right)\right)
\end{aligned}
$$

which proves Lemme 1.
Remark. For $\theta_{0}>0, \mathrm{H}_{\theta_{0}}$ is clearly not a linear function of F and, since $H_{\theta_{0}}$ and F are both monotone increasing, we have

$$
\begin{equation*}
0 \leq p\left(\theta_{0}\right)<1 \tag{2.19}
\end{equation*}
$$

Lemma 2.
For any k and t

$$
\begin{equation*}
\lim _{P^{*} \rightarrow 1} 2^{\frac{1}{2}} \Phi^{-1}\left(P^{*}\right) / A^{*}=1 \tag{2.20}
\end{equation*}
$$

where $A^{*}=A\left(P^{*} ; k, t\right)$ and A is defined by (2.5).

Proof: Let Z_{1}, \ldots, Z_{k} be independent normal $(0,1)$ random variables. Then,

$$
\begin{aligned}
1-P^{*} & =1-\int \Phi^{k-t}\left(x+A^{*}\right) d^{t}(x) \\
& =P\left[\max _{1 \leq i \leq k-t} Z_{i}>\min _{k-t \leq j \leq k} Z_{j}+A^{*}\right] \\
& =P\left[\underset{1 \leq i \leq k-t \leq j \leq k}{U}\left\{Z_{i}>Z_{j}+A^{*}\right]\right] \\
& \leq t(k-t) P\left[Z_{1}>Z_{k}+A^{*}\right] \\
& =t(k-t)\left[1-\Phi\left(2^{-\frac{1}{2}} A^{*}\right)\right]
\end{aligned}
$$

Also clearly

$$
1-P^{*} \geq\left[1-\Phi\left(2^{-\frac{1}{2}} A^{*}\right)\right]
$$

Lenma 2 now is a consequence of the following easily verifiable fact

$$
\lim _{u \rightarrow 1} \Phi^{-1}(u) /[-2 \log (1-u)]^{\frac{1}{2}}=1
$$

and of the well known approximation to Mills' ratio.
Counterexample 2 now follows from (2.10), (2.19) and (2.20) by selecting P_{0}^{*} large enough so that

$$
2^{-\frac{1}{2}} \mathrm{~A}\left(\mathrm{P}_{0}^{*} ; k, t\right) / \Phi^{-1}\left(\mathrm{P}_{0}^{*}\right)<1 / p\left(\theta_{0}\right) .
$$

A remark on the scale parameter case.
Suppose π_{i} has cdf $F\left(x / \sigma_{1}\right)$ where $F(x)=0$ for $x<0, F$ is known, and $\underset{\sim}{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{k}\right)$ is unknown (if $F(x) \neq 0$ for $x<0$ then replace x by $|x|)$. $R(n)$, with $X_{i j}$ replaced by $-\bar{X}_{i j}$, could be used to select the t smallest σ-values; in [6] it is asserted that, for any constant $\theta^{*}>1, \operatorname{P}[\operatorname{CS} \mid R(n), \sigma]$ attains its minimum, subject to the condition

$$
\sigma_{[t+1]}^{2} / \sigma_{[t]}^{2} \geq \theta^{*}>1
$$

when

$$
\theta^{*} \sigma_{[1]}^{2}=\cdots=\theta^{*} \sigma_{[t]}^{2}=\sigma_{[t+1]}^{2}=\cdots=\sigma_{[k]}^{2}
$$

That this is false, even asymptotically ($\theta^{*} \rightarrow 1$), follows from Counterexample 2 by considering the random variable $Y=-\log (\bar{X})$, since if X has cdf $F(x / \sigma)$ then Y has $\operatorname{cdf} 1-F(\exp (\mu-y))$, where $\mu=-i \log \sigma$, and $Y_{i j}$ has the same rank as $-X_{i j}$.

3. A procedure based on rank sums for selecting a subset containing

the best population.
The authors of [2] propose the following procedure, call it $R^{\prime}(n)$:
Put π_{i} in the selected subset iff

$$
T_{i n} \geq \max _{j} T_{j n}-c_{n}
$$

where

$$
\begin{equation*}
\text { . } c_{n}=(12 n)^{-\frac{1}{2}} k A^{*}+o\left(n^{-\frac{1}{2}}\right) \tag{3.1}
\end{equation*}
$$

and $A^{*}=A\left(P^{*} ; k, l\right)$, defined by (2.5). We shall show that the slippage configuration: ${ }^{\theta}[1]={ }_{[2]}=\ldots=\theta_{[k]}$ is not least favorable by proving the following:

Counterexample 3.

Let ${\underset{\sim}{1}}$ denote the configuration

$$
\theta_{1}=\ldots=\theta_{k-2}=-1, \theta_{k-1}=\theta_{k}=0
$$

and let ${\underset{\sim}{0}}^{\theta_{0}}$ denote the slippage configuration for this problem: $\theta_{1}=\theta_{2}=\ldots=\theta_{k}$. If $F(x)$ is as in (3.7) and $k \geq 3$, then

Proof: The equality is established in [2] and the inequality below. Clearly
(3.3) $\quad P\left[C S \mid R^{\prime}(n), \theta_{\sim 1}\right] \leq P\left[T_{k n}-T_{k-1, n} \geq-c_{n} \mid \theta_{\sim}\right]$.

It follows as in the proof of Lenma 1 that $W_{n}=n^{\frac{1}{2}}\left(T_{k n}-T_{k-1, n}\right)$ has a limiting normal distribution with zero mean and variance

$$
\sigma^{2}(H)=2 k^{2}\left(\int H^{2} d F-\left(\int H d F\right)^{2}\right),
$$

where

$$
\begin{equation*}
H(x)=k^{-1}[(k-2) F(x+1)+2 F(x)] . \tag{3.4}
\end{equation*}
$$

Thus by (3.1) and (3.3)

$$
\lim _{n \rightarrow \infty} P\left[\operatorname{cs} \mid R^{\prime}(n), \theta_{1}\right]=\Phi\left(k(12)^{-\frac{1}{2}} A^{*} / \sigma(H)\right) .
$$

It follows from (2.20) that for any $\varepsilon>0$ there exists $\frac{1}{2}<P_{\varepsilon}^{*}<1$ such that

$$
A^{*}=A\left(P_{\varepsilon}^{*} ; k, 1\right) \leq(1+\varepsilon) 2^{\frac{1}{2} \Phi}-1\left(P_{\varepsilon}^{*}\right) .
$$

Thus the counterexample will be proved if it can be shown that

$$
\begin{equation*}
\sigma^{2}(H)>k^{2} / 6 . \tag{3.5}
\end{equation*}
$$

From (3.4)
(3.6) $\sigma^{2}(H) / 2=4 / 12+4(k-2) \operatorname{Cov}(F(X), F(X+1))+(k-2)^{2} \operatorname{Var}(F(X+1))$,
where X has cdf F.
Now let
(3.7)

$$
F(x)= \begin{cases}1 / 2+x / 2 b & -b<x \leq 0 \\ 1 / 2 & 0<x \leq 1 \\ 1 / 2+(x-1) / 2 a & 1<x \leq 1+a,\end{cases}
$$

where $0<\mathrm{a}<1<\mathrm{b}$ are constants to be determined below.

Thus,

$$
F(x+1)= \begin{cases}1 / 2+(x+1) / 2 b & -(b+1)<x \leq-1 \\ 1 / 2 & -1<x \leq 0 \\ 1 / 2+x / 2 a & 0<x \leq a \\ 1 & a<x\end{cases}
$$

or, except for a set having zero $F(x)$-measure,
(3.8) $F(x+1)= \begin{cases}F(x)+1 / 2 b & 0<F(x) \leq 1 / 2-1 / 2 b \\ 1 / 2 & 1 / 2-1 / 2 b<F(x) \leq 1 / 2 \\ 1 & 1 / 2<F(x) \leq 1 .\end{cases}$

If X has cdf F then $F(\bar{X})$ is a uniform random variable and it follows from (3.6) and (3.8) that
(3.9) $\sigma^{2}(H) / 2=k^{2} / 12+(13 k-10)(k-2) / 192-\beta\left(3 k^{2}-8 k+4\right) / 8$

$$
\begin{aligned}
& +3 \beta^{2}(k-2)^{2} / 8+\beta^{3}\left(k^{2}-4\right) / 6 \\
& -\beta^{4}(k-2)^{2} / 4
\end{aligned}
$$

where $\beta=(2 b)^{-1}$. it is clear that for sufficiently small β
(large b) the right side of (3.9) can be made larger than $k^{2} / 12$ so that (3.5) is satisfied and Counterexample 3 is proved.
4. Concluding remark.

Procedures $R(n)$ and $R^{\prime}(n)$ are special cases of the scores procedures proposed in [2], [4], [6], [7] and [8]. The second counterexample probabiy works for any scores procedure when F (instead of being logistic) is the cdf against which the scores are locally most powerful.

REFERENCES

[1] Barr, D. R. and Rizvi, M. H. (1966). An introduction to ranking and seiection procedures. Jour. Amer. Stat. Assoc. 61 640-646.
[2] Bartlett, N. S. and Govindarajulu, Z. (1965). Some distributionfree statistics and their application to the selection problem. Dittoed manuscript. Abstract in Ann. Math. Statist. 36 1597-1598.
[3] Fraser, D. A. S. (1957). Nonparametric Methods in Statistics. John Wiley and Sons, Inc., New York.
[4] Lehmann, E. L. (1963). A class of selection procedures based on ranks. Math. Annalen 150 268-275.
[5] Olshen, Richard A. (1967). Sign and Wilcoxon tests for linearity. Ann. Math. Statist. 38 1759-1769.
[6] Puri, M. L. and Puri, P.S. (1967). Selection procedures based on ranks: scale parameter case. Mimeo, Series No. 105, Dept. of Statistics, Purdue University. Abstract in Ann. Math. Statist. 37 p. 554.
[7] Puri, M. L. and Puri, P. S. (1968). Multiple decision procedures based on ranks for certain problems in analysis of variance. Unpublished manuscript. Abstract in Ann. Math. Statist. 37 p. 1068.
[8] Woodworth, G. G. (1965). An extension of a result of Lehmann on the asymptotic efficiency of selection procedures based on ranks. Technical Report No. 66, Department of Statistics, University of Minnesota.

UNCLASSIFIED

FORm

UNCLASSIFIED

Security Classification
Security ciessilication

INETRUCTMON:

1. ORIGINATINO ACTIVITY: Enter the name end adrese of the contrector, eubeortrectiox, frentee, Departaent of De ffase activity or other organicution (corporete mithor) ismuins the sepont.
2a. REPORT SECUFTY CLABetFTCAT:ON: Enter the over all security ciaselficition of the report. Indicate whother "Restricted Deto" Is inciuded Manking to to be in aceors. once with oppropriste ecevitity retulatient.
2. GROUP: Automitie downpeding is epectited In DoD DFrective 5300.10 ind Armed Forces Industriti Manal. Enter the froup number. Also, when eppliceble, show that optional martings have been used for Group 3 End Group 4 as athorised.
3. RTPORT TITLE: EUE the complote repent tite in all
 If meaningiti thie cannot be tected withat claetifice tion show titie ciespificotion in wh cepitals in parerahets immediately following the titie.
4. DescriptIVE Notare if eppropiste, enter the type of geqort, e. E., interim, propess, samany, onr al, or finil. Give the inclutive dates when epechic reportine perlod is covered.
5. AUTHOR(S): Erter the name(s) of mathons) as ahown on or in the report. Enter test name, firter nome, suidel Intiol. If militery, thow sank ond banch of service. The name of the principal othor is on absolute mintmum requirement.
6. REPORT DATE Enter the dute of the report as Any. month. yeer, or momh, yeep. If mort than one ditu apptite on the feport, use dete of publicaties.
7. TOTAL NUMBER OF PAGES: The total paze count thouid follow normad peigindien procedures, it es, eater the number of faget cond inting intormetion
7b. NUMEER OF REFBRENCES Fater the total aumber of reforences cited in the report.
 the applic tite number of the contrect or gran umier which the report was written
 militery dep ermen identificetion, euch as projtct number, subproject number, yetem numbers, tast number, etc.
8. ORIGINATOR's REPORT NUM: RR(3) cial report mumber by which the document will be isfatified and controlled by the oriminatint activily. This numoer munt be unique to this repert.
9. OTHER REPORT NUMBERES: If the repant hat been asmigned any other peport number (rither by the oftinetof or bit the дfonsor), also enter this number (\%).
10. AVAILABILITY,LIMTATION NOTICEs Enter eny limp itstions on further Alsempingion of the report, other than thotet
imponed by socurity cleasification, usine otendard etartemente such as:
(1) "Qualified requetern may oxtia copies ef ith repert frem DDC":
(2) ${ }^{4}$ Fortigh amourcenent and disenmination of this repert by DDC ie not antherieqt"
(3) "U. S. Goveramat geacies mey obtaln coplen of this repon directly from DDC. Other quel fited DDC users shall requent through
(4) "U. 8 . miltery agencien may obtain coplies of this report directly from DDC Other qualitich uters shall request through
(5) "All digtribution of this report is controlled Quelified DDC users ehall raquent through

If the report hat beten frral thed te the Othe of Tectialcal Sorvices, Dupartimen of Commerce, for sale to the public, Indt cate this fact and onter the price, if krown
it. SUPPLEMEMTARY NOTES: Use for seditional ompleactury notem
12. PONSORIMG MBLITARY ACTYVITY: Ent or the name of the dapertmental project office of ;iberctory spenen rime (pay in (of) the research and development Include addrate
13. ABSTRACT: Entor an abstruct giving a belef and fectual sumany of the doc rmeat indicative of the report, even though It may alse appear elsemhert ta the bedy of the techuicel re. pon. If additionel spece is mppired, centimution sheet shell potteched.

It is hifhly deaireble that the abatrect of clasultiod roports be unclagelilied. Each matersph of the ebvirect shell ond with on andication of the milithry security clasaification of the is. formation in the perspaph, represconted as (T), (t), (C), or (U).

There is no limitetion in the lapth of the shatrect. How. -ver, the sugrested length to frem 186 to 225 wonds.
14. KEY WOnDs: Key worde are techataplly meaninght terns or short phrases that charectorise a mpent and ncy be unod as inder catries fo catatofina the sopert. Fry words butet be
 fiers, such st equpment model dest gration, trede meas, millten project code notne. fergerphic location, may be ued las key words but will be followed' ' so tallestion of techatel con.

