Mean-Square Estimation

Charles L. Rino

Department of Applied Electrophysics University of California, San Diego La Jolla, California, 92037

A linear mean-square estimator optimum for data available only on a finite interval is derived for the restoration of images degraded by a system with a bandlimited spread function. The analysis is carried out in one dimension using a prolate spheroidal wavefunction expansion of the image process. If the noise is bandlimited to the same bandwidth as the spread function, the expansion represents the image process with zero mean square error on the entire interval, and the estimate of the geometrical image achieves the same mean-square error as the optimum estimate for data on the infinite interval. The rate at which the estimate converges is discussed and an example presented.

A solution to the image restoration problem using linear meanquare estimation has been presented by Helstrom, ${ }^{1}$ who demonstrated that data are available over an infinite interval, Fourier methods could be sed to obtain the restoring filter. Slepian has used the linear meanquare method to obtain a restoring filter optimum for data from a system ith a stochastic spread function. ${ }^{2}$ His method uses data only over a finite agion, but he does not assume that the system spread function is bandmited. Other authors have recently presented solutions to the restoration roblem for systems with bandlimited spread functions. $3,4,5$

In this paper a restoring filter is derived that is optimum for data vailable only over a finite interval. The analysis is performed in one imension for simplicity; this imposes no fundamental limitation on the echnique. In the special case where the noise is bandlimited to the same andwidth as the spread function, the optimum filter for data on the finite 3terval achieves the same minimum mean-square error as the optimum lter for data on the infinite interval.

The analysis makes use of the fact that a bandlimited stationary tochastic process known only over a finite interval can be estimated with ero mean-square error at any point outside the interval. This can be done y expanding the process in a series of prolate spheriodal wave functions PSWF). A simple proof is given in the Appendix.

1. The Formulation of the Problem

The optical system will be modeled mathematically by the convoluonal integral equation

$$
\begin{equation*}
J(x)=\int_{-\infty}^{\infty} S\left(x-x^{1}\right) J_{0}\left(x^{1}\right) d x^{1}+N(x) \tag{1.1}
\end{equation*}
$$

${ }_{5}(\mathrm{x})$, the illuminance of the geometrical image, will be taken to be a zerolean stationary stochastic process with spectral density $\varphi_{o}(\omega) \cdot S(x)$ is te point spread function of the system. The Fourier transform s(w) of (x) is bandlimited to the spatial frequency (ω) interval $(-\Omega / 2, \Omega / 2)$. The ystem noise $N(x)$ is also a zeromean stationary stochastic process in this rodel. It has spectral density $\varphi_{\mathrm{N}}(\omega)$, and for simplicity it is assumed to e uncorrelated with the geometrical image. This model is discussed by elstrom. ${ }^{1}$

We assume that an experimenter has observed the image-plane luminance $J(x)$ over the finite interval ($-\mathrm{L} / 2, L / 2$). His task is to use rese data to form an estimate of the geometrical image $J_{0}(x)$ at some oint ξ. He does so by performing a linear operation on the available ata that minimizes the mean-square error. Hence, he must find a weighting anction $M(5, x)$ such that

$$
\begin{equation*}
\hat{J}_{0}(\xi)=\int_{-L / 2}^{L / 2} M\left(\xi, x^{\prime}\right) J\left(x^{\prime}\right) d x^{\prime} \tag{1.2}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
\epsilon(\xi)=\underset{\sim}{E}\left[\left|J_{o}(\xi)-\hat{J}_{o}(\xi)\right|^{2}\right] . \tag{1.3}
\end{equation*}
$$

\]

fere $\underset{\sim}{\text { E }}$ denotes mathematical expectation.
At this point we could proceed by formal methods to obtain an ntegral equation for $M(\xi, x)$. There is, however, an alternative procedure hat makes use of the optimum filter for data on the infinite interval derived ,y Helstrom ${ }^{1}$. First it will be necessary to establish some properties Jf the PSWF's. There are taken directly from Slepian and Pollak. ${ }^{6}$

The PSWF's are solutions of the integral equation ${ }^{7}$

$$
\begin{equation*}
\int_{-L / 2}^{L / 2} \frac{\sin \frac{1}{2} \Omega\left(x-x^{\prime}\right)}{\pi\left(x-x^{\prime}\right)} \psi_{n}\left(c, x^{\prime}\right) d x^{\prime}=\lambda_{n}(c) \Psi_{n}(c, x) \tag{1.4}
\end{equation*}
$$

where $c=\Omega \mathrm{L} / 4$. We will make use of the following two properties of the ?SWF's:

PROPERTY I. The PSWF's $\Psi_{n}(c, x)$ form a complete orthonormal Jasis for the class of bandlimited functions.

PROPERTY II. The PSWF's $\Psi_{n}(c, x)$ are orthogonal over the nterval (-L/2, L/2) with

$$
\int_{-L / 2}^{L / 2}\left|\psi_{n}(c, x)\right|^{2} d x=\lambda_{n}(c)
$$

They form a complete orthogonal basis for the class of functions square integrable on the x-interval ($-L / 2, L / 2$).
he following equation will also be used, ${ }^{8}$

$$
\int_{-\infty}^{\infty} \Psi_{n}(c, x) e^{-i \omega x} d x= \begin{cases}i^{-n}(2 \pi L / \Omega)^{\frac{1}{2}} \lambda_{n}{ }^{-\frac{1}{2}}(c) \Psi_{n}(c, L \omega / \Omega)|\omega| \leqslant \Omega / 2 \\ 0 & |\omega|>\Omega / 2\end{cases}
$$

2. The Solution for Noise Bandlimited to $(-\Omega / 2, \Omega / 2)$

If the noise $N(x)$ is bandlimited to the interval $(-\Omega / 2, \Omega / 2), J(x)$ is rom Eq. (1.1) a bandlimited process. Now if $J(x)$ is available only over he finite interval ($-L / 2, L / 2$), it can be estimated with zero mean-square irror at any point by its PSWF expansion. This is proved in the appendix. fence

$$
\begin{equation*}
\tilde{J}(x)=\sum_{n=0}^{\infty} J_{n} \psi_{n}(c, x), \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{n}=\int_{-L / 2}^{L / 2} J\left(x^{1}\right) \Psi_{n}\left(c, x^{1}\right) d x^{1} / \lambda_{n}(c) \tag{2.2}
\end{equation*}
$$

:epresents $J(x)$ with zero mean-square error for all x. For the purpose of .inear mean-square estimation $\vec{J}(x)$ is equivalent to $J(x)$. Hence the restoring ilter for data on the infinite interval can be applied to (2.1). We have

$$
\begin{equation*}
\hat{J}_{0}(\xi)=\int_{-\infty}^{\infty} M_{\infty}\left(\xi-x^{\prime}\right) \widetilde{J}\left(x^{\prime}\right) d x^{\prime}=\sum_{n=0}^{\infty} J_{n} \int_{-\infty}^{\infty} M_{\infty}\left(\xi-x^{\prime}\right) \Psi_{n}\left(c, x^{\prime}\right) d x^{\prime} \tag{2.3}
\end{equation*}
$$

1ere ${ }^{9}$

$$
\begin{equation*}
M_{\infty}(x)=\int_{-\Omega / 2}^{\Omega / 2} \frac{s^{*}(\omega) \varphi_{0}(\omega)}{|s(\omega)|^{2} \varphi_{0}(\omega)+\varphi_{N}(\omega)} e^{i \omega x} d \omega / 2 \pi . \tag{2.4}
\end{equation*}
$$

$\geqslant t$

$$
\begin{equation*}
q(\omega)=\frac{s^{*}(\omega) \varphi_{0}(\omega)}{|s(\omega)|^{2} \varphi_{0}(\omega)+\varphi_{N}(\omega)} . \tag{2.5}
\end{equation*}
$$

r using Eq. (1.5) and the convolution relation for Fourier transforms,

1. (2.3) can be simplified to

$$
\begin{equation*}
\hat{J}_{o}(\xi)=(2 \pi L / \Omega)^{\frac{1}{2}}{\underset{\sum}{n=0}}_{\infty}^{\lambda_{n}} \lambda_{n}^{\frac{1}{2}}(c) M_{n}(\xi) J_{n} \tag{2.6}
\end{equation*}
$$

here $M_{n}(\xi)=\left[i^{-n} / \lambda_{n}(c)\right] \int_{-\Omega / 2}^{\Omega / 2} q(\omega) \psi_{n}(c, L \omega / \Omega) e^{i \omega \xi^{\prime}} d \omega / 2 \pi$.

The minimum mean square error achieved by this estimate is

$$
\begin{equation*}
\varepsilon=\int_{-\infty}^{\infty} \varphi_{0}(\omega) d \omega / 2 \pi-\int_{-\Omega / 2}^{\Omega / 2} \frac{\left|\varphi_{0}(\omega) s^{*}(\omega)\right|^{2}}{\varphi_{0}(\omega)|s(\omega)|^{2}+\varphi_{N}(\omega)} d \omega / 2 \pi \tag{2.8}
\end{equation*}
$$

his can be verified by substituting Eq. (2.6) into Eq. (1.3). Note that 1 the analysis it was not necessary to assume that $J_{0}(x)$ itself was bandmited. Also, Eq. (2.8) is (as it must be from the analysis) the minimum rean-square error achieved by $M_{\infty}(x)$ operating on $J(x)$. ${ }^{10}$

The fact that ε is independent of ξ suggests that Eq. (2.6) could e used to estimate the illuminance of the geometrical image in the entire lane when image-plane data are available only over the finite interval. The practical difficulties in actually carrying this out are, however, ormidable. They will be discussed in section 4 .

3. The General Solution and its Mean Square Error

When the noise term in Eq. (1.1) is not bandlimited to $(-\Omega / 2, \Omega / 2)$, he series of Eq. (2.1) no longer represents $J(x)$ outside the interval -L/2, L/2). It is, however, only the noise term in Eq. (1.1) that is not epresented outside the interval (-L/2, L/2). One might suspect from his that Eq. (2.6) is still the optimum estimate. This is in fact correct. t can be established by showing that Eq. (2.6) does indeed still minimize 2q. (1.3). Now, unfortunately, the mean-square error is no longer inde,endent of ξ. It contains a ξ-dependent term that results from the imperect representation of $\mathrm{N}(\mathrm{x})$ outside (-L/2, L/2).

The mean square error can be written in the following form, which lisplays the contribution of the various terms. The function

$$
W(\omega)= \begin{cases}1 & |\omega| \leq 1 \\ 0 & |\omega|>1\end{cases}
$$

s used for notational convenience.

$$
\begin{align*}
\varepsilon(\xi) & =\int_{-\Omega / 2}^{\Omega / 2} \frac{\varphi_{0}(\omega) \varphi_{N}(\omega)}{|s(\omega)|^{2} \varphi_{o}(\omega)+\varphi_{N}(\omega)} d \omega / 2 \pi \\
& +\int_{-\infty}^{\infty}[1-W(2 \omega / \Omega)] \varphi_{0}(\omega) d \omega / 2 \pi \tag{3.1}\\
& +\int_{-\infty}^{\infty}[1-W(2 \omega / \Omega)]|f(\omega)|^{2} \varphi_{N}(\omega) \mathrm{d} \omega / 2 \pi
\end{align*}
$$

rhere

$$
\begin{equation*}
f(\omega)=\frac{2 \pi L}{\Omega} \sum_{n=0}^{\infty} \int_{-\Omega / 2}^{\Omega / 2} q\left(\omega^{\prime}\right)_{n}^{\Psi}\left(c, L \omega^{\prime} / \Omega\right) e^{-i \omega^{\prime} \xi_{(}}\left(d \omega^{\prime} / 2 \pi\right) \Psi_{n}(c, L \omega / \Omega) . \tag{3.2}
\end{equation*}
$$

tgain this result can be derived by substituting Eq. (2.6) into Eq. (1.3) vith due regard for the different limits involved. The first term in Eq. (3.1) s the minimum mean-square error achieved when both the geometrical mage and the noise are bandlimited to $(-\Omega / 2, \Omega / 2)$. The second and third :erms represent respectively the contributions of the object process spectrum and the noise spectrum outside the bandwidth of the spread :unction. From Eq. (3.2) the third term is 5 -dependent.

4. Practical Aspects of the Solution

For applications we need to know the rate at which Eq. (2.6) conerges, since only a finite number of terms can be evaluated. Unfortunately his rate is strongly dependent on ξ even though the ξ-dependence of the nean square error Eq. (3.1) might be small. This can be seen as follows. A comparison of Eq. (1.2) and Eq. (2.6) leads to the conclusion hat

$$
\begin{equation*}
M(\xi, x)=(2 \pi L / \Omega)^{\frac{1}{2}} \sum_{n=0}^{\infty} \lambda_{n}^{-\frac{1}{2}}(c) M_{n}(\xi) \Psi_{n}(c, x) \tag{4.1}
\end{equation*}
$$

$f \mathrm{M}(\xi, x)$ is represented with negligible error by N terms in the series (4.1),

$$
\begin{equation*}
\hat{J}_{o N}(\xi)=(2 \pi L / \Omega)^{\frac{1}{2}} \sum_{n=0}^{N} \lambda_{n}^{\frac{1}{2}}(c) M_{n}(\xi) J_{n} \tag{4,2}
\end{equation*}
$$

nust achieve a mean-square error close to the minimum possible error riven by Eq. (3.1). Hence consider

$$
\begin{aligned}
\delta_{N}(\xi) & =\int_{-L / 2}^{L / 2}\left|M(\xi, x)-(2 \pi L / \Omega)^{\frac{1}{2}} \sum_{n=0}^{N} \lambda_{n}^{-\frac{1}{2}}(c) M_{n}(\xi) \Psi_{n}(c, x\rangle\right|^{2} d x \\
& =\frac{2 \pi L}{\Omega} \int_{-L / 2}^{L / 2}\left|\sum_{n=N+1}^{\infty} \lambda^{-\frac{1}{2}}(c) M_{n}(\xi) \Psi_{n}(c, x)\right|^{2} d x
\end{aligned}
$$

$$
\begin{equation*}
=\frac{2 \pi L}{\Omega} \sum_{n=N+1}^{\infty}\left|M_{n}(\xi)\right|^{2} \tag{4.3}
\end{equation*}
$$

${ }_{j}(\xi)$ is the mean-square error (not to be confused with the statistical ean square error) that results when only N terms are used in Eq. (4.1).

We now want to know when $\delta_{\mathrm{N}}(\xi)$ is small. This is determined by e behavior of $M_{n}(\xi)$. Now for most applications $q(\omega)$ is a slowly varying nction of ω. From Eq. (2.7), then, the gross behavior of $\left|M_{n}(\xi)\right|$ is :oportional to

$$
\left(1 / \lambda_{n}(c)\right)\left|\int_{-L / 2}^{\Psi / 2}\left(c, \frac{\Omega \omega}{L}\right) e^{i \omega \xi} d \omega / 2 \pi\right|
$$

ut from Eq. (1.5) this is proportional to $\lambda_{n}^{-\frac{1}{2}}(c)\left|\Psi_{n}(c, \omega)\right|$. In Fig. 1 ${ }_{1}(c, x)$ is plotted for $c=8$ for $n=0,5$, and 8. The behavior of $\Psi_{n}(c, x)$ easily understood when we recall that $\lambda_{n}(c)$ represents the fraction of .e total energy in the n-th PSWF that is in the interval ($-L / 2, L / 2$). epian and Pollak ${ }^{6}$ have shown that for $n<n_{\text {crit }}$, where ${ }^{l l_{n}}$ crit $=[2 c / \pi]$, $(c) \approx 1$, and for $n>n_{c r i t}, \lambda_{n}(c) \approx 0$. This behavior is clearly displayed Fig. 1. From this we conclude that for $N>{ }_{n}{ }_{c r i t}, \delta_{N}(\xi)$ will be small $\operatorname{rr}|\xi|<L / 2 . \hat{J}_{o N}(\xi)$ will achieve a minimum mean-square error close , the theoretical value given by Eq. (3.1) for the same N and range of ξ.
ır $|\xi|>L / 2$ terms of increasing order will be necessary.

5. An Example

To test the solution 1024 data points in the interval ($-1,1$) were mputed by first convolving the geometrical image function

$$
\begin{equation*}
J_{0}(x)=\left(2 \pi \sigma^{2}\right)^{-\frac{1}{2}}\left\{\exp \left[-(x-M)^{2} / 2 \sigma^{2}\right]+\exp \left[-(x+M) 2 / 2 \sigma^{2}\right]\right\} \tag{5.1}
\end{equation*}
$$

th a spread function for a slit-diffracted image. The Fourier transform the spread function is

$$
s(\omega)= \begin{cases}1-2|\omega| / \Omega & |\omega| \leq \Omega / 2 \tag{5.2}\\ 0 & |\omega|>\Omega / 2 .\end{cases}
$$

dependent, zero-mean gaussian random variates, N_{k} and $N_{k^{\prime}}$ were then Ided according to the formula

$$
\begin{equation*}
J_{k}=\left[\left(J_{o_{k}} * S_{k}+N_{k}\right)^{2}+N_{k^{\prime}}\right]^{\frac{1}{2}} \tag{5.3}
\end{equation*}
$$

The asterisk means convolution.) The convolution was carried out by ;ing the Cooley-Tukey Fourier transform algorithm on a CDC 3600 gital computer. The normal variates were computed from a pseudomdom number sequence by standard methods. Data so constructed olate our initial assumptions of stationarity and additive noise. The łta are, however, non-negative and serve to represent a simple geometrical
rage.
The coefficients J_{n} were calculated using Simpson's rule for $n=0$ rough 8 with $c=8$. The $P S W F^{\prime} s$ were computed by using a Legendre lynomial expansion with tabulated coefficients from Stratton et al. ${ }^{12}$ re PSWF's were normalized to correspond to Slepian and Pollak's defitions. ${ }^{6}$ The eigenvalues $\lambda_{n}(c)$ are tabulated. ${ }^{13}$

To evaluate the weights $M_{n}(\xi), \varphi_{o}(\omega)$ and $\varphi_{N}(\omega)$ must be specified. In e absence of any prior information they can be taken to be constant on e interval $(-\Omega / 2, \Omega / 2) .{ }^{14}$ With these assumptions, by Eq. (2.5),

$$
\begin{equation*}
\mathrm{q}(\omega)=\frac{1-2|\omega| / \Omega}{(1-2|\omega| / \Omega)^{2}+\mathrm{B}} \tag{5.4}
\end{equation*}
$$

here B is a constant that depends on the signal-to-noise ratio. ${ }^{15}$ Now om Eq. (2.6) $M_{n}(\xi)$ is just $i^{-n} / \lambda_{n}(c)$ times the inverse Fourier transform $q^{q}(\omega) \Psi_{n}(c, w)$.

With data on the interval $(-1,1)$ and $c=\Omega L / 4=8, \Omega=16$. By sing these parameters the weights $M_{n}(\xi)$ were calculated for $n=0$ rough 8 using the Cooley-Tukey algorithm. The series (4.2) was then raluated with 9 terms and the results plotted on a Calcomp automatic otter. An example with $\sigma=0.4, \mathrm{M}=1.0$ and $\mathrm{B}=0.5$ is reproduced Fig. 2.

6. Discussion

The example demonstrates that the estimate given by Eq. (4.2) works ell for a deterministic function. The reason for this is clear if we observe tat with B equal to zero in Eq. (5.4), Eq. (2.5) results from the analytic ontinuation of the function $J(x)$ to the infinite interval followed by the econvolution of Eq. (1.1) with $N(x)=0$. This can be carried out as long ; $J_{0}(x)$ is effectively bandlimited to $(-\Omega / 2, \Omega / 2)$, as was the case in the sample.

If, on the other hand, the Fourier transform of $J_{0}(x)$ is much roader than $\Omega, J_{0}(x)$ will normally be nearly zero outside ($-L / 2, L / 2$). data were available on the infinite interval, we would have the conditions or attempting super-resolution. We know, however, that super-resolution ; frustrated by the slightest amount of noise. ${ }^{3,4,5}$ In the estimate given y Eq. (4.2) the resolution is limited to that allowed by the bandwidth of 1e spread function. [Recall section 4 and the fact that the PSWF's remselves are bandlimited to $(-\Omega / 2, \Omega / 2)]$ Hence for super-resolution zere is nothing new.

The conclusion seems to be that although super-resolution is not ossible when noise is present, extension of an image a small distance utside a finite interval is possible.

Acknowledgments

I wish to thank Professor Carl W. Helstrom for his comments d criticism. Computer time was paid for in part by instruction and search funds made available by the University of California, San Diego, mpputing Center and in part by NASA grant NGR-05-009-079. The author currently supported by a NASA traineeship.

Appendix

The Spheroidal Wavefunction Expansion of Bandlimited Stationary Stochastic Processes

A stationary stochastic process $\mathrm{X}(\mathrm{x})$ is bandlimited if its spectral asity is non-zero only over a finite interval. Let the covariance function the process be $K(x)$. Since

$$
K(x)=\int_{-\Omega / 2}^{\Omega / 2} \varphi(\omega) e^{i \omega x} d \omega / 2 \pi
$$

ere $\varphi(\omega)$ is the spectral density of the process, $K(x)$ is a bandlimited action. Because of properties I and II of the PSWF's (Sec. 1.), the WF expansion ${ }^{16}$

$$
\begin{equation*}
K\left(x-x^{\prime}\right)=E\left[X(x) X\left(x^{\prime}\right)\right]=\sum_{n=0}^{\infty} \beta_{n}\left(x^{\prime}\right) \Psi_{n}(c, x), \tag{A1}
\end{equation*}
$$

lere

$$
\begin{equation*}
\beta_{n}\left(x^{\prime}\right)=\int_{-L / 2}^{L / 2} K\left(x^{\prime}-x^{\prime \prime}\right) \Psi_{n}\left(c, x^{\prime \prime}\right) d x^{\prime \prime} / \lambda_{n}(c) \tag{A2}
\end{equation*}
$$

nverges in the mean of order two for $-\infty<x<\infty$ with x^{\prime} fixed. For a al process $K\left(x-x^{\prime}\right)=K\left(x^{\prime}-x\right)$. Hence we also have convergence in the
rean of order two for $-\infty<x^{\prime}<\infty$ with x fixed.
Now from Eq. (1.4) the PSWF's are eigenfunctions of the Hermitian itegral operator

$$
\begin{equation*}
L y(x)=\int_{-L / 2}^{L / 2} \frac{\sin \frac{1}{2} \Omega\left(x-x^{\prime}\right)}{\pi\left(x-x^{\prime}\right)} y\left(x^{\prime}\right) d x^{\prime},-\infty<x<\infty . \tag{A3}
\end{equation*}
$$

Ioreover, the kernel of Eq. (A3) is square integrable over the unbounded quare $-\infty<x, x^{\prime}<\infty$, and there exists a positive dominating constant M uch that

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|\frac{\sin \frac{1}{2} \Omega\left(x-x^{1}\right)}{\pi\left(x-x^{\prime}\right)}\right|^{2} d x \leq M \tag{A4}
\end{equation*}
$$

or $-\infty<x<\infty$. In fact we have strict equality in (A4) with $M=\Omega / 2 \pi$. We urther observe that any function $z(x)$ bandlimited to $\left(-\frac{1}{2} \Omega, \frac{1}{2} \Omega\right)$ can be written

$$
\begin{equation*}
z(x)=\int_{-L / 2}^{L / 2} \frac{\sin \frac{1}{2} \Omega\left(x-x^{\prime}\right)}{\pi\left(x-x^{\prime}\right)} y\left(x^{\prime}\right) d x^{\prime} \tag{A5}
\end{equation*}
$$

rhere y is a function square integrable over (-L/2, L/2). The represenation in Eq. (A5) and the Hermitian property of the operator L are suficient to establish the pointwise convergence of the series in Eq. (A1) for $. \infty<x<\infty$ and x^{\prime} fixed. The additional property, Eq. (A4), of the kernel nsures that the convergence is unifcrm for $-\infty<x<\infty$ and x^{\prime} fixed. ${ }^{17}$
, ain, from the symmetry of $K\left(x-x^{!}\right)$the convergence is pointwise and iform in x^{\prime} as well as x.

We can now prove the following theorem.

IEOREM: The PSW F expansion of the process $X(x)$

$$
\begin{equation*}
\widetilde{X}(x)=\sum_{n=0}^{\infty} a_{n} \Psi_{n}(c, x) \tag{A6}
\end{equation*}
$$

rere

$$
\begin{equation*}
a_{n}=\int_{-L / 2}^{L / 2} X\left(x^{i}\right) \Psi_{n}\left(c, x^{\prime}\right) d x^{\prime} / \lambda_{n}(c) \tag{A7}
\end{equation*}
$$

inverges in the mean for all x, i.e.

$$
\lim _{N \rightarrow \infty} \underset{\sim}{E}\left[\left|X(x)-\sum_{n=0}^{N} a_{n}(c, x)\right|^{2}\right]=0 \quad \forall x \in(-\infty, \infty)
$$

roof: Let

$$
\tilde{X}_{N}(x)=\sum_{n=0}^{N} a_{n} \Psi_{n}(c, x)
$$

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \underset{\sim}{E}\left[\left|X(x)-\tilde{X}_{N}(x)\right|^{2}\right]=\underset{\sim}{E}\left[|X(x)|^{2}\right]-2 & \lim _{N \rightarrow \infty} \underset{\sim}{E}\left[\tilde{X}_{N}(x) X(x)\right] \\
& +\lim _{N \rightarrow \infty} \underset{\sim}{E}\left[\left|\tilde{X}_{N}(x)\right|^{2}\right] .
\end{aligned}
$$

ow

$$
\underset{\sim}{E}\left[|X(x)|^{2}\right]=K(0),
$$

nd

$$
\underset{\sim}{E}\left[\tilde{X}_{N}(x) X\left(x^{\prime}\right)\right]=\sum_{n=0}^{N} \underset{\sim}{E}\left[a_{n} X\left(x^{\prime}\right)\right] \Psi_{n}(c, x) .
$$

jut from Eq. (A7) and Eq. (A2)

$$
\begin{align*}
\underset{\sim}{E}\left[{\underset{n}{n}}^{X}\left(x^{\prime}\right)\right] & =\int_{-L / 2}^{L / 2} K\left(x^{\prime}-x^{\prime \prime}\right) \Psi_{n}\left(c, x^{\prime \prime}\right) d x^{\prime \prime} / \lambda_{n}(c) \tag{10}\\
& =\beta_{n}\left(x^{\prime}\right)
\end{align*}
$$

Jsing the pointwise convergence of the series in Eq. (Al)

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \underset{\sim}{E}\left[\tilde{X}_{N}(x) X(x)\right]=\sum_{n=0}^{\infty} \beta_{n}(x) \Psi_{n}(c, x)=K(0) \tag{All}
\end{equation*}
$$

o evaluate the last term in Eq. (A8) consider

$$
\begin{equation*}
\underset{\sim}{E}\left[\widetilde{X}_{N}(x) \tilde{X}_{N}\left(x^{\prime}\right)\right]=\sum_{m=0}^{N} \sum_{n=0}^{N} \underset{\sim}{E}\left[a_{n} a_{m}\right] \Psi_{n}(c, x) \Psi_{m}\left(c, x^{\prime}\right) \tag{Al2}
\end{equation*}
$$

sing Eq. (A7) and Eq. (Al0)

$$
\begin{align*}
\underset{\sim}{E}\left[a_{n} a_{m}\right] & =\int_{-L / 2}^{L / 2} \underset{\sim}{E}\left[a_{n} X\left(x^{\prime \prime}\right)\right] \Psi_{m}\left(c, x^{\prime \prime}\right) d x^{\prime \prime} / \lambda_{m}(c) \\
& =\int_{-L / 2}^{L / 2} \beta_{n}\left(x^{\prime \prime}\right) \Psi_{m}\left(c, x^{\prime \prime}\right) d x^{\prime \prime} / \lambda_{m}(c) \tag{Al3}
\end{align*}
$$

ow

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \underset{\sim}{E}\left[\left|\tilde{X}_{N}(x)\right|^{2}\right] & =\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left[\int_{-L / 2}^{L / 2} \beta_{n}\left(x^{\prime \prime}\right) \Psi_{m}\left(c, x^{\prime \prime}\right) d x^{\prime \prime} / \lambda_{m}(c)\right]_{n}(c, x) \Psi_{m}(c, x) \\
& =\sum_{m=0}^{\infty}\left[\int_{-L / 2}^{L / 2} \sum_{n=0}^{\infty} \beta_{n}\left(x^{\prime \prime}\right)_{n}(c, x) \Psi_{m}\left(c, x^{\prime \prime}\right) d x^{\prime \prime} / \lambda_{m}(c)\right]_{m}(c, x)
\end{aligned}
$$

'he interchange of summation and integration is justified by the uniform onvergence of the series in Eq. (A1). By using Eq. (A2) this can be urther simplified to

$$
\begin{gathered}
\sum_{m=0}^{\infty}\left[\int_{-L / 2}^{L / 2} K\left(x-x^{\prime \prime}\right)_{m}^{\Psi}\left(c, x^{\prime \prime}\right) d x^{\prime \prime} / \lambda_{m}(c)\right]_{m}(c, x) \\
=\sum_{m=0}^{\infty} \beta_{m}(x)_{m}^{\Psi}(c, x)
\end{gathered}
$$

nally using the pointwise convergence of the series in Eq. (Al)

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \underset{\sim}{E}\left[\left|\tilde{X}_{N}(x)\right|^{2}\right]=K(0) \tag{Al4}
\end{equation*}
$$

วw substituting Eq. (Al4), Eq. (All), and Eq. (A9) into Eq. (A8)

$$
\lim _{N \rightarrow \infty} E\left[\left|X(x)-\tilde{X}_{N}(x)\right|^{2}\right]=0 \quad \forall x \in(-\infty, \infty)
$$

Q. E. D.
ote that from Eq. (A13) the coefficients a_{n} are in general correlated.

Footnotes

C. W. Helstrom, J. Opt. Soc. Am. 57, 297 (1967).
D. Slepian, J. Opt. Soc. Am. 57, 918 (1967).
G. J. Buck and J. J. Gustinic, IEEE Trans. Antennas and Propagation AP-15, 376 (1967).
B. R. Frieden, J. Opt. Soc. Am. 57, 1013 (1967).
C. K. Rushforth and R. W. Harris, J. Opt. Soc. Am. 58, 539 (1968).
D. Slepian and H. O. Pollak, Bell System Tech. J. 40, 43 (1961).

- Note that Slepian and Pollak ${ }^{6}$ define the frequency interval $(-\Omega, \Omega)$ rather than $(-\Omega / 2, \Omega / 2)$ as in this paper. Hence in their formulas $\Omega_{\&}$ should be replaced by $\Omega / 2$. With this slight change their definitions are used directly.
. This is derived from Slepian and Pollak Ref. 6, Eq. (29).
. Ref. 1, Eq. (2.5).
. Cf. Ref. 1, Eq. (2.6).
. The expression [x] means the smallest integer larger than x.
. J. A. Stratton, P. M. Morse, L. J. Chu, J. D. C. Little, F. J. Corbató, Spheroidal Wave Functions (M.I. T. Press, Cambridge, Mass., 1956) pp. 203-229.
D. Slepian and E. Sonnenblick, Bell System Tech. J. 44, 1745 (1965).

Figure Captions

g. 1. Prolate spheroidal wave functions for $\mathrm{c}=8, \mathrm{n}=0,5,8$.
g. 2. Geometrical image, computed data, and geometrical image estimate with $\sigma=0.4, \mathrm{M}=1.0$, and $\mathrm{B}=0.5$.

[^0]: ainimizes

