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MATHEMATICAL METHODS OF CONSTRUCTING NEW MODELS OF CONTINUA1

Chapter 1.	 Introduction

The theoretical interpretation of the various existing phenomena is asso-

ciated with the introduction of mathematical concepts and characteristics, from

which the quantitative evaluation methods'-'are established. In connection with

this, it is necessary to introduce the descriptive models and processes with

the aid of which various inherent trends are formulated to describe the events

and their characteristics with the required degree of accuracy according to

reality.

From the scientific viewpoint, it is important that the characteristics

and the features of the models and processes being designed would be formulated

distinctly on a rational basis. '

In many modern problems, it is logical to avoid excessive complications,

since as a rule the appropriate experiments and phenomena are associated with

a variety in t1n experimental data, which makes it difficult to control the

differences in the actual objects of study, for example the difference in the

material specimens being tested, etc., by a difference in the conditions of

conducting the tests, in their observations and in the errors in the classes of

variation. Nevertheless, the question concerning the construction of the com-

plicated models of material media with allowance for new and'additional charac-

teristics and effects has been placed on the agenda. As is known, often the

allowance for slight effects, scarcely perceptible in the initial stage of re-

search, subsequently becomes the basis for the development of progress in a

more profound penetration into the essence of the nature of the phenomena and

in the expansion of the field of applications.

Many fundamental properties of matter and its inherent tendencies were dis-

covered as a result of discussing the effects that were revealed in the domain

of empirical results; but as a rule, the presence of such effects has been

subject to doubts not only by the skeptics, but sometimes by the authors them-

selves. As examples, lot us recall the violations of the law of the conservation

The basic results of this article were reported at the conference of the Moscow
Mathematics Society on December 8, 1964.
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of mass during the interaction of particles conc, prning the non-Euclidean state

of space and time, the effects of viscosity in gases and liquids, the effect of

creep for all metals, the anomalies in the heat capacities of solids, etc.

In practice, the correct approaches to these effects can and should be over-

looked in many cases, thus developing a theory and analytical method without their

detailed consideration; i.e., we can ignore the existence of the correct ,approaches.

On the other hand, in other instances of such a type, the effects represent the

very quintessence of the problem and must be taken into account. However, in

any question, we can indicate other effects already discovered, or the effects

which are still vague and under study, and which can occur in the cases being

considered yet require further attention for a more detailed study. The sig-

nificant progress in science, as a rule, is associated specifically with an

ever more complete and detailed penetration into the nature of the properties

of small microscopic particles and the mechanisms of their interaction and, on

the other hand, into the nature of the macroscopic effects, which are being man-

ifested at the forefront of the existing methods of observation and measurement.

Nevertheless, the history of science teaches us that the laws and concepts

which we consider established at the present time will also preserve their

significance in the future, e.g., the Newtonian mechanics, but these concepts

and laws should be regarded as good approximations having a practical value,

yet as approximations they are inadequate and unsatisfactory relative to their

basic concepts for the more accurate problems. It is known that now it is

necessary to utilize in the theory of atoms and molecules instead of the New-

tonian mechanics.

It is clear to all that the conscious utilization of the methods, concepts

and laws which are known to be unacceptable or simply untrue in case of a more

detailed study, but which are quite satisfactory from the viewpoint of the

problems which have been formulates, is fully permissible and useful in the study

of many important problems.

We have every basis for thinking that in the next stages of the development

of science, and especially in the study of the microscopic, physical and biolo-

gical phenomena, such a situation will be repeated. Such is the state of affsirs

with which we are faced in the mechanics of deformed macroscopic liquid, solid

and gaseous bodies within the framework of Newtonian mechanics.
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In this manner, the aforesaid outline of the typical interaction between

science and its object of study in the world surrounding us is applicable to

an equal extent both to the past and to the present, and undoubtedly will also

be applicable to the future, of scientific development.

In our days, in the study and solution of many basi s: problems of natural

science and technology, we are required to examine the systems consisting of

various interacting particles and bodies when their basic properties, the

effects of the collective interactions and'the typical features of the processes

which are transpiring have a mechanical nature; this not only in the light of

an analysis of the microscopic theories but also in a macroscopic description

of the phenomena taking place.

The understanding of nature (astronomy, physics, chemistry, biology) and

the development of various objects in technology is associated closely with

the introduction of models of mechanical systems, and with the formulation and

solution of various mechanical processes.

There exist many interesting phenomena and urgent problems which can and

should be solved within the framework and with the aid of the already-introduced

models of continuous media in the theory of ideal viscous liquids and gases, in

the theory of elasticity, plasticity, etc. However, the discussion of the de-

sign of new models is useful in connection with the development of new important

trends in the mechanics of gases, liquids and solids, and in the mechanics of

the composite material media with a varying type of structure.

For illustration. let us recall briefly certain fields of mechanics which

are currently being developed.

1. The intensive and numerous studies that are boing conducted in the area

of the theory of plasma.

2. The mechanics connected with the technology of production and with the

application of polymer materials, which are interrelated extensively with the

chemistry and physics of the internal structure of polymers and acquire ever-

increasing practical and cognitive importance.

3. The problems of the motion of any type of heterogeneous bodies, mixtures,

suspensions and cavitating liquids.

4. The problems of creep and plasticity, and also of the strength of metals

and of many other materials under various conditions, particularly during changing

or high temperatures.

- 3 -
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S. The mechanical problems in case of the presence within the matter of

high internal pressures or, on the other hand, the motion of intensively rarefied

gases.

6. The problems of the motion and equilibrium of soils and the theory of

the filtration of liquids and gases in porous media.

7. The motion of solid and liquid deforming media, with allowance for thb

electrical polarization and magnetization.

The theory of motion of multicomponerat systems, with allowance for diffusion,

radiation, chemical and phase transformations, becomes a very important basis

for solving a number of practical problems.

In spite of its considerable practical and theoretical, significance, the

"statistical thermodynamics" of the turbulent motion in the material bodies is

still only gradually being developed.

The new theories related to the motion of bodies at very low temperatures

where the effects of quantum mechanics are significant in the macroscopic theory

. are interesting and important.

In recent times, considerable research has been undertaken in the field

of biological mechanics, particularly for the description of the motion of

blood in living organisms; for this, we require the introduction of models of

liquids with unusual rheological properties.

The cited trends in mechanics clearly indicate the direct and close rela-

tionships of modern mechanics of ► a, continuous medium with thermodynamics, with

the statistical physical theories, with chemistry and with electrodynamics. In

essence, the combination of mechanics and of these branches of science into one

unified science is taking place.

The data provided by physics concerning the microscopic dimensions and the

geometric forms of the particles, as well as the structures of their arrange-

ment and their interactions, are quite useful and necessary for understanding

the macroscopic properties of bodies. However, merely the microscopic data and

the mechanisms are insufficient for establishing the macroscopic theories, and

therefore the prevailing theory that no appreciable basic problems exist any

longer after the establishment of the microscopic pattern of the arrangements

of bodies in the theory of finite bodies is quite incorrect. In the simplest

case, for a model of an ideal gas, a transition from the aggregation of a large
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number N of atoms, considered as a mobile ;mechanical system of elastic smooth

small spheres interacting with prescribed forces and having 3N degrees of free-

dom, to a material continuum takes place, and the state of a physically small

particle in the theories and in the experiments is determined only by two

parameters,.namely density and temperature. Such an approach is associated

with the use of the important statistical regularities.

Another example of the macroscopic properties of the laws as having im-

portant applications is the concept of an ., absolute solid. The abstract, and

of course generally false hypothesis concerning the invariance of the distances

between any two specific points of a body determines the macroscopic mechanical

properties and obviously constitutes an additional forced condition, reducing

the number of degrees of freedom of a finite body to six.

The two examples listed typify the apparent simplicity of the macroscopic

hypotheses. In other cases, such hypotheses have a more complex nature in

essence and their formulation requires the use of complex ideas and character-

istics concerning the deformation of particles and their internal state, which

are assigned with the aid of scalar, tensor, spin and other functions.

The establishment of a supply of concepts and characteristics of the states

is an important mathematical problem; its quantitative description is a necessary

condition for the application of the scientific method. Specifically, we can

require the involvement of basic physical concepts of an electromagnetic field

and its methods of description. For example, this is the state of affairs in

the macroscopic problems in describing the characteristics of dislocations in

metals, in the mechanics of polymer materials, in describing the properties of

the interaction of material media with the strongly-varying electromagnetic

fields, in the beams of laser rays, in describing the phenomena of superconduc-

tivity and superfluidity, etc.

Many modern problems in the aforesaid subjects have not yet been solved,

and have not even been formulated in a lucid manner.

In this manner, the thermodynamic properties of the macroscopic bodies

should never be derived from the microscopic characteristics without additional

significant hypotheses of a macroscopic nature.

In the construction of models of the bodies, one should never count on a

complete clarity in the elementary microscopic relationships. Together with
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this, the necessity for additional hypotheses in the macroscopic theory serve's

as a basis for the intuitive phenomenological theories, in which the microscopic

information is taken into account quite approximately, and in essence is re-

placed by the hypotheses based on the data obtained from the observations and

measurements in the macroscopic experiments. Similar phenomenological methods

are always utilized to some degree or other in all of the applications. In

connection with this, we can understand the fruitfulness and successes in the

past of the theory of the thermogenics in thermcadynamics.

In biology, the improvement of the crops and animal husbandry can introduce

considerable successes on the basis of the phenomenological laws, with quite

scanty understandings of the significant internal microscopic mechanisms.

However, it is understandable that the role of the microscopic studies in

biology is extensive and is growing every day; nevertheless, it is specifically

in 'biology that the importance of the phenomenological laws is manifested rather'

clearly and distinctly. Even with a very slight understanding of the internal.

mechanisms, one can attain remarkable results with the aid of tests and intuition.

In a construction of the new models of the material continuous media, an

important place is occupied by the data on the simplest Theological experiments,

such as the simple elongation and torsion of spatial samples, the thorough ex-

pansion or compression of a medium, or the motion of the medium of the Couette

type of flows, etc. However, it is evident that the data of such elementary

experiments are quite inadequate 1)r establishing the Theological characteristics

of the models of material media, which is required for ii consideration of a

general case of motions with arbitrary stresses in various complex external con-

ditions. The transition from the elementary regularities in the particular , tests

to the laws of a general nature is always associated with the use of a compli-

cated mechanical and methemati.ca.l apparatus, with the generalization of the con-

cepts concerning the characteristics of the phenomena, and with a varying class

of ideas concerning the nature of the interaction of the medium's particles with

one another in a general case.

The construction of models of continuous media is always associated with

the adoption of a number of hypotheses, which can be regarded as descriptive

and concentrated data of the observations and tests. often, such hypotheses

are quite simple and natural, e.g., the hypothesis concerning the isotropic

properties of space or of a given material body, but in the latter case the

- 6 -
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hypothetical nature of the isotropic characterization is especially clear since

one often can and must introduce anisotropic bodies as well.

In the construction of the models, the question of an explicit formulation

and rational selection of the noncontradictory, minimal system of hypotheses

convenient for verification deserves attention both from the viewpoint of a

physical-experimental or statistical substantiation of the model, and from the

viewpoint of the general methods of the mathematical formulation of a system of

closed equations and additional boundary 6ri other conditions which specify the
model for the theoretical researches. The revelation of the most convenient

system of typical parameters and hypotheses for the formulation of the necessary

regularities and for the subsequent experimental verification has significant

importance from a procedural viewpoint. It is also theoretically useful to

know the systems of equivalent hypotheses and available possibilities for vary-

ing the systems of hypotheses within the limits of accuracy of the problem for-

mulation.

In the classical simplest cases, these questions have almost a trivial

nature; however, in these cases the explicit formulations are also useful. In

recent times, the rheological studies have become greatly complicated and there-

fore a discussion of the general methods and techniques which are useful in con-

structing the models of the continuous media has become necessary.

After the establishment of a test set-up and a system of measurement units,

the characteristics of the states and processes are prescribed with the aid of

numbers and certain operators of a mathematical nature; and corresponding laws

and relationships are formulated with the help of the equations containing the

numerical characteristics and operators.

For a given system, there can be variables and constants among the typical

parameters while the number of the numerical parameters prescribing the position,

state (condition) and process can be finite or infinite.

In their essence, the variables determining the parameters and their varia-

tions should be regarded as independent arguments, varying within certain limits

in accordance with the full aggregation of all of the possible conditions and

processes in the medium for which the model is applicable.

The concept concerning the control parameters and their number in a general

case is a direct generalization of the concept concerning the degrees of freedom

- 7 -
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and the independent coordi nates for the mechanical system, in analytical mechanics

and in classical thermodynamics.

It is evident that for tic bodies which are being deformed, considering the

space of finite dimensions, the number of controlling numbers, i.e., of the de-

grees of freedom, is infinite. For the infinitely small particles, in the

typical examples, the number of the controlling parameters is finite and in

general small.

Usually, if a closed system of equations is written, the control. parameters

can easily be discriminated and recalculated. If the equations of a system are

differential and their number is finite, the number of the control parameters

proves to be finite for an infinitely small particle.

On the other hand, in individual important cases when the equations of motion

represent complex operator relationships, for example the integral-differential

equations, the number of the control parameters for infinitely small particles

still proves to be finite. In this respect, the problems of the motion or

equilibrium of gaseous masses with consideration of the forces of mutual attrac-

tion of the gas molecules are typical examples in Newtonian mechanics.

We can also introduce and consider the mechanical models of continuous media,

when the number of degrees of freedom is finite, even for the arbitrarily small

particles. Usually, in the actual cases of applications, which are always approx-

imate in their nature, it is sufficient to consider the systems which have a

finite number of degrees of freedom for an infinitely small particle.

The basic successes attained in mechanics and physics are asse_iated with

the examination of objects for which the number of described experimental and

theoretical control characteristics is finite and small.

Let us emphasize that the number of the characteristics and of the para-

meters being determined can be arbitrary; we are speaking only of the number of

the independent arguments, i.e., prescribed from the experiments and assigned

according to the sense of the mathematical problems (coordinates, time or stress

tensor, temperature, etc.) as variables or constants.

It is obvious that in the construction of the models of the material bodies,

the control parameters that are significant are only those which are connected

with the properties of the model and with the processes, and hence in a defin-

ite sense are invariant relative to the choice of the system of coordinates and

the measurement units.
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The control paramete -s can be scalar and tensor, dimensional and dimensi on

less, constants and variables.

In establishing the model for the small particles, the actual separation

of the control parameters in and of itself greatly limits the possible u,'».trar

iness.

A single list of parameters which can be used as independent arguments in

the equations of states, in the kinetic equation;, or in the determination of

the various functions of state, is totally,inadequate. However, the presence of

tables of control parameters is quite necessary for the development of a general

theory, for the formulation and presentation of the results of the necessary tests

and for the theoretical formulation of the additional hypotheses required for a

complete description of the model.

In certain particular cases, only the availability of a list of control

parameters together with the simplest mathematical assumptions (e.g., the ex-

pansion of the functions of state into a series with respect to the control

parameters, vA th the retention of only the first terms of the series) permits

us to find a class of the functional dependences in the equations of state and

the other physical dependences (relationships).

Now let us consider the typical and basic values which can be utilized in

the corresponding tables of the control parameters in the construction of the

models of the continuous media.

Well known are the examples of the dimensional physical constants, which

in a number of cases can be included in a general listing of the control para-

meters, (speed of light, Boltzmann constant, acceleration of gravitational force

for the gravitational constant, the modulus of elasticity, the factors of vis-

cosity and heat conductivity, etc.).

In particular, we will also note the possible presence of the constant ten-

sor among the control parameters prescribing the symmetry of the elementary

particles of a continuous medium, which can and should be introduced for an

object. It turns out that the properties of symmetry can be prescribed with

the aid of a simple set of various tensors. The presence of symmetry reduces

to the presence of the corresponding constant parametric tensors among the in-

dependent arguments in the unknL,'wn function. In other words, the presence of
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the properties of symmetry is associated with the presence, among the control

parameters, of the tensors prescribing the appropriate groups of symmetry.

At the present time, we have established the simple systems of tensors for

all of the point subgroups, i.e., the complete orthogonal group (the crystal

groups, the group of an icosahedTon, of texture, the prismatic groups). After

the introduction of such tensor arguments, the necessity of verifying the feas3

ability of the conditions of symmetry in the unknown mathematical equations is

discarded; the appropriate conditions will be automatically satisfied.

The presence of a general algebraic theory of the structure of nonlinear

tensor functions upon several tensor arguments often permits us to extract

inferences. These conclusi-ms are associated with the following equation for

the tensor If which is being determined:

where k  equals the scalar functions and H s egtaals the corresponding tensors,

which are formed by way of the polyad products and =tractions from the tensor

arguments. The number p equalling the number of linearly independent tensors

Hs is determined with the aid of the theory of the characters for the symmetry

group, which is admitted by the system of tensor arguments. Currently, there

exist all the necessary formulas of the type (1.1) for a 3-dimensional case

when the tensor H being determined has first, second, third and fourth ranks.

As the simplest examples of the control parameters cf a dynamic, and in

general of a physical nature, we can introduce and consider temperature T or,

for certain cases in the absence. of local equilibrium, several temperatures

T 1 , T2 ,... for the components; which in addition can be characterized by the

densities p l , p 2 ,..., who also can serve as the control parameters.

In a consideration of the electromagnetic effects, in the capacity of

control parameters we can take the components of the vectors Ea and Pa of the

electric field and electric polarization, and the components of the anti-

symmetric tensors Has and 
M0 

of the magnetic field strength and of th'e mag-

netic moment of the medium.

- 10 -



Let us emphasize tha
r
t a typical .feature of the modern theories is also

associated with the fact that along with T k , p k , Pa and Ma s , as the control

parameters, it is necessary to introduce their derivatives with respect to the

spatial coordinates and with respect to time.

The appearance of various structural parameters of a physical a!, , hemical

nature is associated with a quantitative description of the newly discovered or

already known mechanisms which acquires considerable significance in the phen-

omena of energy exchange of the dissipation of energy, and of other interactions

between the particles within the physical bodies being studied.

Specifically, such parameters can appear as the characteristics of the for-

mation and distribution of the crystal and of other internal structures, as the

characteristics of the distribution of fissures, porosity, etc., as the char-

acteristics of plastic deformations, the effects of dislocation or of mechanisms

of electrical and magnetic polarization.

The establishment of a system of control parameters is associated with a

general description of the phenomenon, with the use of a varying class of re-

search hypotheses, of experimental data, of statistical discoveries and with

the problem of describing the studied objects and the processes by the exact

or approximate equations and additional conditions.

The differentiation of a system of control parameters is associated with

the penetration into the mechanism of the phenomena which are being studied,

and constitutes the most important link in formulating the problem. As is known,

in the theoretical construction of the models of continuous media, a reference

base is provided by the basic dynamic equations concerning the conservation or

variation o;' mass, of impulse, of momentum, and the universal laws of thermo-

dynamics.

The variation principles and methods acquire particular significance in a

construction of the models of continuous media in.which the manifestation of

the internal degrees of freedom is significant, or when the system of the con-

trol parameters contains successive derivatives of several typical orders. In

all cases, in the theoretical assignment of the physical nature of the system,

it is necessary to utilize several thermodynamic functions of the control para-

meters (the internal energy or entropy, etc.) or the Lagrange function based on 	 I

the variation principles. In addition, in each of these approaches, it is nec-

essary to prescribe the generalized forces and a number of other data (the var-

ious types of energy flows, the laws of distribution, etc.).

- 11 -
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In the construction ,of a general theory, only the actual presence of the

appropriate functions from the system of arguments which is being established is

important. In the actual cases, exhaustive knowledge of such functions is

required.

In the Foneral theory, the basic source of the required initial informa-

tion is provided by the hypotheses which should correspond in a certain definite

sense to the test data in the description of the phenomena in the actual objects.

After a sample test, the initial hypotheses can be reviewed and applied as the

lows of nature.

In a large number of important mechanical theories, the simplest hypotheses

or the test data can lead to the necessary macroscopic functions and to a macro-

scopic description in the result of complex additional statistical theories.

The formulation and establishment in various cases of a convenient system of

hypotheses or of experimental data and the technique of extracting from them

the general equations comprise an important part of the general theory of mechan-

ical models.

The general theory of the models of continuous media can be adapted to

and compared with the general geometric theory of the multidimensional non-

Euclidean sets.

Tne particular classes of the models of media are similar to the Riemann

or the affine-connected sets, while the indi-.idual actual models are similar

to the definite spaces or sets, such as spherical, ellipsoidal,'toroida, etc.

In constructing models of continua it is advantageous to use the general

conditions pertaining to continuity and differentiability as well as the postulates

regarding the lack of relationships (between geometric or kinematic parameters),

be they differential or any other type of relationships, which differ from their

strict definition. An example of such a relationship is the condition of in-

compressabi'lity which nevertheless can sometimes be applied. The presence of

the additional relationships leads to limitations in the laws of motion, to

restrictions independent of the external conditions or the arbitrariness of the

external mass or surface forces at the boundaries of finite volumes or small

particles of the medium.

- 12 -
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Chapter 2. Kinematic Characteristics of the
Deformation of Small Particles

In recent times, we have introduced a more precise geometric and kinematic

characterization of the deformation of small particles of material continuums

into the mechanics of continuous media. Below, we provide a short description

of the pertinent tensor concepts.

For the derivation of the geometric and kinematic characterization of the

internal. structure and the processes of deformation, we introduce the attached

Lagrangian curvilinear system of coordinates (fixed into the medium) 1^ 2^ 3^

with the base vectors 5 1 , 52, 53•

A -== dta Da, ► 	 ds2 = g.a d^lldt
A	 (90 = (^a^^i))

(2.1)

where ds equals the elements of length taken in an actual Euclidean space.

Let us denote by

0	 0	 0	 0 0,'

	

dso = d5a3a, dso = accOdtctd*̀,' (bad = PaDa))
	

(2.2)

the appropriate elements, vectors and bases which we introduce conceptually for

the systematic ideal states, in which the internal stresses are lacking.

The three-dimensional aggregation of points with the coordinates S1's ^2^ 3^

of the vectors of the basis 3Q ► ' and of the elements ds determines the Euclidean

space, wherein

(2.3)•	 A	 A

a^^ = 11a^3ve where ray = 
2 0 ^Y a 

+ 
Bg Q _ ?̂sas .

b	 a^	 Ob	 OsK

j
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Let us now assume that the three-dimensional combination of the coordinates
0

^a of the base vectors ;)a and of the elements dsd determines the affine metric-

bounded set K, for which the following relationships are valid:

0 0

where

	

o	
0	

o

FOP	
2 

a ^•1' 

C 

a6̂ u
^^- -I- 

a^^;a' 
_ abI ^ 	 Sufi — b).^3^'y^'su<<'_

 r̂ l^u^ I' ll Sol t ,	 (2.4)

	

1 cab	 ^^	 ab J, .

hence

The tensor Su'(b 3)-= -- Spa

Y lop

 is said to be the torsion tensor of the set

K. while 1,", Q1, t2' tea)._ gives the coherence factors determining the parallel
transport.

It is obvious that for	 the tensor of the Riemann curvature becomes zero:

	

Raav	 a s abp -^' I a lt" — I'Vay = 0.

For the set K, the tensor of Riemann curvature in general differs from zero:

0	 0
0	

( ar
y	 arv y ^) o f o µ	 o v o

RaR1

µ

J1 ` 6'v1^ [ \ aka — ab^ / + 
ral,t e Y — rOlt aY	 o.

The set K can be regarded as a generalization of the concept of the un-

stressed state of a body in a Euclidean space,, when such a state is possible for

a finite body. The difference from zero of the tensors Sas and 
RaSYa 

involves

the impracticability of the equations of consistancy and hence the absence of

displacements from the conceptually-introduced ideal state to the state under

consideration.

-%14 -
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The internal invariant properties of the. set K can be prescribed fully by
0

the two tensors 
gad 

and Sas or by the two tensors 
RasyX 

and Sad.

In the basal plane in a Euclidean space, the tensors:

' 
//w
	 0	 0

eap ' Z_ (9aP — 94), gotp, Sap and Ra ,x

can be regarded as the characteristics of the structure of the defects and of

the geometric properties of the stresses (deformations).

Let us introduce the tensor:

000 ,/0 	 000	 000	 000	 000E Eap t'3a3p3 v _ 
V I b'a^ ( 

(3 13 ."3 3 — 3 13332 ` i ' 32333 1 — 3z3P 3 +

-^- 333 132 --- 33323 1 ) .
	

(2.6)

As is known, Equation (2.6) for the tensor E retains its appearance under

any transformation of the coordinates, wherein the components Eaay are invari-

ant for any rotations of a three-dimensional space.

With the aid of the tensor Eaay , we can introduce the tensor of second rank

according to the formula:

,Kap = EVXaSYA',	 (2.7)

From Equation (2.7), the reciprocal formula follows:

;' .Sap = 2 Ea,^xK-% Y.	 (2.8)

It is obvious that in the three-dimensional space, the second rank tensor Kas

can be considered in place of the third rank tensor Sa s . In the absence of

torsion, when Sao = 0, the space K will be a Riemann one; in this case, the

tensor Ra^ya is antisymmetrical relative to the first and second, pairs of the

indexes, and is symmetrical relative to the transposition of the indexes as and

yX. In connection with this, in a three-dimensional space, the following for-

mulas will be valid:

- is -
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(2.9)

Ropy%	 ^ 1s^(^i^f;r^.^.
(2.10 )

In the general case of an affine, connected, metric space, the mutually

reciprocal formulas (2.9) and (2.10) will not occur.

The covariant components 
eat 

determine the tensor of the finite deforma-

tions.

As a result of the stresses of the medium and the different physical pro-

cesses the metric tensor ga (E a , t) for the prescribed values of ^1, ^2 ' ^3

0
can in general be dependent on t. The components 

gad 
can be considered in place

of the components of the tensor of the residual (plastic) deformations.

In establishing the link between the tensors S 	 and 
Rai 

x or between the

tensors Kai and Rai	
Y

 with the mechanical defects (in the continual theory of

dislocations), we note that in the establishment of the metrics and the coherence

of the ideal set K, the following operations can be accomplished conceptually.

Let us take in an actual Euclidean space a certain curve C and let us

examine the continuous aggregation of infinitely small elements of a material

medium along the curve C; we obtain a certain infinitely-thin fiber.

Now let us separate conceptually this fiber from the entire remaining part

of the body; if C equals a closed curve ,, let us cut this fiber in a certain

section; let us release all of the elements of the fiber from the internal

stresses and from the distortions in the structure of its elements, causing their

mutual arrangement. After such an operation, conducted in the same Euclidean

space, the unstressed fiber with the proper structure will change its initial

form, while curve C will convert to a certain other curve C*. Along C*, the

substantial points of the elements of the fiber will be determined by the same

Lagrangian coordinates ^1 , ^2 , E 3 , as for the fiber C.

If curve C were closed, then (generally speaking) curve C* would be open

with a certain separation between the ends after relative rotation of the

surfaces of the sectional area.

..Md1W

and
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By definition, the metrics and the. coherence of the Olements being obtained

along C* correspond to the metrics and to coherence of the set K of the affine

connected space. As a basic assumption, it is admitted that g a and Ir'a depend
a	 a

only on the coordinates ^1 , ?, ^3, and do not depend on the choice of the

curve C.

In the Euclidean space, if the base vectors along the curve C* are identi-

cal to the base vectors jug then along C* within the limits of an infinitely

thin fiber we will have:

8r*	 0	 0	 • 0	 0

a5a .^ ^a and dD, =- Pu;3c1 ^Jv ► 	 (2.11)

where r* equals the radius vectors of the points along C*. These relationships

written in the Lagrangian coordinates can also be regarded in an Euclidean space

along the curve C, bearing in mind that the vectors .3a and the radius vector

r* are taken on the curve C*.

It is obvious that in a general case of the integration along C, the radius

vector r* and the base vectors a depend not only on the coordinates Fcl , but

also on the shape of the curve C.

Assuming that C is a closed curve and integrating Equation (2.11) along

the curve C, we obtain:

Ar• = "̂ CDdo a,
^

ADa = 9Cl,asDAP. .'	 (2.12)

The vector Ar* is said to be the Burgers vector. The vectors 'A3,

typically specify the deformation and the relative rotation of the cross-sec-

tional areas. If as the contour C in the Euclidean space we take an infinite

parallelogram with the sides corresponding to the elements d l ^a and d2^ we

derive for the integrals (2.12)

- 17 -



	

0	 0
0	 0	 as	 1	 0	 0	 0	 1

nl'• =' ^ad f^bu -i C7a-; 
a ' ^t^l ll^,

a -- Jacl^ya	 CJa _^ a^t^ 
d^fl^ 1tl ^yz3

0	 0	 0	 0	 `	 0
L= a p ^ i p d^ a - 

a5 
d^spcl, a 

_ \ ab -M ^J
^) d,tAd,'Q = ; 245 ye l j tad Dv	 (2.13)

b

and similarly:

A3a = fla ^t y^^?^^1Fclrybv,	 (2.14)

Equations (2.12), (2.13) and (2.14) together with the above-described pro-

cess of the conceptual arrangement and unloading can serve as a source for the

mechanical interpretation of the torsion tensor Sa s through the Burgers voctor

ar* and the tensor of the Riemann curvature, by means of a variation in the

base after enclosure with respect to curve C or C*.

These interpretations comprise the basis for the continual theory of dis-

locations.

If ROy = 0 while Sas # 0, the space K proves to be affine connected with
0

OJabsolute parallelism, i.e.,	 a ::_-p along the entire closed curve C. In this

case, as the principal geometric characteristic in the sets, we can take the

Burgers vector, depending on the form of the contours C. When RaSy = 0, we

can • assume that the senses of the vectors 30 a depend only on the coordinates

0 and do not depend on the lines C, along which these vectors are transported,

and it is evident that in this case the equations of the following form will be

valid:

3a = ^a^ î ^^
	 (2.15)

where the components of the tensor A a $ depend only on the coordinates C1, E 2 , E3,

From Equation (2.15), it follows

0

gag

and therefore

gap = 

,2 (

gaR ° 9 AaY^1^^) = 2 gyp (SaSp
	

(2.16)



../

Further,  on the basis of (2.15) and (2.3), we have

^1
4

dJa 	 C-.„^), ^i^t^) ; l ll;t^ 	
(^;1b̂ 1`8A 	

E.ACA I ,` ) 11 ^^y[1,^
a

therefore

E
rap	 IC ^b (2.1 7)

where the matrixes B Y and A u are mutually reciprocal, i.e., B YA 
u = 6Y.

	

u	 a	 U a	 a

From (2.17), it follows

RQAVv ' 0,

	

Sa'^ = - -.2 l^µy Caa- -- as- 	 +2' I3µ ' (1a VX̀ -- Aa),I'i`a),	
(2.18)

In this manner, if in Equation (2.15), A a $ depends only on Vi a , the Riemann

curvature of the set K becomes zero; otherwise, the factors A ar will depend

functionally upon the selection of the curve C.

The affine transformation (2.15) reduces to a pure deformation and rota-

tion in each point for any selected curve C. From the assumption to the fact

that 
gaB 

depends only on ^a and t, it follows that in each point with the coor-

dinates ^a at the assigned t-value, the pure deformation corresponding to the

unloading and the elimination of the defects, is determined independently of the

form of curve C drawn through this point during the separation of the fiber.

Hence, the functional dependence of the matrix of the affine transforma-,

tion A 
a 
s can be manifested only through an additional rotation of the defor-

mation axes. In this manner, on the basis of the adopted assumptions relative

to the process of the relief and systematization of the elements, only the ro-

tation vectors during the transition from the base j a ` to the base D., ` being

determined in (2.15) by the matrix Aas, can depend functionally upon the form

of curve C in general.

The above-considered geometric tensor, characteristics of the internal struc-

ture and states can be utilized as control parameters in the construction of

the models of the material continuums.

19



3

For the derivation of the kinematic characteristics of the internal pro-

cesses in the continuous media, we can utilize the derivatives with respect to

time and taken in a certain definite sense from the above- introduced geometric

tensors.

For example, the components of the tensor of the deformation rates in

space of motion and in tt) .e set K can be determined respectively:

o
eap _^2. ^^^. it 16 0	.l 

cl^t^Z	 (2.19)

It is obvious that nas = 0, if the geometric properties of the set h

remain unchanged.

As the typical control parameters, it is also possible to introduce the

derivatives with respect to time in the appropriate sense (for example, rel-

ative to the attached base )j from the tensors 
SYs 

and R as ^, and accord-
Y

ingly the time derivatives of the following orders.

In certain instances, in the capacity of the kinematic characteristics

of the given state, we can take the components of the eddy vector w a or the

tensor VW',	 characterizing the distribution of the eddies, or accordingly

the antisymmetric tensors w as and V-tiwaii

In the formulation of the problem and in the separation of a system of

the control parameters, we will utilize further the assumption concerning the

absence of purely kinematic holonomic or nonholonomic relationships.
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Chapter 3• Dynamic and Thermodynamic Basic Equations

The equations of the impulses and of the momenta in a three-dimensional

formulation have the forte

eaa 
= CyAaY

and

Qdm°A

I V 2 1 3)0

dt

where p equals density as and 
Fa 

equal the components of the vectors of the

acceleration and mass forces, 
pad equals the components of the tensor of stresses,

mas equals the components of the tensor of the internal moments of the parameters

of motion, referred to a unit of mass, while dmas/dt.equals the derivatives with

respect to time taken relative to the inertial frxDe of reference, has equa s

the components of the internal mass moments, while Qaay equals the components of

the internal surface moments. In Equations (3.1) and (3.2), it is assumed that

in a general case

Pad $ Psa•

From Equations (3.2) and (3.1), these equations follow:

^F"v..+. _Q Qv Aa `-2	 Q 
pa^eaa-- 

Q 
pa^wa^

WtC ! )	 aYv)	
(3.3)

and

- 21 -
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pa^U^uf^	 -2- jta ^UluE^ +' Q

' ry (^^a^^'a^af^) -'

^. Map	 'j C4
	

(3.4)

.

where 'n equals the value of the velocity of the particles of the medium, while

v  equals the components of the velocity vector.

For a long time, Fquation (3.2) has been reduced by the condition of sym-

metry pas = psa on the basis of the assumption mu 	 constant and has = 
Quay 

=

0; and in accordance with this, Equation ' (3.4) is identically satisfied. At

the present time, in many reports, Equations (3.2) and (3.4) are introduced as

the basic equations in connection with the introduction of the material media

and phenomena when pas # psa.

The value

dA(`) Wva dni -}- Cypa1'v,, d-c) dt

(dm and dT are infinitely small elements of mass and volume) can be regarded as

the inflow of the macroscopic energy to a particle from the elementary work of

the external mass and surface forces. Obviously, the inflow of energy caused

by the elementary work of the external mass moments h as and of the surface pairs

Q
(10Y does not enter into the equation of the kinetic forces (3.3).

Along with the kinetic energy of the particle ' ,E== 
p22

dx ' , we introduce

into the consideration the iit,rinsic energy U„1 = eU di, where U equals the

intrinsic energy computed per unit of mass.. The specific intrinsic energy U

can be regarded as a certain function of the specific entropy S and of other

parameters determining tLe physical and chemical state of the separated particle.

For an element of any process, the equation of the first law of thermody-

namics can be written in the form:

dE -f - dU,,, = dA(e) + dQ(e) + dQ**,	 (3.5)

where	 .

N* _ dQ(e) + dQ** _

- 22 -
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is the total external flow of energy being added to the work of the macroscopic

forces dA (e) . In turn, the value dQ* can be divided into an external flow of

heat energy dQ(e) and the inflow of the nonthermal energy dQ** which occurs as

the- result of vaxious interactions of the given particles with the external

bodies and with the adjacent particles of the medium under consideration. The

flow of energy dQ** can be caused by the work of the mass and surface pairs of,

forces, by the presence of an exchange of diffusion energies, by an inflow of

electromagnetic energy, and by other mechanisms.

The complication of the models and a more detailed consideration of the

internal interactions and particularly of the interaction of the physical bodies

with an e;^ect;romagnetic field, i.e., the effects of polarization and magnetiza-

tion, leads to the necessity of the explicit introduction of energy inflows

caused by the microscopic processes referred to dQ**.

From (3.5) and (3.3), we obtain the equation of heat inflow

i	 dQ^_° ► 	 dQ**
dU —Q p'%Pea^ dl -}. —Q pRsala e, Cll -}. —

din -i d ►,a (3.6)

where eao alt _ J_ d^a^ or eao d l = deap,	 if 
gas 

equals a constant. i
,with the aid of (3.4) , from Equation (3.6) , we can exclude the term Q P"Pow

and in certain cases, the work of the force couples from dQ**/dm.

Further., let us consider in general the nonequilibrium processes for which

we can introduce the absolute temperature T and the free energy F for each small

particle according to the formula

F(I}, µ0, jt% ..., µ")= U—TS,

where T, u l , p 2 ,...,}in is the system of control parameters selected by the con-

dition that the following equation is satisfied:

aF 
= _ 

S.

Among the control parameters µ l , u2,...,11n, in a general case it,is necessary

to include 
gas 

or ea s , was and the other parameters upon which F and dQ**/dm can

depend.
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In conformity with the second law of thermodynamies,.for a small particle

we call write

T dS -^O,(c'-+dq',

where dq' 3 0 equals the noncompensated heat, computed per unit of mass.

In many cases, for the irreversible processes, we Gan assume that:

	

tlq' : ah dtt' (D di	 (3.7)

where a and 4 equal certain functions of 
P  

and duk/dt.
k	

^) __. .
h

dµh d!
In a number of important cases, it is assumed that	 ' -dl --dg	 where

c
ks csk are certain functions of 

P  
or are simply constants.

EquationS.6) can be represented in the form

OFn	 1

	

C k — ^ / d1th — dq ^ —	 (3.8)

where A  equals the pertinent factors during the increments of du k in the right-

hand part of (3.6).

For the reversible processes when dq' = 0, a  = 0, or for the irrever-

sible processes when Equation (3,7) is fulfilled, Equation (3.8) is represented

in the form

nh dit' 
= 0, where :%,,= Jk4 — a^ h — uh .	 (3.9)

In accordance with the statement of ''he problem, we may assume that the

parameters p i^ u2 ,..., un and their increments du i , du 2 ,...,dun can acquire all

possible values in certain ranges of the various processes, whereupon there

are no linear homogeneous nonholonomic relationships between the increments

du i , du 2 ,...,dun which are satisfied regardless of the processes under con-

sideration.

24
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The possible linear i.ndopendence of the increments 
duk 

permits us to make

certain conclusions concerning the values for 7r  being attained at all possible

processes, according to the condition that 	 and a comprise functions 11h, ^3jth
	

k

only of u l , u2,...,un.	
d 

s

1. If among U 1 , u 2 ,...,}^ n there are no derivatives of d t , from this it

follows that, for the reversible processes, Tr k does not depend on d' and

therefore the following equations should .be satisfied.

tck 0	 o r . A,, -- a^ h- .
	 (3.10)

The equations (3.10) are either identically satisfied; and hence can serve

simply as a determination of A k , or at prescribed Ak-values (accordingly non-

arbitrary) these can be the relationships for determining the derivatives of

ea^h'^ or at the prescribed function F (T, 
u l , u2,...,U n theyY	 ua-yield the q

tions of state, relating to the parameters which are being determined, for

example, the stresses or the phase concentrations, to the control parameters.

Equation (3.10) can be regarded as generalized equations of the theory of elas-

ticity; specifically, they can simply coincide with the equations of state of

the elasticity theory.

Among the Equations (3.10), • we also derive the equations of state for

determining the components of the tensor of stresses as a function of the com-

ponents of the tensor of deformation and of other control parameters.

Equations (3.10), and their aforesaid interpretations for the reversible

processes, preserve their validity also in the case when among the control

parameters u l , µ 2 , .... pn , their derivatives with respect to the coordinates,

for example, if along with F a$ we include the derivatives O Y
e a ,, etc.

In this manner, in the theory of elasticity, the assignment of the free

energy as a function of the control parameters, excluding their derivatives

with respect to time, permits us to fully determine the values for Ak.

From the basic Equation (3.9), the relationships (3.10) do not follow if

the values for 7 k can depend on du s /dt, specifically if among the control para-

meters u l , . 2 ,...,un I we include the derivatives

aµ1' 02	 dfLP p<n.
dt ' dt ' ' ' '' dt

-25-



It is obvious that 1n the irreversible processes, the Tr k -values can depend

on the time-derivative control parameters.

We can consider such models for which in the reversible processes •the Trk

-values can also depend on the time derivatives from several control parameters.

2. Let the TTk -values depend on dp s /dt,(s	 1, 2,..., p). From (3.9), we

have

^^P^^•

	 n

LJ	
dilh _	 d}^k - 0,

	

nA - 
dt ^ -} ,J	 A dt

k=f	 k=p }•f

n
and since d-1 , ... , ^di	 can acquire arbitrary values , at df, _ df`P+? ^ , , ,	 d^-̀^^ = 0

dt	 dt	 dt

we have

P	 dttlt	
0.	 (3.11)

k=!

However, it is evident that this equation is always satisfied since, by

definition, the 7 -values do not depend on dE`p+' 	 dl,`i► 	
from this it also

k	 dt , .. dt
follows that the following equalities are always valid:

n

Y nk ddtk = 0 it ah =P (le = p + 1, ... , n).
•	 (3.12)

k =P•{-f

If Tr l , Tr 2 , ... , Trq contain unknown values while 7T	 ... , 7
p 

are known, for

example,, AM = am while aµ.n (m = q + 1,..., p) are assigned, then relationship

(3.11) can be written in the form

Ah 
dj =	

" Ak dp k _ . " d,,k z .

	 (3.13)
k=f	 k=q+1	 k==!

In (3.13), the right-hand part is known; while the y-value is determined

from the last equation.

It is easy to demonstrate that the most general solution of Equation (3.13)

of the values 7 1 , 7T
2
 ... p 7q depends on the arbitrary functions and has the form
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Chapter 4. Variational Principles-and Their Consequences

I£ among the control parameters we include the successive derivatives of-

several parameters with respect to time and coordinates, the derivation of the

equations of state and the exclusion of t}v pertinent arbitrariness of (Y k) can

prove to be more convenient with the aid of the variational princi,)les. ,

Further, having in mind the consideration of the electromagnetic effects

and the utilization of the Maxwell equations, let us consider the applications

of the variational principles and their results within the framework of the

special theory of relativity.

We assume that x l , x2 , x3, x4, = t are the Cartesian coordinates of a

four-dimensional pseudo-Euclidean space, in which the metrics are determined by

the quadratic equation:

dsz --= --dx i ---dx=2—dx32 -Fc?dt2=gijdx{dx',	 (4.1)

where c equals the speed of light.

Let us denote by A the density of-the Lagrange function. According to

the assumption, the value Ac dx 1 dx2dx3dt constitutes a four-dimensional scalar,

wherein A is the prescribed function of a system of control parameters com-

prised of the generalized coordinates u l , ^,2,..., 
Un and their first deriva-

a
tives Ft = aztk '

Among the generalized coordinates, there can be the scalars and certain

independent components of the tensors or the invariant tensor functionsl.

1 In the utilization of only the Cartesian coordinates, it can be assumed that
a certain part of the generalized parameters us can form a system of inde-
pendent components of the spins. In this case, it can be shown that in the
transition to a curvilinear system of coordinates, the invariant arguments
containing the components of the spins, can be replaced by arguments equal
to them and containing the components of properly selected tensors with a
large number of components (which, however, are interdependent).

Here and below, we adopt the following condition: in the general ex-
pressions and in the sumirtation, the Latin indexes i, j, 1, m,... acquire the
values 1, 2, 3, 4; the Greek indexes a, S, y,... acquire the values 1, 2, 3.
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n 1 ^^ Ye
ti 	Y1 N_.

µ1

n2 - - If 	
}_ Yµ

2 -- y2 
F,s ,

µ2

•	 s
n3 ==	 Y2	 Y ^ t3 Y 3 . ,

P3

n9 	YQ^, + YE^^,

(3.14)

where Y l , Y 2 ,..., Yq_1 are arbitrary functions of any parameters. In this manner,

the values Tr l , Tr2,... 
7T  

are not determined unequivocally in this instance. The

assignment or the determination of Y l , Y 2 ,..., Yq_1 should be associated with

additional data. If q = 1, i.e., there is only one unknown (for example, pressure

p), Equation (3.13) is solved unequivocally by the formula

D
^h

Let us consider as an example the reversible processes T ds = dQ (e) , dQ**

0 in an ideal liquid, for which the free energy has the form

In this case, the equation for the heat inflow yields:

aF
d
	alr' d •	 OF 

d' ^v-1' _ — p-aQ Q +. a . Q -^- ... -{- aQ ^u—i> Q	 Q^ dQ,
e

from which we obtain the generalization of the known thermodynamic equation:

2 ( _aF 	 aF a	 a
FaQ , -1-- a.	 -^- ... -}- aQ(P-1) 	J •	

3.15_	 Q e	 Q	 (	 )

•	 The corresponding model of 'an ideal compressible liquid (when F (p, p, T))

in application to the motion of water with bubbles challging its volume during

cavitation has been described in the report B. S. Kogarko [198).
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For simplicity, we also assume below that A depends only on the i.ndepen-

dent components of the scalars and tensors from ^ , u ki and g
i7

, only through

the invariants comprised of these values and possibly from the functions of

A (present in the arguments) of the parametric constants of the tensors form-

ing the system of "physical co!:stantsi2.

In conformity with the general theory of the calculus of variations, the'

introduction of the arguments of the i% function of the higher-order, deriva-

tives into the system is quite admissible•' ,[226], and all of the following

conclusions can be generalized accordingly.

By variational principles in the mechanics of a continuous medium and in

the field theory, we can connote the functional equations obtained by equating

to zero the sum of certain volume and surface integrals containing the vari-

ations of the subintegral functions and, generally spea'.,i.ng, the variations

of the domain of integration.

In the formulation of the variational principle, it is necessary to es-

tablish the independent functions of 
p  

which are being varied and the varia-

tions of the dependent values, specifically their derivatives with respect to

the coordinates and time Uki.

2 In conformity with the latter assumption, it follows that in the application
of the curvilinear coordinates in the-invariant arguments of the function A,

the derivatives of the components of the tensors uki should be replaced by
the covariant derivatives.

As is known, we can consider the density of the Lagrange function in a
fixed Cartesian or curvilinear system of coordinates ni as a function of the

k
parameters Uk and-of the derivatives 

' a ^,	 which in general do not comprise
tensor values. Many of the following conclusions also maintain their validity
in this instance. However, in this case, difficulties can develop in the in-
troduction of the local concepts concerning the impulse and concerning the
energy, and accordingly upon the introduction of the concept of the tensor
of impulse energy.

Such difficulties developed in the theory of gravitation. For a gravita-
tional field, we introduced the function A, which in its nature depends only
on the control parameters g ij and on their first derivatives with respect to

the coordinates, which do not constitute.tensor values (the second deriva-
tives of g ib , which can enter into A, introduce additional terms of a diver-

gent nature, not influencing the basic equations of the general theory of
relativity [224]).
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It is also necessary to assign the subintegral functions which are not

determined as a result of the application of the variational principle;

specifically, this pertains to the density of the Lagrangi,an function R as a

function of the control parameters p  and their derivatives uki.

The general variational equation can be written in the form:

ib ^Ic

V 6Adti• Md2•^-	 C^i^al^^`-{	 'a^i '_)dT+ Phbj^^cicr =:0.
	 (4. 2 )4.2

The integration is extended to an arbitrary four-dimensional volume V,

wherein dr - d r^'c dl c d,c' dx^ dx dl,	 The volume V is b,.)unded by the three-dimen-

sional surface E, the element of which is denoted by do = da*c dt, where der*

equals the element of the two-dimensional surface. The three-dimensional

spatial volume V* with the element dT* is bounded by the two-dimensional

spatial surface E* with the element do*. In (4.2) the summation from one to

n is conducted based on the index k.

It is necessary to assign the generalized mass forcesQk and the surface

forces.Qk^, based on additional assumptions in consideration of the nonconser-
k•.

vative systems or allowing for certain influences of the bodies external to

volume V and separated by surface E from objects which are confined within V,

but not included in the system which is under review. The generalized surface

for 	 Pk must be introduced in consideration of the interactions along surface

E between the conceptually-separated part of the medium and the part of the

medium separated by the surface E.

According to the definition for the conservative systems, we can assume

that Qk = Qki = 0. The surface integral in (4.2) is balanced separately with

the surface integral which is encountered during the transformation of the

S A dT = b.1 d-r '	
an< 6 tk

variation	 S	 -i-^1Sdi and S - ax;— i1r; the relationships thus derived
are used for determining the generalized - surface forces Pk ; therefore, these

values are found from the-basic equation (4.2).

Many authors omit the consideration of the surface integrals since, ' util-

izing the arbitrariness of the variations, they consider inly such variations

of duk , for which E becomes zero.
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However, the consideration of the surface integrals and the pertinent

equations ensuing from the arbitrariness of the variations for F; leads to

additional significant physical conclusions.

The consideration of the special variations for E corresponding to the

group of symmetries which (group) is admitted by the value A&1 permits us to

derive the theorem of Noether, which can be regarded as an explicit basis for'

the formulation of the laws of conservation.

Equation (4.2) is invariant relati.ve•'to the selection of a system of

coordinates. In the consideration of the motion of a continuous medium, we

always have two significantly important systems of coordinates.

In the special theory of relativity, this is a certain inertial frame of

reference K:x 1 ,x 2 Ox 3 ,t, in which the motion of the medium is determined, and

the attached system of coordinates L: E 1 0 ^?, E 3 , E 4 = t (t equals the actual

time). The coordinates ^ 1 , ^2, F 3 are constant for the individual points.

The construction of the theory of motion of a continuum as an aggregation of

individual points is necessarily based on the introduction and use of the

Lagrangian coordinates ^1, X 2 0 C3,

The basic Equation (4.2) can be considered in any system of coordinates.

The variations of the different parameters and functions in the case of the

conceptual introduction of the adjacent states and the comparable processes

can be computed in fixed points of space, assigned by the coordinates x l in the

inertial system K, i.e., the Euler viewpoint, or in the individual points of

the Lagrangian system L, assigned by the coordinates ^ i , i.e., the Lagrange

viewpoint. The infinitely small increments, namely the variations of a certain

value ^, will be denoted by the symbol 3^ in the first case, and by the symbol

6^ in the second case.

In the basic motion of a continuous medium, the law of motion is represented

by the functions

which can also be regarded as equations of the transformation of the coordinates

during the transition from the Euler to the Lagrangian system of coordinates.
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For the var: at i onal motions we have

.00

•

According to the definition, we set

(4.4)

Assume that	 T (x ) ' T (x (b )) =-- r1' Or)	 is a curtain function; the variations

of this function caused by the variation in the actual Function and in its argu-

ments will be determined by the equalities

i	 6f^ (D r ) = ^' (^i) --., t^ (x{^ ' (^ (x,i )	(p (x	 W)

aY (x'') + -a 6x i .	 (4.5)

If the form of the function ^ (xl ) is not varied, (P' (x") = (p (--") , and therefore

the local variation D^(x li ) = 0. It is evident that with an accuracy of a

higher order up • to small values, the following equality is valid

T , (z/{) r Y (X,{) = T , W) __ T (xi),

i.e.

a(p wl) M ay (x{),

wherein this variation differs from zero only because of the variation of the

actual function ^, and not because of the variation of the arguments x1.

Fro.:, the definition of the variations, we have

a(p 4 1 )	 a(p
	 (4.6)

ax;	 ax;
	

~ax;	 as; • .

C
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However, noting that the relationships (4.6) indicate the possibility of

transposing the symbols of the deriv,- ►tives and the corresponding symbols of

vari ation, we can also (vri to the following equations:

	

a	 ark!' (x' ! ) ux' I 	qtr, (r^)

	

ar i 	 ► 	 ar' ► 	 ()x 1	Oxi

	

(x	 ayp (x 1 )	 a^ (^^±^ Oxl	 ^ ^ aq) a a^^	 a6x(	 (4.7) .

	

axr 

	
. axi
	 ax"	 ^ Oxi r

	

-Oxf

.	

ax, a,^

and

	

—a Sri	
arp' (x')	 dry, (r()	 axe	 8rp

	
(4.8)

In the construction of the various models, it is necessary to introduce a

varying type of characteristics and their derivatives, taken in different senses.

Specifically, the function A can be regarded as a function of certain parameters
k	 ^ 1^	 01(h

U and their various derivatives , -ax	 oa, 'O

Further, for precision and simplicity, let us assume that the function A

depends

i	 i	 axi ,	 {

on x = u , on -ab;	 X1 (i, ) = 1  2, 3 ► "^^) ►

and upon ire parameters 
p  

and their first derivatives

µ{ -- aF` { (k = 5, 6, .. , n; (. 1, 2, 3, A).
x

In addition, the function A can depend on C which will be regarded as

nonvarying independent parameters.

It is evident that the derivatives of the typeaE^k can be e-,.,ressed

through p  and x .	
abr'

For a comparison of the variation in 6 . S n dv we note that
v.

dT =Y--gdtdx'dx= dx l 	 (c==xs , g —IgiiI?,

wherein

b dT d^_	 ab {` di.az, ^^ 1]= 
ax
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On the strength of this and of the noted relationships we'can write for the

variations:

b d r =`, clT = S C -a 	 ax 8x{, ...,. aF t_ b^^^ ..aF k1 aE^R^ T tla f i aT{-) 

V	 v

j	 an 0x1 j	 a	 ,	 i ,	 an	 '{	 al_.. ar^^
- ax	 a.' C `

an

ar ► ^ r.
	 bx	 an	 a

-,- C -aµr^ as; C -a^,^^^ ,^ J `ft I `^^ ^
V

•}-	 8 / a`1- 
x^ ibxi 'rf eA - d µth + M i i6x i dx;	 (4.9)

V 
exi ` ax ` i	 aµh^	 d

where in the transformations under the sign of the integral we have taken into

account (4.5), (4.6) and the following equality:

Bn	 an	 an ax h j	 an It	 an

	

dai .,.. 
axi 	 -a'	 t3zi 

	
ash ^l i -}- 

al^hi

Substituting (4.9) into (4.2), with allowance for (4.5), we obtain

[ Qj_ 3A axi/ r _ a	 an	 ^i ,
- C _a_n .. aC an	

Flh	 Cli J Sxi 	 r
a il^Y

ax i ax i ax ►,  ax)
01 

i

' an a	 ^ an h

Di +
AA—
a	 ;	 k( __` x t _. ^ i , an^ ^1 -i- n$ ; i _}- Qi ;	 -}-^ ltd ^ 6x i

.J \ax i a^
'►^ (4.10)

-!- C Pk - -
1A

n1 + Qkini) 8 th
Ida=  0

eµ k

(n.. are the components of `he unit vector of a perpendicular to surface E).

Equation (4.10) should be satisfied in the case of arbitrary variations in

6x1 and 6Uk.

Let us first consider those variations where 4 1 =6Eth = 0 for E and are
arbitrary within V; utilizing this, we derive the following system of Lagrangian

equationsons

ax a
 (_^iLxjj)

i 
	 ^ 

ar
OA

 
ai

r ^ Qi +Qhµat (t = 1, 2, 3, 4)
t	 J ax	 (4.11)

and

a	 an	 an	 ^,
QA	 (k 5, 6, .. , n).	

(4.12)
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If the function A does not depend on x i s , Equations (4.11) yield

Qt	 -- Qkµ h i . '	 (4.13)

At the assigned values for Qi and Qk , Equations (4. ,11) form a comul.ete sy.s`,em

of n equations for finding the n functions x` ( ^) and [th (Z.

On the basis of (4.11) and (4.12) , it' follows that for the arbitrary var-
iations differing from zero on any surface E conceptually separated in the

medium, the following equality should be satisfied

SL \ P,f r_ µk1-- a t ax i zf t + M! + Q ! f ) n j6x { +

•
-^ (PA J r a + Qk') n. k da,	 (4,14)

where

P1= Pi fn j it Pk = Pk'n f . _	 (4.15)

Equation (4.14) is satisfied for any surface E at arbitrary 6x l and 6uk,

therefore, from (4.14), it follows that

pjf _ µki an _ xf! aA -- Ab r_ (V
aµkl 	 axil	 (4.16)

and

.I

P '—	 an__ ;
Ph 	

ak^h 
f - Qr^

Obviously, the specifying of a model of a continuous medium Is associated

with the assignment of the following functions: A, QV Qk' Qij' QkJ. The
necessity Iof specifying the parameters for Q and Q•	 r	 r introduces a considerable

arbitrariness, however for the conservative systems, by definition

Qr = Qrj = '0,

- 35 -•
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while in certain other cases, these parameters can be introduced with the aid of

simple hypotheses of a physical nature associated with a consideration of the

irreversible effects.

The assignment of the function A is analogous but riot equivalent to the

specification of the specific density of the intrinsic energy or the free energy

for the infinitely small elements of a continuous medium. Similar to the assign-

ment of the density of free energy, the assignment of the function R in a gen-

eral case is also insufficient for establishing a closed system of equations

determining the actual model of a continuous medium.

However, with the aid of the prescribed function A, the arguments of which

contain various derivatives from the control parameters with respect to the

coordinates and time, we derive a closed system of equations determining the

model of the medium in the case of the conservative systems,

The system of n Equations (4.11) and (4.12) and of 4n Equations (4.16) and

(4.17) consists of the equations of motion, the equations of state and the

kinetic equations. These equations contain the regularities describing the

processes in the medium caused by the presence of the internal degrees of

freedom.

In this manner, the establishment of the regularities for conservative

systems in the case of a large number of degrees of freedom can be reduced to

the problem of establishing the form of the Lagrangian function-depending on

the control parameters.

For the derivation of the connecting links with the statistical physics,

►ith the phenomenological thermodynamic relationships and, in this way, with

the experimental data, it is necessary to clarify the relationship of the system

of Equations (4.11), (4.12), (4.16) and (4.17), and its corresponding functions,

with the basic physical laws, with the characteristic functions of the thermo-

dynamic and with other laws of nature.

Specifically, Equations (4.16) and (4.17) contain the equations of the

classical theory of elasticity and hydrodynamics, and the Maxwell equations

for an electromagnetic field.

At Qi and Qi-values differing from zero and determined in the appropriate

manner, Equations (4.11), (4.12), (4.16) and (4.17) reduce to the equations of

the theory of a viscous liquid, with consideration of the phenomena of heat

conductivity, and to other equations in the theory of irreversible phenomena.
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In this manner, the utilization of the variational principles, together with

the sum of the data and the relationships of the functions A,Q r and Q r i with

the thermodynamic and other physical functions, can serve as an initial basis

for the expression of the continuous media, in specific term:', of the models,

which in turn can serve for the introduction of the characteristic parameters

and functions, with the aid of which we can formulate a varying class of hypo=

theses of a physical nature.

The development of a theory in these-'problems is closely associated with the

use of various results ensuing from (4.11) and (4.12) in a number of cases under

certain assumptions of a very general nature. Among such important results,

we include the laws of conservation.

The laws of conservation can be derived based on the theorem expressed by

E. Noether, which consists of the following:

Let us consider a case when Q i = Qk = 0.I Assume that the integral 	 SA dv

is invariant relative to a certain m-parametric continuous group of transforma-

tions G (a l , a	
m	 i

2, a 3 ,..., a ) of the variables x and of the corresponding

transformations µk (a l , 0, ..., cc'n equals a system of parameters independent of

the coordinates xl ). The group G forms an m-parametric group of symmetry for the

integral I. In this case, there occur m laws of conservation.

In actuality, from the invariant state of the integral

it follows that for an infinitely small transformation of an element of group

G, at which

8z{ = Ci 6a" and 6µ0 S 
a 

$a%

we have

61 0.	
(4.18)

=

The first integral in Expression (4.9) for the variation of the integral

becomes zero on the basis of (4.11) and (4.12); therefore, on the basis of

(4.18), equating to zero the second integral in (4.9), we obtain 	 -
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v	 _an
axi C	 Bs^ J 2f! E^k i aF^ J, 	 ^bt) 

0', ;. 
vF`n 

S1+q b a
q tlr == 0.

,^	 ^	 (4.19)

Since the volume V is arbitrary and da q is arbitrary, we obtain from (4.19) the

following m laws of.conservation:

aai	 -aJn x is it h^ A+A

If the integral I is invariant relative

follows that

ax = 6a { , C tq = 8a, dµ

C iq + 	 Sh—aµ l ol 0.-_ 	
(4.20)

to the translation group G 4 , it

R 
^ O', Sh9 

0,

and therefore Equation (4.20) acquires the form

OTjY

8af (4.21)

where

Ti t -- pe'+ Qt ' — µ^`^-
OA
 . -- x;q 

a	
— AM. (4.22)aE

It is easy to observe that, subtracting Equation (4.11) from Equation (4.12),

multiplied times 
uki 

and added with respect to the index k, we obtain	 !

aT ti

	

an 	 1

	

azi._ -_ --.Qt r 
az^	 (4.23)

Equations (4.'23), being satisfidd in the general case, convert to the law

of conservation (4.21), provided that Q = 0 and the partial derivative 'a`^
1	 asi

also becomes zero. The latter condition is' associated with the invariant state

of the integral I relative to the group G 4 . Subsequently, let us assume 8n = 0.	
IIazi	
1The dependence of A on E  can be preserved.

It is evident that in the general derivation of the laws of conservation

(4.20), in place of the conditions Q i -=.Qk = 0, it is sufficient to require

the fulfillment of the less stringent condition:
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apff = 0

alp	 ix (4.28)

(4.24)

Along with the laws of conservation corresponding to the group of trans-

lations, we can consider the laws of conservation corresponding to the complete

or natural Lorentz group [240]. In connection with this, we can introduce thq

tensorp j j =Ti!-}- Z`t (?,, ; f ::/.0)as a function of the control paramete-rs; and the

following laws of conservation are then sni.sfied:

ax1
	 0	 and E) O - pit	 (4.25)

The laws of conservation (4.25) can be regarded as the equations of the

moments of quantities of motion, corresponding to a special form of internal

degrees of freedom.

Equation (4.23) can be written in the form

ap,t	 OV ,
at;. - -- (Q^ -+ axe	

— Q (4.26)

If Q' i = 0, it follows that

Qi,.	 ax1 '

which yields

Qtaxt + OQ,ibz{	 ; add	 (4.27)
azi	 Qi ay;

in this case, Equation (4.26) als ,) acquires the usual form as for the conser-

vative systems. In' this manner, the equation

.

is satisfied for the nonconservative systems for which P) is-determined by

Equation (4.16), in which Q i^ 0 0; consequently P ik	Tip.

- 39 -



..L

f

Equations (4.21) and (4.22) occur in any inertial Cartesian frame of refer-

ence. In (4.21) and (4.22), we assume that

CaJ ' F` ' axJ ' °`^^
	

(4.29)

In a consideration of all possible inertial systems of coordinates, the

function can be regarded as a scalar; therefore, in the functional relation-

ship (4.29), and in the capacity of the significant arguments, the indicated

variables can occur only through their combined invariant combinations which

can be taken in the form of polynomials. The number of the functionally inde-

pendent variables of the combined invariants of the control parameters in any

case does not exceed the total number of the variable arguments indicated in

(4.29) .
After the establishment of the inertial frame of reference with the co-

ordinates x  and the attached system with the coordinates E 1 , the variables

x  and x l j can be regarded as components of the vector r = /x t3; and of the

tensor of the second rank	 =_	 = xt;3 f3J	where 3 i and 3' are covariant

and antivariant base vectors in an inertial system, which are constant with

respect to the x  coordinates.

Let us now introduce the arbitrary, generally speaking, mobile system

of coordinates n l with the bases 3,' and 3"' { ,	 which are related to the

system of coordinates x  by the relations

zt = xt On , W, q:, , W	 1

and	 (4.30)
62 = Si ; cIx{ dx J = ,g;; dil l diiJ

For the metric tensor g*ij, we can introduce the Christoffel symbols r;,:

and the operation of covariant differentiation o q . According to the trans-

formation (4.30), we have

r = z 3, r 3' ' and A = xt 3.33 = At 3*3*f

where

..
r 

_ z axe s A = x 'n ax l ally u o°iJ 
_ °t"' ant Oily
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Certain of the values from U  can form tensors of the type:

In connection with the derivatives _^ j,h'	 we can introduce the tensor
Osi

att	 a^``	 J J Jf

The comnonent s of the tensor B B^	 and 3* il , and also the components of

	

tc	 m	 m
the tensor

	

CIO
	and V. B*' 11m are interrelated by the general formulas of the

tensor transformations during the conversion from x^ to ni•

In the use of any system of coordinates, the function A can be determined
t

as a scalar if we replace the arguments __

	

by A 1 Z, the arguments N k = Bi1m
* il	 aµh ^ ac^ i1 m 	k	 il

by B	 m, the relation 
asi	 ari	

by V.	 V)B
* 

m , and gib by gib*

After this, the system of components T1 ) , determined in any system of

coordinates n l by the,equation

•	 V 

T{^ :_ j';`' -{-()! -= Cl;ih 
b^' die -+ `^^` 

afl ^ .--,^5,
(4.31)

forms the tensor satisfying the equation

T	 * 	̂ 8XI

	

a,ti1	 (4.32)

By P i j , Qi j and the Q , we denote the components P i j , Qi j and Q i transformed c;{

the basis of the tensor formulas.

The conclusions obtained concerning the form of Equation (4.31) and Equa-

tion (4.32) are related to the basic assumption indicated above to the extent

that the arguments in the specified function (4.29) can be regarded as scalars

and as components of the tensors not only in an inertial system of coordinates,

but also in any other curvilinear system of coordinates.

Specifically, the system of coordinates n l can coincide with the attached

system of coordinates ^ . In this case, we will haver:

Equations (4.33) constitute the result of the pseudo-Euclidean state of space-
time in the special theory of relativity. In the general theory of relativity,
the determination of 

AiJ 
involves the integration of the gravitational equa-

tion.
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8rj	
C

O
X I a

3-

`1 xa i x it
(4.33)

since 944	 c 2 , gaa = - 1 and g ij	 0 at i 0- j.

 O r, j

In addition, in this case, the formula , -'Il i =° ay; ► is valid and hence
8xj J i :. 

()Xi

In Equation (4.29), after the transition to the attached system of coor-

dinates, the components of the tensor g ij will appear as the transformed com-

ponents of the tensor gYj ; but in addition, the argument 3X i
 
Or, i may appear in

combinations (4.33) of equal g ij , which remain invariant after conversion to the

attached system of coordinates.

The convenience in applying the attached system of coordinates is also in

part connected with the fact that in many important cases, the derivatives

ax l/D^ enter only into Equation (4.29) through the combinations g ib , and con-

sequently the number of the significant arguments is reduced in (4.29) in the

attached system of coordinates.

Among the parameters u k and vjP k , there can exist various tensors which

can characterize the states and processes for the medium's particles.

The tensor gij is present among the control parameters as a natural char-

acteristic, since the quadratic form:

ds= — dt'd^'

serves for the determination of the distances and time intervals between the

various particles and events; it is obvious that these kinematic characteristics

are basic ones in the for ►^,ulation and description of the physical regularities.

As is known, the kinematic (geometric) parameters are of considerable and

comparable importance, since they permit the configurations and processes under

review to be compared with certain standard or conceptually introduced states

and processes.

In conformity with the ideas developed in Chapter 2 for the comparative

evaluation of events, we can introduce for the aggregation of values E 1 , E 2 , &3

and E4 the ideal sets of state and process, which can be regarded as the affine-

connected metric space D o . The geometric characteristic Do can be provided by

the quadratic form specifying the metrics:
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and the torsion tensor	 .S" i { ', r` , - , ", ,	 The space of the initial state Do)

the significant properties of which are prescribed , by the tensors i
i7

.

	

	
J

and SIi.,

can be introduced based on hypotheses of a physical nature.

Specifically, sometit,tes we can postulate th.it S I.. = 0 and that in the
J

given attached system of coordinates	 .,

	

L
01 t2 ti	 t1	 t8 `OS

	

, is , b	 gii G + {	 ^^ (4.34)

where the constant coordinate € 04 corresponds to a certain initial time instant
In conformity with the definition of (4.34), the space D O is stationary, i.e.,

all of the spatial distances between the individual fixed particles are identi-

cal at various given time instants.

The system of coordinates Vii, 2 , E3, t in space D O can be regarded as a

stationary nondeforming Lagrangian system of coordinates. The conceptual space

D0 is generally non-Euclidean within the scope of the special theory of rela-

tivity (just as the space of the unstressed non-defect states in the continual

theory of dislocations (Section 2) in Newtonian mechanics). At the instant

0 4 , the space DO can be in contact along a three-dimensional space with the
actual pseudo Euclidean space connected with the moving medium. If S t i . = 0,

J
D0 and its three-dimensional subspace form, generally speaking, the Riemann

(elliptic) spaces. It is evident that the non-Euclidean state of the space D0

is permissible; moreover, many of the laws controlling the values of the para-

meters characterizing the internal degrees of freedom can be formulated as the

equations containing the tensors S;, 4ai/, R i pm, ,introduced as the geometric char-
acteristics of the space Do.

The concept of deformation in -the theory of relativity has been reviewed

by a number of authors (236, 228, 229, 234), who introduced this concept with

the aid of the comparison of the motion considered with the motion of a medium

as a solid. The basic difficulty consisted in determining the solidtmotions

of a medium with the conservation of the property of a pseudo Euclidean state

I
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for the space ()o . In conf( amity with

in which the solid motion is achieved

gij ( >? ,) arc determined f

between any two fixed universal lines

the: definition made by Bonn, the space Do

is pseudo-Euclidean; moreover, its motrics

rom the condition of a constant distance

fc-r each point prescribed fo g• each of

them. The Born definition com ►)Iicates the problem of finding; the ?,ij-value,

moreover the coordination of t1o) convepts of hardness in Newtonian mechanics

and in the special theory of relativity becomes complicated.

The assumption (4.34) is associated.with the choice of the attached system

of coordinates. In the case of the general transformations of attached Gagran-
0

gian coordinates, if we have g1 f (`',	 'f) in one system of coordinates, then in

the other system we will have ^' tf (^^'^^	 '^f b'^)^ , i.e.  , the field of the fun-

damental metric tensor can become nonstationary.

However, it is evident that if in a certain given system the field ;;X'-

is stationary, the property of a stationary state in the components gig is

maintained in the case of any transformation of only the spatial coordinates.

In the capacity of a generalized four-dimensional tensor of the finite de-

formations , we can introduce the tensors =- t ;^^. ^:)' in the space Do or	 = e tj .+) J

in the space of the motion of the medium, with the components e ij determined

by the equation

o
eij = -- 2- (6►^^ ;0).	

(4.35)

Along with the tensor e.. introduced by Equation (4.35), let us consider

also the tensors °= Etj3 Jr and E = Etj5 { ^1',	 characterizing the deformation

and with the components E ij determined by the equality:

,.	 o	 0 0
Eij = _. _2 (ou -- u i ccj -- g ti -1- utu•j) ► 	 ( 4.36)

4

where u. and u.
1

vector, respect

son D	 In the
0

equal the covariant components of the four-dimensional velocity

ively, for a moving continuum and for an ideal space of compari-

at`ached system of coordinates, , we have

iij
I g44	 i' g^^	 '

- 44 -



therefore in the attached systeiii of coordinates Equation (4 .30) can be rewritten
in the form:

0 0
A

BLS

(4.37)

It is evident that in the attached system of coordinates, only the compon-

ents F 
at 

(a, 6 = 1, 2 0 3) can differ from ie'ro, whereas

0.

In this manner, the four-dimensional tensor E ij in the attached system of

coordinates reduces to the three-dimensional tensor Eas . The determination of

the tensor E ij as the characteristics of the deformations is a natural gener-

alization of the usual determination of the tensor of residual deformations in

the classical theory of elasticity, because for the calculation of the spatial

distances between the points of a small, particle of the medium at dt = 0, it is

necessary to Utilize the quadratic form [224]

^ls' _- d1'=	 C6'ag	 '^'.; 
,^ d^ a 

c15^ ^_ ^Sa^CISaCI10
_^»^	 (4.38

Therefore

2EIj d't: dpi .= (11 11 --- d102.

The tensor components 
ei) 

or E.. can be regarded as the control parametersij
(representing the known combinations from x l ^), upon which the density of the

Lagrangian function in (4.29) can depend.
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Chapter 5. Equation of Energy and Equation of Heat Inflow

Let us consider the equation of ener7,y ensuing from (4.11) and (4.12) , and

-let us clarify the relationship between the functions entering the basic varia-

tional Equation (4^.2) and the tv ermodynamic functions.

The components of the four-dimensional velocity vector of the medium's

points (the fixed coordinates ^^, ^ 2 , & 3 ) in the inertial system K are deter-

mined by the derivatives

	

a 
^ ds 

_ 
aai as	 ^v^_;,s 	— ^ dds	 as	 c ^^

a

y	 ti,--

where

ai J	 J	 l` 
1_)2 

31 ai J^a

In the system L for the components o£ the four-dimensional. velocit y , we

have

	

d5a 	 atQ	 ^^	 dt

	

ua _. _ ds
	

u{ azi 0 , sc u -- ^s u axi	 c
(5.2)

	In Equation (5.2), the coordinate 	 t is determined as the intrinsic

(proper) time; in conformi%y with this, the metrics in the system L are deter-

mined by the formula

	

ds= = o";j d% ' d ',	 in which g44 = c-.	 (5.3)

At any time instant t in any mobile point of the medium M, we can select

an intrinsic inertial system of coordinates K* such that at instant t, the

three-dimensional velocity of the point b1 is equal to zero in the system K*.

By way of the convolution of Equation (4.26) with the vector ul , we derive

the scalar equation
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(5.4)

Equation (5.4) also is applicable in the case where the function A depends

on the derivatives with respect to the time and coordinates of any order from

the control parameters using the scimcwhat complicated formula for the tensor

components

The invariant Equation (5.4), which can be written in any system of coor-

dinates and particularly in the attached system of coordinates L, is the energy

equation and the transformation of this equation to the heat equation in the

usual form has boen given in our report (234] for the attached system of coor-

dinates; we present below another elementary transformation of this equation

in an inertial natural system of coordinates.

Let us consider the corresponding natural inertial system of coordinates

K* in every point of a mobile medium for and at time instant. In this manner,

for each time instant t taken in K, we have the aggregation of the systems

of coordinates of K* with the parallel spatial axes, each of which will move

progressively with a constant velocity, equalling the velocity of the pertin-

ent point of the medium.

For every point and at any time instant, let us consider the components

of the tensor Pi j , forming a tensor field determined in the system K*.

Let us signify by x*a ,x* 4 = t* the coordinates of the pseudo-Euclidean space

11.n the system K*. The Lorentz transformation connecting x

i
 and x*' has the form

x{ 
1.  G{ixr9	

lit	 x*i _- f,^ ) T.
i.
	(5.5)'

The matrices cl^ and dJ i are mutually reciprocal. For d 3 i , we can write

the following matrix (238]:
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i -;	 kv 12 r WO kv'v3	 -- _
C1 ,

►
c =̀ - v =T i

kv2v1
-1 +W2 k V2va

CV2

d ' l ^i	 ( ^`°'`'r
WO kv°v" 1	 ;= kV31 	 ._ C"s.

YC=—U-
V1 V2 U3 C

C	 C2	 V 2 C

where	 k=_.-'-'	 - ,°^;c^=	 - -- 1 at v = 0, k = 1/2.

The matrix c: l is obtained from the •matrix d i after the substitution of

i for -v lv.

7 j

Based on the equations of the tensor transformation, we have

fjll = = P nV Cln ►
(5.6)

Substituting (5.6)	 at	 j	 =	 S	 1 9 2,	 3 into	 (5.4), we obtain

2b{	
BFIS
`axe :^

n ►

!Gi 
aPl	

^iC^m ;- ulf^l nt
az^

8d l t 'COn ► -;- U'Pj mdll	 acam
aalp	 =^

^: Q{LCD.
^1

(5.7)

For any point of the medium and at any time instant, let us now consider

' Equation	 (5.7)	 in the system K*.	 In this case,	 it is clearly necessary to

assume:

f.
U a _ va = 0,	 11 1 = —

!	 L	 C^
,	 dl l	 ^i,	 01A = 6139

C
• (5.8)

but it is also necessary to consider that for the matrices
ad•i	 and
,OX O

a`^..	 ,
aX

the followin ,R formulas are valid

0	 0	
0..

az^

0 JV2
0	 0aal l II _	 _ aXT	 a^^

axe 11 _
	

0	 aV3	 _ ` Il _ 
►
 I^0 	 ► i asp

a s ` ^^ 
OXA	

0	
I
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Based on (5.8), and (5.9), Equation (5.7) acquires the form

	

l^Ua

	
4 CSC

ill _ 	 t^.cp ,
	

c^z^ -^	
_^x^' _.. Qz.	 (5.10)

Since in the point under consideration, va = 0, from (5.5) and (5.5 1 ) there

follow the equalities

aly
) Xcl — _ co,Ist ^— \ .a, )x ea --con5t	 ` al} .1 X* C1 con;t'	

(5.11)

Let us introduce the density p, determined by the equation

de 	
from which	 t'

	

* -1- 
O aL	

0,	 d ^* == cornst
'
	(5.12 )

	

ax	 . 

where dT* equals the three-dimensional element of volume.

Further, let us assunle

p`a eU, .Pap -- P* gyp = Pap ,	 (5.15)

where U equals the intrinsic energy, while pas equals the three-dimensional

tensor of the internal stresses, and let us introduce the vector of energy flow

	

Q IYO1+P4'	 P4S33.

(5.14)

Taking into account Equation (5.11)(5.11) - (5.14), Equation (5.10) can be given

the form •

	

• du= 
pa^ 8vu tlt	 dl

	

— 
i	

v Qcl t	
1, Q; Clt.

Q OX O 	e	 e	 (5.15 )

It is obvious that in a spatial Cartesian system of coordinates x 1, x2 , and

x3 , the equality v  = v  is valid.
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Equation (5.15) is an equation of heat flow in the standard thermodynamic

forrn l . This equation is applicable in the general case of an irreversible pro-

cess. •	 For the reversible processes, i.e., for the conservative system, in

this equation it is necessary to set P i i = T i i and Q' 4 = 0. In the reversible

processes, in a general case, div Q # 0 owing to the internal, surface inter-

actions of the adjacent particles of the medium with one another.

Comparing (5.15) with (3.6), we obtain an expression for the total energy

flow:

(IQ* = 
dQ(e) dQq'*	 -- div Q (/i

t
 dT*	 dt du*.

(5.16)

In many models, both for the reversible and for the irreversible processes,

we can assume that Q' 4 = 0. When Q' 4 = 0 Equation (5.16) leads to an impor-

tant conclusion concerning the relation of the external energy flows with the

four-dimensional tensor P i j . With the aid of this tensor and according to

(5.14), we can introduce the three-dimensional vector Q for a material medium

and for a field, similar to the Poynting vector. In connection with this re-

sult, the four-dimensional treatment of the laws of conservation within the

scope of the special theory of relativity indicates the cases when the energy

flow dQ* is attained owing to the flow of the three-dimensional spatial vector

Q on the two-dimensional spatial boundary of the medium's particle. The energy

fl y! 3Q**is obtained owing to the energy flow through the spatial boundary also

in the case when Q' 4 0 0, but we kn!r, from additional data that the energy flow

Q
1
4dtdT* is a flow of heat energy.

The division of div Q into the flow of heat and nonheat energy is associ-

atedi with the nature of the internal. mechanisms and the properties of the

different forms of energy participating in the energy exchange between the

adjacent particles.

We will now write the relationships (5.13) in a more e;?1:.cit form.

From (5.13) and (4.31) the following formula follows foi the components

p°` ^ in the attached system of coordinates:

l We also take special note that the arrangement of the indp-es P 4 in Evation

(5.13) is significant. If we set pU l = P44 or we take dal in place of at-,

in (5.7), Equation (5.16) is modified, and in it there appear the additional
terms depending on acceleration.
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_,_aft t^tk - t7:1	
c0 _, Ox*

1..}. ;,at a%;^ -- 0:1	 -; t1ga^'-' Q'^.
a.^, l i ►t az*^ a t	 °	 ab i 4 a'a^*	

(5.17)
aye

In addition, for pU, we have

	

eU =- 1)4 4 	 p i 
v=* t __ar
a 	 ax*s '	 (5.18)

Equations (5.17) and (5.18) permit us to find pas and pU as a function of

the control parameters, provided that the function A and the tensor Qi7 are

known.

By way of an example, let us consider the application of Equations (5.17)

and (5.18) to the theory of an elastic body, for which we assume

0

11	 ajj, S'),
(5.19)

wherein the components of the tensor go X5 1 , ' ► ^3) determine the stationary metrics

in the system of coordinates being applied. In Equations (5.17) and (5.18), o;j,rik

should be regarded as constant parameters.

.For the components of the tensor 
E.. 

in the attached system of coordinates

expressed through the coordinates x* in a natural sy.>tem of coordinates, accord-

ing to (4.37) and (4.33), the simple formula follows:

1	
3	 0	 0

i	 _	 Y	 ;<y ' i	 a u «^ X54

Y=1	 0 4!. (5.20)

The substitution of (5.19).into Equation (5.17) yields

* i 	 a
gat

ax _ aA^ — 
fit`

--1- t1 oa^ -}- Qa^';
 abi all,,µ a ax'`'

ab^

and allowing for (4.37), (4.33) and the fact that

µ	 1 / „* SP v.	 „*o ax11" .

(`	 J	 5}	 ^i It dye'
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.dr,

we obtain

._

	

OA	 a_A_

	

p	 n __	 -	 na;1	 ^^:	 Q
_._	 Q

(5.21)

In the transformation i.n the last equation, we take into consideration the

continuity equation which yields	 coi ► st or	 of oij : C0IIS

	

and, consequently 
wU o" u(i .~	 81%a^',	 '^'°c^•

With allowance for the fact that we always have 
E 
4 = 0, by a simple cal-

cula-,ion we obtain from (5.18) and (5.19)

P 44 	 A-	
a	 1 Q

PU = y
4 	 _. Q4	 A or	- A. -- -- U ---	 4a.	 (5.22)

Equations (5.22) and (5.21) at Q i j = 0 represent the classical equations

of the nonlinear theory of elasticity.

For the determination of the metrics of the space D o stationary in an
attached system of coordinates, we can determine the components of two tensors

of the deformation rates with the components in the attached system by the

formulas

aEI j	 1 a j	 a^^:j	 I	 ac^^	 au^	 a« =
ei^ 	 ai 

_ — 2 
a^	 and k' u = ai = _ 2 C ai r u` at r U', ai / ' (5.23)

On the basis of (4.33) , (4.35) and (5,20), we obtain

	

*	 av*	 aV*	 *	 avQ

	

e	 e* =0

	

eat	 ax'"^ + ax'^ a '	
a4 ;a •= 

at 

and

EaP _ 
a^*_ + a^^G	 E 4 = 0,

ax a	 as
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r 
it

Ul. 
^Jll ^^ 

_ A — ^4

ar-
(5.26)

where va ,gives the components of the three--dimensional velocity in the frame of

reference K*. It is obvious that in the case of the arbitrary three-dimensional

transformations of the coordinates x* a and in the attached system of coordinates

the following formulas are valid

Here the symbols of the covariant deiivative V are taken in the spatial

three-dimensional sense.

In this manner, we have examined the tensors of the finite deformation

and the tensors of the deformation rates within the framework of the special

theory of relativity.

In a general case, when

A ^i^rt	 -o^l/t
	

(5.25)

where the x j -values are taken in the system K, Equation (5.22) acquires the form

If the function A of (5.25) and Q4 are assigned, U is determined from (5.26).

The inverse problem of determining A as a function of the arguments (5.25),

if pU and Q4 are assigned, reduces to the integration of the simple linear

equation with the partial derivatives (5.26).

It is evident that a solution of Equation (5.26) for A contains arbitrari-

ness. Let us consider in the examples the direct and inverse problem.

Assume that A is represented by a formula of the form

hA = xTa l ^6 } r ,\	 Jz
vl4/t

Jt )

s:L r 	 JEl"

t	 +^ ;C,• ^c^^,
Jl
	 —j-[-

^µrz

'
a^^K

Jt ,)
^ j^U	

it'
JEIh _	 (5.27)

) 'Jx^ axR
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where we conduct the summation from 1 to n with respect to r, s. Let us, assume

that the functions Krs and v s equal the arbitrary functions of the first two

arguments and the arbitrary homogeneous functions of zero order with respect

to the derivatives `'^^€;	 For example, at any X-value, the following cqua-

tion is fulfilled

It	 ^tt ls 	 ^^}th	
k	

a iL h	 ai^k

-c7,;« ,	 ^t	 (5.28)

Substituting (5.27) into (5.26), we obtain

D<<" ^^u+
QU .;'^^' +

Vre 
+ __ _	 Q',	

(5.29)
^t ^t	 '*

Let us consider the problem of determining A when pU + Q 44 is assigned as

a function of the arguments indicated in (5.25). Assume that A* equals a

certain particular solution of Equation (5-.26); then the general solution will

be represented in the form

i	 / k a
it k	 au k 	 aik'	

(5.30)

where Xs (s = 1,...,n) equal arbitrary functions of their own arguments, satis-

fying the zero homogeneity condition (5.28) of with respect to

flThus, if on the basis of certain data for a conservative system for Q 4 = 0,

the intrinsic energy U is given as a function of Eat , p  and apk /ax l., then the

system of equations (4.11) and (4.12) will contain the arbitrary functions Xs'

it is necessary to rely on additional data for the selection of these functions

and accordingly for establishing the model.

If in the basic relationship ( .5.26), the derivatives `i" cam be replaced
-vc

by certain functions ;^ ,b^o(t^rt a^^k
	 and we can represent hquation (5.26) in\  r Get— J

the form

QU -- Q4' = 	 g°ago` — A,
o

au It

after the substitution of	 and go , ' Equations (5.27) - (5.30) are still
a,Lit

satisfied in the variables g o-in place of
^t

•	 - 54 -

T	 _. ^	 , ^, ^	 r s	 '	 `^:	`'',^€^`" s ,^;	 a ^	 ,,^ Y ,	 r	
11



I

Among the parameters of the argLIMCI t s Pik in the functions A and in the in -

trinsic energy U, there can be present'various tensor or scalar variables

(particularly, entropy), which enter only through their values, while their

derivatives with respect to the coordinates and time do not affect the values

for A and U. Such variables can be regarded as constant paramo tees in (5.26);

their presence involves the appearance of additi onal equations in (4.12). In

the calculation of the complete individual increments of the function U, it is

necessary to take into account all of the variable arguments in (5.15). In

particular, owing to the presence of entropy S among thv u k -values, there wil,

appear a term of the form

as dS 7' dS

which for tho reversible processes is balanced with the external heat flow, cal-
1 tlO^''>culated per unit of mass. e--u

t
-	 For the irreversible processes

TdSQdT,*--dQ(0):;=dQ'> 0;	 (5.31)

where dQ' equals the uncompensated heat.

Equation (5.31) expresses the second law of thermodynamics; the value dQ'

is associated with the mechanisms of dissipation of mechanical energy.

We note further that if the tensor of the impulse energy or the tensor Pik

is represented in the form of the sum of several tensors

it is then evident that the Poynting vector Q and the corresponding energy flow

dQ (Z) + dQ** also can be represented in the form of a sum.

If Q==-. P 4a3u = p and Qi di* determines the flow of heat energy, it follows

that dQ** = 0. In the examples of the classical reversible models, we have

Q = 0 and dQ** = 0. However, in the new complicated examples of the models of

material media, and particularly in the case of interaction of the material 	 r

medium with an electromagnetic field, we had dQ** 0 0.
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Chapter 6. Pondermotive Forces or the Interaction of an

Electromagnetic Field with a Mobile Material Continuum

Get us consider the macroscopic continuous motion of a material medium,

interacting with an electromagnetic field. Let us take into account the inter-

action of a moving and deforming medium with the electromagnetic field, occa-

s,ioned by the presence, in the medium, of electrical currents and the phenomena

of electrical polarization and magnetization of the medium.

For the pondermoti.ve forces acting from the side of the field upon the

material medium, various authors propose different equations and only for in-

dividual particular cases. The possibility of a different definition of the

energy tensor of an impulse of the electromagnetic field and the complexity of

the physical problem concerning the property of a material medium are the reasons

for the vaguenesses and the difference in the approaches to the treatment of this

problem.

For a description of the electromagnetic field in the medium, we in t ro-

duce the following electromagnetic characteristics;

11, D _!, I - ; . 4a1-'	 II	 11 '-^:r.11,	 ,1+ Qc ► 	 (6.1)

where E. H equal the vectors or the electrical and magnetic field intensity, D

and B equal the vectors of the electrical and magnetic induction, P and M equal

the vectors of electrical polarization and magnetization, j equals the vector

of the density of the electrical field and p e ec—"- s the scalar density of the

distribution of charges. The•enu.nerated parametez , introduced for the in-

ertial systems of coordinates, satisfy the closed system of Maxwell equations.

As is known, for writing the transformed Maxwell equations in any curvi-

linear accelerated moving system of coordinates, it is convenient to utilize

the tensor form of Maxwell equations written in the four-dimensional form in

a pseudo-Euclidean Minkowski space.
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In the Cartesian coordinates x i , x^, x 3 , xj	 t, the Minkowski metric space

is connt-ctcd wi th the quads it i 4 form

(6.2)

As is known, any transformati on

a t	 rj (Jt J". J', J z = l) 	
(6.3)

for which the following equation is fulfilled

is linear and is s id to be the Lorentz transformation.

The three-dimensional vectors (6.1) car, be determined in any inertial system

of coordinates. For the derivation of the formulas of the transformation of

these three-dinions oval vectors into the four-dimensional Lorentz transformations,

it is necessary to introduce two antisymmetrical tensors of the second order, F

and H, the components of which in the inertial Cartesian systems are determined

by the matrices

0 1;°	 -- B2,	 CEJ 
J)

F = II f'jj II
---1:3 0	 1,'	 cE, i

i

112, ---1, 1	 U	 cls3

—CE,, --c E,.	 _-cls3 	0

0 11,	 --11 = CD,
-- s'1 3 0	 Il' C&

'	 11 == II i1 r! i' ` 11 2 -" 1/'	 0	 cD3

--cD t —cD. --cD3 0	 (6.5)

The Maxwell equations can be written i,n the forms

rot f;
C	 '94

div B _ 0 (6.6)

-57-

.1• • F	 '^1	 jJj^	 Y/py	 s

t 2 	 .. n	 ;s	 •. !. "^} x^r`t.` ^{E ,w J r.	 .. dl^u. 	 A,	 a'^.',.. b!.



and

ro t II

or
d 1 v l) t,-rQe

v^rl^h ^: an ^^,
a

.dos

(6.7)

where J
1
 a 

j l' J2 
a 

j2' J3 r- 	 J4 = p
ec?• and equals the covariant components

of the four-dimensional vector of electrical current.•

In the Lorentz transformation and in any transformations of only the spatial

coordinates to the antisymmetric tensors F ij and Hij , we can set the vectors

E, H and B, D, correspondingly.

The transition from the components of these vectors in the system .'V t to

the analogous components of the vectors in the system y`, t' is derived from

the general rules for the transformation of the tensor components F ij and Hid.

In distinction from the vectors E, H, B, D; the tensors F and H, their compon-

ents Fij , Hij and the tensor Equations (6.6) and, (6.7) have meaning for any

noninertial system. In this manner, the tensor Equations (6.6) and (6.7) express-

the invariant physical laws independent of the choice of the system of coordin-

ates, which in the inertial systems of coordinates are represented by the Maxwell

equations.

In the noninertial systems of coordinates, for example , in the system of

coordinates obtained from the given inertial systems with the aid of the

Galilean transformation in the Newtonian sense (without the Lorentz reductions

of links and time), the transformed components in the matrices (6.S) can also

be regarded as certain corresponding vectors E*, H* and B*, D*. However, these

can be regarded as the vectors E. H and B. D only in an approximate sense in the

case of low velocity of the mobile system.

For the determination of the pondermotive forces, it is necessary to intro-

duce the tensor of the energy-impulse with the components S) for an electromag-

netic field. The general equations for the components of four -dimensional pon-

dermotive force in any system of coordinates have the form

•	 (6.8)

r
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The laws of the variation of impulse and energy for a system composed of the

field plus Vie material medium can be represented in the form

O

(6.9)

where Q1  equals the components of the four-dimensional vector of external forces.
In many cases we can assume that Q1  = 0. The components of the tensor of the
energy-impulse of the medium and of the field, as of one system, are represented

by the sum i

	

tit	 i 
r 

i St
;..

	In a general case, the tensor T 	 the medium's energy-impulse character-

izes the physical properties and the internal interactions in the medium; this

tensor also has'an electromagnetic nature since the internal stresses in a

material medium are caused either by the collision of the particles or by the

direct interaction of the atoms and molecules at distances which are large

compared with the dimensions of the medium elementary particles. As is known,

in both cases these microscopic interactions have an electromagentic nature.

According to the appropriate definitions of the model of a continuous medium,

the components T i j are connected with the metric tensor, with the vector of the

four-dimensional velocity of the medium's points, with the thermodynamic func-

tions of state, and with the characteristics of the dissipated mechanisms in the

mediums.

The division of the general tensor 
:ZjV 

of the energy-impulse into the

sum Ti j + Sij for a material medium and a field is associated directly with the

separation of the total electromagnetic force acting upon the conceptually-

separated particle of the medium, on the mass force and on the surface force.

The internal surface stresses in a medium are determined by the components of

the tensor T 	 = - Tas), while the mass electromagnetic forces are deter-

mined by the vector components Fa = - vjSaJ.

iThe tensor T and its components T 
i 
J can be regarded as functions'of the con-

stant and variable tensor and scalar parameters which determine the structure,
physical state and internal processes for infinitely small particles.
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It is evident that in an unequivocal determination of the tensor Ti which

is physically signif --ant, the tensors Ti j and Si j can nevertheless be deter-

mined differently and this is essentially associated with the variouR methods

of dividing one electromagnetic system into two interacting electromagnetic

systems.

It is significant that after the selection of Si j for the field the tensor

T 	 a material medium should be determined by a standard method with con-

sideration of the selection of Si j .	 .•.

On the basis of what has been said, it is evident that we can-establish the

tensor Sij with a known arbitrariness; this fact served as a basis for numerous

discussions and for the derivation by various authors of different equations for

the pondermotive forces, wherein this question has often been regarded quite

independently of the selection of the tensor T i j for a material medium.

Let us consider below the formulas for the pondermotive forces when the ten-

sor S 	 any system of coordinates is determined according to the Minkowski

tensor equation:

fill

(6.10)

In a general case, the Minkowski tensor is nonsymmetrical, Le.

Utilizing Equation (6.10) and the conditions of antisymmetry for 
Fij 

and

Hij , based on Equations (6.6) and (6.7), we obtains.

rj 1= a F«Jr	
^6;-^ I/''^1r^;/r1 ^f^jGil'^J)•

(6.11)

The tensor Equations t6.6) and (6.7) and Formulas (6.10) and (6.11) are
valid in any mobile and in general curvilinear system of coordinates.

Along with the tensors F and H, we can also introduce the antisymmetrical

tensor P, determined by the equalities

In the derivation of (6.11), it was considered that on the basis of (6.6),
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CP S CP3 CP3 0

(6.12)

In an inertial system of coordinates, P is formed with the aid of the three-

dimensional vectors of electrical polarization P(P1 , P2 , P3 ) and magnetization

M(M I , M2 , M3). With the aid of the tensofi 'P, Equation (6.11) can be written in
the following form:

Ft t:-- 1 ,r# ,i
s  
+	 +!'" — P IT i1 P;

(6.13)

where the first term in Equations (6.11) and (6.13) determines the Lorentz force';

the second term becomes zero in the absence of polarization and magnetization;

and the symbols Vi denote the covariant four-dimensional derivatives.

If the system of reference is inertial, we can introduce a system of three-

dimensional vectors (6.1) in connection with the tensors F and P. In an in-

ertial system of coordinates, Equation (6.13) can be rewritten in the form

I
1

fM

1

Fa Qua -{- r U, DIa `1 Z C 
P 

asa _. 
E	 all

l 
+ AI 

ax M 8xa (6.14)

where the four-dimensional anti-variant components of the force F a correspond to
the spatial three-dimensional covariant force components. Equation (6.14) pre-

.	 serves its form during the transition from the Cartesian to the curvilinear spatial

system of coordinates.

In the inertial system of coordinates, using Equation (6.13) with 1 4,

we deriver:

PC= =1%4 t- (^, j) -f- >3^ 
are ^ nN anra	 a	 r:^^ n.^ ^Rn/s

.	 (6.15j

Egquation _(6.15) is obtained as the result of the vector equality for the Poynting

vector n- S4*3,A ,:, Ire III, which is valid for the various definitions of the
tensors of the energy-impulse of a field, particularly both for the Minkowski
and the Abraham definitions.
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Equations (6.14) and (6.15J are directly suitable for determining the pon

dermotive forces through a system of vectors (6.1) when the material medium is

quiescent or is in a state of inertial translational motion. In the latter case,

if the vectors E, P, B and M are determined in the inertial frame of reference'

K associated with the body in Equation (6.15), the term (E, j) yields a Joule

heat, the term sr, wA- 1 B 	 can be regarded as a macroscopic flow of energy
from the field towards the body owing to the microscopic mechanisms of polar-

ization and magnetization, while the value. 2 (Rol'o -;- Boil! 0) can conveniently be
.

included in the intrinsic energy of the material medium.

It is easy to observe that in Equation (6.14) and in the second term in

(6.15), we can replace everywhere the components of the vector B by the compon-

ents of the vector H.

If the body moves at an accelerated rate and becomes deformed, we can use

Equation (6.13) which is applicable in any system of coordinates, specifically

in an attached mobile Lagrangian system of coordinates L, in which the three-

dimensional volocifies of all points of the medium always equal zero.

In a number of cases, the components of the energy tensor of the impulse of

a material medium can conveniently be prescribed and considered in the attached

system of coordinates L, whereas the components of the tensor S 
i 
I of the im-

pulse energy of an electromagnetic field can conveniently be prescribed in the

inertial system of coordinates K.

In the application of the natural system K. we can introduce the three-dimen-

sional vectors of the characteristics of an electromagnetic field and the pertin-

ent Maxwell equations in a vector form. At the same time, in each point, the

three-dimensional vectors introduced for the natural system K in this point can

be regarded in the spatial coordinates of the attached system of coordinates L.

In this manner, the introduction of the system K can be regarded as an additional

method for determining the usual vector characteristics of an electromagnetic

field. If for an electromagnetic field, we can restrict ourselves to the ten-

sors P. H, P and S. we can consider all of the tensors only in the attached system

of coordinates. In this case, the introduction of the inertial system K may be

necessary for determining the coordinates of the tensor g ib [Equation (4.33)]

and of the vector of four-dimensional velocity. Generally speaking, one or the

other is necessary for determining the tensors of the impulse energy of an

electromagnetic field and of a material medium.
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For the pondermotive forces and for the energy influx, in a general case of

the motion of a medium which is being deformed, we can utilize Equations (6.14)

and (6.15) in which the vector components 
Ea . $a 0 pa 0 

Ma are determined in a

spatial system of coordinates of the inertial system K. In Equations (6.14)

and (6.15), the coordinate axes in the system K can be regarded as a curvilinear.

Equation (6.14) preserves its form when using the vectors a;iu, ^^"  I;a a and 47 tr Ju

in'the attached system of coordinates L1.

If we introduce L-n1j«, h* and ^ n^ja `' into Equation (6.15) , it is necessary

to allow for the equation

	

P"a 	 aC ^r )XG ^ C^a^' '^ca •^	 (C ,, 4- 

•

	

	 (6.16)
D^'

a 
a - 

?.11 
a a -^- IIl a (ca ;i -r rya )^ )

Here @as and was 1/z , C 1; -- ^^y'a )► equal the components of the three-dimen-
sional tensors of ratt4,s of deformation and eddy, determined for a three-dimen-

sional velocity vector v at the points of the attached system L relative to the

system K.

On the basis of (6.16), Equation (6.15) acquires the form

•	 8f^a81tif^	 ,a ^ ^ • ,a ••, a^ "a
+ POP

a^ 
.^ , 10 _ - •r (^ 1' -^- L X11 ^ (e ^ -^- qua)

•	 ei C^2	 ^ '	 (6.17 )

The scalar equation.of energy for a system from a material medium and for

the field in any system of coordinates can be written in the form

	

Utc,T, f -- - U{V,s, i ; U'Q;
	

(6.18)

In order to modify Equation (5.18), if we assume

eU — T44 +-z (EaP + B  Ala),

(6.19) ,

1This conclusion follows from the equations of the transformation of the vectors
(6.1) in the introduction of the systems K in each point of the medium, Equation

	

(6.14) are preserved during the transformation of the form	 it, Zs) and

1
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in the case under consideration, the energy Equation (5.15) can be written in

the form

..	 n^^... 2 (j,,^ v ^vaiv) b'a^ 
;_ .nna _r 'WIA Fgvu

Q

	

^-'8 as	 2w 
amb 

-f- ( j' , J)	 div ft ^{- -! Qi

	

8t	 et	 Q	 w Q	 Q

(6.20)

Here we use the notation. ^n = Qo , ni" 
nca 

and	 In Equations (6,19)

and (6.20) and in the initial equations of conservation for models with irre-

versible processes in a material medium (separated from an electromagnetic

field) presented in this chapter we may either define the tensor components Tij

or tensor components Pi j introduced for the material medium in the preceding

chapter, or we may introduce additional terms to the correspondingly modified

value Q' 4 , preserving the definition of Tij in (4.22).

Equation (6.20) can be regarded as Equation (5.15), in which we take into

account the terms determining the interaction of a material medium with the

electromagnetic field, represented explicitly in Equation (6.20) by the terms

containing the vector components E and B, which in'the general Equation (5.15)

can be reewYeded as included in the overall external specific heat flow Q'4.

The right-hand part in the heat flow Equation (6.20) is written in an

attached system of coordinates; the value U, defined by Equation (6.19), can be

regarded as the specific internal energy per unit of mass of the quiescence of

the material medium. The value U. just like the specific entropy S. the abso-

lute temperature T and dm  = pdTp, can be regarded as a scalar value.

Along with the value U, it is convenient to use the specific free energy

F determined by the equationi

F=U - TS.

With the aid of the function F, Equation (6.20) can be rewritten in the foam

In the following, we shall consider the reversible processes or only
il

 such
irreversible processes where the concepts of temperature and free energy are_
meaningful.

M

i

1
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{ I	 A A A 	 A	 A	 • A	 A	 A	 A	 A

(0)ju —	 S d7'--- -^Q --- l (1; ^:tY !1y/It^) b`°^ -; J: C' A	 ^3R 111^ (Cud,-; ^1u3)111-^.

-(- faad^c°` -;- %:u din + Q (E, j) cl! J. di v Q ill -^- Q Q^ tll -- T dS.
(6.21)

Further, we shall use the three-dimensional treatment of Equation (6.21);

all of the values entering this heat flow equation will be regarded as three-

dimensional scalars, vectors and tensors.

The vectors E and j are .-taken in the-natural system of coordinates K,

therefore the energy flow  (^'^, J) represent Joule heat.
A

The energy flow — Qdiv Q di can be represented in the form of the sum of

the flow of heat energy and the nonheat energy; this inflow is expressed through

the flow of the vector Q Ali %',a°J^^ cl^ at the boundary of a small particle. It

is obvious that the vector Q. just like the components T 44 , can depend only on

the same control parameters as the tensor of impulse energy Tij,

The energy inflow independent of the tensor of impulse energy, for in-

stance owing to the inflow of radiant energy, will be contained in the term
A

Equation (6.21) is satisfied for all possible processes in the medium

occurring under the effect of arbitrary external forces in case of arbitrary

changes in the control parameters. Thus, Equation (6.21) can be used a.^

basis of the conclusions of the equations of state and of the kinetic equations 	 M

being fulfilled during the arbitrary processes. These physical relationships

can be derived when the free energy F and the entropy increments ds = d es + dis

are given as functions of the control parameters. (des is the entropy flow

through the boundary surface of the volume of a small particle).

Let us consider Equation (6,21) under the assumption that the free energy

P can be regarded as a function of the following parametersi:

f uurther, the components of all vectors and tensors are taken in an attached
system of coordinates. For the sake of simplification, we will drop the symbol

at the top.

The further discussions and the formulas are simplified if in place of the
system of control parameters (6.22), we take the system T, g ij , gij ,.-& „taf 

VO a, d^a . prb'aP^. 
dot

equals the symbol of the covariant derivative Ln the space of the initial states).

In the following, we will not consider the chse of saturated magnetisation,
where Iml	 constant.
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.000-

,

0
n 

^a^	

•

/^ 	 „ ^aP , -Ca , llln, Vona , C,/nn, ar' ^.. 	 ^eaJ r

^t►^	 ^^Q	 (6.27

•
where gas is the three-dimensional metric tensor of a certain initial state.6..

Since Vvgap— 0, and p^ uv ^ °^ ^ ---0a^r^;Y-_ fir♦•̂ ra•^, the functions F in the argu-
ments can be indicated as the time-related variables	 and as the con-

stants gas and' 0s,A v (system (6.22) can bc ♦ supplemented	 " other" other parameters and
aka

may include certain derivatives with respect to time; in these more general,cap,es,

the development of a complicated subsequent theory is also possible).

Let us further assume that

dt == hapd Ca + No dka - 1,- Al `Y dgay -4- P dt, .

V

where the coefficients hC A, J al, A'"Y and 61	 depend or, th e parameters (6.22),
and in a general case upon certain other values.

It is easy to verify the validity of the equality

d®gna = V e daO ; nY drao,

where

	

dryg = -- rvRo"^`i` d"h^ -{- Z gau (d â 	 d as ̂ Y -- d
and	

^	 a	 s

Vd dgav = d a^ ^^ — de^,aurvP. —• d"µ.,rap•a	 (6.24)

On the basis of (6.22) and (6 . 24), Equation (6.21) can be written in the form

^pLdT + 2VO dsa0 T Slay(oats dt U dna + Ica dma - Oa$ dVana +=a4 0gina

	

MQaY d agav	

Q 
VISA dt -r ! (E , ^) df ..L 

Q; dt --T dS = 0,

	

aya	 Q	 (6.25)

where gip,j"A, na^^,  	 and (Daa•r . are determined by the equations
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Eu ^ ^	 a 6gl ue Via , &A , 	 Q 8F

avowa 
J. eoaa,

Ba _L11"_ + IVANC40 + V.141 NO	 + eE&A,

dvaY 	 ((lit -- ltPv) +
8 ^^ 4 , r y	

sta '

as

+ (Rap ,RAO) ny -; 
( f{}'a -' ^ati^) ^"^ +

av a .w .(N aA — NSa

+ (ff a Na") nepj • e(f:p" V.

n .

The tensor 
,has is symmetrical while the tensor 

000 is antisymmetrical. The

components A SaY and tOaY are symmetrical with respect to the two last indeces.

If we assume that the energy inflows -- Q Qpn^ dt and _Q Q;dt	 correspond

to the heat energy inflow in the case of the reversible and certain irreversible

processes (for example, in the consideration of the heat conductivity and radia-

tion), the following equation will be fulfilled:

/^' cdt	 ^C.A aft &1(0.T dS = 
Q (F ^) q ^(4	 Tu

w
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If we assume in addition to this that the values T, 
rc'f 

S? a^, ;^a , Mo. 44s, was

and 0 001Y determined by Equation (6.26) are independent of the time derivati,,--.sl

of the c:,ntrol parameters (6.22), then using Equation (6.25) and the assumption

concerning the linear independence of increments of the control parameters with

respect to time 2 , we obtain

(6.28)

In this manner, based on (6.27) and (6.28), we find that the Equation (6.26)

determine the equations of state for a material medium. These equations comprise

a generalization of the standard equations in the theory of elasticity for the

case wh^re the free energy depends on the gradients of the polarization vector,

the magnetization vector and the gradients of the tensor of deformations.

If F depends only on	 7', Aap, gee,, za : and ma , and does not depend on their

gradients, it follows that

Rai ; ;1 ef!--- A "Ya = 0;

and in this case, the vector components Qdt, Qadt = nadt determine the inflow

of heat, while Equation (6.26) convert to the equations of state of the theory

of elasticity with allowance for electrical polarization and magnetization in-

tensity.

The further complication of the models of a continuous medium with allow-

'	 ance for the electromagnetic effects in the cases of reversible and irreversible

-processes can be connected with the.consideration of the dependence of tho fac-

tors	 VO, W3, 7a , cu , pua,	 and 00Y in Equation (6.25) on the time

derivatives of the control parameters, with allowance for the linear dependence

of these derivatives (the nonholonomoic state is physical), and also with the

introduction into Equation (6.27) of uncompensated heat in the case of the

irreversible processes. Certain concepts along these lines can be found in

[230] , [162] .

Wh= at is only significant is the assumption concerning the independence of the
time derivatives. The hypotheses concerning the dependence or independence of
the coefficients of any space derivatives are not necessary.

2It is possible to construct models in which the time derivatives of the control
parameters can be linearly dependent [162].

.
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In the reports given in this list, one can find more complete references to
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