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MATHEMATICAL METHODS OF CONSTRUCTING NEW MODELS OF CONTINUA!

Chapter 1. [Introduction

The theoretical interpretation of the various existing phenomena is asso-
ciated with the introduction of mathematical concepts and characteristics, from
which the quantitative evaluation mcthods-'are established. In connection with
this, it is necessary to introduce the descriptive models and processes with
the aid of which various inherent trends are formulated to describe the events
and their characteristics with the required degree of accuracy according to
reality.

From the scientific viewpoint, it is important that the characteristics
and the features of the models and processes being designed would be formulated
distinctly on a rational basis.

In many modern problems, it is logical to avoid excessive complications,
since as a rule the appropriate experiments and phenomena are associated with
a variety in tl~ experimental data, which makes it difficult to control the
differences in the actual objects of study, for example the difference in the
material specimens being tested, etc., by a difference in the conditions of
conducting the tests, in their observations and in the errors in the classes of
variation. Nevertheless, the question concerning the construction of the com-
plicated models of material media with allowance for new and ‘additional charac-
teristics and effects has been placed on the agenda. As is known, often the
allowance for slight effects, scarcely perceptible in the initial stage of re-
search, subsequently becomes the basis for the development of progress in a
more profound penetration into the essence of the nature of the phenomena and
in the expansion of the field of applications. '

Many fundamental properties of matter and its inherent tendencies were dis-
covered as a result of discussing the effects that were revealed in the domain
of empirical results; but as a rule, the presence of such effects Has been

subject to doubts not only by the skeptics, but sometimes by the authors them-

selves. As examples, let us recall the violations of the law of the conservation

IThe basic results of this article were reported at the conference of the Moscow
Mathematics Society on December 8, 1964.




of mass during the interaction of particles concerning the non-Euclidean state
of space and time, the effects of viscosity in gases and liquids, the effect of
creep for all metals, the anomalies in the hecat capacities of solids, etc.

In practice, the correct approaches to these effects can and should be over-
looked in many cases, thus developing a theory and analytical metiiwd without their
detailed consideration; i.e., we can ignore the existence of the correct appropches.
On the other hand, in other instances cf such a type, the effects represent the
very quintessence of the problem and must be taken into account. However, in
any question, we can indicate other effeézé already discovered, or the effects
which are still vaguc and under study, and which can occur in the cases being
considered yet require further attention for a more detailed study. The sig-
nificant progress in science, as a rule, is associated specifically with an
ever more complete and detailed penetration into the nature of the properties
of small microscopic particles and the mechanisms of their interaction and, on
the other hand, into the nature of the macroscopic effects, which are being man-
ifested at the forefront of the existing methods of observation and measurement.

Nevercheless, the history of science teaches us that the laws and concepts
which we consider established at the present time will also preserve their
significance in the future, e.g., the Newtonian mechanics, but these concents
and laws should be regarded as good approximations having a practical value,
yet as approximations they are inadequate and unsatisfactory relative to their
basic concepts for the more accurate problems. It is known that now it is
necessary to utilize in the theory of atoms and molecules instead of the New-
tonian mechanics.

It is clear to all that the conscious utilization of the methods, concepts
and laws which'are known to be unacceptable or simply untrue in case of a more
detailed study, but which are quite satisfactory from the viewpoint of the |
problems which have been formulates, is fully permissible and useful in the study
of many important problems.

We have every basis for thinking that in the next stages of the development
of science, and especially in the study of the microscopic, physical and biolo-
gical phenomena, such a situation will be repeated. Such is the state of affairs
with which we are faced in the mechanics of deformed macroscopic liquid, solid

and gaseocus bodies within the framework of Newtonian mechanics.




In this manner, the aforesaid outline of the typical interaction between
science and its object of study in the world surrounding us is applicable to
an equal extent both to the past and to the present, and undoubtedly will also
be applicable to the future, of scientific development.

In our days, in the study and solution of many basic problems of natural
science and technology, we arc required to examine the systems consisting of
various interacting particles and bodies when their basic properties, the
effects of the collective interactions and’ the typical features of the processes
which are transpiring have a mechanical naturc; this not only in the light of
an analysis of the microscopic theories but also in a macroscopic description
of the phenomena taking place.

The understanding of nature (astronomy, physics, chemistry, biology) and
the development of various objects in technology‘is associated closely with
the introduction of models of mechanical systems, and with the formulation and
solution of various mechanical processes.

There exist many interesting phenomena and urgent problems which can and
should be solved within the framework and with the aid of the already-introduced
models of continuous media in the theory of ideal viscous liquids and gases, in
the theory of elasticity, plasticity, etc. However, the discussion of the de-
sign of new models is useful in connection with the development of new important
trends in the mechanics of gases, liquids and solids, and in the mechanics of
the composite material media with a varying type of structure.

For illustration. let us recall briefly certain fields of mechanics which
are currently being developed.

1. The intensive and numerous studies that are being conducted in the area
of the theory of‘plasma.

2. The mechanics connected with the technology of production and with the
application of polymer materials, which are interrelated extensively with the
chemistry and physics of the internal structure of polymers and acquire ever-
increasing practical and cognitive importance.

3. The problems of the motion of any type of heterogeneous bodies, mixtures,
suspensions and cavitating liquids.

4. The pfoblems of creep and plasticity, and also of the strength of metals

and of many other materials under various conditions, particularly during changing

or high temperatures.
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5. The mechanical problems in casc of the presence within the matter of
high internal pressures or, on the other hand, the motion of intensively ravefied
gases,

6. The problems of the motion and equilibrium of soils and the theory of
the filtration of liquids and gases in porous media.

7. The motion of solid and liquid deforming media, with allowance for the
electrical polarization and magnetization,

The theory of motion of multicomponent systems, with allowance for diffusion,
radiation, chemical and phase transformations, becomes a very important basis
for sclving a number of practical problems.

In spite of its considerable practical and theoretical significance, the
"statistical thermodynamics' of the turbulent motion in the material bodies is
still only gradually being developed.

The new theories related to the motion of bodies at very low temperatures
where the effects of quantum mechanics are significant in the macroscopic theory
are interesting and important.

In recent times, considerable research has been undertaken in the field
of biological mechanics, particularly for the description of the motion of
blood in living organisms; for this, we requirez the introduction of models of
liquids with unusual rheological properties.

The cited trends in mechanics clearly indicate the direct and close rela-
tionships of modern mechanics ofra continuous medium with thermodynamics, with
the statistical physical theories, with chemistry and with electrodynamics. In
essence, the combination of mechanics and of these branches of science into one
unified science is taking place.

The data provided by physics concerning the microscopic dimensions and the
geometric forms of the particles, as well as the structures of their arrange-
ment and their interactions, are quite useful and necessary for understanding
the macroscopic properties of bodies. However, merely the microscopic data and
the mechanisms are insufficient for establishing the macroscopic theories, and
therefore tﬁe prevailing theory that no appreciable basic problems exist any
longer after the establishment of the microscopic pattern of the arrangements
of bodies in the theory of finite bodies is quite incorrect. In the simplest

case, for a model of an ideal gus, a transition from the aggregation of a large -



nunber N of atoms, considered as a mobile mechanical system of elastic smooth
small spheres interacting with prescribed forces and haviﬁg 3N degrees of free-
dom, to a material continuum takcs place, and the state of a physically small
particle in the theories and in the expcriments is determined only by two
paramecters, namely density and temperature. Such an approach is associated
with the use of the important statistical regularities.

Another example of the macroscopic properties of the laws as having im-
portant applications is the concept of an absolute solid. The abstract, and
of course generally false hypothesis concerning the invariance of the distances
between any two specific points of a body determines the macroscopic mechanical
properties and obviously constitutes an additional forced condition, reducing
the number of degrees of freedom of a finite body to six,

The two examples listed typify the apparent simplicity of the macroscopic
hypotheses. In other cases, such hypotheses have a more complex nature in
essence and their formulation requires the use of complex ideas and character-
istics concerning the deformation of particles and their internal state, which
are assigned with the aid of scalar, tensor, spin and other functions. |

The establishment of a supply of concepts and characteristics of the states
is an important mathematical problem; its quantitative description is a necessary.
condition for the application of the scientific method. Specifically, we can
require the involvement of basic physical concepts of an electromagnetic field
and its methods of description. For example, this is the state of affairs in
the macroscopic problems in describing the characteristics of dislocations in
metals, in the mechanics of polymer materials, in describing the properties of
the interaction of material media with the strongly-varying electromagnetic
fields, in the beams of laser rays, in describing the phenomena of superconduc-
tivity and superfluidity, etc.

Many modern problems in the aforesaid subjects have not yet been solved,
and have not even been formulated in a lucid manner.

In this manner, the thermodynamic properties of the macroscopic bodies
should never be derived from the microscopic characteristics without additional
significant hypotheses of a macroscopic nature.

In the construction of models of the bodies, one should never count on a

complete clarity in the elementary microscopic relationships. Together with




this, thc necessity for additional hypotheses in the macroscopic theory scrves
as a basis for the intuitive phenomenological theories, in which the microscopic
information is taken into accecunt quite approximately, and in essence is re-
placed by the hypotheses based on the data obtained from the observations and
measurcments in the macroscopic experiments, Similar phenomenological methods
are always utilized to some degree or other in all of the applications. In
connection with this, we can understand the fruitfulness and successes in the
past of the thcory of the thermogenics in thermodynamics.

In biology, the improvement of the c;éps and animal husbandry can introduce
considerable successes on the basis of the phenomenological laws, with quite
scanty understandings of the significant internal microscopic mechanisms.

However, it is understandable that the role of the microscopic studies in
biology is extensive and is growing every day; nevertheless, it is specifically
in biology that the importance of the phenomenological laws is manifested rather’
clearly and distinctly. Even with a very slight understanding of the internal
mechanisms, one can attain remarkable results with the aid of tests and intuition.

In a construction of the new models of the material continuous media, an
important place is occupied by the data on the simplest rheological experiments,
such as the simple elongation and torsion of spatial samples, the thorough ex- ’
pansion or compression of a medium, or the motion of the medium of the Couctte
type of flows, etc. However, it is evident that the data of such elementary
experiments are quite inadequate i r establishing the rheological characteristics
of the models of material media, which is required for & consideration of a
general case of motions with arbitrury stresses in various complex external con-
ditions. The transition from the elementary regularities in the particular tests
to the laws of a general nature is always associated with the use of a compli-
cated mechanical and methematical apparatus, with the generalization of the con-
cepts concerning the characteristics of the phenomena, and with a varying class
of ideas concerning the nature of the interaction of the medium's particles with
one another in a general case.

The construction of models of continuous media is always associated with
the adoption of a number of hypotheses, which can be regarded as descriptive
and concentrated data of the observations and tests. Often, such hypotheses
are quite simple and natural, e.g., the hypothesis concerning the isotropic

properties of space or of a given material body, but in the latter case the




hypothetical naturc of the isotropic characterization is especially clear since
one often can and must introduce anisotropic bodies as well.

In the construction of the models, the question of an explicit formulation
and rational sclection of the noncontradictory, minimal system of hypothescs
convenient for verification deserves attention both from the viewpoint of a
physical-experimental or statistical substantiation of the model, and from the
viewpoint of the general methods of thc mathematical formulation of a system of
closed cquations and additional boundary o other conditions which specify the
model for the thcoretical researches. The rcvelation of the most convenient
system of typical parameters and hypotheses for the formulation of the necessary
regularities and for the subsequent experimental verification has significant
importance from a procedural viewpoint. It is also theoretically useful to
know the systems of equivalent hypothesecs and'available possibilities for vary-‘
ing the systems of hypotheses within the limits of accuracy of the problem for-
mulation.

In the classical simplest cases, these questions have almost a trivial
nature; however, in these cases the explicit formulations are also useful. In
recent times, the rheological studies have become greatly complicated and there- °
fore a discussion of the general methods and techniques which are useful in con-
structing the models of the continuous media has become necessary.

After the establishment of a test set-up and a system of measurement units,
the characteristics of the states and processes are prescribed with the aid of
numbers and certain operators of a mathematical nature; and corresponding laws
and relationships are formulated with the help of the equations containing the
numerical characteristics and operators.

For a given system, there can be variables and constants among the typical
parameters while the number of the humerical parameters prescribing the position,
state (condition) and process can be finite or infinite.

In their essence, the variables determining the parameters and their varia-
tions should be regarded as independent arguments, varying within certain limits
in accordance with the full aggregation of all of the possible conditions and
processes in the medium for which the model is applicable.

The concept concerning the control parameters and their number in a general

case is a direct generalization of the concept concerning the-degrees of freedom
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and the independent coordinates for the mechanical system in analytical mechanics
and in classical thermodynamics.

It is evident that for the bodies which are being deformed, considering the
space of finite dimensions, the number of controlling numbers, i.e., of the de-
grees of freedom, is infinite. For the infinitely small particles, in the
typical examples, thce number oi the controlling parameters is finite and in
gencral small,

Usually, if a closcd system of equations is written, the control parameters
can easily be discriminated and recalculated., If the equations of a system are
differential and their number is finite, the number of the control paramcters
proves to be finite for an infinitely small particle.

On the other hand, in individual important cases when the equations of motion
represent complex operator relationships, for example the integral-differcntial
equations, the number of the control parameters for infinitely small particles .
still proves to be finite. In this respect, the problems of the motion or
equilibrium of gascous masses with consideration of the forces of mutual attrac-
tion of the gas molecules are typical examples in Newtonian mechanics.

We can also introduce and consider the mechanical models of continuous media
when the number of degrees of frecedom is finite, even for the arbitrarily small
particles. Usually, in the actual cases of applications, which are always approx-
imate in their nature, it is sufficient to consider the systems which have a
finite number of degrees of freedom for an infinitely small particle.

The basic successes attained in mechanics and physics are asscciated with
the examination of objects for which the number of described experimental and
theoretical control characteristics is finite and small.

Let us emphasize that the number of the characteristics and of the para-
meters being determined can be arbitrary; we are speaking only of the number of
the independent arguments, i.e., prescribed from the experiments and assigned
according to the sense of the mathematical problems (coordinates, time or stress
tensor, temperature, etc.) as variables or constants.

It is obvious that in the construction of the'models of the material bodies,
the control parameters that are significant are only those which are connected
with the properties of the model and with the processes, and hence in a defin-

ite sense are invariant relative to the choice of the system of coordinates and

the measurement units.




The control parameters can be scalar and tensor, dimensional and dimensior-
less, constants and variables.

In establishing the model for the small particles, the actual separation
of the control parameters in and of itself greatly limits the possible uihitrar-
iness.

A single list of parameters which can be used as independent arguments in
the equations of states, in the kinetic cquationc, or in the determination of
the various functions of state, is totally, inadequate. However, the presence of

tables of control parametcers is quite nccessary for the development of a gencral

thcory, for the formulation and presentation of the results of the necessary tests

and for the theoretical formulation of the additional hypotheses required for a
complete description of the model.

In certain particular cases, only the availability of a list of control
parameters together with the simplest mathematical assumptions {e.g., the ex-
pansion of the functions of state into a series with respect to the control
parameters, vwith the retention of only the first terms of the series) permits
us to find a class of the functional dependences in the equations of state and
the other physical dependences (relationships).

Now let us consider the typical and basic values which can be utilized in
the corresponding tables of the control parameters in the construction of the
models of the continuous media.

Well known are the examples of the dimensional physical constants, which
in a number of cases can be included in a general listing of the control para-
meters, (speed of light, Boltzmann constant, acceleration of gravitational force
for the gravitational constant, the modulus of elasticity, the factors of vis-
cosity and heat conductivity, etc.).

In particular, we will also note the possible presence of the constant ten-
sor among the control parameters prescribing the symmetry of the elementary
particles of a continuous medium, which can and should be introduced for an
object. It turns out that the properties of symmetry can be prescribed with
the aid of a simple set of various tensors. The presence of symmetry reduces

to the presence of the corresponding constant parametric tensors among the in-

dependent arguments in the unkncwn function. In other words, the presence of

Ty




the properties of symmetry is associated with the presence, among the control
paramcters, of the tensors prescribing the appropriate groups of symuetry.

At the present time, we have established the simple systems of tensors for
ali of the point subgroups, i.e., the complete orthogonal group (the crystal
groups, the group of an icosahedron, of texture, the prismatic groups). After
the introduction of such tensor arguments, the necessity of verifying the feas-
ability of the conditions of symmetry in the unknown mathematical equations is
discarded; the appropriate conditions will be automatically satisfied.

The prescence of a gencral algebraic iﬁeory of the structure of nonlinear
tensor functions upon scveral tensor arguments often permits us to extract
inferences. These conclusions are associated with the following equation for

the tensor H which is being determined:

o
CH=Y kH,
__%:‘ ’ 1.1)

where kS equals the scalar functions and Hs equals the corresponding tensors,
which are formed by way of the polyad products and -ontractions from the tensor
arguments. The number p equalling the number of linearly independent tensors
H is determined with the aid of the theory of the characters for the symmetry.
group, which is admitted by the system of tensor arguments. Currently, there
exist all the necessar& formulas of the type (1.1) for a 3-dimensional case
when the tensor H being determined has first, second, third and fourth ranks.

' As the simplest examples of the control parameters c¢f a dynamic, and in
general of a physical nature, we can introduce and consider temperature T or,
for certain cases in the absence of local equilibrium, several temperatures

Tl’ T2,... for the components; which in addition can be characterized by the »
densities Prs Posvees who also can serve as the control parameters.

In a consideration of the electromagnetic effects, in the capacity of
control parameters we can take the components of the vectors E® and P* of the
electric field and electric polarization, and the components of the anti-

8 and Ma

netic moment of the medium.

symmetric tensors H of the magnetic field strength and of the mag-

B
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Let us cmphasize that a typical feature of the modern theories is also

associated with the fact that along with T,, p., P% and MmB
& k’> Pk

, as the control
parameters, it is necessury to introduce their derivatives with respect to the
spatial coordinates and with respect to time.

The appearance of various structural parameters of a physical ar: themical
nature is associated with a quantitative description of the newly discovered or
already known mechanisms which acquires considerable significance in the phen-
omena of energy exchange of the dissipation of energy, and of other interactions
between the particles within the physical.Bodies being studied.

Specifically, such parameters can appear as the characteristics of the for-
mation and distribution of the crystal and of other internal structures, as the
characteristics of the distribution of fissures, porosity, etc., as the char-
acteristics of plastic deformaticns, the etfects of dislocation or of mechanisms
of electrical and magnetic polarization.

The establishment of a system of control parameters is associated with a
general description of the phenomenon, with the use of a varying class of re-
search hypotheses, of experimental data, of statistical discoveries and with
the problem of describing the studied objects and the processes by the exact
or approximate equations and additional conditions.

The differentiation of a system of control parameters is associated with
the penetration into the mechanism of the phenomena which are being studied,
and constitutes the most important link in formulating the problem. As is known,
in the theoretical construction of the models of continuous media, a reference
base is provided by the basic dynamic equations concerning the conservation or
variation o mass, of impulse, of momentum, and the universal laws of thermo-
dynamics.

The variation principles and methods acquire particular significance in a
construction of the models of continuous media in which the manifestation of
the internal degrees of freedom is significant, or when the system of the con-
trol parameters contains successive derivatives of several typical orders. In
all cases, in the theoretical assignment of the physical nature of the system,
it is necessary to utilize several thermodynamic functions of the control para-
meters (the internal energy or entropy, etc.) or the Lagrange function based on
the variation principles. In addition, in each of these approaches, it is nec-
essary to prescribe the generalized forces and a number of other data (the va;-

ious types of energy flows, the laws of distribution, etc.).



In the construction ‘of a general theory, only the actual presence of the
appropriate functions from the system of arguments which is being established is
important. In the actual cascs, exhaustive knowledge of such functions is
required.

In the general theory, the basic source of the required initial informa-
tion is provided by the hypotheses which should correspond in a certain definite
sense to the test data in the description of the phenomena in the actual objects.
After a sample test, the initial hypotheses can be reviewed and applied as the
lews of nature. -

In a large number of important mechanical theories, the simplest hypotheses
or the test data can lead to the necessary macroscopic functions and to a macro-
scopic description in the result of complex additional statistical theories.

The formulation and establishment in various cases of a convenient system of
hypotheses or of experimental data and the technique of extracting from them

the general equations comprise an important part of the general theory of mechan-
ical models.

The general theory of the models of continuous media can be adapted to
and compared with the general geometric theory of the multidimensional non-
Euclidean sets. |

Tne particular classes of the models of media are similar to the Riemann
or the affine-connected sets, while thglindi;idual actual models are similar
to the definite spaces or sets, such as spherical, ellipsoidal, toroida, etc.
‘mth'Inléonsfructing models of continua it is advantageous to use the general
conditions pertaining to continuity and differentiability as well as the postulates
regarding the lack of relationships (between geometric or kinematic parameters),
be they differential or any other type of relationships, which differ from their
strict definition. An example of such a relationship is the condition of in-
compressatility which nevertheless can sometimes be applied. The presence of
the additional relationships leads to limitations in the laws of motion, to
restrictions independent of the external conditions or the arbitrariness of the
external mass or surface forces at the boundaries of finite volumes or small

particles of the medium,
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Chapter 2. Kinematic Characteristics of the
Deformation of Small Particles

In recent times, we have introduced a more precise geometric and kinematic
characterization of the deformation of small particles of material continuums
into the mechanics of continuous media. Below, we provide a short description
of the pertinent tensor concepts.

For the derivation of the geometric and kinematic characterization of the
internal structure and the processes of deformation, we introduce the attached

Lagrangian curvilinear system of coordinates (fixed into the medium) &£!, €2, €3,
with the base vectors 9 Eh, éw

ds = dEd,,  ds?=gapdtodEP  (gup =(9aDp)) -
T ' (2.1)

where ds equals the elements of length taken in an actual Euclidean space.

Let us denote by
0o ] a0 '
dsg=di%,, dsj=gapdt®dtP  (gup = (IaIp)) . (2.2)

the appropriate elements, vectors and bases which we introduce conceptually for
the systematic ideal states, in which the internal stresses are lacking.
The three-dimensional aggregation of points with the coordinates gl, g2, &3,

of the vectors of the basis 3, and of the elements ds determines the Euclidean

space &, wherein

25 A o g e rgh At ot (203)
e g5 Py=t ony [.&‘m 98pxr __ 9gap |

- e aB aﬂ g ’—‘-‘ T T .

528 v where 287 | 5p T e T e | )
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Let us now assumc that the three-dimensional combination of the coordinates

0
ta of the basec vectors 3, and of the elements ds0 determines the affine metric-

bounded sct K, for which the following relationships are valid:

-0
3, %y 2
aip = Feny
where
0 a 60 60 (I
1 Sap, 96 Eap ' )
Plpee v [ 4 00 = ] 4 St oS- gw“ Shin (2.4)
hence
v Ty
Scﬁ‘“}[(luﬁ"lﬁa)- (2.5)
The tensor .Sﬁ( E%‘§”==-—S&x is said to be the torsion tensor of the set
0 .
K, while r&ﬂgg £, b)) — gives the coherence factors determining the parallel
transport. .

It is obvious that forlﬁ the tensor of the Riemann curvature becomes zero:

A ai\A aﬁk 2 | ; A o
Ropy* = 7&2‘} — — + Paplhy— Pgufly = 0.
- b -

For the set K, the tensor of Riemann curvature in general differs from zero:

ar 0.0
Ry = gw. [( a.ﬁay uv ) + au — Pgurgy] 0.

The set K can be regarded as a generalization of the concept of the un-
stressed state of a body in a Euclidean space, when such a state is possible for
a finite body. The difference from zero of the tensors SZB and RaBYA involves
the impracticability of the equations of consistancy and hence the absence of
displacements from the conceptually-introduced ideal state to the state under -

consideration.
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The internal invariant properties of thc set K can be prescribed fully by

0
the two tensors e and SZB or by the two tensors RGBYA and SZB'

In the basal plane in a Euclidean space, the tensors:
4 - 0 0 T
€ap = 5~ (Bap—gup)  Lupy S and Repys

can be regarded as the characteristics of the structure of the defects and of
the geometric properties of the stresses (deformations).

Let us introduce the tensor:

0 000 0 0 0 0
E=E,9,9, = 1/ | 8oy | B9 — 9,33, 19,350, 9,99, +

0 00
}—330‘32 9;9,9;). . (2.6)
As is known, Equation (2.6) for the tensor E retains its appearance under
any transformation of the coordinates, wherein the components EaBY are invari-
ant for any rotations of a three-dimensional space.
With the aid of the tensor EaBY, we can introduce the tensor of second rank

according to the formula:

o B
KO0 = EViesy (2.7)

From Equation (2.7), the reciprocal formula follows:

i’ Szpé’:--;— Eam_KAY. (2.8)

It is obvious that in the three-dimensional space, the second rank tensor kP

can be considered in place of the third rank tensor s’ . In the absence of

af
torsion, when st = 0, the space K will be a Riemann one; in this case, the
tensor R is antisymmetrical relative to the first and second pair$ of the

aByA
indexes, and is symmetrical relative to the transposition of the indexes aB and_

yA. In connection with this, in a three-dimensional space, the following for-

mulas will be valid:



, Rep - . E\"'“I':“\'Ml)-,»).;w (2.9)
2 [

and

i Al Al A
Rapn = 5 Eapupps BV, (2.10)

In the general case of an affine, connected, metric space, the mutually
reciprocal formulas (2.9) and (2.10) will not occur.

The covariant components €48 determine the tensor of the finite deforma-
tions.

As a result of the stresses of the medium and the different physical pro-
cesses, the metric tensor gas (ia, t) for the prescribed values of gl, £2, &3
can in general be dependent on t. The components 8, CaN be considered in place
of the components of the tensor of the residual (plastic) deformations,
and Ra A or between the

B BY
tensors k*® and %P with the mechanical defects (in the continual theory of

In establishing the link between the tensors S;
dislocations), we note that in the establishment of the metrics and the coherence
of the ideal set K, the following operationé can be accomplished conceptually.

Let us take in an actual Euclidean space a certain curve C and let us
examine the continuous aggregation of infinitely small elements of a material
medium along the curve C; we obtain a certain infinitely-thin fiber.

Now let us separate conceptually this fiber from the entire remaining part
of the body; if C equals a closed curve, let us cut this fiber in a certain
section; let us release all of the elements of the fiber from the internal
stresses and from the distortions in the structure of its elements, causing their
mutual arrangement. After such an operation, conducted in the same Euclidean
space, the unstressed fiber with the proper structure will change its initial
form, while curve C will convert to a certain other curve C*. Along C*, the
substantial points of the elements of the fiber will be determined by the same
Lagrangian coordinates £!, ¢2, £3, as for the fiber C.

If curve C were closed, then (generally speaking) curve C* would be open
with a certain separation between the ends after relative rotation of the

surfaces of the sectional area.

11 £



By definition, the mctrics and the coherence of the ¢lements being obtained
along C* correspond to the metrics and to coherence of the sct K of the affine

: : oy ; 0 0
connected space. As a basic assumption, it is admitted that 8.0 and FZ depend

2

8
only on the coordinates gl, €2, €2, and do not depend on the choice of the
curve C,

In the Euclidean space, if the base vectors along the curve C* are identi-

cal to the base vectors %ah then along C* within the limits of an infinitely

thin fiber we will have:

AT SRR S N
PTCERA an d3u=;lz5dgm9w (2.11)

where r* equals the radius vectors of the points along C*. These relationships .
written in the Lagrangian coordinates can also be regarded in an Euclidean space
along the curve C, bearing in mind that the vectorS'ﬁé; and the radius vector
r* are taken on the curve C*, o

It is obvious that in a general case of the integration along C, the radius

vector r* and the base vectors %a depend not only on the coordinates &%, but

also on the shape of the curve C.
Assuming that C is a closed curve and integrating Equation (2.11) along

the curve C, we obtain:

v v o

Art = B.aze, Y
r -—@C adg®, !
0 0. 0 '
- L ASQ—;&cI‘;’ﬁBv(IEﬁ. f (2.12)

The vector Ar* is said to be the Burgers vector. The vectors 'AD,

typically specify the deformation and the relative rotation of the cross-sec-
tional areas. If as the contour C in the Euclidean space we take an infinite
parallelogram with the sides corresponding to the elements dlsa and dzg“, we

derive for the integrals (2.12)
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0 0
Ar® = Qud ¢ - (Oa’. ?_*)a d:%") dp38 -~ -Ja([ g — (Ja - ao“ dy% 5)(1;3.)“ ==
0
_90¢ 6{) . AL aog ca ..
e .aaa.t{,Eﬁdz&u - Eég d,ghd ke =- (5‘7‘? ) VRLIALES Suﬁdt\aﬁd"%“‘) \ (2.13)

and similarly:
e |
Aoa"Ran,» O,\fl‘gr'l ;-', (2.14)

Equations (2.12), (2.13) and (2.14) together with the above-described pro-
cess of the conceptual arrangement and unloading can serve as a source for the
mechanical interpretation of the torsion tensor SZB through the Burgers vector
Ar* and the tensor of the Riemann curvature, by means of a variation in the
base after enclosure with respect to curve C or C*.

These interpretations comprise the basis for the continual theory of dis-

locations.
If RaBYA = 0 while st # 0, the space K proves to be affine connected with
absolute parallelism, i.e., A, -0 along the entire closed curve C. In this
case, as the principal geometric characteristic in the sets, we can take the
Burgers vector, depending on the form of the contours C. When RdBYA = 0, we
can assume that the senses of the vectors 5« depend only on the coordinates
£ and do not depend on the lines C, along which these vectors are transported,
and it is evident that in this case the equations of the following form will be

valid:

o -~
Ia m AJBB, (2 . 15)

where the components of the tensor A 8 depend only on the coordinates g!, g2, €3,
From Equation (2.15), it follows

o ~
8ap = AaVAB"G’yA» ‘

and therefore

. 1 " IS | '
€ap = 5 (8ap — gyrda¥Aph) = ’12“ Bva (6‘6‘, — AV 4p*). (2.16)




Further, on the basis of (2.15) and (2.3), we have

lo ao‘t v v‘, Py '™ a 1“
ag s (Ot 1uh1;‘,>.~)\,{1;ﬁ,¢< el Hl;p) n‘nayd;,ﬂ
therefore
0, oA M \
Pl = (e A ) 1, (2.17)
. Y M , - ; Yy M o_ oY
where the matrixes Bp and Aa are mutually reciprocal, i.e., Bu Aa = Ga'
From (2.17), it follows
Ifa‘;.v ] ]
v oo by (9408 adpt ;mn v H-l‘ — AT j '
S =5~ By <a‘ ag“> (Aa*lhp — Ag*Ia). (2.18)

In this manner, if in Equation (2.15), AaB depends only on ﬁa, the Riemann
curvature of the set K becomes zero; otherwise, the factors AaB will depend
functionally upon the selcction of the curve C.

The affinc transformation (2.15) reduces to a pure deformation and rota-
tion in each point for any selected curve C. From the assumption to the fact
that g af dcpends only on £% and t, it follows that in each point with the coor-
dinates £” at the assigned t-value, the pure deformation corresponding to the
unloading and the elimination of the defects, is determined independently of the
form of curve C drawn through this point during the separation of the fiber.

Hence, the functional dependence of the matrix of the affine transforma-,
tion A B can be manifested only thiough an additional rotation of the defor-
mation axes. In this manner, on the basis of the adopted assumptions relative
to the process of the relief and systematization of the elements, only the ro-
tation vectors during the transition from the base ga'to the base‘gg; being
determined in (2.15) by the matrix AaB’ can depend functionally upon the form
of curve C in general.

The above-considered geometric tensor characteristics of the internal struc-
ture and states can be utilized as control parameters in the construction of

the models of the material continuums.,



For the derivation of the kincmatic characteristics of the internal pro-
cesscs in the continuous media, we can utilize the derivatives with respect to
time and taken in a certain definite sensc from the above-introduced geometric
tensors,

For example, the conponents of the tensor of the deformation rates in

space of motion and in the set K can be determined respectively:

‘
¢ 4

. 0
1 d { dy
€ap =«'~2'~f,‘;“— M ap s oy o (2.19)

It is obvious that Nag = 0, if the geometric properties of the set K

B
remain unchanged.

As the typical control paramecters, it is also possiblc to introduce the
derivatives with respect to time in the appropriate sense (for example, rel-

and Ra A and accord-

ative to the attached base ,) from the tensors Sz gy

ingly the time derivatives of the following ordc’rs.B
In certain instances, in the capacity of the kinematic characteristics
of the given state, we can take the components of the eddy vector u* or the
tensor 'me“; characterizing the distribution of the eddies, or accordingly
the antisymmetric tensors waB and Y,Qag .
In the formulation of the problem and in the separation of a system of
the control paramecters, we will utilize further the assumption concerning the

absence of purcly kinematic holonomic or nonholonomic relationships.



Chapter 3. Dynamic and Thermodynamic Basic Equations

The equations of the inpulses and of the momenta in a threc-dimensional
formulation have the form

0.. T oY ol
Qat = Vyp®-t of (5.1)

and

ap
0T oz gheb 4. ¥, QUBY 1. pho — pob

> dt .
(¢, f, =1, 2,8), | (3.2)

where p equals density a® and F° equal the components of the vectors of the
acceleration and mass forces, pO‘B equals the components of the tensor of stresses,
mmB equals the components of the tensor of the internal moments of the parameters
of motion, referred to a unit of mass, while dmaB/dt_equals the derivatives with
respect to time takcn relative to the inertial frame of reference, haB equals

the components of the internal mass moments, while QO‘BY equals the components of
the internal surface moments. In Equations (3.1) and (3.2), it is assumed that

in a general case
of Ba
P *p .

From Equations (3.2) and (3.1), these equations follow:

A /0N o o Ao ooy A, A e
g (5 ) = Fovat g Vo (pa) = - peas =g pPPous 5.3

and
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where ® equals the value of the velocity of the particles of the medium, while
v, cquals the components of the velocity vector. '
For a long time, Fquation (3.2) has been reduced by the condition of sym-
metry pm8 = pBa on the basis of the assumption mOtB = constant and h*f - QmBY =
= 0; and in accordance with this, Equatidﬁ'(S.A) is identically satistied. At
the present time, in many reports, Equations (3.2) and (3.4) are introduced as
the basic equations in connection with the introduction of the material media
and phenomena when paB ¥ pBa.

The value

dA® = (1r Va dm -{- V., p®Vvy dv) dt

(dm and dt are infinitely small elements of mass and volume) can be regarded as
the inflow of the macroscopic energy to a particle from the elementary work of
the external mass and surface forces. Obviously, the inflow of energy caused
by the elementary work of the external mass moments h° %8 and of the surface pairs
Q “BY does not enter into the equation of the kinetic forces (3.3).

Along with the kinetic energy of the particle E = ‘wzdr ., we introduce
into the consideration the iatrinsic energy U, = U dr, Where U equais the
intrinsic energy computed per unit of mass. . The specific intrinsic energy U
can be regarded as a certain function of the specific entropy S and of other
parameters determining the physical and chemical state of the separated particle.

For an element of any process, the equation of the first law of thermody-

namics can be written in the form:
AE +dUp = dA® L Q' 4 dQ**, (3.5)

where

dQ* = dQ -+ dQ** —
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is the total external flow of energy being added to the work of the macroscopic
forces dA(e). In turn, the value dQ* can be divided into an external flow of
heat encrgy dQ(c) and the inflow of the nonthermal energy dQ** which occurs as
the result of vavious interactions of the given particles with the external
bodies and with the adjacent particles of the medium under consideration. The
flow of energy dQ** can be caused by the work of the mass and surface pairs of.
forces, by the presence of an exchange of diffusion energies, by an inflow of
electromagnetic energy, and by other mechanisms.

The complication of the models and a more dectailed consideration of the
internal interactions and particularly of the interaction of the physical bodies
with an eiectromagnetic field, i.e., the effects of polarization and magnetiza-
tion, leads to the necessity of the explicit introduction of energy inflows
caused by the microscopic processes referred to dQ**,

From (3.5) and (3.3), we obtain the equation of heat inflow

1 ., @) gO**
QU - phegp dt 4 - pPag di 4 - -%ﬁ- , (3.6)
where eaﬂd‘“-”~0%an or eabd‘—-deam if g B equals a constant.

with the aid of (3 4), from Equation (3.6), we can exclude the term '”“lﬂ”mab

and in certain cases, the work of the force couples from dQ**/dm.

Further, let us consider in general the nonequilibrium proéesses for which
we can introduce the absolute temperature T and the free energy F for each small
particle according to the formula

F(T, @, 2, ..., p")=U—TS,

n |
where T, u!, u?,...,u is the system of control parameters selected by the con-

dition that the following equation is satisfied:

Among the control pérameters ul, uz,...,un, in a general case it ,is necessary

to include 84p O € ,

ag and the other parameters upon which F and dQ**/dm can

op

depend.
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In conformity with the second law of thermodynamics,.for a small particlé

we can write

' Qe '
T dS == “dm -+ dq !

where dq' 2 0 equals the noncompensated heat, computed per unit of mass.

In many cases, for thc irreversible processes, we can assume that:

dq’ =aydpt = @ dt, (:; 7

where Gy and ¢ equal certain functions of uk and duk/dt. )
dapt dps .
In a number of important cases, it is assumed that q’==wu-ﬁ[—"§7'z where
Cpg = Cgi 2re certain functions of pk or are simply constants.
Equation {5.6) can be represented in the form
OF \ ,
(M=) it —ag' =, (3.8)

where Ak equals the pertinent factors during the increments of duk in the right-
hand part of (3.6).

For the reversible processes when dq' = 0, o = 0, or for the irrever-
sible processes when Equation (3,7) is fulfilled, Equation (3.8) is represented

in the form

T dpt =0, whereﬁnh==Ah——gg%-—ak- - (3.9)

— e s 4 S e - A

" In accordance with the statement of “he problem, we may assume that the

parameters !

R uz,...,un‘and their increments du!, dpz,...,dpn can acquire all
possible values in certain ranges of the various processes, whereupon there
are no linear homogeneous nonholonomic relationships between the increments
dul, dpz,...,dpn which are satisfied regard}ess of the processes under con-

sideration.
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. (3 3 . k .
The possible lincar independence of the increments du” permits us to make
certain conclusions concerning the values for i being attained at all possible

processes, according to the condition that \; oF  and oy comprise functions
’ 0“’1
only of ul, w2,...,u". S

1. If among n!, uz,...,pn there are no derivatives of dy from this it

dt’
follows that, for the reversible processes, m does not decpend on ;%xl and

therefore the following equations should be satisfied.

M0 or . Ans :“rh , (3.10)

The equations (3.10) are either identically satisfied; and hehce can serve
simply as a determination of Ak’ or at prescribed Ak—values (accordingly non-
arbitrary) these can be the relationships for determining the derivatives of
’1%%-' or at the prescribed function F (T, ul, uz,...,un) they yield the equa-
tions of state, relating to the parameters which are being determined, for
example, the stresses or the phase concentrations, to the control parameters.
Equation (3.10) can be regarded as generalized equations of the theory of elas-
ticity; specifically, they can simply coincide with the equations of state of
the elasticity theory.

Among the Equations (3.10), we a1;o derive the equations of state for
determining the components of the tensor of stresses as a function of the com-
ponents of the tensor of deformation and of other control parameters.

Equations (3.10), and their aforesaid interpretations for the reversible
processes, preserve their validity also in the case when among the.control
parameters ul, uz,...,un, their derivatives with respect to the coordinates,

for example, if along with éa we include the derivatives VyeaB’ etc.

8
In this manner, in the theory of elasticity, the assignment of the free

energy as a function of the control parameters, excluding their derivatives
with respect to time, permits us to fully determine the values for Ak'

From the basic Equation (3.9), the relationships (3.10) do not follow if
the values for M can depend on du®/dt, specifically if among the control para-

1

n . . .
meters H*°, uz,...,“ , we include the derivatives

dple dpt o dpP

g dr oy ar P



It is obvious that in the irreversible processes, the m -values can depend
on the time-derivative control parameters. |

We can consider such models for which in the reversible processes the M-
values can also depend on the time derivatives from several control parameters.

2. Let the nk-values depend on dps/dt,(s =1, 2,..., p). From (3.9), we

have

~ dl" dpk o

C k=t h~p+1
. d,mﬂ' ’ dp.:‘_ . . . ) d“pn d“.mz ‘ dpn
and since —-p—, ...y — can acquire arbitrary values, at.“at Br e = = g
we have
el duh
N AR
hz y == 0. (3.11)
[} =l )

However, it is evident that this equation is always satisfied since, by

dpptl dut

definition, the M. -values do not depend on — ; from this it also

,-.-,"—dT,

follows that the following equalities are always valid:

n

. S ‘
2 ﬂk.di..=0 I ﬂk=_0 (Ar:p-{—i,...,n),

d .12

k=p+t ‘ , S : ‘ ' (3.12)
If Mys Moseess T contain unknown values while “q+1""’ wp are known, for
example, Am =a while 7557 (m=gq+ 1,..., p) are assigned, then relationship

(3.11) can be written in the form

q : '
‘ dpk dp“ duk
> om = ? Mg = Y- 2( ) : (3.13)
una h-q+i k==t
In (3.13), the right-hand part is known; while the y-value is determined
from the last equation.
It is easy to demonstrate that the most general solution of Equation (3.13)

of the values 7 Taseoses wq depends on the arbitrary functions and has fhe form

1’ 72
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Chapter 4. Variational Principles-and Their Consequences

If among the control parameters we include the successive derivatives of
several paramcters with respect to time and coordinates, the derivation of the
equations of state and the exclusion of the pertinent arbitrariness of (yk) can
prove to be more convenient with the aid of the variational princi)les.

Further, having in mind the consideration of the electromagnetic effects
and the utilization of the Maxwell equations, let us consider the applications
of the variational principles and their results within the framework of the
special theory of relativity.

We assume that xl, xz, xs, x4, = t are the Cartesian coordinates of a
four-dimensional pseudo-Euclidean space, in which the metrics are determined by

the quadratic equation:

| ds? = — dz'® — dz?* ——-’dx?z - ctdt? =i ‘1?‘ dfi': (4.1)

where c equals the speed of light.

Let us denote by A the density of -the Lagrange function. According to

1

the assumption, the value Ac dx dxzdxsdt constitutes a four-dimensional scalar,

wherein A is the prescribed function of a system of control parameters com-

prised of the generalized coordinates ul, w2,..., un and their first deriva-

- hy = BE
tives p= -,

Among the generalized coordinates, there can be the scalars and certain

independent components of the tensors or the invariant tensor functions?.

l1In the utilization of only the Cartesian coordinates, it can be assumed that
a certain part of the generalized parameters uS can form a system of inde-
pendent components of the spins. In this case, it can be shown that in the
transition to a curvilinear system of coordinates, the invariant arguments
containing the components of the spins, can be replaced by arguments equal
to them and containing the components of properly selected tensors with a
large number of components (which, however, are interdependent).

Here and below, we adopt the following condition: in the general ex-
pressions and in the summation, the Latin indexes i, j, 1, m,... acquire the
values 1, 2, 3, 4; the Greek indexes a«, B, y,... acquire the values 1, 2, 3.
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ne
L) 000‘ * e b ) . (3.14)
ng= L Yg-1-+ YT, |

where Yyo Ygreres Yq—l are arbitrary functions of any parameters. In this manner,
the values Mys Mpsee. M are not determined unequivocally in this instance. The
assignment or the determination of Yo Yoseoes Yq—l should be associated with
additional data. If q =1, i.e., there is only one unknown (for example, pressure

p), Equation (3.13) is solved unequivocally by the formula

’ P .h

) - t

nl T e 2 nk .v."........ N .
! ) h::z }l"

Let us consider as an example the reversible processes T ds = dQ(e), dQ** =

0 in an ideal liquid, for which the free energy has the form

F(T, @, € Q -y QPY).

In this case, the equation for the heat inflow yields:

oF ar F .o .. p
% 'dQA+. % dq + --"%"é’é—(F-ﬁ'dQ(p V= —xde,

from which we obtain the generalization of the known thermodynamic equation:

' oF |, oF ¢ oF Q"”>
= — 0% —— ———— P VTt .
A AN L (3.15)
. The corresponding model of 'an ideal compressible liquid (when F (p, p, T))

in application to the motion of water with bubbles changing its volume during
cavitation has been described in the report B. S. Kogarko [198].




For simplicity, we also assume below that A depends only on the indepen-
dent components of the scalars and tensors from uk, uki and gij only through
the invariants comprised of these values and possibly from the functions of
A (prescnt in the arguments) of the paramectric constants of the tensors form-
ing the system of 'physical corstants'?,

In conformity with the general theory of the calculus of variations, the’
introduction of the arguments of the A function of the higher-order deriva-
tives into the system is quite admissible'[226], and all of the following
conclusions can be gencralized accordingly.

By variational principles in the mechanics of a continuous medium and in
the field theory, we can connote the functional equations obtained by equating
to zero the sum of certain volume and surface integrals containing the vari-
ations of the subintegral functions and, gencrally speal’ing, the variations
of the domain of integration.

In the formulation of the variational principle, it is necessary to es-
tablish the independent functions of uk which are being varied and the varia-
tions of the dependent values, specifically their derivatives with respect to

the coordinates and time uki.

2In conformity with the latter assumption, it follows that in the application
of the curvilinear coordinates in the- invariant arguments of the function A,

the derivatives of the components of the tensors pki should be replaced by
the covariant derivatives.

As is known, we can consider the density of the Lagrange function in a

fixed Cartesian or curvilinear system of coordinates ni as a function of the
k 3 3 atk ; . 3 »
parameters u and of the derivatives ‘5%r~ , which in general do not comprise

tensor values. Many of the following conclusions also maintain their validity
in this instance. However, in this case, difficulties can develop in the in-
troduction of the local concepts concerning the impulse and concerning the
energy, and accordingly upon the introduction of the concept of the tensor

of impulse energy.

Such difficulties developed in the theory of gravitation. For a gravita-
tional field, we introduced the function A, which in its nature depends only
on the control parameters 85 and on their first derivatives with respect to

the coordinates, which do not constitute.tensor values (the second deriva-
tives of gij’ which can enter into A, introduce additional terms of a diver-

gent nature, not influencing the basic equations of the general theory of
relativity [224]). o B
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It is also necessary to assign the subintegral functions which are not
dctermined as a rcesult of the application of the variational principle;
specifically, this pertains to the density of the Lagrangian function A as a
function of the control paramcters uk and their derivatives uki.

The general variational equation can be written in the form:

: 4 'Sk
dAdv-l- NS dv -} Qi opt -i‘-ao")'b.“& - )dv-p\ P8t do = 0. '
. 5 S,( , e 0 ) ) (4.2)

The integration is extended to an arbitrary four-dimensiovnal volume V,
wherein dv=drt¥cdl=:cde da® ds®dL. The volume V is Lounded by the threc-dimen-
sional surface I, the element of which is denoted by do = do*c dt, where do*
equals the element of the two-dimensional surface. The three-dimensional
spatial volume V* with thc element dt* is bounded by the two-dimensional
spatial surface I* with the element do*. 1In (4.2) the summation from one to
n is conducted based on the index k.

It i§ necessary to assign the generalized mass forces Qk and the surface
forces.QkJ, based on additional assumptions in consideration of the nonconser-
vative systems or allowing for certain influences of the bodies extcrnal to
volume V and separated by surface I from objects which are confined within V,
but not included in the system which is under review. The generalized surface
fogces Pk must be introduced in consideration of the interactions along surface
I between the conceptually-separated part of the medium and the part of the
medium separated by the surface I.

According to the definition for the conservative systems, we can assume
that Qk = ij = 0. The surface integral in (4.2) is balanced separately with
the surface integral which is encountered during the transformation of the
variation'd x Adr= S d\dr4-Addr and S 323_;'%5_& dt; the relationships thus derived

v v vy o
are used for determining the generalized surface forces P, ; therefore, these

Kk’
values are found from the basic equation (4.2).

Many authors omit the consideration of the surface integrals since, util-
izing the arbitrariness of the variations, they consider unly such variations

of dpk, for which I becomes zero.
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However, the consideration of the surface integrals and the pertinent
equations ensuing from the arbitrariness of the variations for I leads to
additional significant physical conclusions.

The consideration of the special variations for I corresponding to the
group of symmetries which (group) is admitted by the valuc Adt permits us to
derive the theorem of Nocther, which can be regarded as an explicit basis for’
the formulation of the laws of conservation.

Equation (4.2) is invariant relative'to the selection of a system of
coordinates. In the consideration of the motion of a continuous medium, we
always have two significantly important systems of coordinates.

In the special thcory of relativity, this is a certain incrtial frame of
refcrence K:xl,xz,xs,t, in which the motion of the medium is determined, and
the attached system of coordinates L: £, €2, €3, ¢4 = t (f equals the actual
time). The coordinates £!, £%, €3 are constant for the individual points.

The constryction of the theory of motion of a continuum as an aggregation of
individual points is necessarily based on the introduction and usc of the
Lagrangian coordinates £!, g2, ¢3,

The basic Equation (4.2) can be considered in any system of coordinates.
The variations of the different parameters and functions in the case of the
conceptual introduction of the adjacent states and the comparable prOCLSSSS
can be computed in fixed points of space, assigned by the coordinates x> in the
inertial system K, i.e., the Euler viewpoint, or in thg individual points of
the Lagrangian system L, assigned by the coordinates El, i.e., the Lagrange
viewpoint. The infinitely small increments, namely the variations of a certain
value ¢, will be denoted by the symbol 3¢ in the first case, and by the symbol
8¢ in the second case.

In the basic motion of a continuous medium, the law of motion is represented

by the functions
'z =.‘B‘ (gl' 2» g‘)’ (4.3)

. which can also be regarded as equations of the transformation of the coordinates

during the transition from the Euler to the Lagrangian system of coordinates.
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For the variational motions we have .
e gt g2 23wy
= (b)%y%p%)'

According to the definition, we sct

T AT Y (D) (4.4)

{ . ~ . R R ; R N
Assume that W(I)‘*Q‘@J(S”)"W(EW is a certain function; the variations
of this function caused by the variation in the actual function and in its argu-

ments will be determined by the equalities
B@) =¢ ) 0 () =g (@) - 9 (") g (a") - g (1) =
= 0 (") +-27- 8. (4.5)

If the form of the function ¢ (z") is not varied,®’ (z*) == ¢ ("), and therefore
the local variation 8¢(x'1) = 0. It is evident that with an accuracy of a

higher order up- to small values, the following equality is valid

V)9 @) = ¢ (') - g (1),

3 (") = dg (zt),

wherein this variation differs from zero only because of the variation of the
actual function ¢, and not because of the variation of the arguments a'.

Fro.. the definition of the variations, we have

_B @) R _, 0

9 s
g U T e 3t 3t -
. '!.’ '}‘ 406
] ry __ 99’ (') __a(p(z‘)~a 3P ( )
. 9z1 %P T TG o1~ %aar "
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However, noting that the relationships (4.6) indicate the possibility of
transposing the symbols of the derivatives and the corresponding symbols of

variation, we can also write the following equations:

N L Co B )

art VT arth ox! orl
AT ana) et abet g 0y O 982 4.7)
T o ori oc't  arh T axi T axt oel
and . '
| (i 56 (rh t y
LAY P L AU B <,QW,> . (4.8)
Y a3 oz ag/ axt

In the construction of the various models, it is necessary to introduce a
varying type of characteristics and their derivatives, taken in different senses.
Specificall;, the function A can be regarded as a function of certain paramcters
ot dpk

P~ e et

pk and their various derivatives - - Py
: Lot '
Further, for precision and simplicity, let us assume that the function A

depcnds

i i oxt . e
on & =y, on Ty = $ 0, 1=1,2,3,9,
° ’ J -

" k : . e
and upon ithe parameters u and their first derivatives

a“h . R .
p* ::._b;{_ (k =z 5’ G’ P (1 i:‘i' 2' 39 4)'

In addition, the function A can depend on ﬁi, wﬁich will be regarded as
nonvarying independent parameters.

It is evident that the derivatives of the type jm:, can be e/ ressed
through u? and x}. | L

For a comparison of the variation in 6 Sl\df , We note that
Vo

d~r=V:'—§dt detdatda®  (t==24, é=!gill)v .
wherein
éd’f::: éz'i —— » = | '6':{ |
‘ [ = 1Jdt.. -,
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On the strength of this and of the noted relationships we' can write for the
variations:

' i
( OA gty A gt O gay. 2 Mo}t Abf,ﬁ@f-)dr:
dxt 6:; ap" } ) s /-

: oA azty 0A f > i < aA \ }
R e B - L e — o r d
=§ { [ 0.:‘; zi + az‘ o) g J ‘ ap" el apl; J # t+

- g 2 (9A_iegty. ~~~?-{:—~0ph LAY 82 ) dv; (4.9)

¢zl \ adzy auty d

where in the transformations under the sign of the integral we have taken into

account (4.5), (4.6) and the following equality:

dzt ozt | sty oz A 3}1"

Substituting (4.9) into (4.2), with allowance for (4.5), we obtain

AN ozl @ ( A ) a9 > X ]
— — S PR (.- TR A, £ LI BT R I P dr»«
S [Q‘ dzly oz az! \ orij / ph dzl ap'u '

. )«S"ll
+S ap" azi  opky *_Qk e

§{Lpr%<ww~ , Jy%"+A&r+Qﬁ>ru]bﬂ4-
+< k—{—. 3A nl-}-th,>bp}dg 0

(4.10)

are the components of “he unit vector of a perpendicular to surface I).

Equation (4.10) should be satlsfled in the case of arbitrary variations in

(n,

Gx and Guk.
Let us first consider those variations where 6x‘=:6pk=:0 for I and are

arbitrary within V; utilizing this, we derive the following system of Lagrangian

equations
0 (oA oA oty _ et 2 3
_0zi N\ ari z l>+ dzl; ot ~.Qf+QkP«“l (f=1, 2,3, 4 ' (4.11)
and
2’ oA ' ' | "
—_— -_-——--—?—é—-= A (k=51 Go s n)‘. (4.12)



1

If the function A does not depend on xlj, Equations (4.11) yield

— e k.
Q(”“ Qlc}‘ b. (4.13)

At the assigned values for Q; and Qk’ Equations (4.11) form a complete sys+tem’
of n equations for finding the n functions  zi(f) and p'(ah). ‘

On the basis of (4.11) and (4.12), it follows that for the arbitrary var-
iations differing from zero on any surface I conceptually separated in the

medium, the following equality should be satisfied

N R S RN Y (-
§ [(Pa T ok + Pl }*l\fo b Qi >'116$ | | :
[ 4
R i ié_____ i R i
F(Ph vy - Qn )n.‘% ]dq. (4.14)
where
P.=P,fn, w Py=Pyn; ' (4.15)

Equation (4.14) is satisfied for any surface I at arbitrary sz’ and Spk,
therefore, from (4.14), it follows that

Pk 9D g1 OA —Ad}-- j
Wy t oy T A% Qi

(4.16)

and

Pi= 2o ‘ @A
ol )
Obviously, the specifying of a model of a continuous medium is associated
with the assignment of the following functions: A, Qi’ Qk’ QiJ, QkJ. The

pecessity'of specifying the parameters for Qr and QrJ introduces a considerable

arbitrariness, however for the conservative systems, by definition




while in certain other cases, these parameters can be introduced with the aid of
simple hypotheses of a physical naturc associated with a consideration of the
irreversible effects.

The assignment of the function A is analogous but not equivalent to the
specification of the specific density of the intrinsic energy or the free cnergy
for the infinitely small elements of a continuous medium. Similar to the assign-
ment of the density of free energy, the assignment of the function A in a gen-
eral case is also insufficient for establishing a closed system of equations
determining the actual model of a continuous medium.

However, with the aid of the prescribed function A, the arguments of which
contain various derivatives from the control parameters with respect to the
coordinates and time, we derive a clused system of equations determining the
model of the medium in the case of the conservative systenms,

The system of n Equations (4.11) and (4.12) and of 4n Equations (4.16) and
(4.17) consists of the equations of motion, the equations of state and the
kinetic equations. These equations contain the regularities describing the
processes in the medium caused by the presence of the internal degrees of
freedom.

In this manner, the establishment of the regularities for conservative
systems in the case of a large number of degrees of freedom can be reduced to
the problem of establishing the form o% the Lagrangian function'depending on
the control parameters.

For the derivation of the connecting links with the statistical physics,
with the phenomenological thermodynamic relationships and, in this way, with
the experimental data, it is necessary to clarify the relationship of the system
of Equations (4.11), (4.12), (4.16) and (4.17), and its corresponding functions,
with the basic physical laws, with the characteristic functions of the thermo-
dynamic and with other laws of nature.

Specifically, Equations (4.16) and (4.17) contain the equations of the
classical theory of elasticity and hydrodynamics, and the Maxwell equations
for an electromagnetic field.

At Q; and Qi-valueé differing from zero and determined in the appropriate
manner, Equations (4.11), (4.12), (4.16) and (4.17) reduce to the equations of
the theory of a viscous liquid, with consideration of the phenomena of heat -

conductivity, and to other equations in the theory of irreversible phenomena.



In this manner, the utilization of the variational principles, together with
the sum of the data and the reclationships of the functions A,Qr and QrJ with
the thermodynamic and other physical functions, can serve as an initial basis
for the expression of the continuous media, in specific terms of the models,
which in turn can serve for the introduction of the characteristic parameters
and functiors, with the aid of which we can formulate a varying class of hypo-
theses of a physical nature.

The development of a theory in these. problems is closely associated with the
use of various results ensuing from (4.11) and (4.12) in a number of cases under
certain assumptions of a very general nature. Among such important results,
we include the laws of conservation. ‘

The ‘laws of conscrvation can be derived baswid on the theorem expresscd by

E. Noether, which consists of the following: :
' I:=SAdr
v

Let us consider a case when Q; = Qk = 0. Assume that the integral
is invariant reclative to a certain m-parametric continuous group of transforma-
tions G (ul, az, a3,..., am) of the variables xi and of the corresponding
transformations uk (!, a®, ...Jd“ equals a system of parameters independent of
the coordinates xi). The grddp G forms an m-parametric group of symmetry for the
integral I. In this case, there occur m laws of conservation,

In actuality, from the invariant state of the integral

I (e, @ ..., o™ =I(0,0,..., 0)

it follows that for an infinitely small transformation of an element of group
G, at which

' 61:" =C'at and dpt= 8% 6at,

we have

A 4.
8/ =0. . (4.18)

The first integral in Expression (4.9) for the variation of the integral

becomes zero on the basis of (4.11) and (4.12); therefore, on the basis of

(4.18), equating to zero the second integral in (4.9), we obtain -
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53}’ [( 6.:‘ ‘ “ ¢ a“"j ‘ 1\6;)0 q . ““""h_ S" ]6(1:“ dv ==0, (4'19)

Since the volume V is arbitrary and du’ is arbitrary, we obtain from (4.19) the

following m laws of ,conservation:

azf [< a;t“‘" s ‘“"“‘“” AQ )Ci ‘*”‘“""Sh ] =0, (4.20)

If the integral I is invariant relative to the translation group G4, it
follows that

bft:‘ a ba" C"I = 630 | 6“’* =‘O,‘ S"q = 03.
and therefore Equation (4.20) acquires the form

2T 0 (i=1,2, 3, 4),

azi (4.21)

where

S pisod oyt N A aa
Bt Ll e vyt ey 46 | : (4.22)

It is easy to observe that, subtracting Equation (4.11) from Equation (4.12),

multiplied times uki and added with respect to the index k, we obtain

aT;’_.__ . ___”__
o Q ' (4.23)

Equations (4.23), being satisfiéd in the general case, convert to the law

of conservation (4.21), provided that Qi = 0 and the partial derivative 'zﬁ
£
also becomes zero. The latter condition is associated with the invariant state
of the integral I relatlve to the group G Subsequently, let us assume -i§$_==o,
. zt

The dependence of A on e* can be preserved. .
It is evident that in the general derivation of the laws of conservation
(4.20), in place of the conditions Qi r:.Qk = 0, it is sufficient to require -~

the fulfillment of the less stringent condition:
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Q‘C(q,!.ol‘shq =20 (q =2 q, 2, ooy m). (4_24)

Along with the laws of conscrvation corresponding to the group of trans-
lations, we can consider the laws of conservation corresponding to the compléte
or natural Lorentz group [240]. In conncction with this, we can introduce thg
tensor@ﬁgﬁju’4-Eﬁ'cmeAO)as a function of the control parameters; and the

following laws of conservation are then sptisfied:

a0,/ ' i o
e T ). i .
o 0 and ¢ __@7.. (4.25)

The laws of conservation (4.25) can be regarded as the equations of the
moments of quantities of motion, corresponding to a special form of internal
degrees of freedom.

Equation (4.23) can be written in the form

copd 5N o
azi (Q"* 2 ) = O (4.26)

If Q'i = 0, it follows that

P,j__;@gﬁ
. Qi’"‘ azr ’
which yields
' Q.dz* +L€Q_fi<'?_£‘_=0‘.i o | , (4.27)
dz) oz '

in this case, Equation (4.26)'a150 acquires the usual form as for the conser-

vative systems. In this manner, the equation

. Py
- 9z

=0 (4.28)

-

is satisfied for the nonconservative systems for which PiJ is.determined by

Equation (4.16), in which Q.lJ # 0; consequently PiJ # TiJ.
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Equations (4.21) and (4.22) occur in any inertial Cartesian frame of refer-

ence. In (4.21) and (4.22), wc assume that

Y J’.!L’i- )
A<§ api A" ax’ ' gU b (4.29)

In a consideration of’all possible inertial systems of coordinates, the
function can be regarded as a scalar; theypfore, in the functional relation-
ship (4.29), and in the capacity of the significant arguments, the indicated
variables can occur only through their combined invariant combinations which
can be taken in the form of polynomials. The number of the functionally inde-
pendent variables of the combined invariants of the control parameters in any
case does not exceed the total number of the variable arguments indicated in
(4.29).

After the establishment of the inertial frame of reference with the co-
ordlnates xl and the attached system with the coordinates Ei, the variables
ml and « 3 can be regarded as components of the vector r = 'z'd; and of the
tensor of the second rank A-—-g%¢~-z‘{)of , where I) and D'are covariant
and antivariant base vectors in an inertial system, which are constant with
respect to the x1 coordinates.

Let us now introduce the arbitrary, generally speaking, mobile system
of coordinates n* with the bases 97 and 9, , which are related to the

system of coordinates x by the relations

. 3‘?:1‘(1]‘, n‘." na' na) . ) \

and (4.30)

ds® = gy; dzt do’ = gl dy dy’. J

For the metric tensor g*ij, we can introduce the Christoffel symbols 'pgj
and the operation of covariant differentiation Vq. According to the trans-
formation (4.30), we have
. -—.‘.-’"" w e L - Sy
| r=2x 3. —v‘r 3,' and 'A ?_‘_z.ij:.)ia'i =-‘A_‘j?§?_)‘jy

where
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Certain of the values from uk can form tensors of the type:

B &8 I) ,“O :) L)” I“‘l”;').r he V"l

ok

0zi

In connection with the derivatives

ozi

, we can introduce the tensor

, B opit ’ '
C=-2" 9t .. ST RC IR Ao o T TR

The comnonents of the tensor B Bl]n and B* 1m’ and also the components of
it
the tensor Egyﬂ and VJB*llm are interrelated by thc gencral formulas of the
N T/

tensor transformations during the conversion from % to n .
In the use of any system of coordinates, the function A can be determined

the arguments uk =B

11

ozt ;
as a scalar if we replacec the arguments :;%‘ by A'L,
b B+ n, the relation ot _ oy by V K - v, B*11 and b
y ) ol - ari Y Vi j m’ iy o 8

After this, the systém of components T;J, determined in any system of

coordinates n’ by the, equation

L4

J l" ' 0/1 I3

forms the tensor satisfying the equation

" e * axe -- )
Vj7:": _—Q: o= »‘Ql-———r (l :‘.:.1’ 2’ 3' 4),
o e

7 N T (W ~~~A’.;—-?"—§~~~i\6{,

(4.31)

(4.32)

By P;J, Q;J and the Q;, we denote the components PiJ, QiJ and Qi transformed cu

the basis of the tensor formulas.

The conclusions obtained concerning the form of Equation (4.31) and Equa-

tion (4.32) are related to the basic assumption indicated above to the extent

that the argum'nts in the specified function (4.29) can be regarded as scalars

and as components of the tensors not only in an inertial system of coordinates,

but also in any other curvilinear system of coordlnates

Specifically, the system of coordlnates n* can coincide with the attached

system of coordinates g, In this case, we will have!

!Equations (4.33) constitute the result of the pseudo-Euclidean state of space-
time in the special theory of relativity. In the general theory of relativity,
the determination of g ij involves the integration of the gravitational equa-

tion.
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" orst erm n \
Bz g Gim sl ey ity - }__1 %%y,
%% ot (4.33)
2
1 = C = . . = O S 1 #. .‘
since g,, » By 1 and g1J at i # )

)zt
s . . KU . .
In addition, in this case, the formula -11"'5§;o is valid and hence

‘ ' ‘ Iy 'A a
LAY LR o L
oL/ 23!

In Eduation (4.29), after the transition to the attached system of coor-
dinates, the components of the tensor ﬁijukill appear as th§ trqnsformcd com-
poncnts of the tensor gij; but in addition, the argument sat/oe) may appear in
combinations (4.33) of equal gij’ which remain invariant after conversion to the
attached system of coordinates,

The convenience in applying the attached system of coordinates is also in
part connected with the fact that in many important cases, the derivatives
axi/agj enter only into Equation (4.29) through the combinations éij’ and con-
sequently the number of the significant arguments is reduced in (4.29) in the
attached system of coordinates.

Among the parameters uk and Vju K, there can exist various tensors which
can characterize the states and processes for the medium's particles.

The tensor gij is present among the control parameters as a natural char-

acteristic, since the quadratic form: .

ds* =g dtdE

serves for the determination of the distances and time intervals between the N
various particles and events; it is obvious that these kinematic characteristics <
are basic ones in the forwulation and description of the physical regularities.

As is known, the kinematic (geometric) parameters are of considerable and
comparable importance, since they permit the configurations and processes under
review to be compared with certain standard or conceptually introduced states
and processes.

In conformity with the ideas developed in Chapter 2 for the comparative
evaluation of events, we can introduce for the aggregation of values gl g2, g3
and £% the ideal sets of state and process, which can be regarded as the affine-
connected metric space Do' The geometric characte?istic Do‘can be provided by

the quadratic form specifying the metrics:
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0 ol e 0 wa  e3 ey
d32=¢g11(/§,( (l{,}, gij(§‘9 €y v &

. u 34 e %3 £
and the torsion tensor  Si; (&', ¥, & &)

. The space of the initial state Do
the significant propertics of which are prescribed by the tensors Sij and Szi.,
can be introduced based on hypotheses of a physical nature.

Specifically, sometimcs we can postulate tﬁat Szij = 0 and that in the

given attached system of coordinates

AR R 7T (AN SRS B (4.34)

where the constant coordinate g0 corresponds to a certain initial time instant
In conformity with the definition of (4.34), the space D0 is stationary, i.e.,
all of the spatial distances betwcen the individual fixed particles are identi-
cal at various given time instants.,

The system of coordinates £1, £2, 53; t in space D can be regarded as a
stationary nondeforming Lagrangian system of coordinates. The conceptual space
Dy is generally non-Euclidean within the scope of the special theory of rela-
tivity (just as the space of the unstressed non-defect states in the continual
theory of dislocations [Section 2] in Newtonian mechanics). At the instant
g4, the space Dy can be in contact élong a three-dimensional space with the
Zij =0,
D. and its three-dimensional subspace form, generally speaking, the Riemann

0
(elliptic) spaces. It is evident that the non-Euclidean state of the space D

actual pseudo Euclidean space connected with the moving medium. If S

0
is permissible; moreover, many of the laws controlling the values of the para-

meters characterizing the internal degrees of freedom can be formulated as the
equations containing the tensors Sb,zu,lhnm.;intfoduced as the geometric char-
acteristics of the space Do' - '

The concept of deformation in the theory of relativity has been reviewed
by a number of authors [236, 228, 229, 234], who introduced this concept with
the aid of the cémparison of the motion considered with the motion of a medium
as a solid. The basic difficulty consisted in determining the solid motions

of a medium with the conservation of the property of a pseudo Euclidean state

}
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for the space Do. In confoomity with the definition made by Born, the space D,
in which the qolid motion is achieved is pseudo-Euclidecan; morcover, its metrics

%.. gl €%, £3, &%) are determined from the condition of a constant distance

i

bciwcon any two fixed universal lines feor cach point prescribed for cach of
them. The Born definition comnlicates the problem of finding the aij-value,
morcover the coordination of the concepts of hardness in Newtonian mechanics
and in the special theory of relativity becomes complicated.

The assumption (4.34) is associated with the choice of the attached system
of coordinates. In the casc of the general transformations of attached Lagran-
gian coordinates, if we have Eu(iﬂ £ %) in one system of coordinates, then in

the other system we will have g,j('l g i.e., the ficld of the fun-

% )
damcntal metric tensor can become nonstationary. N

However, it is evident that if in a certain given system the flcld m,(“.gﬂ )
is stationary, the property of a stationary state in the components g i is
maintained in the casec of any transformation of only the spatial coordinates,

In the capacity of a generalized four-dimensional tensor of the finite de-
formations, we can introduce the tensorsé::euéﬁﬁ sin the space D, orf ﬁféeu?%gr
in the space of the motion of the medium, with the components ©45 determined

by the equation

{ » o
8= e (g —guy).

(4.35)

Along with the tensor P introduced by Equation (4.35), let us consider
also the tensors f = EUOKY and ‘E=:EU®%V, , characterizing the deformation

and with the components Eij determined by the equality:

' 1 00
Byy= —- "(oU""uluJ — gt utLy), (4.36)

where u, and uj equal the covariant components of the four-dimensional velocity
vector, respectively, for a moving continuum and for an ideal space of compari-
son Do' In the at*ached system of coordinates, we have

Bl o 1 e Bk

A "~ A,' ‘é
) Up =g’ = gulb” = = T
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therefore in the attached system of coordinates Equation (4.36) can be rewritten

in the form:

A A o o 0
, ” ginf s o, BA
“yE e (gu***~ S 47 A SR

Eu 8

(4.37)

It is evident that in the attached system of coordinates, only the compon-

ents Eaﬁ(a, g =1, 2, 3) can differ from zero, whereas

Ia,' = 1/ “:"1'4‘,"‘.:':0.

In this manner, the four-dimensional tensor Eij in the attached system of
coordinates reduces to the three-dimensional tensor EGB' The determination of
the tensor Eij as the characteristics of the deformations is a natural gener-
alization of the usual determination of the tensor of residual deformations in
the classical theory of elasticity, because for the calculation of the spatial
distances between the points of a smal) particle of the medium at dt = 0, it is

necessary to utilize the quadratic form [224]

s e dlt = — a—-é’:’v“ dE® (58 == YaadEtdEP.
<ga ) (4.38)

Therefore

28 det dgf = It —dl2, '

The tensor components elj or E, i can be regarded as the control parameters
(representing the known combinations from &' ), upon which the density of the

Lagrangian function in (4 29) can depend.
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Chapter 5. Equation of Energy and Equation of Heat Inflow

Let us consider the equaticen of enerry ensuing from (4.11) and (4.12), and
let us clarify the relationship between the rfunctions entering the basic varia-
tional Equation (4.2) and the thermodynamic functions.

The components of the four-dimensional velocity vector of the medium's
ﬁoints (the fixed coordinates .+, £2, £3) in the inertial system K are deter-

mined by the derivatives

dr° ar® at e dzd at i

uﬂ e - — bt i -—— u“ [ SR

.—st »—-"‘a*t as Vc--—v [] 4 d? as i7.C'~—”“_ ] (501)

where

v__‘<azl> (az-> <az3> < >.a

In the system L for the components of the four-dimensional velocity, we

have
Lo a:° ~dt . ot 1
o 95yt B =0 U= =l =
ua:‘.ﬁ’dw —_5;\ s 6:\ [
| (5.2)
In Equation (5.2), the coordinate ¢" = t is determined as the intrinsic

(proper) time; in conformity with this, the metrics in the system L are deter-

mined by the formula
dst=gi;dzt d%, in which Bt (5.3)

At any time instant t in any mobile point of the medium M, we can select
an intrinsic inertial system of coordinates K* such that at instant t, the
three-dimensional velocity of the point M is equal to zero in the system K*,

By way of the convolution of Equation (4.26) with the vector ui, we derive

the scalar equation

AL



‘ di’t’ lu‘ ’ :
0}‘) Q‘ (504)
Equation (5.4) also is applicable in the case where the function A depends
ori the derivatives with respect to the time and coordinates of any order from
the control parameters using the scmewhat complicated formula for the tensor

components

T'i’l foord I?ij -k'" ()[, .

The invariant Equation (5.4), which can bec written in any system of coor-
dinates and particularly in the attached system of coordinates L; is the energy
equation and the transformation of this equation to the heat equation in the
usual form has becen given in our report [230] for the attached system of coor-
dinates; we present below another elementary transformation of this equation
in an inertial natural system of coordinates.

Let us consider the corresponding natural inertial system of coordinates
K* in every point of a mobile medium for and at time instant. In this manner,
for each time instant t taken in K, we have the aggregation of the systems
of coordinates of K* with the parallel spatial axes, each of which will move
progressively with a constant velocity, equalling the velocity of the pertin-
ent point of the medium.

For every point and at any time instant, let us consider the ccinponents
of the tensor P;j, forming a tensor field determined in the system K*,

Let us signify by x**,2*% = t* the coordinates of the pseudo-Euclidean space

in the cystem K*. The Lorentz transformation connecting ¢" and z** has the form

ghe=cdpr w2V edit (5.5)
[ . .

The matrices ¢, and dJi are mutually reciprocal. For dJi, we capn write

J
the following matrix ([238]:
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? i1
1-L kot kvtv? ko'y? S l
Vot —u?
2
kvt { 4 fv?® hv?v® -— -"/.i-‘f)'-.x'::’—
T ¥oe—-u?
|14
' kovd 9,,2 ' Leyy8? cvd '
v kvdv 1. kv — e
)/. €%y
R L L vd ¢ B
c ‘,/ PR ¢ ;/c'l ,ﬁ‘,;;:.- ¢ ;/,“,E”.‘;,'be }/52'.';"',": (5 .S ')
h k== 1*['**‘9”"" 1 h =0 = ] 2.
where o LYV ES at v=0, k = /

The matrix c 3 is obtalned from the matrix d j after the substitution of
* i -J.
v1 for -v'.

Based on the equations cf the tensor transformation, we have

P" ¥ Prnldl‘c)"p

(5.6)
Substituting (5.6) at j = g8 =1, 2, 3 into (5.4), we obtain
am )
u‘ —a.-!_,_‘i -4 ll,i 2[1‘“‘“ dgcﬁm -l u‘[;zﬁ'm —q{-—lf“ m -k 1‘1‘)"‘”‘ dl 60 TL‘“ == Qll&
gzt | [ id . azb
(5.7)

For any point of the medium and at any time instant, let us now consider
" Equation (5.7) in the system K*. In this case, it is'clearly npcéssary to

assume.

ut == Y% = 0, ut = % .9 dli = 6{1 Cﬂm = 6?“»’
: ‘ y (5.8)

i

: et
but it 1s also necessary to consider that for the matrices 2 and B

9P ’
the following formulas are valid o
0 0 R
: 0 7 .
, 0 0 0 .2
” ‘7dﬁi ”__: _ az8 _ 60‘ t .
o 0 0 o o =i
’ " ozB (5.9)
— 5 »U% -i).“ig 1 au3 ’ . ) -
' T 9P ¢t 9P 0
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Based on (5.8), and (5.9), Equation (5.7) acquires the form

Y ¥ e R 2T (5.10)

Since in the point under consideration, VY = 0, from (5.5) and (5.5') there

follow the equalities

( Py > - 51?5“1) - .‘?’,’f«f) '
ot xC.: const Ot Jy*a..const 0"/ x%a i const " (5.11)

Let us introduce the density p, determined by the equétion

dQ ah
ke

o =0

4

P == C
from which e dv* =coust, (5.12)

where dt* equals the three-dimensional element of volume.

Further, let us assume
Pis=QU, PP= —Prb=p%, (5.13)

where U equals the dntrinsic energy, while pmB equals the three-dimensional

tensor of the internal stresses, and let us introduce the vector of energy flow

Q== P, + P30, + PJD,.
C (5.14)

Taking into account Equation (5.11) - (5.14), Equation (5.10) can be given
the form

. af n. 1 . .,l” \ | /-A
. dU=£_%idt~EdeM7"EQML‘ - (5.15)

It is obvious that in a spatial Cartesian system of coordinates xl, xz, and

xs, the equality ve = Vo is valid.
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Equation (5.15) is an equation of heat flow in the standard thermodynamic
form!. This equation is applicable in the general case of an irreversible pro-
cess., © For the reversible processes, i.e., for the conservative system, in
this equation it is necessary to sct Pij = Tij and Q'4 = 0, In the reversible
processes, in a gencral case, div Q # 0 owing to the internal surface inter-
actions of the adjacent particles of the medium with one another.

‘ Comparing (5.15) with (3.6), we obtain an expression for the total energy
flow:

Q0% = dQ© - dQ* = — div Qdl dv* - Qi didv®,
Q= dQT I q (5.16)

In many models, both for the reversible and for the irreversible processes,
we can assume that Q'4 = 0., When Q'4 = 0 Equation (5.16) leads to an impor-
tant conclusion concerning the relation of the external energy flows with the
four-dimensional tensor Pij. With the aid of this tensor andlaccording to
(5.14), we can introduce the three-dimensional vector Q for a material medium
and for a field, similar to the Poynting vector. In connection with this re-
sult, the four-dimensional treatment of the laws of conservation within the
scope of the special theory of relativity indicates the cases when the energy
flow dQ* is attained owing to the flow of the three-dimensional spatial vector
Q on the two-dimensional spatial boundéry of the medium's particle. The energy
flri dQ**is obtained owing to the energy flow through the spatial boundary also
in cthe case when Q'4 # 0, but we knew from additional data that the energy flow
Q'4dde* is a flow of heat energy.

The division of div Q into the flow of heat and nonheat energy is associ-/
ated with the nature of the internal mechanisms and the properties of the
different forms of energy participating in the energy exchange between the
adjacent particles.

We will now write the relationships (5.13) in a more explicit form.

. From (5.13) and (4.31) the following formula follows foy the components
AQl

p in the attached system of coordinates:

lye also take special note that the arrangement of the indeves P * in Equation
(5.13) is significant. If we set pU; = P44 or we take 9%%#.in place of fﬁ%ﬂ
[/

in (5.7), Equation (5.16) is modified, and in it there appear the additiouas
terms depending on acceleration.
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- e :
In addition, for pU, we have . '
arxi ¢
U=z Pa..p 957 %
O B R (5.18)
op

Equations (5.17) and (5.18) permit us to find ﬁ and pU as a function of
the control parameters, provided that the function A and the tensor Qij are
known.

By way of an example, let us consider the application of Equations (5.17)

and (5.18) to the theory of an elastic body, for which we assume

. R o .
A, Eag, gy §),
(5.19)

whereln the components of the tensor ou(bv§ §> determine the stationary metrics
in the system of coordinates being applied. In Equations (5.17) and (5.18), oj,ph_
should be regarded as constant parameters,

- For the components of the tensor éij in the attached system of coordinates
expressed through the coordinates z* in a natural system of coordinates, accord-

ing to (4.37) and (4.33), the simple formula follows:

o ¢
RY e ! es 864
3| D #am g gap — L5808
y=1 i (5.20)
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and allowing for (4.37), (4.33) and the fact that
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we obtain

- oA 2 a-....
pﬂﬁ-ﬁ —— “‘"-[-A”(” ' Q”ﬂ = Q- .E._.... {-Q

ol
ber kg (5.21)

In the transformation in the last equation, we take into consideration the

continuity equation which yields oV VYes' = const or QV,I§U!°‘00“5V‘/K44
d 1 ..,..8..0. N e 1. -_‘:{Q - Q'Acﬂ. .
and, consequently, 5, Y i 2

With allowance for the fact thut we always have E
culaiion we obtain from (5.18) and (5.19)

4e = 0, by a simple cal-

o pU:‘—:P44’——‘—‘-"“1\"’044| or

o>

= =U -%~Q«‘- (5.22)

Equations (5.22) and (5.21) at Qij = 0 represent the classical equations
of the nonlinear theory of elasticity.

For the determination of the metrics of the space DO stationary in an
attached system of coordinates, we can determine the components of two tensors
of the deformation rates with the components in the attached system by the

formulas

' 9€, 1 9giy hy g o ~ O
&= — — . — — e _ ; I —_—p i
g i z( % 5 (5.23)
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On the basis of (4.33), (4.35) and (5,20), we obtain
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where v;,gives the components of the three-dimensional velocity in the frame of
reference K*. It is obvious that in the case of the arbitrary threc-dimensional

. . o : . :
transformations of the coordinates x*  and in the attached system of coordinates

£%, the following formulas are valid

~
.

(A
LITES Cup = vﬁua Val’z. :

Here the symbols of the covariant derivative V are taken in the spatial
threc-dimensional sense. .
In this manner, we have examined the tensors of the finite deformation

and the tensors of the deformation rates within the framework of the special

theory of relativity.

In a general casc, when

i TR
\.t ) arl ! ‘,"lly bt/ ’ (5.25)

’

KA \ .
I (5.26)
a¢

If the function A of (5.25) énd QZ are assigned, U is determined from (5.26).

The inverse problem of determining A as a function of the arguments (5.25),
if pU and QZ are assigned, reduces to the integration of the simple linear
equation with the partial derivatives (5.26).

It is evident that a solution of Equation (5.26) for A contains arbitrari-
ness. Let us consider in the’exampies the direct and inverse problem,

Assume that A is represented by a formula of the form

. (l"'l‘ U*Lh o LI‘ a“l 0“,‘ 6}»" (‘) . .
”"”(“ a"z:v —T>“5f‘ TS (J,—é;;, ——-)-—W <u", a*ﬂ) (5.27)




where we conduct the summation from 1 to n with respect to r, s. Let us assume
that the functions Kig and Xg equal the arbitrary functions of the first two
arguments and the arbitrary homogencous functions of zero order with respect

. 0“,{

Y

to the derivatives
tion is fulfilled

For example, at any A-value, the following cqua-

. ) d,\‘ 0}&" ok ouk
s <“‘ - u ' ' )" As <ll }a ’ ;‘ >'
(5.28)

Substituting (5.27) into (5.26), we obtain

R ZE
U = Vp T sy g — Q. (5.29)
Let us consider the problem of determining A when pU + Q44 is assigned as
a function of the arguments indicated in (5.25). Assumc that A* equals a
certain particular solution of Equation (5.26); then the general solution will
be represented in the form

' .a.‘h ,;un s
- * - k ¢ b “
Awe A" (i, PRy TRl R Tl - (5.30) .

where Xg (s = 1,...,n) equal arbitrary functions of their cwn arguments, satis-

dv_f;‘
.fying the zero homogeneity condition (5.28) of with respect to "j}” _
Thus, if on the basis of certain data for a conservative system “for Qj = 0,

k

the intrinsic energy U is given as a function of E and 3 /ax , then the

ap’
system of equations (4.11) and (4.12) will contain the arbitrary functions Xg 3

it is necessary to rely on additional data for the selection of these functions

and accordingly for establishing the model. N
().[L:’:

— sy

, oot
by certain functions g0-na<uk au”) and we can represent kquation (5.26) in

N
the form

If in the basic relationship (5.26), the derivatives cam be replaced

aul

after the substitution of -3~ and gof Equations (5.27) - (5.30) are still

.. Wk
satisfied in the variables g in place of f%r-“
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Among the parameters of the arguments uk in the functions A and in the in-
trinsic energy U, there can be present’ various tensor or scalar variables
(particularly, entropy), which enter only through their values, while their
derivatives with respect to the coordinates and time do not affect the values
for A and U. Such variables can be regarded as constant parameters in (5.26);
their presence involves the appearance of additional equations in (4.12). In
the calculation of the complete individual increments of the function U, it is
nccessary to take into account all of the variable arguments in (5.15). In
particular, owing to the presence of entropy S among the pk—valucs, there wil.
appear a term of the form

oU

'3‘5‘" ds -7 (/S,

which for the reversibie processes is balanced with the external heat flow, cal-

. ) - . .
culated per unit of mass éwfg-“ . For the irreversible processes

7dS @dv* — dQw - dQ’' > 0; ‘ (5.31)

where dQ' equals the uncompensated heat.

Equation (5.31) expresses the secdond law of thermodynamics; the value dQ'
is associated with the mechanisms of dissipation of mechanical energy.

We note further that if the tensor of the impglse energy or the tensor Pij

is represented in the form of the sum of several tensors

P/ = P(l)ii -+ P(mii - ,P(:x;ij ey
it is then evident that the Poynting vector Q and the corresponding energy flow
dQ(Z) + dQ** also can be represented in the form of a sum.

If Q==1%53a=;b and Qidm* determines the flow of heat energy, it follows
that dQ** = 0. In the examples of the classical reversible models, we have
Q = 0 and dQ** = 0. However, in the new complicated examples of the models of
material media, and particularly in the case of interaction of the material

medium with an electromagnetic field, we had dQ** # 0.



Chapter 6. Pondermotive Forces of the Interaction of an
Electromagnetic Field with a Mobile Material Continuum

Let us consider the macroscopic continuous motion of a material medium,
interacting with an electromagnetic field. Let us take into account the inter-
action of a moving and deforming medium wi%h the clectromagnetic field, occa-
sioned by the presence, in the medium, of electrical currents and the phenomena
of electrical polarization and magnetization of the medium.

For the pondermotive forces acting from the side of the ficld upon the
material medium, various authors propose different equations and only for in-
dividual particular cascs. The possibility of a different definition of the
energy tensor of an impulse'of the electromagnetic field and the complexity of
the physical problem concerning the property of a material medium are the reasons
for the vagucnesses and the difference in the approaches to the treatment of this
problem.

For a description of the electromagnetic field in the medium, we intro-

duce the following electromagnectic characteristics:

D) S D S ] — 1 ' e

B, W, Deabigda?, B=M--4aM,  j, g, 6.1)
where E, H equal the vectors of the electrical and magnetic field intensity, D /K’
and B equal the vectors of the electrical and magnetic induction, P and M equal K

the vectors of electrical polarization and magnetization, j equals the vector
of the density of the electrical field and Pe eguals the scalar density oflthe
distribution of charges. The -enumerated parameters, introduced for the in-
ertial systems of coordinates, satisfy the closed system of Maxwell equations.
As is known, for writing the transformed Maxwell equations in any curvi-
linear accelerated moving system of coordinates, it is convenient to utilize

the tensor form of Maxwell equations written in the four-dimensional form in

a pseudo-Euclidean Minkowski space.




In the Cartesian coordinates xb, a7, &3, a% = t, the Minkowski metric space

is connected with the quadratic form

. ds? e a2t a0t d;r32~§- e it 6.2)
As is known, any transformation
PANp (0, yg’-‘!‘/,,’ gy, (6.3)
for which the fol}owing equation is fulfilled |
et W s, (6.4) |

is lincar and is siid to be the Lorentz transformation.

The three-dimensional ventors (6.1) can be determined in any inertial system
of coordinates. For the derivation of the formulas of the transformation of
these thrce-dimensional vectors into the four-dimensional Loren?z transformations,
it is necessary to introduce two antisymmetrical tensors of the second order, F
and H, the components of which in the inertial Cartesian systems are determined

by the matrices

| | -
. ‘ . /
0 L VA O (I
N ’ - ))3 O )’l Cl;:n'.
F=liPyli=l g —m 0 ey

__cE‘_ -"CEQ ""'CEa 0

0 H3 — 1 e
| — I3 0 HY ¢D,
H=llgl=l pe v 0 on,|
— Dy —cDy —ceDy 0 ’ (-2

The Maxwell equations can be written in the forms

rot {4 = 3 ,,(?_!
c J
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P

and

S - am e

rotIf== 3% :, 1 ap
| e ks

co or VI"I"‘ &= -4;.:!.]‘.‘
divD . [1:(@0

6.7)

‘where J1 = jl’ J2 = jz, J3 = js, J4 = ped?'and equals.the covariant components
of the four-dimensional vector of electrical current,

In the Lorentz transformation and in any transformations of only the spatial
coordinates to the antisymmetric tensors Fij and Hij’ we can set the vectors
E, H and B, D, correspondingly. :

The transition from the components of these vectors in the system ma, t to.
the analogous components of the vectors in the system ya, t' is derived from
the general rules for the transformation of the tensor components Fij and Hij‘
In distinction from the vectors E, H, B, D; the tensors F and H, their compon-
ents Fij’ Hij and the tensor Equations (6.6) gnd,(6.7) have meaning for any
noninertial system. In this manner, the tensor Equations (6.6) and (6.7) express:
the invariant physical laws independent of the choice of the system of coordin-
ates, which in the inertial systems of coordinates are represented by the Maxwell
equations.

In the noninertial systems of coordinates, fdr example in the system of
coordinates obtained from the given inertial systems with the aid of the
Galilean transformation in the Newtonian sense (without the Lorentz reductions
of links and time), the transformed components in the matrices (6.5) can also
be regarded as certain corresponding vectors E*, H* and B*, D*. However, these

can be regarded as the vectors E, H.and B, D only in an approximate sense in the
case of low velocity of the mobile system.

For the determination of the pondermotive forces, it is necessary to intro-
duce the tensor of the energy-impulse with the components Sij for an electromag-
netic field. The general equations for the components of four-dimensional pon- &
dermotive force in any system of coordinates have the form , o ,3‘,

..[o’, = ;—VjS:i.‘.
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The laws of the variation of impulse and energy for a system composed of the
field plus the material medium can be represented in the form

’

VT = Fi @ or  Ti@I8H =0 - (6.9)

where Q'i equals the components of the four-dimensional vector of external forces.

In many cases we can assume that Q'i = 0. The components of the tensor of the
‘energy-impulse of the medium and of the field, as of one system, are represented
by the sum .

s;’:ﬁ 7 ’-{-S}T'

In a general case, the tensor T } of the medium's energy-impulse character-

izes the physical properties and theiinternal interactions in the medium; this
tensor also has an electromagnetic nature since the internal stresses in a
material medium are caused either by the collision of the particles or by the
direct interaction of the atoms and molecules at distances which are large
compared with the dimensions of the medium elementary particles. As is known,
in both cases these microscopic interactions have an electromagentic nature.
According to the appropriate definitions of the model of a continuous medium,
the components Tij are connected with the metric tensor, with the vector of the
four-dimensional velocity of the medium's points, with the thermodynamic func-
tions of state, and with the characteristics of the dissipated mechanisms in the
medium?,

The division of the general tensor 'S, of the energy-impulse into the
sum Tij S J for a material medzum and a field is associated directly with the
separation of the total electromagnetlc force acting upon the conceptually-
separated particle of the medium, on the mass force and on the surface force.
The internal surface stresses in a medium are determined by the components of
the tensor T 8 (p -7 ), whlle the mass electromagnetic forces are deter-

mined by the vector components F = - VJS j

1The tensor T and its components T.J can be regarded as functions of the con-

stant and variable tensor and scalar parameters which determine the structure,
physical state and internal processes for infinitely small particles.
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It is evident that in an unequivocal determination of the tensor ’33 which
is physically signif :ant, the tensors Tij and Sij can nevertheless be deter-
mined dif{vrently and this is essentially associated with the various methods
of dividing one electromagnetic system into two iﬁteracting electromagnetic
systems,

It is significant that after the selection of Sij for the field the tensor
Tij for a material medium should be determined by a standard method with con-
sideration of the selection of Sij.

On the basis of what has been said, it is evident that we can‘establish the

tensor Sij with a known arbitfariness; this fact served as a basis for numerous
discussions and for the derivation by various authors of different equations for
the pondermotive forces, wherein this question has often been regarded quité
independently of the selection of the tensor Tij for a material medium,

Let us consider below the formulas for the pondermotive forces when the ten-
sor Sij in any system of coordinates is determ1ned according to the Minkowski
tensor equation:

N ? 1 " |
8= = [ Futt 5 SlFwit™ | .
| B o (6.10)

In a general case, the Minkowski tensor is nonsymmetrical, i:e.

Syt Siu

Utilizing Equation (6.10) and the conditions of antisymmetry for Fij and
Hij’ based on Equations (6.6) and (6.7), we obtain!l.

t i rpt} - ti Q ‘
I",::-—-Fuf "’fﬁ‘“ (FeN Y - H V‘J'ul- (6.11)

The tensor Equations t6.6) and (6.7) 2nd Formulas (6.10) and (6.11) are
valid in any mobile and in general curvilinear system of coordinates. |

Along with the tensors F and H, we can also introduce the ant1symmetr1ca1
tensor P, determined by the equalities

lIn the derivation of (6.11), it was considered that on the basis of (6.6),

: 1
HYYF =g HIVF.
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(6.12)

In an inertial system of coordinates, P is formed with the aid of the three-
dimensional vectors of electrical polarizaticen P(Pl, 2 3) and magnetization
Mﬂwl M M ). With the aid of the tensof'P, Bquation (6.11) can be written in
the following form: :

F‘ m%‘pll‘,‘ ‘*' "%‘YIFUV‘P”" pu".]FU.
3 (6.13)

where the first térm in Equations (6.11) and (6.13) determines the Lorentz fofce}
the second term becomes zero in the absence of polarization and magnetization;
and the symbols Vi denote the covariant four-dimensional derivatives.

If the system of reference is inertial, we can introduce a system of three-
dimensional vectors (6.1) in connection with the tensors F and P. 1In an in-
ertial system of coordinates, Equation (6.13) can be rewritten in the form

oot b i (1 2 s 2t n 1],

o1 (6.14)

(]

where the four-dimensional anti-variant components of the force F* correspond to
the spatial three-dimensional covariant force components. Equation (6.14) pre-
serves its form during the transition from the Cartesian to the curvilinear spatial
system of cdordinates. ,

In the inertial system of coordinates, using Equation (6.13) with i = 4,
we derivel: | ' |

Coph . oM 0 £ EghPi BN
F'c'-l'v-(D )+ By S By S — g (B ) |
. o (6.15)

lEquation (6.15) is obtained as the result of the vector equality for the Poynting

vector M= 56°°a="“ [N, which is valid for the various definitions of the
tensors ot the energyalmpulse of a field, particularly both for the Minkowski
and the Abraham deflnltions
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Equations (6.14) and (6.15) are directly suitable for determining the poh-‘ §
dermotive forces through a system of vectors (6.1) when the material medium is
quiescent or is in a state of inertial translational motion. In the latter case,
if the vectors E, P, B and M are determined in the iner;ial frame of reference
K associated with the body in Equation (6.15), the term (E, j) yields a Joule
heat, the term E‘,.Q;%E -- By .a_z_gf- can be regarded as a macroscopic flow of energy
from the field towards the bo&y owing to the microscopic mechanisms of polar-
jzation and magnetization, while the valuc.'%(ﬁ%1w~%lhﬂfa) can conveniently be
included in the intrinsic energy of the material medium.

It is easy to observe that in Equation (6.14) and in the second term in

(6.15), we can replace esverywhere the components of the vector B by the compon-

o T O S e

ents of the vector H.

If the body moves at an accelerated rate and becomes deformed, we can use
Equation (6.13) which is applicable in any system of coordinates, specifically '
in an attached mobile Lagrangian system of coordinates L, in which the three-
dimensional volocities of all points of the medium always equal zero.

In a number of cases, the components of the energy tensor of the impulse of
a material medium can conveniently be prescribed and considered in the attached
system of cooridinates L, whereas the components of the tensor Sij of the im-
pulse energy of an electromagnetic field can conveniently be prescribed in the
inertial system of coordinates K. '

In the application of the natural System K, we can introduce the three-dimen-
sional vectors of the characteristics of an electromagnetic field and the pertin-
ent Maxwell equations in a vector form. At the same time, in each point, the
three-dimensional vectors introduced for the natural system K in this point can
be regarded in the spatial coordinates of the attached system of coordinates L.

In this manner, the introduction of the system K can be regarded as an additional
method for determining the usual vector characteristics of an electromagnetic ‘ %
field. If for an electromagnetic field, we can resirict ourselves to the ten-
sors F, H, P and S, we can consider all of the tensors only in the attached system
of coordinates. In this case, the introduction of the inertial system K may be
necessary for determining the coordinates of the tensor éij [Equation (4.33)]

and of the vector of four-dimensional velocity. Generally speaking, one or the
other is necessary for determining the tensors of the impulse energy of an
electromagnetic field and of a material medium.
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For the pondermotive forces and for the eﬁergy influx, in a goneral case of

~ the motion of a medium which is being deformed, we can utilize Equations (6.14)

and (6.15) in which the vector components Ba, B“, Pa, M* are determined in a

spatial system of coordinates of the inertial system K. In Equations (6.14)

and (6.15), the coordinate axes in the system K can be regarded as a cdrvilinear.“

Equation (6.14) preserves its form when using the vectors L“u“,ﬁ“éa,ﬁféaand)ﬂ“éa ,

in the attached system of coordinates LI, ' )
If we introduce je p¢ [* and .n?“f:into Equation (6.15), it is necessary

to allow for the equation’ ~

o1t opo W
% Jua= (S )iat PP Gt o,

(an/“ )w (2“.’“) 4 A1 (e“, + 6%). (6.16)

Here & B and w = 1/2 *a":‘é—w%tﬁ ), equal the components of the three-dimen-
v

sional tensors of ratﬂs of deformation and eddy, determined for a three-dimen-
sional velocity vector v at the points of the attached sygtem L relative to the
system K. '

On the basis of (6.16), Equation (6.15) écquires the form

‘ 48
Py =98 = (B, D+ By 2 “’ + By 2 o (B - BELP) (e Gu)
| o ( LePByull®
“?(V 2 )

(6.17)

The scalar equation of energy for a system from a material medium and for
the field in any system of coordinates can be written in the form

l Wy, T = - u‘V;Sz’*i"“‘Q;‘ ' (6.18)

In order to modify Equation (5.18), if we assume

QU =T+ 4 (EsPP + By M%),
' o (6.19)

1This conclusion follows from the equations of the transformation of the vectors
(6.1) in the introduction of the systems K in each point of the medium, Equation
(6.14) are preserved dur1ng the transformation of the form 4 =4;(,1*4,a)and
t = t. |

g
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* in the case under consideration, the energy Equatidn (5.15) can be written in
the form

F 28 . te . Bgt
—;,%’"'” [ »”-ow - —% (fa‘-,;t? - ifﬁﬂ) gof = Ltns - Bomb) Vgl;“ -l

. n 0?‘“ a’:ln ‘ ] 1 € i Y
B 080 B O (R, ) = divQ +-= Q.
(6.20)
a ’u..u‘ R
Here we use the notation:&“mf—— , m“uﬂ—-' and  Q=Tp989. .In Equations (6.19)
¢ Q 9

and (6.20) and in the initial equations of conservation for models with irre-
versible processes in a material medium (separated from an electromagnetic
field) presented in this chapter we may either define the tensor components Tij
or tensor components Pij introdpced for the material medium in the preceding
chapter, or we may introduce additional terms to the correspondingly modified

value Q'4, preserving the definition of Tij in (4.22).

Equation (6.20) can be regarded as Equation (5.15), in which we take into
account the terms determining the interaction of a material medium with the
electromagnetic field, represented explicitly in Equation (6.20) by the terms
containing the vector components E and B, which in the general Equation (5.15)
can be regcided as included in the ovefall external specific heat flow Q'4.

The right-hand part in the heat flow Equation (6.20) is written in an
attached system of coordinates; the value U, defined by Equation (6.19), can be
regarded as the specific internal energy per unit of mass of the quiescence of
the material medium. The value U, just like the specific entropy S, the abso-
lute temperature T and dm = pdt3, can be regarded as a scalar value.

Along with the value U, it is convenient to use the specific free energy
F determined by the equation! '

F=U-TSs.

With the aid of the function‘F, Equation (6.20) can be rewritten in'the form

i

11n the following, we shall consider the reversible processes or only such
irreversible processes where the concepts of temperature and free energy are_
meaning ful.
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(dF)a= - S dr -;- [ = —3» oy (I' A [;.,m‘) gob -t ks "n“ + Bt mf"J (6’“;3, b @) dE

o Bodn® - 13, dm® -}- 72“ (£, J) di - 'é' divQ dt -+ Q,,. 0, di--T4dS.
: ' - ‘ ' (6.21)

Further, we shall use the three-dimensional treatment of Equation (6.21);
all of the valucs entering this heat flow equation will be regarded as three- .
dimensional scalars, vectors and tensors.

The vectors E and j are taken in the.patural system of coordinates K,
therefore the energy flow j-ﬂi,b represent Joule heat.

The energy flow *~~-d|v(2dt can be represented in the form of the sum of
the flow of heat energy and the nonheat energy, this inflow is expressed through
the flow of the vector Qdi=19D,dl at the boundary of a small particle. It
~is obvious that the vector.Q, just like the components 744, can depend only on
the same control parameters as the tensor of impulse energy Ti .

The energy inflow independent of the tensor of impulse energy, for in-

stance owing to the inflow of radiant energy, will be conta1ned in the term
- 0‘ d‘o

Equation (6.21) is satisfied for all possible processes in the medium
occurring under the effect of arbxtrary external forces in case of arbitrary
changes in the control parameters. Thus, Equation (6.21) can be used a.
basis of the conclusions of the equations of state and of the kinetic equations
being fulfilled during the arbitrary processes. These physical relationships
can be derived when the free energy F and the entropy increments ds = ds + d;s
are given as functions of the control parameters. (d,s is the entropy flow
through the boundary surface of the volume of a small particle).

Let us consider Equation (6.21) under the assumption that the free energy
F can be regarded as a function of the following parameters!:

lfurther, the components of all vectors and tensors are taken in an attached
system of coordinates. For the sake of simplification, we will drop the symbol
"." at the top.

The further discussions and the formulas are 51mp11f1ed if in place of the
system of control parameters (6.22), we take the system T, glJ' 827, m®, 85““ e’a’" ' ngaﬁ (3; |

equals the symbol of the covariant derivative in the space of the initial states)

In the following, we will not consider the clse of saturated magnetization,
where |m| = constant. 3 ;
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where Bup is the three-dimensional metric tensor of a certain initial state.
0,
Since ¥,g d b =gt g the functions F in the ary
nce V,.p==0, an Vﬁg“.,:z-—-a;?“-—'gm. gy -—&mlazy the unc;tr.ons n the argu-
k4 f o %Y
ments can be indicated as the time-related variables w—é?ﬂ-"- and as the con-

0 9 v, .
stants 848 and ' %4, (system [6.22] can be supplemented by other parameters and
o b
may include certain derivatives with respect to time; in these more general cases,

the development of a complicated subsequent theory is also possible).
Let us further assume that '

QF di == hpdas - Nfdms 1 B0 digy, + B dl, (6.23)

where the coefficients f;,%, N, A*Y and * depend or the parameters (6.22),

and in a general case upon certain other values.

It is easy to verify the validity of the equality

" dVpnt = Vgdns - ¥ dr:ﬂ,

where
Yy da. F) az. )
AP = —Tlygondgy,+ g gon (450 a0 g T2
4 . 03 3 93
an s
Ve diay = d 520 — g, T — dg, T, ,
atP ) (6.24)

On the basis of (6.22) and (6.24), Equation (6.21) can be written in the form

wdT 4. 2B dgas+ Q“’m.,ﬂ dt - 55 A% 4 %y dmS - OB dVpno + TP dVpms -
aga 1 1 & 0'
] ay v ! D VP S et — —
+ P d-———-—-—aap -9 Vas..)"dt-;-—i (E, j) df L Q‘ dt—~TdS = 0, .

[ 4

(6.25)

P

-

”»

Te

where ¢, ¥, Q% Yuy %y O 8, =6 and ey . are determined by the equations:
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pdﬁ___pﬁa ' Eulﬁ ESps }-Bn L[}%-_BB“,IG__QQQGS’ (6.26)

3 or *
 Bg = .ET b V@Ilar‘w Yoy Rof= - [ .a.gp_._ L QGG“'

B e e L PN By ) - .._0£ =

am + Vr,Va Py Nob = o mT”PQ"Ga'
g oF '
NV o ~4 (R — RPY) ze o
P

+ (R — R - (R 2. R) 28] -
-f--%- [(NYP— NBY) o L (V9P V%) v o
+ (N2 - N®Y) nib). qB0Y,

J

aB aB

The tensor ¥ = is symmetrical while the tensor @ 1is antisymmetrical. The
compornents ARaY and 8% are symmetrical with respect to the two last indeces.
If we assume that the energy 1nflows-—-V@n-dt and '—-Q,d: correspohd
to the heat crnergy 1nflow in the case of the reversible and certain irreversible
processes (for example, in the consideration of the heat conductivity and radia-

tion), the following equation will be fulfilled:

T dS = ._(;.;, ,).__.Q“u----vp de =dg. (6.27)




.

If we assume in addition to this that the values‘%'gma Q% xa,za,eaﬂ :a’
and @BQY determined by Equation (6.26) are independent of the time derivativas!
of the cuntrol parameters (6.22), then using Equation (6.25) and the assumption
concerning the linear independence of increments of the control parameters with
respect to time2, we obtain

‘p—“"a‘;—“p '8 -—:’/,“-;:. egﬂ s E“ﬁ::q)ﬁavzzo,

(6.28) '

In this manner, based on (6.27) and {(6.28), we find that the Equation (6.26)
determine the equations of state for a material medium. These equations comprise
a generalization of the standard equations in the theory of elasticity for ths
case whore the free energy depends on the gradients of the polarization vector,
the magnetization vector and the gradients of the tensor of deformations.

If F depends only on 7, ;am g=p, 2% and ma, and does not depend on their
gradients, it follows that I

Rob = N = A0ve 0,

and in this case, the vector components Qdt, Qadt = 0%dt determine the inflow
of heat, while Equation (6.26) conveft'to the equations of state of the theory
of elasticity with allowance for electrical polarization and magnetization in-
tensity.

The further complication of the models of a continuous medium with allow-
ance for the electromagnetic effects in the cases of reversible and irreversible -
processes can be connected with the.consideration of the dependence of the fac-
tors ¢, ‘1’“5 Q“S, Aar %a, G) and <l>B Y in Equation (6.25) on the time
derivatives of the control parameters with allowance for the linear dependence

1"&

of these derivatives (the nonholonomoic state is physical), and also with the
introduction into Equation (6.27) of uncompensated heat in the case of the
irreversible processes. Certain concepts along these lines can be found in
[230], [162].

i
4
3
%
i
5
]
i

IWhat is only significant is the assumption concerning the independence of the
time derivatives. The hypotheses concerning the dependence or independence of
the coefficients of any space derivatives are not necessary.

21t is possible to construct models in which the time derivatives of the control
parameters can be linearly dependent [162].
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LISTING OF CERTAIN REPORTS PERTAINING TO THE GENERAL THEORY OF
MODELS OF CONTINUOUS MEDIA

In the reports given in this list, one can find more complete references to

the pertinent literature.

This list was compiled with reference to the indicated branches of mechanics.

In certain reports, problems from various branches are considered; nevertheless they

are cited only once in this list. The author recognizes that the listing is quite
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