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ABSTRACT

Progress in research on the application of signal
detection theory to optics is described, The quantum-
mechanical threshold detector for an incoherent object
observed against a background of thermal light has been
derived and its performance analyzed. Curves of detec-
tion probability versus signal strength for coherent and
incoherent optical signals in thermal noise are presented.
A method for calculating cumulative probability from a
moment-generating function is proposed. The restora-
tion of degraded images is treated as a problem in

statistical estimation theory.
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I. Detection of Incoherent Objects

When viewing a scene, an optical instrument such as a telescope
pérforms two functions, deciding whether objects are present in the scene
and estimating parameters, such as location and brightness, of the objects
it discovers. The performance of the instrument with respect to the first
of these tasks can be measured by the probability that it will detect a cer~
tain test object as a function of the size and contrast of the object, for a
fixed probability of a false alarm (saying the object is present when it is
not). It is useful to compare this detection probability with the maximum
probability of detecting lthe object by any instrument subjec}: to the same
conditions of background radiation and admitting light through an aperture
of the same area.

A natural object normally emits or reflects incoherent light over a
spectral range whose width W is much greater than the reciprocal T-l of
the time during which it is observed. In the neighborhood of the object, the
emitted or reflected light, under most conditions of radiation or illumination,
possesses negligible first-order coherence. The light is propagated for
a great distance to the aperture of the viewing instrument, which usually
subtends such a small solid angle from the object that the object light
possesses some considerable degree of first-order spatial coherence over
the aperture. Mixed with the object light is background light of a thermal
or quasi-thermal variety, which can be considered a type of interfering

noise. The frequency spectrum and angular distribution of this background



light are much broader than those of the light from the object.

The detection of the object can be treated as a problem of hypothesis
t>esting. The task of the optical instrument is viewed as one of choosing
between two hypotheses, (HO) that only background light is entering the
instrument and (Hl) that in addition the light contains a component coming
from the object, One seeks that design which will permit correct choice
of hypothesis H1 (a detection) with maximum probability Qd’ for a fixed
probability QO of choosing H1 when HO is true (a false alarm). !

In a previous paper2 the detection of an incoherently radiating object
in the presence of background radiation was treated under the classical
assumption that the electromagnetic field at the aperture of the instrument

is completely measurable. The maximum detection probability was found

to depend on an equivalent signal-to-noise ratio

D = (E/N) (TW) ¥ 7, (1)

where E is the total radiant energy received from the object during the
observation interval (0, T), N is the spatio-temporal spectral density of
the background, W is the bandwidth of the object light, and & is a spatial
factor that equals 1l when the object light possess full first-order coherence
at the aperture, but which decreases to 0 with the degree of first-order
coherence, If Tis the effective temperature of the background light,

N =K7 , where K is Boltzmann's constant,

3
A second paper” treated the detection of an incoherent object whose



light has passed through a turbulent medium before reaching the aperture.
A similar dependence of the detectability on the degrees of spatial and
temporal coherence of the object light was discovered.

Much of our research under this grant during the past few months
has been devoted to extended this theory to cover quantum-limited detection,
The results are described in a paper, '""Detection of Incoherent Objects
by a Quantum-Limited Optical System', attached to this report.

In this study we no longer assumed that the field at the aperture is
classically measurable., Instead, it is subject to the laws of quantum
mechanics, which limit 'the extent to which it can be measured and require
that the hypothe sis-testing problem be attacked by the methods of quantum
detection theory.

Again the detectability of the object was found to depend on the
number M’ = TW /% 2 of effectively independent spatio-temporal degrees of
freedom of the light from the object as received at the aperture during the
observation interval (0, T). An important parameter is the product 4M/
where

-1
W‘ ~ (eh\)/KT— 1) (2)

is the mean number of thermal photons per mode of the field, h is Planck's
constant and v is the central angular frequency of the object light.

For an object radiating light with a rectangular spectrum of width
W, the detectability of the object was found to be governed by a cumulative

Poisson distribution with mean #M’ + Ns’ where NS =E /hv is the mean



total number of photons received by the object. In general, A < < 1, but
M’'>> 1, so that *M’ may be of the order of 1. As . # increases, the
gbverning distribution becomes approximately Gaussian, and detectability
depends on a signal-to-noise ratio

D=N_ L MW (N+ 1)]’1/2 (3)

When K9 >> hv (the classical limit), W >>1and this signal-to-noise ratio
becomes equal to the one in Eq. (1) derived before.

In Figs. 1-3, we have plotted the probability Qd of detection versus
the mean number Ns of 'signal photons for three values of the false-alarm
probability QO. In Figs. 4-6 we plotted Qd versus the signal-to-noise
ratio D for the same false-alarm probabilities. In these figures the curves
are indexed by the mean total number HM’ of thermal photons.

When the object spectrum is not rectangular, the distribution
governing detectability is no longer Poisson. For a Lorentz spectrum,
more typical of naturally radiating objects, the moment-generating function
of the distribution was worked out. Numerical methods will be required for

evaluating the false-alarm and detection probabilities.



II. Detection of Coherent Optical Signals

In laser radar and communication systems the transmitted pulses
i)ossess a high degree of coherence. The performance of such systems
depends on how well such pulses can be detected in the presence of back-
ground radiation. The maximum probability of detecting a coherent optical
pulse, for a fixed false-alarm probability, was calculated as a function of
the signal energy and the background level. Details and results are given
in the attached paper, "Performance of an Ideal Quantum Receiver of a
Coherent Signal of Random Phase. '

The optimum detector of such a coherent signal of random phase in
effect filters it by creating a field mode matched to the signal field itself.
It then counts the number of photons in that matched mode when it is
exposed to the incident light, a number that has a Laguerre distribution

when the signal is present and an exponential distribution when it does not,



III., Ewvaluation of Detection Probabilities

An optical or radio-frequency receiver makes its decisions whether
a signal is present by comparing with a fixed decision level % the value of
a certain quantity, or 'statistic', x, which it generates. The false-alarm
probability QO is the probability that x exceeds the level % when no signal
is present; the detection probability is the probability that x > X when the
signal is present.

In many cases it is difficulf to calculate these probabilities, The
most that can easily be done is to determine the moment-generating
function (m. g.f.) of x, which is the average value of e°* as a function of s.
(For s =iw this is the familiar characteristic function.) What is needed
is a2 method of calculating false-alarm and detection probabilities from the

m.g.f.'s of x under the two hypotheses H_ and Hl.

0

Such a method, based on Laguerre functions, has been worked out
and tested with some simple distributions. Details are given in a paper,
"Approximate Calculation of Cumulative Probability from a Moment-
Generating Function, '" attached to this report. The method is to be used
in calculating the detectability of an incoherent object having a Lorentz
spectrum, a problem mentioned at the end of Section I.

An alternative method is also being tried. It involves expanding a
rectangular pulse in a series of orthonormal functions composed of ex-~
ponential functions. Computational difficulties have so far prevented our
approximating the rectangular pulse cloéely enoﬁgh to permit accurate

calculation of detection probabilities.
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IV, Image Restoration‘as an Estimation Problem

When a scene is viewed through the atmosphere, turbulence causes
(iistortion that impedes identification of features in the scene, Background
light further degrades any image that can be formed, and if the light from
the scene has passed through apertures and lenses, diffraction and aberration
introduce additional distortion. An important problem in optics is to dis-
cover, by measuring the light at some plane in the receiving optical instru-
ment, the nature of the original scene. It is often called "image restoration.

Image restoration is really a matter of estimating the radiance of the
object plane in a composite optical system made up of that plane at one end,
the intervening medium, the aperture of the observing instrument, any
lenses and stops it may contain, and -~ at the other end -- an image plane.
How accurately that radiance can be estimated depends on the amount of
corrupting background radiation, on the turbulence of the medium, and_ on
the aperture size and other characteristics of the optical instrument, In
particular, one would like to know how accurate an estimate can be obtained
by any instrument in which the light is taken in through an aperture of given
shape and size. To attack this problem, one must draw upon statistical
estimation theory. Here we shall describe the progress that has been
" made toward a solution.
1. The Optical Field.

We use the same notation and make the same assumptions as in

Reference 2. In particular, the radiance distribution of the object plane



is B(u), where u is a Z-vector of coordinates in that plane. For simplicity
we consider a quasimonochromatically radiating object, and we let the
point-spread function between object and aperture planes ~-see Fig. 7 ~~ be

S(Z, 2). In the absence of any turbulence,

ik . ik 2

£, u) =5 exp ((kR+5 [z -ul?), (1.1)
where k is the propagation constant of the object light and R is the distance
between object and aperture planes.

‘Let ‘YS (u, z;t) be the scalar light field at a point (u, z); then

” 2
¥ (r, 0;t) :j S(r, u) ¥ (u, R;t) d° u (1.2)
s = ~ ~7 Tg '~ ~
O

is the field at the aperture z = 0 in terms of that at the object plane z = R,
Here "O!" indicates that the integral is carried out over the object plane.

The object plane is assumed to radiate completely incoherently, and

¥ (u, R; t)is a circular complex Gaussian random process of mean 0 and
5 ~ :

autocovariance functions

als

1
—i <YS(£1’ R’ t].) YS (£2’R;t2)> -

nkTE Bz ) 8z, - ) Xt - t)) (1.3)

Here ¥ (1) is the temporal autocovariance function of the object light,

e

% (1) = J X (w) e dw/2m (1. 4)
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where X(w) is the temporal spectral density of the object light, with angular
frequency w measured from the central fre‘quency Q = kc of the object spec-~
trum. It is so normalized that x (0) = 1.

After propagation from object plane to aperture, the field of the object

light is as given by Eq. (1 2), and its autocovariance function is
1 sk
Ps (.5 ik tl; 5_2’ tz) = 2 <ws (,}_'1: 0; tl)YS ("1:2,’ 0; t2)>

= (PS (,1:_1’ 32) X(tl - tz)s (1- 5)
Whére

p (r,,r -):nk'zj S(r,u)s*(r , u) B(u) a%y. (1. 6)
s'~1" ~2/ o I~ =~ PR

If turbulence is present, the right-hand side of Eq. (1. 6) must be further
averaged with respect to its ensemble of configurations. For simplicity
we assume in the sequel that there is no turbulence.

The field ‘i’s (r, 0;t) at the aperture is corrupted by background
radiation whose field ‘i’n (r, 0;t) is circular complex, Gaussian, and -- we

postulate -- spatially and temporally white. Its autocovariance function is

ole

1 %
5 (Y e Y 2’ 05 8,)0= @ (z ) b5 2, t))=

N5(51’~1—'2) 6(1:1 k-tz). (1.7)
The net observed field is
V(50 =¥ (5 00+ ¥ (z, 05 b) (1.8)



its autocovariance is the sum
i(\f(r t)‘i’*(r tyy =9 (r, r ) x(, -t,))+
2 e~ 1 ~2’ 2 5 ' ~1 ~2 1 2

P, (X B 2y B -9
This total autocovariance function depends through Eq. (1.6) on the radiance
distribution B(u). The problem is to estimate B(u) as accurately as possible
from measurements of the field ¥(r, t) over the aperture A during a fixed
observation interval (0, T). The problem is equivalent to estimating para~

meters of the covariance matrix of a Gaussian random process on the basis

of measurements of the process.

2. Maximum Likelihood Estilrnatimr;I<
The radiance distribution B(u) is to be estimated by the method of

maximum likelihood. The likelihood ratic for detecting an object having

the radiance distribution B(u) is written down in terms of the field ¥ (r,t)

at the aperture A during (:0,T). The maximum-likelihood estimate B(u) is

that radiance function for which the likehood ratio takes on its greatest value,
In order to calculate the likelihood ratio we sample the field ¥ (r, t)

by expanding it in a series of functions ’ﬂn(_g, t) orthonormal over A and

(0,T),

T
« : % 2
&IO Gz 01z a6 (2.1)

“The calculations in this section were carried oui by Mr. Y. M, Hong.
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The coefficients of the expansion are

T o
% 2
v o= F@e e 0dy (2.2)
A DO
and the field is
Yz, =) ¥ N (nt) . (2. 3)
- |

We arrange the coefficients in a column vector ¥ , whose Hermitian—trans-

+ .
pose row vector ¥  is

The coefficients are circular complex Gaussian random variables with

covariance matrix

sk

1
,=5 XY ) =9+, (2. 4)

where © is the covariance matrix of the samples of the object field and

@ =NL, (2.5)
with I the identity matrix, is the covariance matrix of the samples of the
background field.

The joint probability density function (p. d. f.) of the samples ‘l’n is

_ -1 1+ -1
p(¥)=M|detg, |7 exp(-5¥ @ ¥) (2.6)

where M is a normalization constant. If there were no object present, their
joint p.d.f. would be

vhe Tly), 2.7)

N[

-1
Py (¥) =Mldetg | exp (-
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which does not depend on the radiance distribution B(u). Maximizing
pl("ii) with respect to B(u) is therefore the same as maximizing the likeli-

hood ratio

p, (¥) - -
1 -1 1 * -1 -1 i
= = det § —— - H
= o [det o o Texpl 5 ¥ (0, -0 L
(2. 8)
or its logarithm. The reason for introducing Py (Y) is that it is easier

to take the logarithm of the likelihood ratio A (Y) to the limit to an infinite
number of samples than to do the same to the p. d. f. pl(}f) alone. We shall,
however, postpone this passage to the limit,

A natural source has a bandwidth W so great that for ordinary
observation intervals (0, T), the product TW is very large, TW >> 1, As
discussed in reference 2, the object light can then be thought of as composed
of so large a number of effectively independent degrees of freedom that the
signal-to-noise ratio for each is very small. As a result, the logarithm
4n A(Y) of the likelihood ratio can be expanded in a series, the so-called
"threshold expansion''.

We write

-1 -1 -
g, =(g +to) =2, @T+te o )

=N "I -N ¢ +N ¢ -... (2.9)
by virtue of Eq. (2.5). Similarly
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-1 -1
£ n det (Qn 2, )y =-Tr &n(ggn cR_l)

=-Tr 4n (AI,+.59.n'-1$P_S) =

-1 1 1 -1
—Tr(gﬂ 9s—‘é-'g‘)an SRS% Es+"')

1 -1 2
Tr(p -5 N 9 "+...) (2. 10)

:_N—l

where ""Tr'" stands for the trace of the matrix following it. As a result, the

logarithm of the likelihood ratio is

U=%nA(g):%- NZ vyt e cn Tt iy

—~— ~tg ~+ s ~

-1 1..-2 2 (2. 11)
-N Trgp_s+2N Trgs -

When this expression is converted back to a spatio-temporal
. 2 . . .
representation, the sums involved in the matrix products and traces go

into integrals over A and (0, T), and the result is

O P L P PRI
ATA 00

I 1 2 eT
j - - — ) - X
| @ (zp 2 o) X (- t) - JA d xg ) 0 dtg @ (xy, r3) x (&) -t,)

—

-1 T 2
-N p(r, r) x(0)d rdt
o

1 -2 2 2 T T | 2 2
+= N ffd r.d J dt, dt, |o _ (x., x )" [x(t,~t)]
2 L ZJOO 1 45 1921 1%

"'+uao (2-12)
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After substituting from Eq. (1.6), we obtain for the logarithmic likelihood

ratio
2
U= M(u) Bwa" u
O
1 2 2
-] [ v B B@a edy ... (2.13)
00 ‘
where
T.T
M(u)=-l—ﬂk—zN-2J I bo(u, t)x(t -t,) X
-~ 2 ~7 1 1 2
0 0
b, t,) dt dt, - (AT/4mNR"), (2. 14)
with
%k 2
plu, ) =] ¥zt 8@ v a (2. 15)
A
and
L(g,z)=él—ﬂ2N-3k—4V(z,g) X
T,T
[ W ve ) nw, t)dede,
0 0
2 =2 -4
St N v, (2. 16)
with . " 2
Vg =] sz, ws(rwd (2. 17)
A
and T

r.
Y (t,t,) _Jo X () - t5) x(ty - t,) dt,

o 2 (2. 18)

o JI i}-i (w):i exp [iw(tl—tz) ldw fom

-0
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Here the bandwidth W has been defined as2

” 2
W=lx(0>|2/j % () |% ar=

© 2 @®
J X (w) do 27 /I X () |% do/2m, (2. 19)

and the assumption TW >> 1 has been used.

If we cut off the series in Eq. (2.13) for the logarithmic likelihood
ratio after the second term, the function B(u) that maximizes U is the

solution of the integral equation

M(w) = [ Liwy) Bly) dy. (2. 20)
O

The data appear in the function M(u) and the kernel L (u, v ), both of which
depend on the field ¥( r, t) at the aperture. When TW > >1, the terms neg-
lected in Eq. (2. 13) will be insignificant.

It was shown in reference 2, Section 5, how the function M(u) could
be generated. The aperture is provided with a lens focusing the object plane
on to a rectifying surface, and the light passing into the aperture is filtered
by a frequency filter whose transfer function, measured with respect to
the central frequency Q = ke, is proportional to lX(w) Il/z, with an
arbitrary phase factor., If the surface has a quadratic characteristic, the
response at a point corresponding to u will be proportional to the first
term of M(u) in Eq. (2.14). The second term is a known constant. If a

similar method could be found for generating the kernel L(;E., '_§_r) , given by

Eq. (2.16), it would be unnecessary to measure the field ¥ (£, t) itself.
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The integral equation (2.20) differs from the usual one for image
restoration in that the kernel L(u, v) depends on the data -- the field ¥ (r, t)

-~ and is hence random., Its mean value is
2 -2 . -4
ElL(y, v)]=n" Nk (T/W)|V(y, z)lz + L (w ¥), (2.21)

where L1 (u, v ) depends on the object radiance B(u) and is much smaller,
when TW >>1, than the first term. If we neglect L1 (u, v), the integral

equation (2. 13) becomes

J'Il:[‘T s
o bo(u, t_l) x(ty=t)) w(u, t,)dt, dt,

2

- (k2 ATN/2m Rz) =

20k "% (T /W) I |V (4, v) 12 B(v) &y . (2.22)
o

The expected value of the left-hand side of this equation, which now is the
only term depending on the input field ¥ (z, t), is equal to the right-hand
side.

If we remember that the left-hand side of Eq. (2.22) is obtained by
frequency-filtering the incpming light and passing it through lenses that
focus the object plane on a rectifying, or flux—.measuring, surface, we
realize that Eq. (2.22) corresponds to the usual integral equation for image
restoration. The kernel IV(E, v) [2 is proportional to the incoherent

point-spread function for this system. All the difficulties of solving that

16



integral equation affect this one as well. The original integral equation, eq.
(2. 13), on the other hand, has a modified kernel that depends on the input.
Whether it can be solved in a way that avoids the difficulties of solving

Eq. (2.22) remains to be seen.

3. Solution of the Integral Equation for Image Restoration
As mentioned in Section IV.Z2, image restoration generally involves

solving an integral equation that can be written as
2
T=[sE-x) T, (3. 1

where J(x) is the observed illuminance in the image plane of some optical
system, JO(E) is the illuminance of the '‘true! or '"geometrical' image that
would be seen if there were no distortions due to turbulence, diffraction,
or aberrations, and S(x) is the point-spread function of the optical system,
assumed isoplanatic. From measurements of J(x) one would like to
determine Jo(g) .

Actually, these measurements are subject to random errors, which

can be represented as a spatial noise N(x), and Eq. (3. 1) should be written

32 = [S(x - 2) 3 (x) a¥x 4+ N(z). (3.2)

Since the noise N(x) is unknown, the integral equation cannot be solved
for Jo(g_c) exactly., Conventional methods, such as Fourier transformation,
that would apply to Eq. (3.1), actually amplify the noise, which usually

overwhelms the solution one is looking for., Since similar integral equations
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arise in many branches of physics, such as nuclear and optical spectroscopy,
methods for solving them when the data -- here J(x) -- are corrupted by
noise and experimental error are of great interest,

Since the noise N(x) is a random process, the best one can do is to
estimate the solution JO(E)' Estimation in the least-squares sense has been
suggested for image restoration and other applications of the integral
equation (3. 2). 6 Under the supervision of the principal investigator, Charles
Rino, a NASA trainee, is studying numerical methods for estimating the
solution of such an integral equation when the data are provided only at a
finite number of discreté values ofx . In particular, he has been studying
image restoration for bandlimited spread functions S(x) in one-~dimension,
with particular attention to the use of expanéions in prolate spheroidal wave
functions. He has shown that with continuous data, if the noise is bandlimited
as well, the data can be extended from the finite interval to an infinite one,

whereupon the same minimum mean-square error can be attained as when
the original data are given over an infinite interval. Details are given in
his paper, '"Bandlimited Image Restoration by Linear Mean-Square

Estimation, '" attached to this report.
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V. Conclusion

The performance of the quantum threshold detector of an incoherent
object in the presence of thermal radiation shows a distinct dependence on
the form of the object spectrum. Numerical calculations of detection prob-
ability are needed to determine the significance of this dependence. Methods
of carrying them out will be investigated.

The quantum threshold detector, defined in terms of maximizing a
certain signal-to-noise ratio, is in some sense an approximation to the
optimum detector in the limit of small signal-to-noise ratio and large
time -bandwidth product, but the relation is not so clear as in conventional
detection theory. ’fhis point will receive further study.

Work on estimation theory in connection with image restoration
will continue, and additional topics described in our proposa18 for renewal

of this grant will be pursued as time permits.
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I is an optical instrument for processing the field ¢y (r,t) on plane A.



