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CHAPTER I 

Introduction 

Section 1. Definition of the Far-Infrared Region 

The region of the electromagnetic spectrum with which this 

thesis is concerned lies between the near infrared and microwave 

regions. For this reason, the region is referred to  a s  the far- 

infrared o r  submillimeter region. In terms of wave length, the 

region is usually defined a s  being from 20 microns to 2000 microns 

(0.020mm to 2mm). Since the energy associated with an electro- 

magnetic wave is proportional to the spatial frequency of the wave, 

it is often convenient to define the region being concerned in units 

of inverse centimeters. Spectroscopists have traditionally defined 

the spacial frequency or wave number as k = l /h in cm 

in contrast to the definition used by physicists, e .  g., k = 2 a h .  In 

spectroscopic notation, the region concerned lies between 5 cm 

-1 units, 

-1 

-1 and 500 cm a s  shown in Figure 1. A discussion of the use of 

wave number in radiation formulas can be found in Reference 1. 

Section 2. Generation of Fa r  -Infrared Energy 

In terms of energy sources, there a re  currently three types 

being used in the far-infrared. Traditionally, the region has been 

approached from the near infrared side by developing new thermal 

sources, and from the microwave o r  millimeter region by spark 

oscillators and harmonic generation. Recently, submillimeter gas 

lasers  have been developed and are being applied to far -infrared 

spectroscopy. 

A. Thermal Sources 

Of the many thermal sources investigated during this 

century, only four have enjoyed popular use in the far -infrared, 

1 



2 



3 

The Welsbach mantle, globar, and Nernst glower sources a re  

usually used for wavelengths less  than 100 microns, and the high 

pressure mercury a r c  lamp in quartz envelope for longer wave- 

lengths. 

The Welsbach mantle consists of a cloth net impregnated 

with thorium and cesium oxides heated from within by a gas flame. 

It produces much less  radiation below 6 microns than above, and 

therefore, is a valuable source for the far-infrared. Rubens and 
2 3 Wood used this source to 130 microns. Lord and McCubbin have 

made excellent use of this source out to  100 microns with only 

slight modification. 

The globar is a rod of bonded silicon carbide in the form of 

a cylinder about 2 inches long and 3 /16  inches in  diameter. 

temperature is developed and maintained by joule heating. 

erates a radiation field with an almost continuous spectrum to about 

15 microns. The Nernst glower is a mixture of zirconium, yttrium, 

and thorium oxides in the form of a hollow rod approximately 25 mm 

long by 2 mm in diameter. It must be initially heated by using an 

external resistance coil, i t s  temperature being maintained by in- 

ternal resistance heating. Its spectrum is similar to that of the 

globar. 

use. 

Its 

It gen- 

Its low mechanical strength makes the globar difficult to  

The globar and Nernst glower a re  discussed in Reference 4. 

The high pressure quartz mercury discharge tube is the 

only source with appreciable energy in the region of wavelengths 

greater than 100 microns. The quartz envelope is fairly opaque 

from 10 to 50 microns. This source, which has been used a s  early 

a s  1911, is discussed by McCubbin and S i n t ~ n , ~  and Lord and 
2 McCubbin. 

and Gebbie. 

4 

It has been compared t o  the globar by Plyer, Yates 
6 



4 

Since these sources follow the black body radiation curve, 

their intensities a re  very low at long wavelengths, and hence, great 

difficulty is realized in isolating the far -infrared energy from the 

much more intense shorter -wave energies. 

B. Electrical Sources 

10 

in the form of a spark oscillator consisting of two electrodes spaced 

very closely together and immersed in oil for cooling. 

sulting radiation had a fundamental wavelength of 6 mm. 

investigators found that the radiation from these spark oscillators 

was rich in harmonics.11’ l2 By 1925 Nichols and Tear had con- 

structed a similar device which generated energy at . 2 2  mm o r  220 

microns, which was well into the far-infrared. The main disad- 

vantage of this type of source is the characteristic discrete rather 

than continuous spectra, which is more desirable spectroscopically 

speaking. Since the electrodes were very small, it was very diffi-  

cult to increase the energy output without destroying them. 

next type of electrical source investigated was the “mass 

radiator” , 14’ 

oil, through which was sent an electrical spark. 

were found to radiate energy with wavelengths from 129 microns to 

5 cm. 

The first electrical sources were investigated by Lebedew 

The r e  - 
Later 

1 3  

The 

These consisted of metal particles suspended in 

These sources 

The electrical type source most recently being investigated 

is the harmonic generation of microwave energy using the currently 

available high energy klystron and magnetron sources, in con- 

junction with solid, liquid, o r  gaseous non-linear media. 



5 

Section 3.  Isolation of the Far-Infrared Region 

A. Pre World W a r  I1 

The long wavelength infrared region was first isolated by 

Rubens and Wood 2' l6 in  1911. 

which consisted of utilizing the variation of index of refraction of a 

quartz lens with wavelength. 

wavelengths near the center of the image on a screen where a hole 

was placed allowing only the desired energy to  pass through. 

They used the focal isolation method, 

The lens focused only the longer 

The diffraction grating came into popular usage during the 
17 1920's. First, Rubens constructed a spectrometer using wi re  

gratings. 

parallel w i r e s  supported on a metal frame, and were used as t rans-  

mission gratings. This instrument was used from 80 to 400 mi-  

crons. Soon afterwards, Czerny, 18' '' Barnes" and Cartwright 

and Czerny 

structure in the far -infrared. 

These gratings consisted of closely spaced long thin 

2 1  used the same type of appartus to study molecular 

The next improvement of the far -infrared instruments came 

in the form of lamellar gratings.22 These being used in reflection 

had spectra at least four times the intensity of that of the wire grid. 

Instruments using this type of grating were built and used by 

Kuhne, Cartwright and Czerny, 

and Hopf. 

crons. 

spectra , 

23 24,25 26 28 

Some of these instruments were  used out to  500 mi-  

Both the wire  and lamellar gratings exhibit only odd order 

Koch, Maar ,  27 Dahlke 
29 . 

The first high resolution far -infrared spectrometer was 

This was a very large instrument, 30,31 developed by Randall. 

using echelette gratings ruled on the University of Michigan ruling 

engine. The large mir rors  and gratings used were able to produce 
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-1 resolution of . 5 cm 

was used to  obtain high resolution spectra of water vapor. 

between 18 and 200 microns. This instrument 
32 

Al l  of the above spectrometers used various types of filter- 

ing systems to eliminate the overwhelming visible and near infrared 

energies. For  transmission filters, crystalline and fused quartz, 

paraffin, turpentine o r  camphor soot, and selective interrupting 

with KBr and KI crystals were  used. Since ac detection methods 

were not developed yet, these interrupters were hand operated. 

Restrahlen crystals such as KBr, KI, NaC1, KRS-5, TlC1, CaF2, 

TlBr, e tc . ,  were used extensively to isolate various wavelength 

bands by selective reflection. 

crystals may be found in References 33 and 34. 

Reflection curves fo r  these and other 

B. Post World War I1 

35 In 1947 White introduced the concept of using echelette 

gratings as  broad band reflection filters for  the infrared. 

merely reflected the longer wavelengths into the zeroth order 

spectrum a s  would a plane mirror,  and "scattered" the shorter 

wavelengths out of the main beam of the instrument into higher 

order spectra. The first spectrometer in the literature t o  use 

these filters was  built by Oetgen, et al,36 (1952).  This instrument 

also used only echelette gratings for  dispersive elements. 

short wave energy was eliminated by carefully selected filter com- 

binations for  use in conjunction with each grating. 

These 

All  

7 McCubbin and Sinton (19 52) designed a very compact spec - 
trometer which covered the range from 100 to 700 microns. 

instrument used a combination of focal isolation and echelette 

gratings. 

This 
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3 In 1957 Lord and McCubbin described a small grating 

spectrometer for the range of 5 to 200 microns. 

used echelette gratings in a double pass arrangement, selective 

This instrument 

chopping, 

achieve a 

In 

and various transmission and reststrahlen filters to  
-1 resolution of . 5 to 1 cm throughout its range. 

the same year, Yoshinaga, et al.,37 described a large 

spectrometer which covered the very wide range from 18 to 1000 

microns. This instrument used six echelette gratings, grating 

filters, reststrahlen filters, sooted polyethylene, crystal quartz 

and selective chopping to obtain the excellent resolution of better 

than , 5  cm 

matic instrument to use the Czerny -Turner3* monochromator 

arrangement, 

-1 throughout the entire range. This was the first auto- 

Since 1961, many new types of filters have been developed. 

Using carefully selected reststrahlen crystal powders suspended in 

transparent sheets of polyethylene, Yamada, et al. ,39 developed 

excellent transmission filters with cut -off wavelengths that could be 

shifted with choice of crystal powders. 

40 Metallic mesh filters were proposed by Renk and Genzel, 
41 Mitsuishi, et a l . ,  

used in reflection and a re  similar to the reflection-grating filters. 

and Vogel and G e n ~ e l . ~ ~  These filters a r e  

devised the most convenient type of 

These filters a r e  transmission-grating 

43 -46 In 196 3 &Toller 

filter for the far -infrared. 

filters made by grooving polyethylene sheets. 

length is determined by the grating constant as in the reflection- 

grating filter. 

special position in the spectrometer, and hence, a re  very convenient 

The cutoff wave - 

Being transmission type filters, they require no 
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to use. These filters can be used uniquely t o  isolate the far-infrared 

region. Spectrometers using these filters have been described in 
45,47 the literature. 

During the last ten years, many papers on far -infrared 

technique have appeared in the literature. F o r  a comprehensive 
48,49 bibliography on the far -infrared, see Palik. 

Section 4. Detection in the F a r  -Infrared Region 

There a re  basically only two different types of detectors 

used in the infrared, thermal and photodetectors; the most promi - 
nent difference being their response times. All  these detectors a re  

discussed in detail in References 4 and 50. For  completeness, the 

general properties of the most common detectors will  be discussed 

below. 

A. Thermal Detectors 

The three most common thermal detectors a re  the radiation 

thermcouple, the bolometer, and the pneumatic cell, The radia - 
tion thermocouple, which operates by the thermoelectric effect, 

has a response time of approximately 36 msec. 

of about 5 ohms, and is usually operated at l ess  than 5 cps. The 

detectivity is 1. 4 x 10 cm cps' I 2  /watt, Its simple construction 

and low cost make the thermocouple very popular in commercial 

instruments . 

It has a resistance 

9 

There a re  three main types of bolometers, the thermistor, 

semiconductor and superconductor. All  bolometers measure radia - 
tion by the change in their resistance with temperature. The therm- 

istor bolometers have response times of the order of 1 . 5  msec, and 

are  frequency independent below 30 cps. 

2 . 4  megohms, and detectivity is about 1 . 9 5 ~  10 cmcps1'2/watt. 

Their resistance is about 
8 
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The carbon bolometer consists of a carbon composition 

resistor, which is operated at liquid helium temperatures. The 

detectivity is 4.25 x 10 cmcps1’2/watt with a response time of 

10 msec. It usually operates at 13 cps, and has a resistance of 

. 12 megohms. 

10 

The superconducting bolometer utilizes the extremely steep 

slope of the resistance -temperature curve near the superconducting 

transition temperature of the detector material. 

eration requires extremely constant temperature control, and hence 

is not the most easily used detector. 

the best for thermal detectors, is 0. 5 msec. Its detectivity is 

This mode of op- 

The response time, which is 

- 
9 4. 8 x 10 crncps1j2/watt at 360 cps, with a resistance of 0 . 2  ohms. 

The last thermal detector is the Golay pneumatic cell. 

detector consists of a gas filled cell connected to a flexible membrane 

with a reflecting film on the side opposite the gas, Radiation passing 

through a window heats the gas and thus causes the membrane- 

mirror  to flex. This flexure, or displacement, of the mir ror  is 

detected by a secondary light system consisting of a visible light 

source, line grid, and photocell. This detector has a spectral r e -  

sponse which is almost uniform from the visible to the microwave 

regions. Its detectivity is 1. 67 x 10 c m ~ p s l / ~ / w a t t  at 10 cps, with 

a response time of 20 msec. This detector is the most widely used 

in infrared spectroscopy. In work with other detectors, the Golay 

cell is often referred to a s  a standard for comparison. 

This 

9 

B. Photodetectors 

Of the many photon effects used in photodetectors, only three 

enjoy much popularity. These a re  the photoconductive, photovoltaic, 

and photoelectromagnetic modes. The detectors consist of thin poly - 
crystalline films, or single crystals. 
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The lead salt photoconductors were developed first. These 

a re  made of lead combined with sulfur, selenium, o r  tellurium. 

Their spectral range extends at most to about 3, 6, and 4 microns 

respectively. 

atures. 

They operate both at liquid nitrogen and room temper - 

Germanium doped with a multitude of dopants has been widely 

The dopants and respective long wave- used a s  an infrared detector. 

length limits in microns a re  a s  follows: Gold: 7 ,  Gold-antimony: 6,  

Zinc: 39. 5, Zinc-antimony: 15, Copper: 27, and Cadmium: 21. 5. 

Germanium -Silicon alloys can also be doped to make suitable detec - 
to rs .  With Gold a s  the dopant, this combination has a cut -off wave - 

length of 10. 1 microns, as compared to 13. 3 microns with zinc- 

antimony. 

the photoconductive mode. 

Al l  the above detectors a re  single crystal and operate in 

Indium antimonide is another compound semiconductor used 

for photodetection. This compound has been used in the photocon- 

ductive, photovoltaic, and photoelectromagnetic modes. The three 

modes have cut -of€ wavelengths ranging from 5 . 4  to 7 . 3  microns, 

with operating temperatures of 77 degrees K and 295 degrees K. 

Siniilar to In Sb, there is the compound In As, which has cut - 
off wavelengths ranging from 3 . 4  to  3. 8 microns depending on the 

mode of operation. 

Finally, tellurium can be used intrinsically to 3. 8 microns; 

thallous sulfide to 1. 1 micron, and mercury telluride -cadmium 

telluride to  wavelengths greater than 40 microns. 

A l l  the above photodetectors have response times less  than 

one microsecond, except Ge: Au, Sb with 0 , 1 1  msec, Te with 0 . 0 6  

msec, and TR S with 0 .  53 msec. Their detectivities range from 
2 
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6 10 
5 x 10 to 1.7 x 10 cm cps1’2/watt with modulating frequencies 

from 90 to 900 cps. 



CHAPTER II 

Design of Far -Infrared Instrumentation 

Section 1. Introduction 

The basic problems of designing and building a far -infrared 
36 spectrometer have been outlined by Oetjen, et al. They specify 

the problems as. . , " (1) finding a source having a sufficient amount of 

radiation in the wavelength region in which absorption measurements 

a re  to be made; (2) eliminating or rendering ineffective radiation of 

other spectral regions which might be present with sufficient inten - 
sity to be detected; (3) providing a detector which is sensitive to  

radiation of the spectral region of interest, and equipping this de- 

tector with a suitable amplifier and recorder; (4) obtaining materials 

which a re  transparent to the radiation, so  that these materials may 

be used a s  windows; (5) designing a monochromator in which the 

radiation is dispersed sufficiently to provide a spectrum having the 

proper resolution.. . I 1  

The outstanding features making the far -infrared region more 

difficult a re  that (1) most thermal sources emit exceedingly small 

amounts of far -infrared radiation relative to that of shorter wave - 
lengths, and (2)  the energy associated with far  -infrared photons is 

very small. 

problems very difficult in the far -infrared. 

These two features make the filtering and detecting 

The magnitude of the filtering problem has also been demon- 

strated by Oetjen, et al. 

radiation in each spectral order of a grating blazed at 100 microns. 

The 100 micron radiation is diffracted into the first order. Then, 

for the nth order spectrum, the wavelength 100/n microns is dif - 

fracted into the same direction a s  that of the 100 micron radiation. 

They consider the relative intensities of 

12 
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Taking the dispersion of the grating for each order into account, the 

relative intensity of each order reaching the detector is proportional 

to J In, where x 
C,X-5 
I - 

JA - c2/XT 
e -1 

is the radiant power per unit wavelength at wavelength X frQm a 

black body whose temperature is T degrees K. C is chosen such 

that JX is unity at 100 microns. 

to be 1300 degrees K, 

in  Table I. 

1 
The source temperature is taken 

The relative intensity of each order is listed 

TABLE I 

Wavelength (microns) Order Relative Intensity 

100 1 1 

50 2 8 

33 113 3 24 

25 4 54 

20 5 99 

16 213 6 101 

14 217 7 241 

10 -13 8 -10 137 1 

7 -10 11 -14 3870 

4 -7 15 -25 25100 

1-4 26 -100 145000 

1-100 1-100 175000 

Two results a r e  evident from this table. 

wanted radiation to that of the desired 100 micron radiation is about 
5 1 .75  x 10 . For a reasonable signal to noise ratio of 100, it is nec- 

essary t o  filter out 1.75 x 10 or  about 20 million times the energy 

First, the ratio of un- 

7 
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desired. Second, it can be seen that most of the unwanted energy 

that must be filtered out lies near the peak of the blackbody curve. 

The above table has been calculated for the blaze condition, 

and hence, represents the worst condition. Also, the fact that the 

efficiency of the grating falls off with order number has been neg- 

lected. 

width of the grating blaze is inversely proportional to  order number, 

so that off blaze operation decreases the intensity of the higher order 

spectra much more than that OP the first order,  This off blaze atten- 

uation of higher order spectra can be used as a relative filtering 

device. 

3 Lord and McCubbin have also pointed out that the angular 

A second, but much less  prominent, problem existing in far - 
infrared spectrometry is the fact that the atmospheric water vapor 

has a very complex absorption spectrum in this region. 

of this, the water vapor must be removed from the instrument. 

only positive manner in which this can be done is t o  enclose the in- 

strument so that it can be evacuated, 

infrared spectrometer to be very heavy and cumbersome. 

A s  a result 

The 

This action causes the far-  

Finally, a s  will be shown later, since the far-infrared energy 

emitted from available sources is very small, very large optics a re  

necessary to  capture a s  much of this energy as possible. 

this necessity of using large optics the instrument again becomes 

large and cumbersome. 

Because of 

Section 2 .  Optical Arrangements 

A.  General Considerations 

The optical arrangement of any spectrometer can be divided 

into three main parts; the foreoptics, the monochromator, and the 

detector optics. In general, the foreoptics contains one or more 
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light or energy sources, the chopper, various filters, and a number 

of mirrors  or lenses to provide a reasonably compact geometric 

arrangement. 

The light then enters the monochromator, which contains the 

dispersing elements, the entrance and exit slits, and also a number 

of mirrors  or  lenses. 

narrow band of polychromatic light is dispersed and imaged at the 

exit slit plane a s  a spectrum, which consists of monochromatic 

images of the entrance slit. 

tion of this spectrum. 

The entrance slit being illuminated with a 

The exit slit then isolates a small por- 

The detector optics consist of any o r  all optical elements 

between the exit slit and detector element. 

mirrors,  lenses, o r  light pipes. 

These consist of either 

The above descriptions a re  concerned with any general 

spectral region. Specifically, in the far -infrared, no materials 

have been found which transmit energy in this spectral region, and 

are  suitable for  making lenses. With this restriction, only first 

surface mirrors  can be used. 

reflecting surfaces, these mirrors  almost always have metallic 

surfaces. 

desired shape and then polishing, o r  by grinding pyrex blanks and 

then aluminizing. 

cially to very high quality, since optimal requirements of shape to 

within X/4 in angstroms in the visible region, a re  at least a hun- 

dred times better than what is needed in the far-infrared. 

Since it is desirable to have highly 

They a re  made by machining solid pieces of metal to the 

Mirrors of the latter type a re  available commer - 

Since it is common for mirrors  used in the visible region to 

be coated with silicon oxide to prevent oxidation of the reflecting 

surface, one must be very careful in specifying mirrors  for use in 
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the far-infrared. 

infrared region. 

This extra coating does not transmit in the f a r -  

B. The Monochromator 

The most important part of the optical design is that of the 

This section solely determines the resolution of monochromator. 

the instrument. 

Again, since no suitable materials that transmit in the far- 

infrared have been found for fabricating prisms, the plane diffraction 

grating is universally used for the dispersive element in far -infrared 

spectrometers. 

There a re  a number of optical arrangements used for plane 
52 grating monochromators. These a re  the Ebert, 51 Ebert -Fastie, 

L i t t r ~ w , ~ ~  Pfund and Czerny -Turner arrangements, These 

arrangements, which a re  shown in Figure 2, have been analyzed 

theoretically and numerically using electronic computers by various 

authors . 5 5 - 7 0  Other authors 3 J  71 -75 have described multiple pass 

arrangements, which have the radiation suffering multiple reflec - 

tions at the grating, and hence, produce very high dispersion. Still 

more sophisticated instruments have been designed using multiple 

monochromators. 

chromator as a pre -dispersing device for th.3 following monochrom - 

ator. 

conventional single monochromator system, and has been used often 

in the near infrared region with a prism in the primary monochrom- 

ator. This type of system is used when extremely high resolution is 

54 38 

These instruments use the primary mono - 75,77 

This arrangement replaces the need for filters used in the 

necessary . 
C. The Foreoptics 

Depending on the types of filters used, many arrangements 

of the optical elements comprising the foreoptics section of the 
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spectrometer can be devised. 

number of design criteria which apply to  this arrangement irrespec - 
tive of the type of elements used. These are: (1) the chopper should 

lie between the source and entrance slit; (2)  to  avoid heating the 

chopper blade, the more intense shorter wave energy should be 

filtered out before the chopper; (3) to eliminate chopped stray radia- 

tion and emission of radiation by the chopper blades due to heating by 

the reference signal lamp, the radiation should be filtered after the 

chopper also; (4) to obtain good wave form fo r  the detector electron- 

ics, and to be able to achieve high chopping frequencies, the beam 

aperature should be as small as possible at the chopper; and (5) large 

aperature and short focal length optics must be used to retain a s  

much of energy emitted by the source as possible. 

Generally speaking, there a re  a 

D. The Detector Optics 

Since most detectors have very small sensitive areas, a very 

difficult problem exists in reducing the size of the image of the exit 

slit to that of the detector. This is desirable so that a s  much of the 

energy leaving the exit slit arrives and is absorbed by the detector. 

There a r e  a number of optical condensing systems which a re  used 

for this purpose. 

79-84 the toroidal 55 Pfund system, the light pipe and condensing cone, 

mirror ,  and the beam -spitter arrangement of Benesch and Strong. 

These systems a re  illustrated in Figure 3 .  

They a re  the off -axis ellipsoidal mirror,78 the 

85 

The particular choice of detector optics depends upon the 

relative aperature sizes of the exit slit and detector sensitive area; 

and the type of detector used. 

ting at cyrogenic temperatures a re  almost exclusively illuminated by 

the light -pipe condensing-cone optical system. 

For example, those detectors opera- 

On the other hand, 
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room temperature operated detectors a re  usually more amenable t o  

some type of mirror  illumination. 

Section 3 .  Dispersive Elements 

There a re  several properties of dispersing elements which 

must be discussed. 

power, and the effective transmission. 

persing elements used in  infrared spectroscopy, the prism and the 

diffraction grating. A s  mentioned before, the lack of far -infrared 

transmitting materials for fabrication of prisms has resulted in the 

use of the diffraction grating. 

middle infrared t o  about 60 microns, a short discussion of their 

properties will be included f o r  completeness. 

cussion follows that of Strong. 

They a re  the angular dispersion, the resolving 

There a re  two types of dis-  

Since prisms a re  used in the near and 

The following dis  - 
86 

.A. Pr isms 

Figure 4A illustrates a prism being illuminated for minimum 

deviation illuminated by a collimated beam of polychromatic light. 

The beam lies at an angle 6 relative to  the base of the prism. The 

apex angle, primary face, and base length of the prism a re  2 E, f, 

and b, respectively, If i, i t ,  r, and rl a re  the angles of incidence 

and refraction at the primary and secondary faces, then 

Hence, Snell' s law at the secondary face gives 

N s ine  = sin ( E  + 61, 

where N is the index of refraction of the prism material. For 

minimum deviation, the angle of total deviation is given by ru = 26, 

and therefore, 

dru - d(26)  
d N d N  cos ( E +  6) 

2 sin E - - - =  
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From the geometry, sin E = b/2f and COS(E  + 6) = w If, where w is 

the projection of the primary face onto the beam. Hence, 

Defining the prism material property N(X) as the index of refraction 

a s  a function of wavelength, then the prism material can be described 

by dN/dh. Finally, the angular dispersion of the prism, defined a s  

da/dX, is given by 

da, - dcr dN - b dN 
dX dN dh w dA 
_ _ _ -  - 

Using the Rayleigh resolution criterion the minimum angle between 

two rays of light just resolvable when viewed under diffraction-limited 

conditions is given by 

h 
6 u  = - R w  

where w is the width of the diffracting aperature. Hence, the spec- 

tral  resolving power of a prism is given by 

The effective transmission of a prism consists of several factors. 

The spectral transmission properties determine the absolute trans - 
mission and the usable wavelength region within which the material 

can be used, and the surface conditions determine the amount of 

energy which is reflected at each surface. 

due to the non-normal incidence of light passing through the prism, 

and any irregularity of the surface relative to the wavelength. 

I1 lists various properties of prism materials used in the infrared. 

This reflection loss  is 

Table 



23 

TABLE I1 

PROPERTIES O F  PRISM MATERIALS 

(After Smith, Jones, and C h a s m a r  ) 50 

Mate r i a l  

“Quartz 

LiF 

CaF2  

Rock Salt 

AgCl 

KRS -6 

KBr 

KRS -5 

C s B r  

c SI 

Usable Long WaveLsngi h 
Limit (microns) 

3 .5  

6 

9 

16 

20 

25 

28 

40 

40 

50 

* 
Crystall ine or fused 
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B. Diffraction Gratings 

In general, there a re  two types of diffraction gratings, the 

amplitude and phase gratings. In each type, the corresponding pa- 

rameter is varied periodically across the wave front incident on the 

grating surface. 

parallel straight grooves of special shapes on the smooth grating 

surface. 

complex interaction of diffraction and interference effects. 

the above types may be either transmission o r  reflection gratings 

where the latter a r e  almost always of the phase type. 

number of special forms of these gratings have been developed. 

Figure 5 illustrates the wire, 

This periodic variation is caused by ruling equal 

The characteristic amplitude pattern is the result of a 

Each of 

In practice, a 

eche - 17 87 -88 lamellar,22 echelle, 
93  lette 89 -92 and echelon type gratings. 

The wire grating, the first to be widely used in infrared 

spectrometry., has been replaced in practice by the echelette reflec- 

tion grating. 

optical high-resolution spectrometry, and the lamellar grating has 

found wide use in far-infrared interferometry, 94-98 Since the eche- 

lette reflection grating is the only type used in far-infrared spectrom- 

eters, it will be the only type analyzed here. 

of finding the intensity distribution resulting from the periodic phase 

retardation of the incident wave front by the grating grooves. The 

following analysis is based on that by Jenkins and White. 

The echelle and echelon gratings have found use in 

The analysis consists 

99 

Referring t o  Figure 4B, consider an ideal echelette grating of 

grating constant d , and facet angle 6. For monochromatic illumi - 
nation, the amplitude contribution of a single facet due to diffraction 

is the well known function 

sin P a = a  - 
O P  , 
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where 

P = nd(sin i + sin $ ) / A  , bd 
0 x '  

a = -  

x is the distance between the grating and the screen on which the 

amplitude a is being determined, i is the incident angle, and $ is 

the angle through which the light is diffracted, 

incident wave front will be retarded by equal amounts 6 from one 

facet to the next, the resultant complex amplitude for N facets will 

be the sum of those for each facet, i. e . ,  

Since the phase of the 

) 
i(N-1)6 

' 9 .  + e  i 6  i26+ A = a ( l + e  + e  

i N  6 1 - e  = a  
i 6  ' 1 - e  

The intensity is proportional t o  

-N6 2 1-cosN6 2 (1-e )(1-e ) 
i N  6 

i 6  (1-e ) (1-e 
= a  

-i6) 1 -cos 6 
A 2 = A A +  = a 

> 

or, with 

1 - cosN6 = 2 sin 

A = a  
sin2 ($> 

Combining results, the resulting intensity distribution is given by 

2 Ncu 
2 2 sin 2 P sin (y) 

O P2 sin2 ('> ' 

1 - A  = A  ~ 

The factor containing N is due to interference of the N facets, 

while that containing p is the single -facet diffraction envelope. The 

interference factor has principal maxima of magnitude N 2 at 6 / 2  =mn. 
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From Figure 4B, the geometry reveals that 

6 = 2ad(sin i + sin 0)lX , 

and hence, the principal maxima a re  located at 

mX = d ( s i n i  + sin 0) . 
This is known a s  the grating equation, and m is called the order 

number. The interger m represents physically the number of wave- 

lengths in the path difference from corresponding points on two 

adjacent facets and represents the order of interference. 

relative intensities of different orders a re  governed by the diffrac - 
tion envelope function. From the diffraction curve it is evident that 

there also exist secondary maxima. These maxima a re  not equally 

spaced, and their intensities fall off on either side of each principal 

maximum. 

increase in  number with N, but at the same time, their intensity 

decreases. 

The 

Since there a re  N-2 of these secondary maxima, they 

In practical spectroscopy, N is very large and the secondary 

maxima are  negligible. 

spectrum lines, which a re  just  the images of the illuminated entrance 

slit of the spectrometer. 

In this case, the principal maxima a re  the 

The above discussion considers only monochromatic light. 

For  polychromatic light incident on the grating, similar intensity 

distributions will occur for each wavelength present in the incident 

light. Hence, each order will be a line spectrum. For white light 

sources, each order spectrum will be spread out into continuous 

spectra composed of an infinite number of adjacent images of the 

slit in light of the different wavelengths present, 

given order spectrum, the light will be very nearly monochromatic 

because of the narrowness of the slit images formed by the grating 

At any point in a 
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and monochromator mirrors .  This is where mirror  aberrations and 

slit width have a tremendous effect on the final resolving power of the 

spect romet e r a  

The angular dispersion of the diffraction grating is obtained 

easily from the grating equation. It is given by 

This shows that the dispersion increases for each order, is inversely 

proportional to the grating constant and the cosine of the diffraction 

angle, being larger for larger angles. 

The linear dispersion in the exit slit focal plane of the tele - 
scope mirror  is given by dR/dX, where dR is the distance along the 

exit slit plane between two spectrum lines. 

mately by dR = fdQ, where f is the focal length of the telescope 

mirror .  Hence, the linear dispersion is given by 

This is given approxi- 

dR - fm 
dX d cos 6 
- _  

From the grating equation, it is evident that various wavelengths will 

occur simultaneously at the exit slit since for  a given angle 6 ,  

d(sin i -I- s in  0) = X1 = 2 X  = 3h3= . . . , 
2 

, . . , will  all "overlap" at the same diffraction X1 X1 - - 
2 ' " * '  m i. e . ,  Xl,  

angle 6 .  This phenomenon, which was discussed in Chapter 11, 

Section 1, is a primary difficulty in far -infrared spectroscopy. 

These higher order spectra must be removed by various filtering 

mechanisms, 

A s  in the case of the prism, the spectral resolving power of 

the diffraction grating is given by 
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- = -  
6xR x deR A ( % I ,  

where d8 is the minimum angle between two spectral lines which 

a re  just resolvable using the Rayleigh criterion, and 6 is the dif - 
fraction angle. Hence, from the Rayleigh criterion for a rectangular 

ape ratur e, 

R 

- x - .  - x 
deR - N d c o s 8  

where B is the width of the diffracted beam. Hence, 

m 
d cos 8 = Nm . - = N d c o s  8 

6xR 

Thus, in a given order, the resolving power is determined solely by 

the number of grooves N. 

The resolving power for given angles can be found by com- 

bining the above equation with the grating equation. This is given by 

- _ -  - Nd (sin i + sin 0) . 
6xR 

A 
x 

The theoretical maximum resolving power obtainable with any grating 

occurs when i = 8 = 90°, and has the value of X / 6 X R  = 2Nd/X = 2W/X, 

where W is the total width of the grating. In practical situations, 

where it is necessary to have large beam widths, the resolving power 

is much less  than this value. A comparison between experimental 

and theoretical resolving power is given by Sassa. 100 

The preceding analysis assumes an ideal grating, which cor - 
responds to an infinitely thin surface containing multiple slits. 

echelette reflection grating obviously does not meet these require - 
ments, since the sides of each facet will also have an effect on the 

diffraction-interference pattern. 

The 

The relative intensities of the 
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different orders 

simple function 

for the echelette grating will not be governed by the 

a s  in the ideal case. 

of some orders which were missing in the ideal case. 

occurred when sin p / p  
sponding to this angle would be missing. 

intensity distribution caused by the echelette groove shape does not 

have any effect on the positions of the spectral lines. The most im- 

portant effect of the groove shape is that the relative intensity of the 

different orders is determined by the angular distribution of the light 

diffracted by a single groove. This angular distribution is a complex 

factor and was first controlled by groove shape by Wood. 

properly controlling the groove shape, echelette gratings can concen - 
trate up to ninety percent of light of a particular wavelength in a 

This modification results in the reappearance 

The latter 
2 2  vanished, and hence, any maxima corre - 

The modification of the 

89 
By 

single order, while less  than one percent 

remaining orders. 

From the grating equation and the 

i, 8, d and A, it is evident that 

7cd 
x 0 = - ( s i n i  

Hence, the intensity 

2 2 I - A  = A  
0 

+ sin 8) = m7c 

distribution in terms 

2 sin 2 (-L> N6 
sin m7c 

(m n) 2 sin2 ( 

is  diffracted into each of the 

relation for  0 in terms of 

of order number is given by 

, 

2 
i. e . ,  for a given order, I is inversely proportional to m This 

result is why only the first order spectrum is used in far-infrared 

grating spectrometers; it is the order of highest energy. 
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There still remains several modifications of the above results 

due to non-ideal conditions imposed on the grating. 

ing is not illuminated by perfectly collimated light since mirrors  or 

lenses always possess some aberration. 

and how to minimize it is discussed by Mielenz 

Second, the ruling of echelette gratings is an extremely difficult task, 

and the result of poor quality gratings can be very deleterious to 

results obtained from them in interpreting spectra. 

gratings usually have two effects on the resulting spectra; these a re  

low intensity due to non-optically flat facet -surfaces, which cause 

diffuse scattering, and the appearance of ghosts due to aperiodic 

ruling of the grating. 

usually caused by e r ro r s  in the ruling engine lead screw or non- 

uniform cutting of the groove depths. These ghosts a r e  relatively 

bright spectrum lines or dark bands which appear in the spectrum, 

but a r e  not predicted by the ideal grating theory. 

First, the grat-  

The effect of this condition 
10 1 102 and Murty. 

Poor quality 

The latter phenomenon is very common and 

Theories for the different types of ghosts and their interpre- 
104 tation a re  discussed by Palmer,lo3 Stewart and Galloway, 

et al. ,lo5 and Hessel and Oliver. lo' A series of articles by 

Palmer, 

Stroke, l2 -' l4 and Babcock '15' '16 describe the 107 -111 Harrison, 

ar t  of producing extremely precise gratings. 

Finally, much more sophisticated methods have been applied 

t o  the problem of determining the theoretical energy distribution of 

diffraction gratings. Selected articles on this subject a r e  by Stamm 

Madden and Strong, and and Whalen, Meecham, et a l . ,  120 117 118 -119 

12  1 Sakayanagi . 
Section 4. Energy Limited Resolving Power 

The Rayleigh criterion for the limit of resolution is only 

applicable to systems in which the resolution is diffraction limited. 
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In spectral regions, such a s  the far-infrared, which have energy 

sources of very limited intensity, o r  detectors of poor detectivity, 

the slits must be opened large enough to be able to detect a signal at 

the exit slit. 

diffraction-limited resolution. 

solving power has been discussed by Strong, 8 6 J  122 This article 

shows that the ener-gy emergent through the exit slit is given by 

This opening of the slits removes the condition of 

The problem of energy -limited r e  - 

2 W = BX Rw S A XT/f 

is the spectral brightness at the entrance slit in watts per 

watts, 

where B 

steradian solid angle, per unit spectral band pass, R and w a re  the 

length and width of the equal entrance and exit slits, 

tive projected area of the grating, AX is the wavelength band pass 

determined by the size of the slits and dispersion of the system, T 

is the transmission factor for the system, and f is the equal focal 

length of the collimator and telescope mirrors.  The appropriate 

form of AX as  defined above is from the linear dispersion of the 

system, i. e.  , 

X 

S is the effec- 

A 1  - = f z ,  de 
AX 

where AR is the distance between two adjacent spectrum lines 

separated by A X .  Since AR = w , then 

Combining this equation with that for w , the result is given by 

BARST d0/dX A X =  [ 
If the minimum detectable power by the detector is W", then the 

above relation must be modified, and is given by 
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BA RST de/& A X =  [ 
The specialized equation for an echelette grating being used in the 

first order is 

W"f d cos 6 ]'I2 
BA RST AX = [ I 

wherein the angular dispersion is 

For black-body energy sources, B x is given by the Planck radiation 

2 -hc/XkO law 
2hc e = -  

-hc /XkO ' 

where k is Boltzmannl s constant, h is Planck' s constant, c is 

the speed of light, and 0 is the absolute temperature. For long 

wavelengths, i. e. , in the far -infrared, 3s- hc << 1, and B X 
reduces to the Rayleigh-Jeans law 

For this case, 

W"f d COS e x 
&ST 2 ckO AX = [ 

In terms of wave number, from Xv = c, 

and hence, 

W"fdc cos 
Av = [  RST 2k@ 
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This equation provides much insight to the design of far -infrared 

spectrometers. First, to reduce Av by one half, it is necessary 

to increase the detector sensitivity or  the available energy, or  the 

dispersion by a factor of four. 

power is independent of wavelength in the far-infrared except in that 

d must be increased with wavelength. In terms of spectrometer 

components, the minimum detectable power should be as low as 

possible; and the geometrical factor (f/RS) 

possible. The latter condition requires that the focal length should 

be short, the slit length long, and the projected area of the grating 

large,  These requirements specify fast optics, which have their 

own inherent problems. 

the poor imaging properties of spheroidal and paraboloidal mir rors  

for off -axis rays. With long slits and fast optics, the off -axis rays 

eminating from the entrance slit ends a re  poorly imaged at the exit 

slit plane, and hence, create much difficulty in shaping the exit slit 

to conform to the non-straight spectrum. lines. 

is required s o  that the exit slit can isolate adjacent spectrum lines 

over their whole length, and hence, provide good spectral purity and 

resolving power. The transmission factor T occurring in the above 

equation is discussed for various spectral orders by Barrekette and 

Second, the wave number resolving 

should be as small a s  

The most significant of these problems is 

This latter condition 

Christensen. 123  Much effort has been expended on the task of mini- 

mizing the aberration effects in spectrometers by improving the 

optical arrangements of monochromators. 

discussed in Chapter 11, Section 2 .  Some specific references on 

this subject are References 58 through 62.  

This problem has been 

A comparison of some of the above properties of grating, 

prism, and Fabry-Perot etalon type spectrometers is given by 
124 Jacquinot . 
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Section 5. Filters 

The types of filters used in the far -infrared can be classified 

a s  either transmission or  reflection filters. Within each of these 

categories, there are several basically different filters. A s  was  

discussed in Chapter 11, Section 1, when working in the first order 

of a given grating, all the higher -energy, higher -order wavelengths 

must be filtered out. The overall filtering task for any wavelength 

region in the far-infrared is accomplished in steps. First ,  all the 

energy radiated by the source with wavelengths shorter than about 

12 microns can be eliminated using one o r  more 0. 1 mm thick sheets 

of black polyethylene. This filter, which consists of carbon dis- 

persed in high-density polyethylene, transmits with the transmission 

increasing with wavelength throughout the entire far -infrared region. 

The transmission reaches 50 percent at about 25 microns, and is 

better than 80 percent at 125 microns, a s  shown in Figure 6A. The 

number of sheets necessary to remove the desired amount of short - 
wavelength energy can be determined experimentally. 

wavelength pass filter for the far -infrared is crystalline quartz. 

seen in  Figure 6B, when natural Brazilian quartz is used along the 

y-crystalline axis, the cut-on curve is very sharp, beginning to 

transmit at about 40 microns, and reaching 50 percent transmission 

at about 55 microns. 126' 127 When the Golay pneumatic cell is used 

Another long - 
A s  

a s  the detector, its quartz window acts a s  a filter, and therefore, 

it is not necessary to use further quartz. 

Another type of long wavelength pass filter consists of flat 

plates roughened by grinding with different grades of carborundum 

grit. 

but do not effect the long wavelengths. 

slow, as shown by Strong'" and Figure 6C. The cut -on wavelength 

can be shifted by choice of grit size. 

These plates scatter the short wavelengths out of the beam, 

The cut-on curve is very 
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The remainder of the filtering task consists of finding a set 

of filters with a s  sharp cut -on curves a s  possible, and with cut -on 

wavelengths which occur in succession in such a way that the set 

covers the entire region to be investigated. It is also required that 

each filter or combination of filters be opaque for wavelengths be- 

tween the cut -on wavelength and the region where the black poly- 

ethylene or quartz filters begin to transmit. 

accomplished in a variety of ways in the far -infrared by spectros - 
copists. 

restricted to sub-regions of the far-infrared. 

25 and about 250 microns is covered by the use of reststrahlen or 

residual -ray reflection plates or  by powder filters made by dis - 
persing rest strahlen crystal powders in high-density polyethylene, 

The region of wavelengths greater than 250 microns is covered by 

either reflection grating filters, metal -mesh reflection filters, or 

transmission-grating filters. 

discussed in detail. 

This task has been 

The filtering methods which have been developed a re  

The region between 

Each of these filter types will be 

A. Reststrahlen 

Reststrahlen reflection has been used for  filtering in the far - 
infrared longer than any other method. 

utilizing the strong reflection bands typical of most ionic crystals in 

the infrared. This strong reflection band is well explained by classi- 

~y considering a linear or one -dimensional cal solid state theory. 

crystal lattice consisting of two kinds of atoms of masses m and M, 

the resulting dispersion relation is given by 

The technique consists of 

129 

where fi is the elastic force constant, a the lattice constant, and k 

the wave number of the lattice phonon given by k = 27r /X .  
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This dispersion relation has two well known branches of 

frequency versus wave number. 

correspond respectively to the minus and plus signs. If the influence 

of an electromagnetic field, given by 

The acoustical and optical modes 

iwt E = E  e 
0 

on this system is analyzed, the amplitudes of the oscillations of the 

two masses a re  found to be given by 

0 
(e  /M) E 

2 2 '  r =  
w - w  

0 

and 

where 
w 2 = 2 p ( m + G ) .  1 1  

0 

Hence, it is evident that a resonance will occur for  w = w . This 

absorption maximum is associated with the motion of charges of 

opposite sign toward each other. 

at the surface of an ionic crystal has a frequency which is very 

close t o  that of the absorption resonance. 

0 

The maximum of the reflection 

The reststrahlen reflection bands have been measured for a 

13' Plvler Yoshinaga, 130 
multitude of crystals by Sinton and Davis, " 

133 and A ~ q u i s t a , ' ~ ~  and Mitsuishi, et al. These curves have been 

collected and organized by McCarthy. 134 A s  can be seen from the 

curves in Figure 7, these crystals have good cut -on curves, but 

they transmit about 4 percent below the cut-on wavelength. 

property requires at least three reflections in order to reduce the 

unwanted energy to an acceptable level. 

This 

Methods fo r  improving the 
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reflection of reststrahlen crystals has been discussed by 

Turner, et al. 

filters, better filters have been devised. These a re  the crystal 

powder transmission filters developed by Yoshinaga. 

33 In the region where these crystals can be used as 

39 

B. Powder Transmission Filters 

In 1961, it was reported that polyethylene sheets containing 

finely ground powders of reststrahlen crystals made excellent filters 

for the far-infrared from 25 to 300 microns. 

ethylene has no absorption bands at wavelengths greater than 14 

High-density poly- 

microns, and 1 mm thick sheets transmit 90 percent o r  more 

throughout the far -infrared. 127 Hence, this material is ideal for a 

medium in which to suspend powders of various substances in order 

to measure their far  -infrared absorption spectra. A s  shown above, 

reststrahlen crystals have very strong absorption bands in the region 

from 20 to 120 microns. Single crystals of these materials cannot 

be made thin enough to transmit enough energy in the far-infrared, 

but by grinding these crystals into fine powders, and suspending 

them in polyethylene, their absorption bands can be used t o  isolate 

successive wavelength regions from 25 to 300 microns. 

wavelength of these filters can be shifted by appropriate choice of 

crystals. The steepness of the cut -on curves can be increased by 

using finer powder size and/or thinner sheets of polyethylene. 

The cut -on 

Various techniques have been proposed for making these 
39 filters. The original authors 

heated set of rollers which have been plated with copper, nickel and 

chromium. When the sheet becomes soft, measured amounts of 

powders a re  added by pouring uniformly over the sheet. The poly- 

ethylene and powders a re  then mixed with a spatula for about thirty 

minutes with the rollers still rotating. After complete mixing, the 

place a sheet of polyethylene on a 
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electricity is turned off and the sheet mixture cooled and hardened. 

After stopping the rollers, the sheets a r e  removed. 

results in sheets about 0 . 3  mm thick, which a re  then cut to the 

desired sample size. 

This procedure 

The particle size is very critical in these filters. The above 

reference shows that the commercially obtained powder is so course 

that the radiation can pass through the spaces between the particles, 

and hence, the transmission never reaches zero, even in the region 

of reststrahlen absorption. They also show that the steepness of the 

cut -on curve varies directly with the fineness of the powder, and 

that a particle size of about 10 microns is desirable. This can be 

achieved by using a mortar and pestal o r  by ball milling, and then 

checking with a 10 micron sieve. 

The proper amount of powder is also very important. Too 

much powder will cause the cut-on curve to lose steepness, and too 

little will  not make the filter opaque in the reststrahlen absorption 

region. The 

polyethylene sheet thickness of 0. 3 mm was  used since it was found 

to be too difficult to make thinner sheets containing several kinds of 

powders. 

The optimum amount of powder was given a s  250 mg. 

Figure 8A shows the transmission spectra of reststrahlen 

powders in polyethylene. 

there is an opaque region on the short wave side of the cut -on wave - 
length, and then the powders begin to transmit again. 

combining several powders, transmission curves can be obtained 

that a re  opaque from the cut-on wavelength to about 20 microns. 

Selected combinations of powders a s  suggested by the above authors 

a re  also shown in Figure 8A. These filters transmit better than 80 

percent in the long wave regions, and transmit less  than 0.1 percent 

It can be seen that for  most of the crystals, 

By properly 
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in the opaque regions. 

better than those of the reststrahlen reflection filters which transmit 

4 percent of the undesirable wavelengths. 

By comparison, these properties a re  much 

Further inorganic crystals have been investigated by Manley 
~ 

and Williams. 12' They have reported an e r ror  in the TRCR, TRI, 

NaF filter transmission curve, which appeared in Yoshinaga' s 

article. These authors used a much simpler manufacturing pro- 

cedure. The dry materials were ball-milled to pass through a 300 

mesh sieve and then mixed with polythene on steam -heated rollers. 

The crude sheets were removed from the rollers and then pressed 

between stainless steel laminating plates at 14OOC and 1500 psi in a 

steam -heated hydraulic press.  The sheet thickness was controlled 

by the length of time in the press.  The compounds were dispersed 

at a total concentration of 35 percent in sheets of 250 microns thick- 

ness. 

39 

The curves for these filters a re  shown in Figure 8B. These 

authors carried out a thorough investigation of the effects of particle 

12' they size. Comparing results to those of Clewell and Henry, 

found that the maximum particle size f o r  a single inorganic compound 

filler in a transmission filter is about half that of the wavelength of 

128 

the reststrahlen -absorption peak. 

inorganic materials, a range of particle sizes should be used ac-  

cording to the reststrahlen absorption bands present. A small 

portion of material whose particle size is small compared to X/2 

should be present t o  scatter short wave radiation and prevent it from 

passing through the spaces between the larger particles. 

For a filter consisting of several 

A third procedure for manufacturing these filters is given by 

Moller, et al. Selected amounts of polyethylene powder and crys-  

tal powder a re  carefully mixed. 

between sheets of aluminum foil and placed between the heated plates 

of a hydraulic press, without the use of a die. 

46 

The desired quantity is placed 

Pressures of 135 to 
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270 atmospheres with a plate temperature of 150 degrees C a re  

applied for 5 to 10 seconds. 

between two metal plates for cooling, after which the aluminum foil 

is easily removed. In order t o  achieve a homogeneous distribution 

of the powder in the polyethylene, the sheet is cut into several pieces 

and then repressed. 

assure uniform suspension. In order to avoid interference fringes, 

the filters should be wedge shaped. Alternately, in the long-wave - 
length regions, several very thin filters may be used. 

Upon removal, the composite is placed 

This procedure is repeated five to ten times to 

C. Reflection -Grating Filters 

The use of an echelette reflection grating as a simple mirror  

to remove short wavelength light from a beam containing infrared 

radiation of all wavelengths was first proposed by White.35 Light of 

wavelengths short compared to the grating constant is diffracted out 

of the beam into dispersed spectra, whereas light of wavelengths 

long compared t o  the grating constant, can only go into the undis- 

persed zero order spectrum, which falls in the direction of normal 

reflection a s  i f  the grating were a plane mirror.  

The cut-on curve is very similar to the intensity distribution 

for the zero-order spectrum. The cut -on wavelength occurs at about 

one -half the grating constant. The region of wavelengths from this 

value to that equalling the grating constant contains light from both 

the first and zero -order spectra, whereas the region of wavelengths 

greater than the grating constant contains light from only the zero- 

order spectrum. 

curve has a relatively poor slope, it is necessary to use more than 

one reflection. 

vary approximately with the sine of the angle of incidence. 

mental investigation shows that the cut -on slope becomes steeper with 

This is shown in Figure 9A. Since this cut-on 

Theory implies that the cut -on wavelength should 

Experi - 
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decreasing angle of incidence. 

mission also increases with decreasing incidence angle. 

investigations of the properties of these gratings in the far -infrared 

have been made by Hadni, et al. 

The long -wavelength-region trans - 
Detailed 

138 -140 

This type of filter no longer enjoys popular usage since the 

development of the transmission -grating filter and metal -mesh r e  - 
flection filter. 

D. Transmission -Grating Filters 

These filters a re  similar in nature to  the reflection-grating 

filter in that both types a re  used to diffract the short -wavelength 

energy out of the beam of light illuminating the entrance slit of a 

spectrometer. In both types of filters, the cut -on wavelength is 

determined arbitrarily by varying the grating constant. 

mission -grating filters a re  made simply by pressing polyethylene 

sheets on heated forms on which grooves have been machined as in 

the reflection-gratings. 

and Mcfiight, 
44-47,97 et al. Both groove shape, and orientation of the grooves 

The trans - 

These filters were first proposed by Moller 
43 and have been discussed further by Moller, 

with respect to the direction of incident light and the direction of the 

grooves of the main dispersion grating have been studied. These 

investigations have revealed that the symmetric groove with a 45 

degree angle has the lowest transmission below the cut -on wave - 
length. Four different orientations were studied. These were with 

the grooves parallel and perpendicular to those of the dispersion 

grating, and with the grooves o r  flat surfaces facing the incident 

light. 

orientation was found to have no effect on the cut-on curves. 

For gratings with symmetrical 45 degree groove shapes, the 

A typical cut-on curve is illustrated in Figure 9B. 

that the cut-on wavelength occurs for X/d = 0. 3, where d is the 

It shows 
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grating spacing. 

at about X/d = 0.65. 

The transmission reaches a value of 50 percent 

In order that the filters a re  not used at a wavelength such 

that one-half this wavelength is greater than the cut -on wavelength, 

these filters cannot be used for wavelengths greater than twice the 

cut -on wavelength. 

order of a given wavelength is not transmitted by the filter. 

above range of utilization of wavelengths from h to 2h is called 

one octave. 

This condition is required so that the second 

The 

C C 

Hence, the usable range of these filters is from 

X = 0. 3d to 2X = 0.6d. Since the filter has zero transmission at 
C C 

some other wavelength greater than X must be chosen a s  the 
C 

lower limit for the usable range. 

chosen by this author a s  being a reasonable choice, considering the 

tradeoff between minimum transmission and wavelength range for  

each filter. 

50 percent transmission region. 

reduction in energy, but these filters a r e  the most efficient avail- 

able for the region of wavelengths greater than 250 microns. 

The value of X = 0.5d has been 

With this choice, these filters will be used in the 30 to 

This condition is a rather large 

A comparison of reflection and transmission -grating filters, 

a s  shown in Figure 9c, implies that one transmission grating results 

in an equivalent filtering curve a s  for  two reflection gratings. 

result is the main reason f o r  choosing transmission gratings over 

the reflection type. Another reason for this choice is the ease in 

which the transmission gratings can be applied; they can simply be 

placed in the beam, whereas the reflection gratings must be mounted 

at a point of reflection, usually by replacing a plane mirror .  

been established that combinations of two transmission-grating 

filters, quartz plate, and black polyethylene can be used to obtain 

good spectra in the f a r - i n f ~ - a r e d . ~ ~  Since two of the transmission 

This 

It has 
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9 1  gratings a re  necessary, Richards has proposed pressing grooves 

on both sides of a polyethelene sheet with the grooves perpendicular 

to each other on opposite sides. 

polarization effects which may be caused by these filters. 

a r e  usually about 0 . 2  to 0 .4  mm thick before pressing. 

This procedure also eliminates any 

The sheets 

E. Metal-Mesh Reflection Fil ters 

Excellent reflection filters made OP metal meshes of brass 
40 wire have been proposed by Renk and Genzel. 

of commercially available metal mesh o r  wire grid which can be 

described by the type of metal, the wire diameter a, and the distance 

d between the centers of adjacent wires. The parameter d has been 

referred to a s  the mesh constant. Mitsuishi, et al. , and Vogel and 

G e n ~ e l ~ ~  have carried out measurements of reflection and trans - 
mission in the far-infrared for meshes of various values of d and a .  

The former investigators used brass mesh at incidence angles of 15 

and 52 degrees, while the latter used nickel at zero and 45 degrees. 

It has been established that the steepness of the cut-on slope is in- 

creased a s  the incident angle of light is decreased. A comparison of 

reflections from a 145# mesh at 15 and 52 degrees is given in Figure 

These filters consist 

41 

1OC. The reflectances of several meshes at 15 degrees is shown in 

Figure 10A for use a s  filters in the range from 150 to 800 microns. 

The cut -on wavelength occurs at about h/d = 1. 3 to  1.5, with 

reflectivity exceeding 95 percent at h/d = 2. 

a r e  much steeper than those for the two previous filter types dis- 

cussed above. 

wavelength is about 5 percent, 

using two o r  three reflections of the same mesh at nearly normal 

incidence. 

venient filter . 

These cut-on curves 

The reflectivity for  wavelengths less  than the cut-on 

This can be reduced substantially by 

This last property makes the metal mesh a rather incon- 
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The use of these meshes in a spectrometer has been discussed 
45 by Moller, et al. 

for filtering purposes a s  being from X/d 2 1. 8 to  X/d z 3.6 .  The 

transmission is over 80 percent in two-thirds of this region. 

authors have obtained good spectra in the region from 200 to 1000 

microns by using three metal-mesh filters and 0.7 mm of black poly- 

ethylene. 

They have established a useful wavelength region 

These 

Two types of metal mesh a re  commercially available. Inex- 

pensive wire cloth may be purchased from the Newark Wire Cloth 

co .  

Buc%bee Mears Co, 

More expensive electroformed mesh is available from 141 

142 

It has been pointed out by Vogel and G e n ~ e l ~ ~  that the excel- 

lent results obtained by Mitsuishi, et al. > a re  in part due to the fact 

that the mesh used in  the la t ter ' s  measurements were made of wires 

with round cross -sections. 

rectangular shaped wires and obtained less  steep cut -on slopes. 

The former investigators used mesh of 

F. Selective Chopping 

The last filtering mechanism to be discussed is that of selec- 

This is done by constructing a chopper wheel made of tive chopping. 

blades of rest strahlen crystals which transmit the short wavelength 

energy, but absorb all the far-infrared energy. With this type of 

chopper, only the long wavelengths a re  amplified by the lock-in 

amplifier in the detecting circuit. The unmodulated short wavelength 

energy reaching the detector is constant in magnitude and, therefore, 

only affects the d. c. level o r  background radiation level. Figure 11 

aqd Table 3 give the transmission curves and cut-off wavelengths for 

selected chopper materials. This type of filtering has one very un- 

desirable quality; it cannot be rotated at very high speed due to the 

strength of the crystals. When working with fast response time 
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photodetectors, it is very desirable to use modulating frequencies of 

around 1000 cps. 

to 30,000 RPM. 

For  a chopper with four blades, this corresponds 

TABLE I11 

Cut -off Wavelengths for Selected Chopper Materials 

(After Plyler and Blaine l2 5, 

Material 

NaCl 

K C1 

K Br 

KRS -5 

CsBr 

c SI 

Thickness 
(mm) 

6 . 0  

5. 3 

4 . 0  

5 . 1  

5 . 1  

5 .0  

Wavelength of Null 
Transmission (microns) 

20 

30 

40 

50 

55 

75 

Section 6 Detector Optics 

A s  mentioned in  Chapter 11, Section 2, the detector optics 

consist of all optical components between the exit slit and the detec- 

tor.  The purpose of these optics is t o  reduce the image of the exit 

slit to the size of the sensitive area of the detector. 

infrared, this problem is extremely difficult because of the use o€ 

very large exit slits which a re  necessary to obtain enough energy to 

be able to detect a signal. Typical sizes for  the exit slits and de- 

tector areas  a re  2 inches by l / 2  inch, and 2 mm square, respec - 
tively. Hence, a reduction of 25 is necessary. The maximum prac- 

tical reduction which can be accomplished by any of the systems men- 

tioned above is about 5 or 6, except for the light -pipe and condensing- 

cone systems. The latter system can be designed to accomplish any 

finite reduction with only small losses due to reflection. In contrast 

to mirrored image reducing systems, the light -pipe condensing -cone 

In the fa r -  
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system is not image forming. In fact, the radiation flux at the end of 

the system will be nearly uniformly distributed across i ts  diameter. 

Since this type of detector optics is almost universally used in the 

far -inIrared, it wi l l  be the only one discussed in detail. 

80 Ohlmann, et al. .) have analyzed the transmission of light 

pipes based on simple electromagnetic theory. 

total transmission is given by 

Their result for the 

n 

T = -  e - 2 q + Q - e  -q’2F’) F 2 / q  2 5 1 (1 +e  8 
2 

where q = (2cOw P ) ” ~  L / d  = 0.18  ( p / X ) l i 2  L/d  , 

where p is the resistivity of the pipe material in ohm-cm, X is the 

wavelength in cm, L is the total length of the pipe in cm, d is the 

diameter of the pipe in cm, and F is the f/number of the incoming 

light. 

pared to the transmission of brass pipe at wavelengths of 70 and 140 

microns. 

Harris, et al. ,82 and Richards. 

to that for brass a re  given in Figure 12B. This curve shows that a 

transmission of better than 50 percent can be achieved for pipes of 

about 4 feet in length. The material of highest transmission in the 

far-infrared is brass.  Since light pipes very often carry radiation t o  

cooled detectors immersed in liquid helium, it is very desirable to 

use materials of low thermal conductivity. 

This curve is shown in Figure 12A, where it has been com- 

Several materials have been studied experimentally by 
97 The transmission curves relative 

In the article by Harris, et al. ,c2 it is shown that the trans- 

mission of far -infrared energy is very poor for materials of low 

thermal conductivity. 

the exit slit to the detector is greatly improved by the use of con- 

densing cones at each end of the pipe. The analysis of cone channel 
81 condenser optics has been carried out by W i l l i a m ~ o n , ~ ~  and Witte. 

The use of light pipes to carry radiation from 
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Williamson has provided a solution which gives the cone length 

in t e r m s  of the diameters of the large and small ends, and the angle 

of the most skew ray of light relative to the cone axis. This relation 

has been developed based on the condition that no ray of light shall be 

reflected back toward the large end of the cone. It is given by 

c s cos v 
x =  (I - % )  C 

- - sin V S 

where the parameters a re  defined in Figure 1 3 .  

The primary cone is usually placed adjacent to the exit slit, 

which determines the value of S. The f/number of the telescope 

mirror  illuminating the exit slit determines V. The value of C 

coincides with the diameter of the adjacent light pipe, which is deter-  

mined by several factors. 

creases directly with the diameter at the pipe, 

able to place a large pipe into liquid helium, this factor must be 

considered in choosing the value of C.  

the length of the primary cone is fixed. 

determines the diameter of the large end of the secondary cone, 

which is located between the light pipe and detector. 

of the small end of this cone is fixed by the particular detector 

being used, 

can be determined graphically by determining the maximum angle of 

skew rays being reflected down the pipe. Finally, the value of X for 

the secondary cone is fixed by the above parameters, and the system 

is designed. 

The transmission of the light pipe in- 

Since it is undesir- 

Once C has been determined, 

Next, the value of C also 

The diameter 

The value of V to be used in conjunction with this cone 

F o r  very short distances between the exit slit and the detector, 

a single condensing cone may be sufficient. A very elaborate pro- 

cedure for  electroforming long cones has been discussed by 

Kneubuhl, et. a1 , 143 



57 

( A )  

(A) FOR USE WITH MIRRORS 

( B )  

(B) FOR USE WITH LENSES 

CONE CHANNEL CONDENSER OPTICS 

FIGURE 1 3  



58 

97 Richards has made measurements on polished brass  cones 

which transmit approximately 90 percent while reducing the aperture 

by a factor of ten. 

tem consisting of one meter of polished brass  pipe, two 90 degree 

bends using plane mi r ro r s  oriented at  45 degrees with respect to  

the pipe axes, and a polished brass  cone have been given by the 

above author to be about a factor of 2 .  5. 

Estimates on the attenuation of energy by a sys-  

Section 7 .  Detector electronics 

It is not possible at this time; nor is it necessary, to probe 

deeply into the design criteria for the electronic equipment used with 

infrared detectors. 

few factors concerning this aspect of the spectrometer design. 

complete discussion of amplifiers for use with infrared detectors is 

given by Smith, et al. 

On the other hand, it is convenient to discuss a 

A 

50 

In most practical cases, the main point for consideration in 

the design of an amplifier system for use with a particular infrared 

detector must be to insure that the performance of the detector is 

determined by its own inherent limitations and not by the design of 

the amplifier. In order to reach the limiting sensitivity of the par-  

ticular detector, it is necessary to design the amplifier to give r ise  

to less noise or fluctuations than the detector itself. Also, since i t  

is necessary to modulate the light beam in order to amplify the signal 

with an alternating current amplifier, then care must be taken to  

modulate the beam at a frequency which matches the response time of 

the detector. 

during the time interval of measurement, and i ts  gain must be known 

as a function of incident energy, 

Finally, the gain of the amplifier must be constant 
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Since several lock-in type A. C. amplifiers a r e  commercially 

available, the above considerations a re  not of concern to this inves- 

tigation. There are, however, several parameters which must be 

specified upon obtaining one of these amplifiers. 

fier must have a frequency band width covering the range of modu- 

lating frequencies of interest to the investigators. Second, the 

amplifier must be compatible with respect to the impedance of the 

various detectors. 

sistent with the power necessary to drive a strip-chart recorder on 

which the resulting spectra will be presented. 

First, the ampli- 

Finally, the gain of the amplifier must be con- 



CHAPTER I11 

DESCRIPTION OF THE SPECTROMETER 

Section 1. Optical Arrangement 

The different optical arrangements available for use in 

designing a far  -infrared spectrometer have been discussed in 

Chapter 11, Section 2.  The spectrometer to be discussed in this 

chapter utilizes the Czerny -Turner mirror  arrangement in both 

the fore-optics and monochromator sections, as shown in Figure 14. 

The reasons for this choice is relatively straightforward. 

necessity for  very large optics creates a considerable economic 

factor in purchasing mirrors  of quadric surfaces. 

sive of these mirrors  is the spheroidal mirror .  The Czerny-Turner 

mirror  arrangement utilizes two of these spheroidal mirrors  in such 

a way that results in the second mirror partially cancelling the aber- 

rations which were caused by the first mirror  being used off axis. In 

contrast to this arrangement, the Littrow mount requires a very ex- 

pensive paraboloidal mirror .  The Pfund system, even though it 

utilizes spheroidal mirrors,  wastes much of the grating surface area 

due to the large hole cut in the center of the grating. 

mount is just a special case of the Czerny-Turner mount, but does 

not have the extra degree of freedom needed to minimize the overall 

aberrations of the monochromator. It has been shown by Shafer, 

et a l . ,  

mized by rotating the second Czerny-Turner mirror  while experi - 
mentally observing the image until the best condition is realized. 

This condition is referred to a s  the asymmetric Czerny-Turner 

arrangement. 

First ,  the 

The least expen- 

The Ebert 

67 that the coma of the image of the entrance slit can be mini- 

While designing this spectrometer, it was desired to be able 

to obtain continuous spectra throughout the range of the instrument 

60 
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OPTICAL ARRANGEMENT O F  THE SPECTROMETER 

FIGURE 14 
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without having to dismantle the instrument in order to change filters 

o r  gratings. 

filters must be contained within the instrument and be changed by 

remote operation. 

shown in Figure 15, made it necessary to place the entrance and 

exit slits physically in front of the gratings, 

sary to do this, and many spectrometers have their slits behind the 

grating. 

This requirement implied that all the gratings and 

The design of a special grating interchange, 

It is not always neces - 

In designing the Czerny-Turner mount, it is desirable to  use 

the spheroidal mir rors  at the smallest off-axis angles a s  possible so 

to keep the spherical aberrations to a minimum, This off -axis angle, 

and the included angle between the incident and diffracted central rays 

at the grating a r e  both fixed by the diameter of the Czerny-Turner 

mir rors  and the distance between the grating and these mirrors .  

compactness of the instrument, it is desirable to keep this distance 

at a minimum. 

of the gratings, this distance is determined by the focal length of the 

Czerny -TurIier mirrors .  

Fo r  

But, because of the fact that the slits must be in front 

The size of these mir rors  is determined by the size gratings 

to be illuminated. 

wavelength, and desired resolution, i. e . ,  the width of each grating is 

W = Nd, where N is the number of grooves of width d, and N 

determines the resolution. 

inch wide gratings, partially because of the 6 inch groove-length 

limit imposed by the grating ruling engine being used. 

properly illuminate gratings of this size, it was necessary to use 

1 2  inch diameter Czerny-Turner mirrors .  

ably compact instrument, the focal length was chosen to  be 33 inches, 

giving optics of f/2.75. 

In turn, the grating size is determined by the 

It was decided to use 6 inch high by 9 

In order to 

In order to have a reason- 
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The size of the slits was  determined by the size of the energy 

source, and the magnification of the source by the fore-optics. 

a source area of approximately 2 inches high by 518 inch wide, and 

fore-optics of unit magnification, the slits were fabricated to be 2 

inches high and open to 5 /8  inch wide. 

Fo r  

Two auxiliary plane mirrors,  labeled M and M in Figure 14, 6 9 
were provided for ease of illumination access into and out of the mono- 

c hr omat o r ,  

The fore -optics, also shown in Figure 14, contain six mir rors  

of which four a re  plane and two a re  spheroidal. 

mirrors,  M and M a re  arranged in the Czerny-Turner mount for  

the same reasons a s  mentioned above for the monochromator. The 

size and focal length of these identical mir rors  was determined so  

that the entrance slit and grating were totally illuminated. 
144 problem is treated analytically by Nielsen. 

solved by ray tracing, and resulted in mirrors  of 10 inch diameter 

and 25 5 / 8  inch focal length, given f / 2 .  56 optics. 

The spheroidal 

1 4 

This 

The problem was 

The flat mirrors  S P  and M play analogous roles as M 5 6 and 

M in the monochromator section. Finally, flat mirrors  M and M3 

a re  provided for convenient reflection filter positions i f  so  desired in  

future applications. 

9 2 

All  the mirrors  described above were fabricated by grinding 

pyrex blanks and then aluminizing the front surfaces. 

a r e  true to spheroidal shape or flatness to within h / 4  in the visible 

region. 

mount so to facilitate optical alignment. 

Their surfaces 

Each mirror  is mounted on a three -dimensionally adjustable 

Two baffles, labeled B in Figure 14, were placed in the 

spectrometer in order to reduce the possibility of any stray unfil- 

tered o r  unchopped light entering the monochromator. 
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A s  also shown in Figure 14, an image of the source is 

provided between mirrors  M and M This focus has the smallest 2 3' 
aperature area and is, therefore, the best position for the chopper. 

The small area of the beam in this region is also very desirable for 

filter positions, A s  can be seen in the figure, the chopper CH, and 

and F a re  placed adjacent to mir rors  1' F2' 3 three filter wheels F 

M and M3. 
2 

Finally, the figure shows the light source (LS) , and the light 

pipe (LP) and Golay cell (GC) at the extreme ends of the light path. 

Section 2. Energy Sources 

A s  mentioned previously, three types of energy sources have 

been considered fo r  use with this spectrometer. They are  the high 

pressure mercury arc, gas laser, and microwave harmonic gener- 

ator. The first source produces incoherent light which can be made 

to fill the aperature and solid angle of the fore-optics. 

two sources a re  of the coherent type, and have much different energy 

distribution patterns. The laser  produces a collimated beam of 

about a few millimeters diameter, which must be coupled to the 

spectrometer. This beam area must be spread in order to  cover at 

least several grooves on the grating, so to get an interference pat- 

tern. No exact method has been developed to accomplish this task; 

however, it is assumed that a spheroidal mirror  of a few millimeters 

in diameter, and of very short focal length would cause the beam to 

diverge enough to solve this problem. 

usually terminates in a wave guide, which radiates energy as if  it 

were a microwave horn antenna. This procedure may be used for 

coupling to the spectrometer, o r  the use of a horn may be used to 

improve the coupling. 

The latter 

The harmonic generator 



b b  

The large size of far -infrared gas lasers  makes it necessary 

to have the laser  outside the spectrometer vacuum chamber. 

requirement also involves the problem of aligning the laser  beam to 

the spectrometer. A suggested arrangement for laser  coupling is 

shown in Figure 14. This figure also shows a possible coupling 

arrangement for the harmonic generator. 

This 

Section 3. Filters 

The different types of filters used in far-infrared spectroscopy 

have been discussed above. Since well established filtering programs 

have not been formulated by far -infrared spectroscopists, it was 

decided to provide positions in the instrument for all types of avail- 

able filters, A s  shown, Figure 14 shows all the filtering positions. 

and F a re  used for  transmission filters of the 
2’ 3 filter wheels F1, 

3’ reststrahlen o r  grating types, 

these wheels can be used to hold reflection filters by replacing 

mirrors  M and M 

grating filters to be tested in the instrument, along with their usable 

ranges. If it is desirable t o  use more than one transmission filter of 

a given type, a separate filter can be placed on either side of the 

filter wheels. 

in the light bean1 simultaneously, 

difficult to manufacture, they will be placed on filter wheel F2 

because of its smaller aperature size; whereas wheels F and F 

will  hold transmission -grating filters. 

a r e  necessary to cover the short wavelength region, filter wheel F 

which has eight positions, is capable of containing all the short wave- 

length filters, with one free position to be used during long wave- 

length scans. The eighth position can be used for samples o r  testing 

of new filters. Filter wheels F1 and F3, which have six positions 

each, a r e  capable of holding all six of the transmission-grating filters 

But by rotating mounts F and F 1’ 

Table IV lists the powder and transmission- 
2 3 ‘  

Thus, it is possible to have six transmission filters 

Since the powder filters a re  more 

3 1 
Since only six powder filters 

2’ 
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needed to cover the long wavelength range, with four positions 

unoccupied. Two of these unoccupied positions a re  necessary when 

working in the short wavelength region, whereas the remaining two 

positions can be used for samples and filter testing as in F 2' 

A s  previously mentioned, either o r  both filter wheels F1 and 

F can be used to  hold reflection filters. This is accomplished by 3 
removing mir rors  M and M3, and moving wheels F 

2 1 
and/or F3 to 

positions such that the reflection filters occupy the same positions a s  

previously held by M2 and M3. 

grating filters may be used in these positions. 

the metal mesh filters only. A s  in the 

case of multiple transmission filters, more than one reflection filter 

may be placed in the light beam simultaneously, by having similar 

filters on both wheels F1 and F3. 

provides only two positions, i f  it is desirable, mirrors  M M o r  

M Since the undesirable 

wavelengths a re  transmitted through these mesh, then a properly 

placed absorbing material can be used behind these mirrors  to pre-  

vent any stray light from entering the monochromator. 

Hence, wire grid and reflection- 

It is planned to test 

These a re  listed in Table V.  

Even though this arrangement 

5' 6 
can be replaced by metal mesh filters, 

9 

The extremely short wavelength energy is filtered out by the 

roughened aluminum scatter plate (SP), which is the first reflecting 

surface encountered by the light beam after the light source (LS). 

Further short wavelength attenuation is accomplished by multiple 

sheets of black polyethylene placed over the aperature in the baffle 

adjacent to the chopper. 

combination absolutely shields the remainder of the instrument from 

short wavelength energy. 

This baffle and black polyethylene sheet 
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TABLE V 

PARAMETERS OF SELECTIVE 

(After Mitsuishi, et a l4 l )  
METAL -MESH FILTERS'~ 

Mesh Mesh Constant Wire Diameter a /d 
Number d (microns) a (microns) 

2 80 95  

200 127 

145 17 1 

100 2 12 

65 384 

39 0 . 4 1  

46 0. 36 

60 0 . 3 5  

82 0 . 3 9  

177 0 . 4 6  

>: 
These mesh are  made of brass 
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Section 4. Dispersion Gratings 

Since the size of the main dispersion gratings has been 

determined, then the remaining grating parameters which must be 

specified a re  the blaze angle 4 ,  the grating spacing d, and the 

usable range in wavelengths, The latter two a r e  most easily speci - 
fied. 

efficiency of 50 percent o r  greater a r e  given by 

The wavelength limits at which echelette gratings have an 

3 and Xu = - X 3 
2 P  

x = - X  L 4 6’ 

and X are  the blaze, lower limit, and upper limit p XL’ U 
where X 
wavelengths. 

analytically. 

These limits have been determined experimentally and 

Since Xu = 2XL, it is seen that each grating can be 116 

used over one octave. 

The grating constant d is determined by the wavelength region 

For  a given grating of spacing d, for which the grating is l o  be used. 

the blaze wavelength is determined by the blaze angle and the included 

angle between the incident and diffracted first order light beams. 

This relationship is derived easily from the grating equation and the 

geometry of the monochromator. 

included angle is given by 

Referring to Figure 4B, the 

e = e k i  in 

where i and 8 a re  the incidence and diffraction angles measured 

with respect to  the grating normal. The plus and minus signs refer 

to the cases when i and 6’ a re  on opposite sides or the same sides 

of the grating normal respectively. 

grating in a position such that X L 
incident angle is zero. Hence, the condition of i and 8 being on 

opposite sides of the grating normal never occurs in practice. 

Calculations show that for  a 

is diffracted into the exit slit, the 

Thus, 
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the above relation reduces to 8 = 8 - i. The condition for the blaze 

wavelength to be incident at the exit slit is given by 
in 

in e in 
2 2 >  

e 
i = d - -  e = + + - -  

where d is the blaze angle. It is seen from the above condition that 

the incident and diffracted light angles a re  equal with respect to the 

facet normal. 

specular reflection by the individual facet surfaces, i. e . ,  each facet 

o r  groove behaves like a plane mirror  with respect to the blaze wave- 

length. 

results in 

Hence, this condition is that which corresponds to 

Combining the above relations with the grating equation 

e e 
X P = d [ s i n ( $  ++) +sin($  - ~ , ]  

in = 2d sin cos - 2 

e 

f o r  the first order. From this relation, it can be seen that any ratio 

Xp/d can be achieved simply by varying $ and 0 

investigation reveals that there exist other restrictions on these 

angles. 

But further in' 

Calculations show that for  a given included angle, as the blaze 

angle increases, the diffraction angle decreases. 

equation for angular dispersion, it is evident that large diffraction 

angles a re  desirable for large dispersion. The included angle is 

determined partially by the size and speed of the monochromator 

optics, and the optical arrangement. By imposing limits on the size 

of the instrument, and requiring maximum dispersion for high reso- 

lution, values of d = 15 degrees and 0 = 22 degrees were accepted 

as giving the most desirable properties, 

into the last equation results in 

By looking at the 

in 
Substituting these values 
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X = 0.5082d 
P 

P ’  
This relation, along with those between A X and X 

L’ u’ 
determine the wavelength range of each grating. 

of the instrument was specified by experimental requirements as 

extending from 30 to  1600 microns wavelength. Thus the lower limit 

for the first grating is set at 30 microns. This value determines the 

blaze wavelength for the first grating as 

The overall range 

4 = -  X = - (30u) = 40u. 
P ,  3 L, 3 
I I 

And hence, 

X 
= 7 8 . 7 ~  - - 4 

dl 0.5082 

and 

= X = 2XL1 = ~ O U ,  
u 1 2 P, 

i. e . ,  the first grating covers the octave of 30 to 60 microns with 50 

percent efficiency. 

chosen to be equal to the upper limit of the first grating because it is 

desirable to  have some overlap for continuity reasons. 

overlap of 20 percent was chosen, which resulted in 

The lower limit of the second grating is not 

A minimum 

= 0 . so  X = 54u. &L2 u l  

The remaining values for X 

same conditions as above. 

gratings to be used in this instrument. 

calculated values are a result of the restrictions placed on grating 

ruling by the ruling engine being used. 

grating spacings of fractions of 200th~ of a millimeter. 

X and Xui follow by applying the Li’ pi’ 
Table VI gives all these values for the 

Small deviations from the 

Gratings could be ruled with 



7 3  

Lo 
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With the above values of the blaze and included angles, a total 

rotation of the gratings of 12  degrees is necessary to  allow the full 

range of wavelengths to  be focused at the exit slit. 

correspond to 

These angles 

0 

L '  i = O  , 0 = 2 2  for h = X  

i = 1 2 O ,  8 = 34O for x = X u  

and 

i = 4 '  , 0 = 2 6 ' f o r  X = X  . P 

One may notice in Figure 4B that the light is shown illuminating 

the grating at an angle which is on the side of the grating normal 

closest to the facet normal. 

tilt, since the grating is rotated toward the right hand direction with 

respect to the beam of incident light. This is not the only means of 

illumination. 

fraction angle ranges between 0 and 12 degrees in contrast to that of 

22 to 34 degrees for the right tilt case. Hence, the right tilt illumi- 

nation condition results in larger angular dispersion. 

persion is desirable, the left tilt condition may be used by simply 

inverting the grating, 

This condition is referred to a s  right 

Calculations show that for  the left tilt case, the dif - 

If lower d i s -  

In the long wavelength region of the spectrometer range, the 

intensity of the source becomes very low. 

angle of the gratings used in this region, it is possible to increase 

the energy density at the exit slit plane by reducing the angular dis-  

persion. Many spectrometers use this device. At the same time, 

the grating spacing must be increased to keep the blaze wavelength 

and usable wavelength range a s  it was with the higher blaze angle. 

One grating with a blaze angle of 7 .  5 degrees and grating spacing of 

2 mm has been fabricated for the wavelength range of 560 to 1140 

By decreasing the blaze 
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microns. Another grating has been made for this range by ruling 

on soft solder which has been melted on a brass  plate, whereas the 

previous gratings were ruled on aluminum cast tool and jig plate. 

The reflectivity in the far  -infrared of the solder grating has been 

said to be three times that of the aluminum gratings. The main 

disadvantage of the solder gratings is the extreme ease in which 

they can be destroyed by scratching. 

Section 5. Detector Optics 

A s  mentioned in Chapter 2, the most convenient type of 

detector optics for use with low temperature detectors is the light- 

pipe condensing-cone system. Since almost all the detectors to be 

used with this spectrometer operate at liquid helium temperatures, 

this system is used. 

The light -pipe and cones a re  of cylindrical cross -section, 

and made of brass.  

2 1 /8  inch diameter aperature at the large end to match the diagonal 

of the slits when fully opened. This cone condenses the beam to the 

5/8 inch diameter of the light-pipe over a 4 inch distance. The size 

of the light pipe was determined by two criteria. 

et al. , have shown that the transmission of the pipe increases with 

increasing diameter, since less  reflections a re  encountered per unit 

length of pipe, 

small pipe enter the liquid helium dewar for heat leak considera- 

tions. 

7/8 inch, and is available commercially, It is very straight and 

has very uniform circular cross-section, which a re  ideal f o r  light 

pipe application. A number of light pipe sections have been made, 

each of which has one straight unaltered end, and one end fitted 

with an "0" -ring quick-connecting seal, 

The primary cone located at the exit slit has a 

First, Ohlmann, 
80 

And second, it is desirable to  have a reasonably 

This 5/8 inch inner diameter pipe has an outer diameter of 

This arrangement allows 
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any length of light pipe to be used by simply adding the desired 

number of sections. This method also makes it very simple to 

measure the attenuation due to a given length of light pipe. 

The terminating end of the system consists of several 

condensing cones used f o r  different detectors. 

the Golay cell condenses the aperature from 5 /8  inch to 1 cm.,  

which is the window size of the cell. 

polyethylene sheet window so that the entire light pipe is evacuated 

along with the spectrometer. 

1 / 2  mm of the cone window, the water vapor absorption in this small 

distance can be made to be negligible. 

One cone used for 

This cone is fitted with a clear 

By placing the Golay cell within about 

The second cone is fitted onto the end of the light pipe 

which carries the light into a liquid helium dewar to illuminate low 

temperature detectors. Since most solid state detectors have sensi- 

tive areas of about one millimeter diameter, this cone condenses the 

5 / 8  inch light pipe aperature to a one millimeter diameter aperature. 

A polyethelene window is placed at one of the joints in the light pipe 

t o  isolate the two vacuum systems, i. e . ,  that of the spectrometer 

and that of the helium dewar. 

Long sections of light pipe can be sealed off at each end 

by windows s o  that gas samples may be analyzed. 

placed into the pipe through radial fittings equipped with valves so 

that high pressures can be obtained. 

The gases a r e  

Section 6 ,  Mechanical Design 

A.  Vacuum Chambers 

There a re  several requirements which a re  unique to  the 

mechanical design of far -infrared spectrometers. The most out - 
standing of these is the necessity of enclosing the instrument within 
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a vacuum chamber in order to remove the atmospheric water vapor 

absorption. This requirement is complicated by the large size of the 

optical system required for these instruments. The size of this in- 

strument is so large that it had to be enclosed by two separate 

chambers. 

The fore-optics a re  mounted on a 3 foot by 4 foot by 1 / 2  

inch steel optical bench, as compared to the 2 1 / 2  foot by 5 1 / 2  foot 

by 1 / 2  inch monochromator optical bench. 

strument a re  enclosed by chambers of 38 inches wide by 50 inches 

long by 23 3 /4  inches high and 32 inches wide by 68 inches long by 

23 3 / 4  inches high respectively. 

thick cold-rolled steel, with both sides and all edges blanchard 

ground for flatness and squareness. 

together, but remain separate from the bottom and tops so that they 

can be removed for adjusting the instrument. 

chamber has two tops, while there a re  three for the monochromator. 

These a re  made of aluminum and have been made small so that they 

could be removed by hand. The tops and sides can be raised by the 

use of a one-ton electric hoist, and rolled out of the way of the in- 

strument on a 6 inch I-beam. The vacuum sealing is accomplished 

by 1 /4  inch diameter cross -section neoprene "0" -rings, which were 

custom fabricated. The light beam passes from the fore -optics to 

the monochromator through a 6 inch inner diameter stainless steel 

bellows. 

the two chambers. 

legs in a triangular arrangement. 

the redundant fourth leg of conventional tables. 

support is adjustable in height so to be able to align the chambers 

with each other. 

sides, tops, and bottoms all buckle, which requires careful 

These sections of the in- 

All  plates a re  made of 1 / 2  inch 

The sides a re  electric welded 

The fore -optics 

This bellows also provides the vacuum connection between 

Each chamber is supported by three steel pipe 

This type of support eliminates 

The fore -optics 

When applying vacuum to these chambers, the 
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consideration so that this motion is not transferred to the optical 

system. 

Each optical bench is supported by three ball bearings located 

on the bottom plates above the upper ends of the supporting legs. 

The buckling of the bottom plates pivots about these points, and 

hence, these balls remain fixed in place. 

a conically shaped socket in hardened steel pads bolted to  the bottom 

plate. The optical benches have three similar pads attached to their 

lower sides. 

shaped groove, and the last a flat plate. 

allows the benches freedom of expansion and contraction, but also 

fixes them rigidly in all three directions. 

is described in Reference 145 was used throughout the instrument 

where redundant mounting would be detrimental. 

Each ball is placed into 

One of these three pads contains a socket, one a V -  

This kinematic support 

This type of support which 

Two vacuum pumping systems a re  available to evacuate the 

The large system (380 cfm) can lower both chambers instrument. 

from atmospheric pressure to less  than 20 microns in about 15 min- 

utes. The second, and smaller system (16 cfm), is used to maintain 

the low pressure and to  f ree  the large system for liquid helium tem- 

perature control. 

Three 6 . 7  inch diameter access ports are  provided in each 

chamber. One port on each chamber is provided for electrical and/or 

vacuum access. 

vided for access by the laser and harmonic generator energy sources. 

The last  port on the monochromator chamber is provided for the 

light -pipe. 

the low temperature cryostat is to be located. 

The fore-optics chamber has two more ports pro- 

This port is directed toward free laboratory space where 

All  permanent electrical wiring and vacuum or  water piping 

enters the instrument through the bottom of the fore -optics chamber. 



In this way, the instrument is fully operable with the chamber sides 

and tops on or off. 

B. Scan Mechanism 

The scan mechanism is the most complex subsystem of this 

spectrometer. It consists of two main sections, the sine-drive, and 

the grating interchange. 

pound table to select one of the six gratings oh the interchange. 

former rotates the grating located in the optical position by the sine 

of the angle of the incident light, which provides an output which is 

linear in wavelength. 

The latter rotates the gratings by a com- 

The 

The grating interchange shown in Figure 16  consists of one 

16 inch diameter disk on which a re  placed three 10 inch diameter 

disks with their centers located at the vertices of an equilateral 

triangle. 

disk. 

shafts mounted in pairs of precision ball bearings. 

protrude through the large disk and each has a spur gear attached to 

its lower end. 

the center shaft on which the large disk is mounted by similar bear- 

ings. A s  the large disk 

is rotated, with the large gear fixed, the small disks a re  forced to 

rotate in  an opposite direction and at a speed proportional to the 

ratio of the pitches of the planet gears to that of the sun gear.  

ratio has been chosen to be three-halves, so that one-third of a 

revolution of the large disk causes the small disks to rotate one-half 

a revolution. 

of the small tables, it is possible to rotate the system in 120 degree 

increments and, thereby, place each grating in the optical position by 

remote operation. It is necessary to lock the grating being used in 

The center of the triangle coincides with that of the large 

The small disks a re  attached to the large disk by vertical 

These shafts 

These three gears mesh with one larger gear fixed to 

These four gears form a planetary system, 

This 

By placing two dispersion gratings back to back on each 
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place so that it will be mechanically rigid after interchange, 

locking device must be repeatable in order that the calibration of 

the instrument be repeatable. 

indexing pins and nine hardened V-grooves. 

disk and the small disk being used in the optical position. 

V-grooves a re  located on the circumference of the large disk 

radially outward from the centers of the small disks. 

six V-grooves a re  located on the circumferences of the small tables 

in front of each of the six gratings. Each pin is actuated by an elec - 
tromagnetic solenoid, 

deactivate the solenoids when the disks have rotated to the proper 

positions. 

7 5  oz-in reversible motor which drives the large disk. 

about 30 seconds to rotate from one grating to the next. 

This 

This locking is accomplished by two 

The pins lock the large 

Three 

The remaining 

Microswitches and small screws a re  used to  

The rotation is accomplished by a single 5. 7 RPM, 

It takes 

Each grating is kinematically mounted to a vertical plate 

Three springs hold each attached to the tops of the small disks. 

grating against three ball bearings which can be adjusted to rotate 

the grating in three mutually perpendicular directions. 

The supporting shaft of the large table is mounted on a 

rotating arm, which is an integral part of the sine-drive mechanism. 

This a rm is supported at its pivoting end by two precision ball 

bearings on a vertical shaft bolted to the optical bench. 

is centered below the center of the ruled face of the grating in the 

optical position. Hence, by rotating this arm, the grating being 

used is rotated about the center of its ruled face, but not translated. 

This motion is necessary for the wavelength scanning procedure. 

mentioned above, a rotation of 12 degrees is required for each 

grating, This mechanism is capable of about 16 degrees rotation. 

The weight of the grating interchange system is supported by two 

This shaft 

A s  
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ball bearings located under the sine-bar directly below the shaft 

supporting the large disk. These balls roll in a curved V-groove 

which has a radius of curvature equal to the distance from the pivot 

point of the a rm to the position of the balls on the arm. 

balls roll only and never slide, which causes wear and gradual 

decay of the bearing plates. The under side of the sine -bar is r e  - 
inforced at this point by a flat hardened steel plate, The sine-bar 

is rotated by a precision lead screw and nut arrangement a s  shown 

in Figure 1 6 .  

wavelength drive is described in the following analysis. 

ment axis is defined a s  the line passing through the center of the 

ruled face of the grating and bisecting the distance between the 

centers of the main mirrors .  If a is the angle which the grating 

normal makes with the instrument axis, then the relations between 

this angle and the incidence and diffraction angles a re  given by 

Thus, the 

How this mechanical arrangement results in  a linear 

The instru- 

where ein, i , and 6 a r e  defined above. 

with the grating equation gives 

Combining these equations 

8 8 
sin (a - 2) 2 +sin(@ + +)I 

= K sin 0, 

in where K = 2d cos - is a geometrical constant for  a given grating. 
2 

Since the chart paper on the strip chart recorder is driven by syn- 

chronous motors, then it is necessary to have the rate of change of 

wavelength with respect to time be a constant, 

specified a s  

6 

This requirement is 
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d~ = K '(sin 8) = constant , 
dt dt 

If x is the distance the nut travels along the lead screw, then the 

velocity of this nut, when the screw is driven by a synchronous 

motor, will  be given by 

dx - _  - constant . 
dt 

From the figure, it is seen that the geometry gives the relation 

between x and 8 as 

x = A sin 8 

where A is the length 

tive of this equation 

dx - = A  d(sin 8) 
dt dt 

of the sine -bar. By taking the time deriva- 

A dh 
K dt 
- - _ -  

and by setting either side equal to a constant, both required condi- 

tions are satisfied, 

length A is not constant as the ball slides across the optical flat on 

the nut. This small e r ro r  can be compensated for by providing the 

mechanism with two adjustments. 

flat with respect to the screw axis, and the length of the sine-bar. 

By trial and e r ro r  methods of adjusting these parameters, almost 

perfect linear wavelength scanning can be accomplished. 

design was first proposed by Badger, et al.,  
147 detail by Dimock. 

The above analysis neglects one factor, that the 

These a r e  the angle of the optical 

This 
146 and is discussed in 

Since this scan mechanism must be controlled from outside 

the vacuum chamber, two motors a re  used to rotate the lead screw. 

To provide a number of discrete but repeatable scan speeds, a six- 

speed synchronous motor is used for normal scanning. This motor 

is located on the control console. The output of this multi-speed 
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motor is transmitted to the lead screw by means of a selsyn 

transmitter and receiver. 

externally to the instrument, 

wavelength scan rates for each grating a re  listed in Table VII. For  

example, the fastest and slowest times for a 12 degree rotation of a 

grating by this motor a re  30 minutes and 19 1 / 2  hours respectively. 

A second high speed motor is also used to drive the screw for fast 

scans and to return the nut to either end of the screw rapidly. 

is accomplished in 6 minutes. 

Hence, the scan speed is selected 

The six speeds and corresponding 

This 

The equation relating the RPM of the lead screw to the wave- 

length scan rate is 

in 1 RPM e * dt = (2dcos - 2 )A- , 

where 

dx - R P M  
dt m 
- --  

and m is the thread pitch of the screw. 

A = 16 inches, m = 50 threads per inch, and at X = 100 u, with 

d = 250 u, then 

F o r  Oin = 22 degrees, 

dX - -  - 0.612 RPM 
dt 

The fastest and slowest rates corresponding to 6 and 6 / 3 2  RPM are  

3.67 and 0 .115  microns per minute. 

The angle of the sine-bar relative to the instrument axis is 

transmitted to the control console by the following apparatus. 

rotation counters a re  used. 

and the second mounted on the console panel. 

driven by a set of selsyn motors, the transmitter being driven by 

the lead screw. 

Two 

One directly attached to the lead screw, 

The second counter is 

Hence, both counters indicate the number of 
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revolutions of the screw, o r  the position of the nut along the screw, 

o r  the angle of the sine-bar. The range of the counters a re  from 

0 to 9,999, where one revolution of the screw corresponds to 10 

counts. A calibration curve will be made for each grating relating 

the counter number to wavelength. The position of the sine-bar is 

recorded on the chart paper by using an event marker.  This event 

marker is a solenoid-driven pen which is activated by a reed switch 

and five magnets mounted on a wheel on one end of the lead screw. 

Hence, five equally spaced marks a re  made on the chart for each 

screw revolution. Since the wavelength output on the chart is 

linear, then it is possible to linearly interpolate between these 

marks. 

hence, some wavelength. By manually recording this number on 

the chart paper every few feet, any wavelength between two numbers 

can be determined by counting marks from one of these recorded 

numbers. 

on the chart paper so that the correct calibration curve will be 

used. 

Each mark will correspond t o  a number on the counter and, 

The grating being used optically must also be recorded 

C. Mirror, Chopper, and Mercury Arc Mounts 

The mechanical apparatus composing the scan mechanism 

resulted in the center of the height of the gratings being 10 inches 

above the optical bench. 

be mounted with their centers at this height. 

a re  of the same basic design, but differ slightly due to mirror  size 

and weight. 

of nylon screws so not to create any local s t ress  regions. 

each backing plate is held against three round end adjusting screws 

by a spring. 

plates. With this type of mount, the mir ror  positions a re  adjust- 

able in two mutually perpendicular rotations, and also translation 

Thus, all other optical components had to 

The ten mirror  mounts 

Each mirror  is mounted on a backing plate by the use 

Then 

These screws set into cones drilled in the backing 
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perpendicular to the mirror face. 

adjusted by the use of shims, i f  necessary. 

The height of each mir ror  is 

The chopper wheel consists of a 10 1 / 2  inch diameter, 1 / 8  

The inch thick aluminum disk with six partial sectors removed. 

area of each open o r  metal sector is slightly larger than that of the 

beam at the point of location of the chopper. 

modulated six cycles per chopper revolution, 

on a 3/8 inch diameter shaft which is held by two precision ball 

bearings. 

at two different speeds, A two-hundred RPM motor drives the wheel 

through a 2 : l  ratio timing belt drive giving a chopping frequency of 

10 cps. 

the chopper at 3600 RPM for a chopping frequency of 360 cps for use 

with photodetectors, Many other speeds can be developed by simply 

changing the gear ratios, 

here so that heat from the motors is not transferred to the chopper 

blade, and hence, cause radiation into the light beam. Since the 

chopper is rotated at relatively high speeds, it has been dynamically 

balanced. 

gear train of the slow motor so  that the high speed motor does not 

have to  drive the slow motor backwards. 

Thus, the beam is 
The wheel is mounted 

Two synchronous motors a re  used to rotate the chopper 

This is used with the Golay cell. A second motor drives 

Timing belt drives have been employed 

Also, a mechanical one -way clutch is provided in the 2 : l  

The mercury a rc  source being used in the instrument is a 

General Electric Uviarc UA-2 lamp. This lamp has been designed 

for large factory or  exterior illumination, and must be either 

forced a i r  or water  cooled. 

only water cooling is available, and hence, this type of cooling is 

used. This is accomplished by flowing water through a cooling 

water jacket formed by two concentric brass tubes with the lamp 

In the spectrometer vacuum chamber, 



located along the cylindrical axis. A window the size of the lamp is 

cut out of both tubes to provide a light path for illuminating the fore- 

optics. Thus, the lamp is cooled strictly by radiation to the inside 

wall of the water jacket. 

tion of radiation, and therefore, the cooling efficiency is increased. 

The electrical terminals of the lamp a re  supported by teflon spacers 

located in the ends of the water jacket. 
97 cally isolated from the jacket. 

that it is necessary to dimple the quartz envelope of the lamp t o  

remove any interference resonance effects. 

gated experimentally by comparing two lamps with and without 

dimple s,. 

By blackening this surface, the absorp- 

Thus, the lamp is electri - 
It has been mentioned by Richards 

This will be investi- 

Section 7 .  Electric Control Circuits 

A. The Scan System 

A switching logic circuit containing an eight switch program - 
ming timer, one rotary switch, two push button switches, five 

toggle switches, eight microswitches, and three motors is used to 

obtain semi -automatic scanning with this spectrometer. 

circuit is shown in Figure 17. 

initial condition, the t imer switches a re  set by adjustable cams 

such that the lead screw is being driven by the six speed scan 

motor. Assuming that the lead screw nut is at the extreme short 

wavelength end of the screw, then the rotary switch is turned to  

the "increase wavelength" position, Under these conditions, the 

grating in the optical position will be rotated through 12 degrees, 

at the speed selected by the investigator, until a microswitch is 

activated (by the nut) at the other end of the screw. 

switch starts the programming timer, which in turn, goes through 

the following cycle. First ,  one timer switch starts the high speed 

The 

With the programming timer in the 

This micro- 



89 

scan motor to return the nut to the other end of the lead screw in 

6 minutes. The direction that this motor rotates is also selected 

by "wavelength direction" rotary switch. Second, another tirner 

switch s tar ts  the grating change motor, which advances the next 

grating to the optical position via the grating interchange, 

next grating is stopped and locked in place automatically by micro- 

switches located on the grating interchange. Also, three micro - 
switches and three pilot lights a r e  used logically to indicate which 

of the six gratings is in the optical position. At about this time, 

the "program timer maintain switch'' is opened automatically and 

the first part of the cycle has been completed. 

returned to the first end of the screw, a microswitch is activated, 

which in turn starts the second part of the program cycle. This 

part of the cycle is simply the resetting of the program timer to 

the initial conditions so that the scan motor will start scanning the 

next grating . 

The 

When the nut is 

There a re  several alternatives built into this scan cycle. 

First, the rotary switch can be placed in the "decrease wavelength'' 

position, which just reverses the directions of all the motors, and 

hence, the direction of scan, return, and grating change. Second, 

if  it is desirable to have the cycle stop at the end of scanning over 

one grating, just flip the "scan cycle" switch from "automatic" to 

manual. ' I  On the other hand, to have the cycle repeat over the I t  

same grating indefinitely, throw the "grating change" switch from 

"on" to "off, " A s  may be seen in the circuit diagram, there a re  

four microswitches on the lead screw. 

for starting the program timer cycle in either scan direction, and 

the other two a re  for stopping the high speed return motor from 

overrunning the microswitches in either direction. 

One of these on each end is 
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There a re  several other switches related to this scan system. 

One of the t imer switches is used to stop the strip chart recorder 

chart-drive during grating changes so that spectra will not be 

recorded during these periods. 

vated by this switch. 

used for fast scans which a re  to be recorded, there is a defeat 

switch located on the rear  panel of the main console. 

The event marker is also inacti- 

But, in case the high speed scan motor is 

Finally, two push button switches a re  provided for the 

following uses. One of these switches is used for changing gratings 

at any time without returning the program cycle to the initial condi- 

tions, i. e . ,  in the middle of a scan. The other push button switch 

is used to return the cycle to the initial conditions, at any time, 

for incomplete scans. 

By using combinations of the above switches, this scan system 

is an versatile a s  any commercial non-remote control system. 

Scanning with this system is semi-automatic in the respect that 

filter changing and slit width adjustment a re  not controlled auto- 

matically. These two controls a r e  separate and a re  discussed next. 

B. Filter Changing 

The filter changing circuit shown in  

filter wheels F1, F and Fg. The circuit 2 

Figure 18A is used for 

is very simple, using 

only two identical rotary switches, a relay and a motor. 

motor drives the filter wheel and one of the rotary switches, while 

the relay and second switch a re  located in the control console. Any 

position on the filter wheel is placed in the optical path by dialing 

the corresponding number on the panel switch. 

a re  activated a s  soon as the two switches a re  not at corresponding 

positions, and will remain activated until the motor has driven the 

wheel and switch to the corresponding position on the panel switch. 

The 

The relay and motor 
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Since the wheels a re  driven by small clock motors, which a re  

unidirectional, a filter wheel must go through all positions even if 

the panel switch is rotated by one position in the opposite direction. 

The wheels make one revolution in one minute, and hence, an 

adjacent filter change is accomplished in less  than 10 seconds. 

Pilot lights a re  provided to indicate when the wheels have stopped. 

Also, since the indexing mechanism of the rotary switch is 

used to index the filter wheels, precision switches must be used. 

For transmission filters, this requirement is somewhat relaxed, 

but it is very important for reflection filters. 

C. Slit Width Control 

The mechanical width of the slits is controlled by using 

selsyn motors. 

panel is wired in parallel to two receivers, one driving each pair 

of slits. 

right and left hand 40 threads per inch precision screw. 

rotating the screw, the slit jaws are  moved away o r  toward each 

other. 

of the two slit pairs. 

and the others a re  on the slit shafts. A change in one number on 

the counters corresponds to 0 .005  inch slit width change. 

about the smallest controllable change. 

One hand driven transmitter located on the control 

The slits a re  mounted on dove-tail slides driven by a 

Thus, by 

Three revolution counters a re  used to indicate the positions 

One of these counters is on the control panel, 

This is 

D. Safety Switch Circuits 

Two safety switch devices have been included in the design of 

this spectrometer. 

safety circuit. 

lamp cooling water pipeline which shuts off the lamp power when 

insufficient water flow conditions exist. This circuit is given in 

Figure 19A, which also shows the power supply for the UA-2 lamp. 

The first is the mercury lamp cooling water 

This circuit contains a water flow switch on the 
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The second safety circuit is provided for severe pressure 

increase, due to either water pipe failure or vacuum leaks. This 

circuit is activated by a pressure sensitive switch which is set at 

approximately one millimeter of mercury absolute pressure,  

switch activates a power relay in the control console which dis - 
connects all power to the spectrometer and the auxiliary vacuum 

pumping system. 

increase is due to water contamination, which could damage the 

pumps. 

This 

The pumps a re  shut off in case the pressure 

This circuit is shown in Figure 19B. 

E. Chopper Frequency Reference Signal 

A s  mentioned previously a lock-in amplifier is used to  amplify 

only that part of the signal received by the detector which has been 

modulated by a predetermined frequency. 

mined by the type of detector used and is generated by the chopper 

wheel, There are  two ways to simultaneously generate a reference 

signal from the chopper with the exact frequency a s  that imposed on 

the optical beam. These methods a re  the mechanical rectifier, and 

the photocell-lamp systems. The former method consists of a 

mechanical rotating device attached to the chopper drive shaft. By 

the use of brushes and commutators, it generates a train of pulses 

of the same frequency as that of the chopper. 

liable to malfunction due to dirt in the brushes, etc. 

method is more reliable, 

response photocell which is illuminated by light eminating from the 

photocell exciter lamp. The cell and lamp a re  located on the same 

This frequency is deter - 

This method is 

The second 

This spectrometer uses a very fast 

side of the chopper blade, and in such a way that the light is r e -  

flected into the cell by the metal sectors of the chopper. 

square wave signal is generated by the photocell with the exact f r e -  

quency of the chopper. 

Hence, a 

The side of the chopper facing the cell and 
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lamp has been polished for high reflectivity. This circuit is 

illustrated in Figure 18B. The photocell is a model TPC-4L 

made by Farmer Electric Products Co., Inc. 



CHAPTER IV 

OPERATION, CALIBRATION, 

Section 1. Selection 8 .  

The different typea of filters available for use in far infra- 

red spectroscopy have been described in Chapter 11, Section 5. The 

criteria for selection of filter types has been t ease of fabri 

and operation of the filters. On this basis, powder filters have been 

used from 30 to 320 microns, and transmission-grating filters from 

300 to 1100 microns. 

The preparation of powder filters was made in the following 

manner, First, many filters, each consisting of a single reststrahlen 

crystal powder were fabricated by mixing the proper proportion of 

each powder to a fixed amount of polyethylene powder. Each crystal 

powder was obtained from various chemical manufactures in the 

purest state available, usually reagent quality. 

was ground by hand using a mortar and pestle, until the fine powder 

could pass through a 400 mesh sieve (approximately 37 micron hole 

size). 

Then each powder 

The powder was made to pass through the sieve by the use of 

a homemade sieve shaker. 

determined by References 39, and 135) was weighed and then mixed 

with the proper amount of polyethylene powder. The polyethylene 

powder used was "Microthene 620"; a high -density polyethylene of 

approximately 100 micron particle size as received from the manu- 

The proper amount of each powder (as 

facturer, U. s. Industrial Chemicals. 

The mixing of the powders was carried out in a homemade 

shaker with stainless steel vials about three inches long by one and one- 

half inches dia . After mixhg for at least one hour, the mix 

die 
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Was three inches in  diameter, and made to  produce a thin wedged 

filter of about 0 

side. The center portion of the dls 

optical beam, is about 0.015 inch (380 microns). 

of the filters eliminates any inter 

trum recordings, After allowing the mix to melt on the lower surface 

of the die, the heated top of the die was put in place, and pressed down 

with the heated platen of a hydraulic press until the surface of the . 

upper platen had reached the top of the outer cylinder of the die. At 

this point the remaining filter had the same dimensions as mentioned 

above. All excess molten mix is allowed to escape through small 

holes in the die, After cooling the entire assembly with water, the 

filter is removed from the die and inspected for uniformity. If any 

light or  dark spots a re  seen, the filter is rejected. 

refer to clumps of polyethylene o r  crystal powder which did not break 

up during the mixing process. This overall procedure produced about 

two good filters out of every three attempted. After producing a com- 

plete set of these single component filters, the next step was to test 

them in the spectrometer. 

0 inch on the t 

These spots 

By using crystal quartz, a 240 grit scatter plate and two 

sheets of 0 .1  mm black polyethylene, all radiation of wavelengths 

below 40 microns were attenuated to the point where a signal to noise 

ratio of about one was recorded from 30 to 40 microns on the first 

grating. The spectral purity in this region was checked by placing a 

5 mm thick plate of KBr in front of the detector. The KBr will  pass 

all radiation below 40 microns with little attenuation, but blocks all 

radiation longer than 42 microns. Thus, any signal measured must 

come from the region below 40 microns. If no signal is recorded, 

oduced by the fi l ters below 40 microns is suf- 

quartz used was from a natural crystal cut along the 
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Y-axis to give maximum transmission. The plate was wedged two 

degrees, and was 1 .5  mm thick on the thick side, No interference 

fringes were detected with this crystal, in contrast to another crystal 

used, which was 1 mm thick and had parallel surfaces. 

cut on wavelength of the quartz was 40 microns, it is used a s  a filter 

from about 50 to 80 microns. 

is too low, 

Since the 

Below 50 microns, the transmission 

Since the quartz, scatterplate, and black polyethylene filters 

produced monochromatic radiation in the 40 to 80 micron region, the 

transmission of the above powder filters could be checked in this 

region. This was done for several filters, and it was found that the 

cut on wavelengths compared very well to those published by Yosh- 

inaga. 

radiation was detected below its cut on wavelength of 57 microns. 

Hence, the region of monochromatic radiation was extended to 114 

microns. In this manner, all the single component powder filters 

were tested, and by selecting overlapping sets of these filters, a 

complete set of composite filters was  obtained by simply mixing all 

the components together in a single filter. Finally, the region from 

30 to 320 microns can be covered with the use of eight transmission 

filters. 

39 It was found that by adding a filter with BaF2 only, no 

These filters a r e  listed in Table VIII. 

As mentioned above, the region from 300 to 1100 microns 

is covered using transmission-grating filters. The selection of the 

ranges of these filters is carried out as follows. The cut on wave- 

length has been shown to be Xc = 0.3d, and from the experimentally 

derived transmission curves, the wavelengths at which these filters 

transmit 30 and 50 percent a r e  given by X(3070) N” 0.50 d and X( 50%) 

w 0.65 d. The lower limit of 3070 transmission was chosen by energy 

requirements, and the upper limit of 50% transmission is the point 
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GRATING 
POWDER FILTERS 
FILTERS d(-) 

FILTER 
NUMBER 

CUT-ON 
WAVELENGTH 

(microns ) 

1 

2 

3 

4 
5 

6 

7 
8 

9 

10 

11 

12 

13 

BeO+Zn@* I 
B e 0  + LiF** 

** Quartz 
3 + BaF2 ’ 
3 + BaF2 + KCL 
3 + BaF2 + KJ3r 

6 + CsBr 

6 + CsBr + CsI 
--- 

23 

30 

40 

57 

74 

93 

140 

16 0 

180 

234 

300 

390 

49 5 

USABLE RANGE 
(microns ) 

30 -45 

40 -60 

50 -80 

80 -114 

100 -150 

110 -185 

170 -270 

220 -320 

300 -400 

390 -520 

500 -667 

650 -868 

825-1100 

* 
one 240 grit A1 scatter plate and 0.2 mm Black Polyethylene 
permanently installed. 

used with diamond Golay cell o r  cooled detector. 

1.5 mm, Y-cut, 2 degree-wedge crystal. 

** 
*** 

‘Filters 4 through 16 used with Quartz Golay cell o r  cooled detector. 
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when second order wavelengths begin to  pass through the filter, The 

first filter was chosen to  

ilar manner, each overlapping the pre 

The calculation of the va 

always controlled by the limitations of the ruling machines used to  

make the gratings. 

ruled at the U. C. Berkeley, Physics Department Machine Shop could 

be ruled only by spacings of 1/200 ths. of a mrn. 
at UCLA to rule the longer wavelength gratings could rule gratings in 

multiples of 0.005 inch. 

was developed, the gratings were  ruled on four-inch square aluminum 

plates, one-half inch thick. These plates were heated to about 300°F, 

and pressed onto sheets of white, high-density polyethylene. The 

fabrication of these filters was carried out as follows. One grating 

and one unrzlled plate were heated on the lower platen of a hydraulic 

press to 300°F. Upon reaching this temperature, a precut four-inch 

square sheet of polyethylene was placed on the unruled plate until it 
had softened. At this time, the ruled plate was inverted, placed on 

the polyethylene and then pressed until the grooves in the grating were 
filled with moltea polyethylene. 

ment by a square frame with a wooden handle, which could be used 

to remove the hot assembly and place it into a bucket of water. In 

about one minute, the plates could be removed by hand, revealing 

a perfect replica g. If the replica was 
it could be flatte by placin led 

surface, and pressing on it until the stresses were removed. A set 

of seven filters was obtained to cover the region from 300 to 1100 

microns, The 

The shorter wavelength gratings, which were 

The shaper used 

Once a compatible set of grating spacings 

The three pieces were kept in align- 
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or the monochrom 

ion at the exit slit was tested by two 

f'lrst method has been described above, a 

crystal to  block the first order and pass the second and higher order 

onsists of usin 

wavelengths incident on a grating. 

availability of crystals which pass long wavelength radiation. Com- 

mon crystals used fo this purpose have been listed in Table 111. 

Beyond the region where this technique can be used, a second method 

is used. This method consists of using a grating of spacing d2 = 5 dl 

to scan over the second and higher orders of the grating with spacing 

When using this method, all the filters normally used with grat - 
ing number one must be placed into the optical path. Each filter and 

grating combination was tested by one or both of these methods, and 

the filters were improved until a signal to noise ratio of one was 

achieved in the region below the cut -on wavelength. Further improve - 
ment beyond this point is immeasurable, and therefore futile. 

This technique is limited by the 

1 

dl' 

The performance of the filters can be demonstrated by 

the quality of the spectra which can be obtained using them. The 

most convenient and popular gas to use for this demonstration is 

atmospheric water vapor. 

lution spectra obtained with the filters in Table VI11 in conjunction 

with a Golay Detector. The spectrometer settings are given in the 

figures. 

far -infrared instruments. 

Section 2 Calibration, Linearity, and Repeatability 

Figures 20 through 24 show medium reso- 

These spectra compare very well to  those obtained by other 

Calibration of far-fnfrared spectrometers is usually accom - 
plished by recording spectra of well known gases, such as water vapor, 

60, HCN, N 0, etc. The most convenient gasea are water vapor 

and CO. 
2 

The water vapor spectrum runs out to about 540 microns, 
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and that of CO to a few centimeters. Hence, CO has been used for 

ation beyond 500 rons. Since adjacent absorption lines for 
-1 CO a re  aeparated by 3.84 cm , high resolution is not required. 

Since each line of CO absorption is identical to the next, it 

is difficult to locate which line is which for calibration, This loca- 

tion can be accomplished by allowing second order water vapor lines 

to be recorded and then comparing the results to the first order CO 

spectra. 

Since the spectrometer is equipped with a sinerdrive 

mechanism, calibration procedures a re  greatly simplified. After 

a spectrum has been recorded using a single grating, and some 

farniliar water vapor lines a re  recognized by comparison to other 

published spectra, the wavelengths of these lines a re  plotted against 

the event marker numbers on the recording. 

straight lines as a result of the sine-drive system. 

between those recognized can be located by use of the straight line. 

This curve is the calibration curve, giving wavelength versus event 

marker number for each grating, These curves actually do become 

straight lines after adjustment of the sine -drive is carried out, Thus 

the linearity of the recorded spectra has been established. A typical 

calibration curve is shown in Figure 25. 

These curves will be 

Hence, all lines 

The wavelength repeatability can be teated by recording 

the same water vapor spectra several times separated by some time 

interval. 

repeatability is about 0 .1  cm 

This has been done on several of the gratings, and the 
-1 near 50 microns. 

Section 3. Selection of Operating Parameters. 

An important part of spectroscopy is being able to use a 

spectrometer easily and to its best ability, Thus, optimizing such 
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parameters as scan speed, slit width, electronic sensitivity, 

electronic time constant, chart speed, etc. are important to obtain 

clear useful recordings of spectra, A few simple techniques and 

calculations can simplify this task. 

The first parameter which is usually considered in ob- 

taining spectra is the required spectral slit width. This number may 

be difficult to determine i n  some cases, but most often it is available 

from other spectra, That is, when one is recording water vapor 

spectra for calibration purposes a resolution of 2 to 3 cm 

ly sufficient. 

the spectral slit width can be derived a s  follows: 

-1 is usual- 

The relation between the mechanical slit width and 

1 - 
2 X = 2d sin 8, dX = 2d cos 8 de = 2d (1 -sin B ) z  de 

vherr dx = f de is the physical slit width, and f is L e  focal ,ength 

of the telescope mirror.  For f = 840 nyn, and at the blaze wave- 
-1 

ll:rigth, dk = dx/22X, where dk is in cm , A. and dx a re  in mm, and 

d A / X  = dk/k. 

Table Lx gives the mechanical slit width versus spectral 

slit width for each grating at its blaze wavelength. 

mechanical slit width, the spectral slit width becomes smaller as 
the wavelength increases; thus the resolution improves as a grating 

is scanned toward longer wavelengths, 

For a fixed 

The next parameter to consider is the electronic sensi- 

tivity required to give a fu l l  scale chart reading at the wavelength 
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of maximum transmission 

combinat ion, 

region to find 

for a given sample - filter - grating 

This is determined by rap 

the wavelength of maximum tr 

selecting the proper sensitivity to  give an on-scale chart reading. 

Once the electronic sensitivity has been established, the 

electronic t h e  constant must be increased until a satisfactory signal 

to noise ratio is obtained. It must be remembered that the longer 

this time constant, the longer the time required to scan the given 

region. This brings in the next parameter, which is the scan speed. 

The electronic resolution is defined as the product of the scan speed 

times the electronic time constant, In order to obtain spectra which 

reflect the true wave form of the absorption lines, the electronic 

resolution should be from 0. 1 to 0.5 t imes the spectral resolution. 

Thus, for a fixed spectral resolution, a longer time constant requires 

a slower scan speed, and hence, longer scan time for a given spectral 

region. 

the blaze wavelength for each scan speed and each time constant 

available in the spectrometer. 

tabulated in Table X. 

Table IX gives the electronic resolution for each grating at 

Table JX is based on the scan speeds 

The last parameter to select i s  the chart speed. This is 

chosen to give spectral recordings of convenient length for storage 

and interpretation. This selection is controlled by the scan speed 

selected above. 
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SCAN SPJ3ED 
SETTING 

TABLE X 

WAVELENGTH SCAN RATES IN 

CM-’ /MIN AT BLAZE 

GRATING 
1 

7.35 

3.67 

1.84 

0.92 

0.46 

0.23 

40 Blaze Wave- 
Length (microns) : 

2 

4.06 

2.03 

1.92 

0. 51 

0.25 

0.13 

70 

3 

2.25 

1. 13 

0.56 

0.28 

0.14 

0.07 

130 

4 

1. 33 

0.67 

0.33 

0. 17 

0.08 

0.04 

2 16 

5 

0.67 

0.33 

0. 17 

0.08 

0.04 

0.02 

430 

6 

0.38 

0.19 

0.10 

0.05 

0.02 

0.01 

7 58 

7 

0.38 

0.19 

0.10 

0.05 

0.02 

0.01 

754 

8 

0. 51 

0.26 

0. 13 

0.06 

0.03 

0.02 

7 57 
u 
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